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Abstract

The differential evolution algorithm based on multi-population mainly improves its performance through mutation strategy
and grouping mechanism. However, each sub-population plays a different role in different periods of iterative evolution.
If each sub-population is assigned the same computing resources, it will waste a lot of computing resources. In order to
rationally distribute computational resources, an integrated differential evolution of multi-population based on contribution
degree (MDE-ctd) is put forth in this work. In MDE-ctd, the whole population is divided into three sub-populations according
to different update strategies: archival, exploratory, and integrated sub-populations. MDE-ctd dynamically adjusts computing
resources according to the contribution degree of each sub-population. It can effectively use computing resources and speed
up convergence. In the updating process of integrated sub-populations, a mutation strategy pool and two-parameter value
pools are used to maintain population diversity. The experimental results of CEC2005 and CEC2014 benchmark functions
show that MDE-ctd outperforms other state-of-art differential evolution algorithms based on multi-population, especially
when it deals with highly complex optimization problems.
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Introduction

The Differential Evolution (DE) algorithm was first pro-
posed by Storn and Price in 1995 [1], it is widely used to
solve real number optimization problems. DE is an adap-
tive global optimization algorithm based on population. It
solves optimization problems through the iteration of evolu-
tionary operators, and its steps include mutation, crossover
and selection [2, 3]. Because of its simple structure and easy
implementation, it is widely used in data mining, artificial
neural networks, digital filter design, electromagnetism and
other fields. For example, solar cell and module parameter
estimation [4], Electromagnetic framework [5], Environmen-
tal and economic power dispatching [6], protein structure
prediction [7].

Different from other algorithms [8, 9], DE mainly bal-
ances the trade-off of exploration and exploitation through
mutation strategy, population size NP, scaling factor F,
crossover rate CR and other parameters. In the early stage,
DE changes its parameters and mutation strategy through
trial and error in order to obtain the best result. However,
this approach necessitates a lot of testing, therefore many
researchers started looking into adaptive ways to increase
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effectiveness and conserve computing resources. Adaptive
technology is introduced to dynamically update the con-
trol parameters to optimize the problem. Additionally, if the
parameter adaptive design is suitable, the algorithm’s con-
vergence performance can be enhanced.

According to the classification scheme introduced by
Angeline [10] and Eiben et al. [11, 12], parameter control
mechanisms can be divided into the following three cate-
gories:

1. Deterministic rule setting parameters. In an evolutionary
iteration, the setting parameters are controlled by some
deterministic rules and does not accept any feedback
information. For instance, the mutation rate parameter
is changed by the time-dependent [13].

2. Adaptive setting parameters. In the search process, set-
ting parameters are dynamically changed by interacting
feedback information. The adaptive setting parameter
set has a great advantage in improving the convergence
rate and global optimal search probability of the algo-
rithm. This category includes many recently suggested
DE algorithms, including jDE [14], SaDE [15], JADE
[16], SHADE [17], and others.
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3. Self-adaptive setting parameters. The setting parameters
can be adaptively changed in the process of evolution.
Better parameter values can be passed on to more off-
spring because they are more likely to generate better
individuals. In this category, SPDE [18] and DESAP [19]
both fit.

In addition to adaptive technology, the prevalence of dis-
tributed computing offers a fresh method for enhancing
the performance and accessibility of algorithms. The pop-
ulation is put on a distributed system by the researchers
to enhance the performance of the DE method. Due to
the population’s scattered structure, it is possible for each
sub-population member to find an optimal solution inde-
pendently during evolution. An adaptive DDE (ADDE) is
proposed by Zhan et al. [20]. In ADDE, the total population
is divided into four sub-populations, including one master
population and three slave populations, using a master-slave
multi-population distribution framework. The master pop-
ulation is responsible for collecting individuals from the
three slave populations and reassigning them to the three
slave populations after distinguishing them, while different
slave populations will adaptively choose their own mutation
strategies according to the feedback of individuals. Wu et
al. propose a multi-population based framework (MPF) in
EDEYV [21] to achieve the purpose of integrating multiple DE
variants. In EDEYV, each DE variant evolves independently,
and computing resources are dynamically allocated to the
DE variants based on their performance. Li et al. introduce
an information-sharing mechanism in the sub-population of
MPMSDE [22] to avoid falling into local optima. In Cloudde
[23], the author divides the population into four parallel
sub-populations and uses different mutation strategies in the
concurrent sub-populations to reduce the calculation cost of
practical problems and meet different search requirements.

A multi-population based technique is used in MPEDE
[24] presented by Wu et al. It can achieve the dynamic
integration of numerous mutation strategies. A reward
sub-population and three other sub-populations are cre-
ated at MPEDE, with the reward sub-population being
assigned to one of the other sub-population. The three
sub-populations adopt different mutation methods and dif-
ferent updating techniques, respectively, which include
“DE/current-to-pbest/1” and archive, “DE/current-to-rand/1”
and “DE/rand /17 strategies. A strategy with the highest
recent performance will automatically receive additional
computing resources as the algorithm develops, while the
remaining computing resources will be distributed equally
among the other two strategies.

However, there are still some problems with these works.
The greatest computational resources are made available to
the best mutant strategy in MPEDE throughout evolution,

whereas the computational resources of medium and lower
strategies are equal. This allocation strategy saves computing
resources. The medium strategy should have more computa-
tional resources than the inferior strategy in order to utilize
them more effectively. The “DE/rand/1” mutation technique
provides an advantage in increasing population diversity, but
it may reduce the rate of convergence [25]. The “DE/current-
to-pbest/1” method in MPEDE employs the arithmetic mean
to control parameters, which could result in premature con-
vergence of the algorithm [26].

In order to address these issues, an integrated differ-
ential evolution of multi-population based on contribution
degree (MDE-ctd) is proposed. It employs a new grouping
technique (Dynamic regrouping method, DRM) to balance
the distribution of computing resources. DRM can calcu-
late the contribution degree of three sub-populations, and
regroup the size of the three sub-populations according to
the rank of contribution degree. In the process of evolution,
integrated sub-population expanded the search space and
lessens the impact of strategy on convergence speed by using
one mutation strategy pool(“DE/best/2”, “DE/rand/1” and
“DE/current-to-rand/1”) and two-parameter value pools(CR
parameter pool and F parameter pool). Additionally, histori-
cal successful weight (HSW) parameter adaptive approaches
were used for “DE/current-to-pbest/1” parameters. The adap-
tive technology can avoid premature convergence, speeds up
convergence and avoids local optimization. On the bench-
mark function set of CEC 2005 and CEC 2014, MDE-ctd was
tested in several dimensions, and an exhaustive comparison
with a number of state-of-the-art DE variants fully illus-
trated its competitive performance. The MDE-ctd algorithm
performed well, especially for handling highly complex opti-
mization issues.

Related work

This section discusses computing resource allocation meth-
ods, the traditional DE, differential evolution of multi-
population based on the ensemble of mutation strategies
(MPEDE) [24], and Ensemble of differential evolution vari-
ants (EDEV) [21].

Computational resource allocation methods

In the process of evolution, a single mutation strategy is
very different in the face of multi-modal, constrained, large-
scale, dynamic, and uncertain optimization problems, which
cannot make the algorithm achieve global optimality. Many
researchers began to use multiple mutation strategies to co-
evolve. In addition, effective computing resource allocation
methods are also valued by many researchers. Reasonable
computing resource allocation methods can not only avoid
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the waste of computing resources but also maintain the good
search performance of the algorithm. The use of these two
methods is not limited to some DE algorithms mentioned in
the first section. In other studies such as particle swarm opti-
mization and coevolution, there are also contribution-based
computing resource allocation methods and multiple popu-
lation strategies.

In MPCPSO [27], Li et al. divided the whole popu-
lation into “elite group (EP)” and “general group (GP)”,
and each group adopted different learning strategies. By
using a dynamic segment-based average learning strategy
(DSMLS) and multi-dimensional comprehensive learning
strategy (MDCLS) simultaneously, information sharing and
simultaneous evolution among populations can be real-
ized. In DCCA [28], a two-layer distributed coevolutionary
structure is proposed. On the one hand, the scalability
of dimension division is obtained, and high-dimensional
problems are effectively handled. On the other hand, the sub-
components can quickly adapt to the changes in resource
allocation, and achieve an effective allocation of comput-
ing resources. In DCCC [29], a cooperative coevolutionary
framework based on difficulty and contribution is proposed,
which allocates more computing resources to sub-problems
with greater and more difficult contributions, thus compre-
hensively solving the problem of difficulty and imbalance of
computing resources. In the CBCCO [30] proposed by Jia et
al., the contribution-based overlapping problem decomposi-
tion (CBD) method is used to allocate computing resources
to the sub-components with larger contributions, effectively
and efficiently decompose and optimize the non-separable
large problems with overlapping sub-components.

DE algorithm

DE is a population-based optimization method, which is a
kind of evolutionary algorithm. The main difference between
DE and other evolutionary algorithms (EA) is that the DE
algorithm is based on individual differences [31]. Evolu-
tion is composed of four basic steps: initialization, mutation,
crossover and selection [32]. The DE implementation pro-
cess is as follows.

Initialization

The population is randomly created during the initializa-
tion phase in accordance with the uniform distribution in
the search space as:

xi,jo=Lj+rand x (U; — Lj) @))
where i is the individual index, U; and L ; are upper bounds

of the jth dimension and lower bounds of the jth dimension.
rand is arandom number in the range [0, 1]. Once the operator

@ Springer

has been initialized, DE optimizes it via a sequence of evo-
lutions that include mutation, crossover, and selection until
the termination condition is met.

Mutation

At g generation, for each individual x; ¢ in the current popula-
tion, there have some mutants based on the mutation strategy
as {U,',g = (Vi 1,6, Vi2,g5---5Vi,Dg) | i =1,2,3,..., NP},
where NP is the population size, D is the dimension of the
problem. The following are some common mutation strate-
gies in the literature:

DE/rand/1:

Vig = Xrl,g t+ F - (xr2,g - xr3,g) 2)

DE/rand/2:

Vig =Xr5g + F - (Xr1,g = Xr2,0) + F - (X130 — Xrag) (3)
DE/current-to-best/1:

Vig =X g+ F - (pest,g — Xig) T F - (1,6 —X2,6) (4
DE/current-to-rand/1:

Vig =Xig+ F - (X3, —Xig) + F-(xr1,g —Xr2,4) ()
DE/current-to-pbest/1:

Vig=Xig+ F- (xé’est’g —Xig)+ F - (xr1g — Xr2,6) (6)

where r1, 12, 3, r4 and r5 are mutually distinct random val-
ues drawn from the range [1, NP]. The best individual in the
g-generation of the population is Xpest, ;. From the present
population’s best p percent, Xgest, p is chosen at random. F
is used to scale the difference vector in order to control the

search step.
Crossover

After the mutation operator, the initial vector is crossed with
the mutation vector to generate the target vector of the test
vectors u; ¢ = (Ui 1,g,Ui2,g,---,UiD,g) In DE, crossover
operation can be implemented by using one of three methods:
binary crossover, exponential crossover [33], and arithmetic
crossover. DE usually uses a binomial crossover defined as :
) vijg if (rand < CRor j = jrand)

e = {xi,./,g, otherwise @

where jrang= RandInt(1, D) is a random integer from 1 to
D, it can make sure that at least one variable of the trial
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vector u; ; comes from the mutation vector v; ,. CR is the
crossover rate, if CR =1, there is no crossover, and the test
vector is equal to the mutation vector. CR determines the
proportion of u; , inherited from v; .

Selection

If the value of the newly generated decision variable is
greater than the upper bound or less than the lower bound,
it will be reset to the corresponding bound and continu-
ously re-initialized within the predetermined range. Then,
the selection operation is performed after evaluating the tar-
get function values of all test vectors.

In order to maintain a better vector in the population, the
fitness of the trial vector is calculated after the crossover
operator, and the selection operator is executed. The fitness
values of x; ¢ and u; ¢ are used to determine which of x; , or
u; ¢ will survive in the next generation. For the minimization
problem, vectors with lower fitness values always advance
to the following generation, as illustrated by

Uj,g, if f(ui,g) = f(xi,g)
X;,g, otherwise

Xi,g+1 = { ®)

where f(x) is the fitness evaluation function.
MPEDE

MPEDE [24] is a multi-population-based differential evolu-
tion algorithm, which uses three different mutation strategies.
The entire population is dynamically divided into four popu-
lations, including three smaller sub-populations and a larger
reward population. Three mutation strategies are chosen by
MPEDE: “DE/current-to-rand/1”” and archive, “DE/current-
to-rand/1” and “DE/rand/1”. In the process of evolution, the
reward population is dynamically allocated to the dominant
population according to the proportion of population fitness
improvement of different strategies.

It is crucial to choose the right control parameters for each
mutation strategy because the performance of the DE algo-
rithm and the mutation strategy is correlated. As a result,
different mutation strategies may require different parameter
settings.

MPEDE uses adaptive parameter technology. the scale
factor F; ; can help individual x; using jth mutation strategy
to generate the crossover probability of the trial solution. The
scale factor F; ; is generated from the Cauchy distribution
of the position parameter F; and the scale parameter 0.1.
The crossover probability CR; ; is the crossover probability
of the trial solution generated by the jth mutation strategy
for individual x;. The crossover probability is generated by
the normal distribution of mean uCR ; and standard variance

0.1. In each generation of g, the parameter set formula is as
follows:

{ F;; = randc; j(uF;,0.1) )
CR;,; = randn; ;(uCR;, 0.1)
WF; = (1 —c)-uF; +c-meana(SF,;) (10)
nCR; = (1 —¢) - uCR; + ¢ - meany (Scr, ;) (11

where c is a positive constant between 0 and 1, meana (SF, ;)
is an arithmetic mean value of Sr ; [26], and meany (Scr, ;)
is the Lehmer mean of CRf_; [17] which are defined as

Zsm (12)

\SCRI

> st Seri
<—IScrlo_

Y st Scr &

meany (Sf ;) =

meany (ScR, ;) = (13)

EDEV

Wau et al. propose in 2017 that EDEV is a practical multi-
population based framework (MPF ) [21] for integrating
multiple DE variants. EDEV is composed of three traditional
DE versions: JADE [16], CoDE [34], and EPSDE [35]. In the
evolutionary process, each component DE variable in EDEV
is assigned to an indicator sub-population using the MPEDE
allocation method. After a certain number of iterations, the
reward sub-population is assigned to the DE variant with the
best performance recently. The following three DE variants
that are utilized in EDEYV are briefly described here.

JADE

The “DE/current-to-pbest/1”” mutation approach is employed
in JADE, and it consists of two versions: one has archive and
the other does not. The archival version uses the historical
optimal parameters generated by a normal distribution and
Cauchy distribution to realize the self-adaptation of param-
eters F' and CR.

CoDE

Three alternative mutation strategies are utilized in CoDE:
“DE/rand/1”, “DE/rand/2”, and “DE/current-to-rand/1”. Addi-
tionally, there are three control parameter combinations of
[F =1.0,CR = 0.1], [F = 1.0,CR = 0.9], and [F =
0.8, CR = 0.2]. Each parent vector generation of the iter-
ative process of evolution uses three alternative mutation
techniques to produce child vectors, and if the child vec-
tor produces a result that is better than the parent vector, the
child vector would continue to exist.
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EPSDE

In EPSDE, the “DE/best/2”, “DE/rand/1”, and “DE/current-
to-rand/1” mutation strategy pools are present. The CR
parameter pool value range is [0.1,0.2,0.3,0.4,0.5,
0.6, 0.7, 0.8, 0.9], while the F parameter pool value range is
[0.4,0.5,0.6,0.7,0.8, 0.9]. A mutation method and associ-
ated parameter value are randomly allocated to each member
of the initial population of their respective pools. The related
mutation strategies and parameter values are permitted to sur-
vive when the child vector produced during the process of
evolution outperforms the parent vector, while when the child
vector generated in the evolution process cannot be superior
to the parent vector, the mutation strategy and parameter val-
ues are randomly reinitialized.

An integrated differential evolution of
multi-population

The traditional DE based on multi-population allocates com-
puting resources of the same size to each sub-population,
which is not conducive to the full and rational use of com-
puting resources. MDE-ctd divides the whole population into
three sub-populations (archival sub-population, exploratory
sub-population and integrated sub-population.) based on
mutation strategy. In the iterative evolution process, the con-
tribution degree of each sub-population is used to rank, and
the computing resources are dynamically adjusted according
to the ranking results. The main framework of MDE-ctd was
shown in Fig. 1.

In MDE-ctd, the mutation strategy of the archival sub-
population is “DE/current-to-pbest/1”, the mutation strategy
of the exploratory sub-population is “DE/current-to-rand/1”,
and the integrated sub-population uses one mutation strat-
egy pool (“DE/best/2”, “DE/rand/1” and “DE/current-to-
rand/1”’) and two-parameter value pools (CR parameter pool
[0.1-0.9] and F parameter pool [0.4-0.9]).

Contribution degree

The contribution degree is the participation degree of each
sub-population in finding the global optimal solution, it can
count the proportion of the optimal fitness of each sub-
population in the whole population.

The sub-population based on mutation strategy is ranked
according to the ratio between the fitness change value of
the previous ng generation of the sub-population and the
evaluation of the consumption function. The indicators of
the high-ranked sub-population 2 and the low-ranked sub-

@ Springer

population [ are defined as follows:

A .
h = arg | max 4 (14)
1<j<3 \ng-NP;
A .
[ = arg| min 4 (15
1<j<3 \ng-NP;

Where NP; is the size of the jth sub-population, A f; is the
accumulation of fitness change value brought by the jth muta-
tion strategy in the previous generation, and ng - NP; is the
function evaluations consumed of the jth mutation strategy in
the previous ng generation. The order of the medium muta-
tion strategy except for the best mutation strategy 4 and the
worst mutation strategy [ is m.

After ranking the sub-population, The high-ranked sub-
population & received 3 points, the medium-ranked sub-
population m with 2 points, and the low-ranked sub-
population / with 1 point. The size of the sub-population
can be determined as follows.

L score j (16)
I > j=1,.3 score;
NP#" =3;-NP, j=1,...,3 an

Where score; is the score of jth strategy, A ;is the proportion
of the jth strategy contribution, and NPis the total population
size.

For different types of optimization problems, MDE-ctd
can dynamically allocate computing resources according
to the contribution degree. It can make more computing
resources available to mutation strategies that are suitable
for this type of optimization problem, and allocate less com-
puting resources to the poor strategy, thus making full use of
computing resources.

Multi-population and multi-strategy integration
method

In the whole iterative process of DE, the mutation strategy
plays different roles in different periods. In the early stage,
individuals are scattered. In the middle and late stages, indi-
viduals will gather in the local or global optimal regions.

In MDE-ctd, the archival sub-population uses the “DE/
current-to-pbest/1 (with achieve)” mutation strategy, it can
preserve good search performance, accelerate convergence,
and improve local search ability. The “DE/current-to-rand/1”
method was used in the exploratory sub-population to allow
individuals to explore more territory and prevent populations
from clumping together too early in the evolutionary process.
Note that the “DE/current-to-rand/1” strategy does not use
CrOSSOVer.

The mutation strategy and the set of parameter values are
used in the renewal process of the integrated sub-population.
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Fig.1 The main framework of MDE-ctd

It had a pool of values for each relevant parameter as
well as a pool of mutation strategies. When tackling var-
ious real number optimization challenges, these various
mutation methods were employed to compete to develop
offspring populations that can exhibit various performance
traits at various phases of evolution. The collection con-
tained the mutation techniques “DE/rand/1,” “DE/best/2”,
and “DE/current-to-rand/1”. In a numerical pool, the param-
eters F and CR, F € [0.4,0.5,0.6,0.7,0.8,0.9], CR €
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. Each member of
the integrated sub-population was assigned a mutation strat-
egy and randomly selected parameter values from their
respective pools.

Adaptive parameter settings based on historical
successful weight

Effective parameter combinations (F and CR) can improve
the performance of DE. It is desirable to record and reuse
these individual characteristics in later generations, thus
enabling excellent individuals to have a higher chance of sur-
vival. However, different mutation strategy requires different
combinations of parameters.

In order to use different parameter combinations ratio-
nally, an improved parameter adaptive method based on
historical successful weight (HSW) was designed to dynam-

ically update F and CR. JADE uses all successful F and
CR values to guide individual parameter adjustment, while
the core idea of HSW is to judge the advantages of con-
temporary weights by whether it can successfully generate
better child solutions, and calculate new F and CR through
weighted adaptive methods. The following was the formula
for set parameters:

(18)
19)

Fi j =randc; j(nFj, 0.1)
CR; ; = randn; ;(uCR;, 0.1)

where F; ; is the scaling factor of individual x; using the j-
th mutation strategy, randc; ; is the Cauchy distribution. If
F; j > 1,itis truncated to 1, and if F; ; < 0, it is regener-
ated. CR; ; is the crossover probability of individual x; using
the jth mutation strategy, randn; ; is the Normal distribution
and the standard deviation is 0.1. At the end of each genera-
tion, uF; and wCR; are updated according to the following
formula:

(20)
2n

wF; = (1 —c) - uF; + c - meanwy (SF. ;)
uCR; = (1 —¢) - uCR; + ¢ - meanwr,(Scr, ;)

where meanwy (Scr, ;) and meanwyr (S, ;) are the weighted

mean of Sg_; and Scr, ; respectively, and ¢ is a normal num-
ber between 0 and 1. The meanwy. (Scr, j) and meanwy (Sr, ;)
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can be calculated as follows:

[Scrl, & @2
k=1 W¢ - SCr

IScrl, &
k=1 Wi 'SCR,k

ISkl & @2
k=1 Wk * SE &

meanwy (Scr,j) = (22)

meanw (SF, ;) = ISkl ¢ =

fm1Wg * SFk

The weights of each F and CR were calculated by weighting
the mean. The weight w,f is updated like that:

Ady (24)
Wy = "
SRy
Adp g = | f(xk,g) — fug,g)l (25)
1 Wi, if fQkg) < f(urg)
w,f+ = | Wk, if (f(xk,g) > f(ukg) and rand < 0.5)

81 * wy + 8y % w,‘f, otherwise
(26)

where Ady o are fitness improvements and are used to
influence parameter adaptation. §; and &, are the weight com-
bination coefficients.

First, if the current generation succeeded in generating
a better solution, the weight continued to live into the next
generation, i.e. w,f“ = w,f. Second, if the generation did
not succeed in generating a better solution and the random
number rand was less than 0.5, the weight was discarded
and a new weight was generated through Ady ¢. Third, if
the contemporary generation did not succeed in generating a
better solution and the random number rand was greater than
0.5, the contemporary weights were used to regenerate and
calculate the weights for the next generation.

In particular, MDE-ctd applies this parameter control
method to the “DE/current-to-pbest/1” mutation strategy and
continues to use the parameter adaptive mechanism in JADE
on other mutation strategies.

Complexity analysis

According to the pseudo-code given in Algorithm 1, the
time complexity of MDE-ctd was analyzed as follows.
NP is the population size, D is the dimension of prob-
lem dimension, G4, is maximum number of generations.
The time complexity of classical DE can be expressed as
O(Gmax x NP x D). As stated in [36], MPEDE only
extended the JADE mutation strategy and parameter adapt-
ability, so the total complexity of both MPEDE and JADE
was O(Gpax X NP x [D + log (NP)]). The main difference
between MDE-ctd and MPEDE was the grouping method,
integrated mutation strategy and adaptive mechanism. For the
grouping methods based on contribution degree and the adap-
tive individual parameter settings (F and CR) based on HSW,

@ Springer

Algorithm 1 Pseudo-code of MDE-ctd.

1: Set uFj = 0.5, uCR; = 0.5, Af; =0and AFes; = 0 for each j
=1,..3;

2: Initialize, NP, ng foreachj=1,...,3;

3: Initialize the pop randomly distributed in the solution space;

4: Initialize A; = } and set NP; = A; - NP;

5: Randomly partition pop into popl , pop2 , pop3 with respect to their
sizes;

6: Set gen =0, Fes = 0 and MaxFes = D x 10000;

7: while Fes < MaxFes do

8

9

gen = gen + 1
if mod(g, ng) == 0 then
A C,
10: k= arg(max1gjg3(fp‘£§j )
score;

1 )Lj = Zj:lu.j 5]"0”’/ :
12: Af;j =0
13:  endif

14:  Calculate the size of N P;;
15: Randomly assign popi, popz and pop3 according to A; ;
l6:  for j=1—3do

17: Calculate uCR; and wFj;

18: Calculate CR; ; and F; ; for each individual x; in pop;;

19: Perform the j-th mutation strategy and related crossover oper-
ators over sub-population pop;

20: Set SCR,j = () and Spﬁj =0

21:  end for

22: for i=1— NPdo

23: if f(xi¢) < f(u;ig) then

24: Xigrl = Xi g}

25: else

26: Xigrl = Ujg;

27: Afy=Afj+ f (i) = fuig):

28: CR;i.j — Scr.j; Fi,j = SF.j;

29: end if

30:  end for

31: Fes=Fes+ NP
32: end while
33: return the best agent fitness

it only called the previous data in the archive, and would not
increase the time complexity of the whole algorithm. Multi-
population and multi-strategy integration method maintained
the same complexity as in MPEDE. Therefore, considering
the overall algorithm, the running complexity of MDE-ctd is
O(Gpax x NP x [D + log (NP)]).

Experimental studies

In order to fully evaluate the performance of MDE-ctd,
several experiments were done on CEC 2005 global opti-
mization benchmark function suite (30D, 50D) [37] and CEC
2014 global optimization benchmark function suite (30D)
[38]. Some state-of-art algorithms (CoDE [34], JADE [16],
SAKPDE [39], MPMSDE [22], EPSDE [35], SHADE [17],
EDEV [21] and MPEDE [24]) are used to compare with
MDE-ctd. Further, the contribution degree analysis, strategy
effectiveness and parameter sensitivity are conducted to test
the robustness of MDE-ctd.
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Table 1 Parameter

Algorith
configuration of each tested gorithm

Parameter settings

algorithm MDE-ctd

JADE
CoDE
SAKPDE
MPMSDE
EPSDE
SHADE
EDEV
MPEDE

81=038,8,=02,ng=5NP=210,c=0.1

p=0.05¢c=0.1, NP =100

Three trial vector generation strategies and three control parameter settings, NP = 30
CR range [0.3, 1.0] and F range [0.4, 1.0], NP = 100

8 =0.04, p=0.04, ng =25, NP =250, c = 0.1

CR range [0.1, 0.9] and F range [0.4, 0.9], NP = 50

pmin= 5%, H=NP =100

A=A =Xx3=0.1, 24 =0.7, ng = 20, NP = 50 or NP = 100

A1 =242 =23 =0.2,ng =20, NP =250

Benchmark functions and experimental settings

The 25 benchmark functions of the CEC2005 can be divided
into the following four categories: unimodal functions
(F1-F5), basic multimodal functions (F6-F12), expanded
multimodal functions (F13-F14), and hybrid composition
multimodal functions (F15-F25). The 30 benchmark func-
tions of the CEC2014 can be divided into the following
four categories: unimodal functions (F1-F3), simple mul-
timodal functions (F4-F16), hybrid multimodal functions
(F17-F22), and composition multimodal functions (F23—
F30). The detail information on benchmark optimization
functions, see [37, 38].

The parameters of MDE-ctd are set to NP = 210, ng
= 5, and ¢ = 0.1. The initial F and CR values are set
to 0.5 for the archival sub-population. The initial F val-
ues of the exploratory sub-population are set to 0.5. In the
integrated sub-population, CR ranged in [0.1,0.9] and F
ranged in [0.4, 0.9]. The values of §; and &, in the param-
eter adaption based on HSW are 0.8 and 0.2, respectively.
MaxFes = 10,000 x D is chosen as the experiment’s
maximum fitness evaluation number, where D is the dimen-
sion of the benchmark function. All comparison algorithms’
parameter configurations (including NP, F and CR values
and various additional parameters) were set to the identical
guidelines on their original publications, these parameters
are shown in Table 1.

Due to the algorithm’s randomness, each algorithm was
independently run 25 times for statistical comparisons. The
mean value and standard deviation value are calculated to
assess the algorithm’s performance. For each problem, the
best result is bolded. Results of MDE-ctd are compared
with those of CoDE, JADE, SAKPDE, MPMSDE, EPSDE,
SHADE, EDEV and MPEDE, respectively, by Wilcoxon
rank sum test at the significance level of 0.05. The marker
“—” is worse than the results of MDE-ctd, “+” is better than
the results of MDE-ctd and “~” is equivalent to the results
of MDE-ctd.

Comparison with advanced DE variants on CEC2005
for 30D/50D problems

From Tables 2 and 3, MDE-ctd was compared with eight
DE variants in the CEC2005 benchmark function suite (30D
and 50D), respectively. Several observations and conclu-
sions can be drawn from the analysis of the experimental
results. First of all, for the unimodal functions (F1-F5), at
30D, MDE-ctd was almost superior to all other algorithms,
only slightly worse than SHADE on F5. In the case of 50D,
except CoDE and EPSDE, other algorithms can find the
global optimal solution to F1 in 50D. MDE-ctd was supe-
rior to CoDE, MPMSDE, EPSDE and MPEDE on F2, only
inferior to MPMSDE, SHADE and EDEV on F3, superior to
the other 5 algorithms. It was better than all other algorithms
on F4-F5. For unimodal functions, MDE-ctd had the abil-
ity of fast convergence, and it can find the optimal solution
quickly. This is because the “DE/current to best/1” strategy
in the archival sub-population can converge quickly on the
unimodal problem. More computing resources are allocated
to archival sub-populations through the contribution degree,
thus it can improve the overall convergence ability of the
MDE-ctd.

Secondly, for the basic multimodal functions F6-F12, at
30D, MDE-ctd is inferior to SAKPDE and SHADE in F6
and superior to all other algorithms in F7. JADE, MPMSDE,
EPSDE, SHADE, EDEV, MPEDE, and MDE-ctd have the
same performance at F8. All the nine algorithms can find the
global optimal solution on F9. MDE-ctd was superior to other
algorithms except SHADE on F10, and superior to EPSDE
and SHADE on F11. MDE-ctd outperformed all other algo-
rithms on F12. In the case of 50D, MDE-ctd was superior to
all other algorithms on F7, F10, F12. Only second to EDEV
on F6, other algorithms except CoDE, SAKPDE and SHADE
maintained the same performance on F8. MDE-ctd, JADE,
MPMSDE, SHADE and EDEYV can find global optimal solu-
tions on F9, MDE-ctd was superior to JADE, EPSDE and
SHADE on F11.

@ Springer
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Fig.2 Convergence curves of 9 ; ; 2
algorithms on F3, F4, F7, F10,
F12, F16 representative test
functions of 30D
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Thirdly, for the expanded multimodal functions F13-F14,
SHADE performed best on F13. In the 30D case of F14,
CoDE, JADE, SAKPDE, MPMSDE, EDEV, MPEDE, and
MDE-ctd maintained the same performance, and in the 50D
case, JADE, MPMSDE, SHADE, EDEV, MPEDE and MDE-
ctd have the same performance. For multimodal functions,
MDE-ctd can balance exploration and development, and
maintain population diversity through multi-population and
multi-strategy integration method.

Finally, for the hybrid composition multimodal functions
F15-F25, at 30D, MDE-ctd was second only to EPSDE and
MPEDE on F15 and F17 respectively, and MDE-ctd main-
tained an advantage on F16, F18-F23 and F25. At 50D,
MDE-ctd is second only to SAKPDE and EPSDE in F15,
second only to EPSDE in F18-F20, superior to all other algo-

@ Springer

rithms on F16, and second only to MPMSDE and MPEDE
in F17. SAKPDE and MPEDE were superior to all other
algorithms on F21, MDE-ctd and EPSDE are superior to the
other 7 algorithms on F22, MED-ctd, SAKPDE, MPMSDE,
EDEV and MPEDE were superior to the other 4 algorithms
on F25. For hybrid composition multimodal functions, MDE-
ctd can not only ensure that the optimal mutation strategy
obtains enough computing resources, but also use the multi-
population and multi-strategy integration method to search
more space and improve the diversity of the algorithm, so as
to jump out of the local optimum.

In addition, the convergence rate was also a key indica-
tor of these algorithms, the convergence curves of portion
comparison algorithms on some selected functions of 30D
were plotted in Figs. 2 and 3 to observe their evolution. The
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Fig.3 Convergence curves of 9 sz ‘ ‘ 5

algorithms on F17, F18, F19,
F20, F22, F23 representative test
functions of 30D
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performance index was measured by the mean function error
(f(x)— f(x™)), where x was the contemporary optimal solu-
tion to evolution and x* was the global optimization of the
best function. As seen in Figs. 2 and 3, MDE-ctd can converge
quickly and is superior to other DE algorithms on Unimodal
functions F3 and F4. On the basic multimodal functions F7
and F12, it can be observed that MDE-ctd can get better
solutions than other DE algorithms. On F10, MDE-ctd had
a faster convergence rate in the early stage of evolution. On
the Hybrid composition functions F16—F20 and F22-F23, the
convergence rate of MDE-ctd at F16, F18, F19 and F22 were
a little slower in the early stage of evolution, but it can get
better solutions than other DE algorithms in the late stage of
evolution. On F17, MPEDE and MDE-ctd obtained the best
solution. On F23, EPSDE converged slowly, while other DE
algorithms can achieve a similar convergence speed.

In conclusion, MDE-ctd has obvious advantages over
several other state-of-art DE algorithms. The reason that
MDE-ctd is superior to other algorithms is that MDE-ctd can
evolve simultaneously in the mutual influence using multi-
mutation strategies. These mutation strategies can work
independently, enabling MDE-ctd to solve different types of
optimization problems. In addition, the contribution degree
grouping method used in MDE-ctd allows more computing
resources to be allocated to different sub-populations more
reasonably, which is faster than other multi-population or
multi-strategy algorithms to obtain feedback in the evolution
process and locate the optimal solution quickly.

@ Springer
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Comparison with advanced DE variants on CEC2014
for 30D problems

MDE-ctd was compared with eight state-of-art DE variants
on CEC 2014 (30 benchmark functions) to test its perfor-
mance. The comparison of MDE-ctd and eight DE variants
was summarized in Table 4. The following conclusions were
drawn from comparing and analyzing the experiments.

On the unimodal functioned F1-F3, MDE-ctd performs
better than other algorithms. On F2, MDE-ctd, CoDE,
SAKPDE, MPMSDE, EDEYV, and MPEDE can all locate the
global optimal solution. On F3, only SAKPDE, EDEV and
MDE-ctd can do so.

On the simple multimodal functions F4-F16, MDE-ctd
outperformed other algorithms on F4 and F13. On F5,
the 7 algorithms have the same performance. On F6 and
F14, MDE-ctd was second only to SHADE and EDEV
respectively. On F7, MDE-ctd, SAKPDE, MPMSDE, CoDE,
EDEV and MPEDE can find globally optimal solutions. On
F9, it was only surpassed by JADE and SHADE, while on
F12, MDE-ctd outperformed SAKPDE, MPMSDE, EPSDE,
EDEV, and MPEDE. On F15, MDE-ctd has the same perfor-
mance as JADE and outperforms MPMSDE, EPSDE, EDDV,
and MPEDE.

In the mixed multimodal functions F17-F22, MDE-ctd
was second only to MPEDE on F17 and F18 and supe-
rior to JADE, EPSDE, EDEV and MPEDE on F19. On
F20-F22, MDE-ctd outperforms all other algorithms. On the
Compound multimodal function F23-F30, nine algorithms
have the same performance on F23. On F24, F25 and F26,
MDE-ctd achieved a comparable level of performance with 6
algorithms, respectively. On F27-F30, only EPSDE on F29
have a similar performance with MDE-ctd. In other cases,
MDE-ctd is superior to other algorithms.

These results show that MDE-ctd has good performance
on the CEC2014 benchmark function (unimodal functioned
F1-F3, hybrid functions F17-F22 and composition functions
F23-F30). Indeed, for unimodal functions, the contribution
grouping method used by MDE-ctd can ensure that the best
mutation strategy obtains more computing resources. For
hybrid functions composition functions, multi-population
and multi-strategy integration methods can maintain good
diversity of the population and increase the ability of the
algorithm to jump out of the local optimum.

Contribution degree analysis

In order to study the contribution degree of the three
sub-populations (archival sub-population, exploratory sub-
population, integrated sub-population) of MDE-ctd in the
whole evolutionary process, some comparative experiments
were tested on CEC2005 (30D and 50D) benchmark func-
tions suite respectively. The experimental results are sum-

@ Springer

marized in Table 5 and Fig. 4. Due to the randomness of
the algorithm, the MDE-ctd was run independently 25 times.
The contribution degree of each sub-population in the evolu-
tion process was evaluated by calculating the proportion of
the average contribution degree to the total. For clarity, the
sub-populations with the highest contribution were marked
in boldface.

In different benchmark functions and different stages
of evolution, the contribution degree of the three sub-
populations is completely different. The contribution of the
archival sub-population on F1-F9, F11-F15, and F25 was
larger than the exploratory sub-population and the integrated
sub-population on 30D. On F10 and F21, the exploratory
sub-population contributed more than the other two sub-
populations. The contribution of the archival subspecies and
the integrated subspecies on F16-F17 is similar. The con-
tribution of Integrated sub-population is always superior to
archival sub-population and exploratory sub-population on
F18-F20. tion of 50D, the contribution of archival sub-
population was higher than the exploratory sub-population
and integrated sub-population on F1-F7, F9-F17, F19-F20
and F25. Among the remaining functions, the contribution
degree of the integrated sub-population was always better
than archival sub-population and exploratory sub-population.
Therefore, in the evolution process, the contribution degree
can reflect the interaction between the constituent strategies
to a certain extent, and allocate computing resources accord-
ing to the contributions to different sub-populations, which
is conducive to the full use of computing resources.

Strategy effectiveness

In order to verify the effectiveness of the method proposed in
this Manuscript. MDE-ctd (c1), MDE-ctd (c2) and standard
MDE-ctd were compared in the CEC2005 function. MDE-
ctd (cl) is MDE-ctd without grouping methods based on
contribution degree, while MDE-ctd(c2) is MDE-ctd with-
out multi-population and multi-strategy integration method.
Each algorithm is run independently 25 times and calculate
the mean value and standard deviation to evaluate the per-
formance of the algorithm. Among them, The experimental
results are shown in Table 6, Figs. 5 and 6.

The experimental results show that MDE-ctd (cl) per-
forms poorly in unimodal function (F1-F5), basic multi-
modal function (F6-F12), and extended multimodal function
(F13-F14). It is not only the rate of convergence is slow, but
also the optimal solution cannot be localized.

This is because MDE-ctd(cl) uses the equal grouping
method to allocate the same computing resources to each sub-
population. For different optimization problems, the equal
grouping method can not effectively use because the feed-
back information to adjust the population size in time, and it
can not make the entire population close to because the opti-
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Table 5 Sub-population contribution on CEC2005 benchmark (30D) Table 5 continued
Function Archival sub-  Exploratory Integrated Function Archival sub-  Exploratory Integrated
population sub- sub- population sub- sub-
population population population population
F1 30D 047 0.23 0.30 F23 30b  0.04 0.38 0.58
50D 0.51 0.14 0.35 50D 0.11 0.01 0.88
F2 30D  0.51 0.31 0.18 F24 30D 0.08 0.01 0.91
50D  0.62 0.37 0.01 50D 0.36 0.17 0.47
F3 30D  0.82 0.17 0.01 F25 30D 0.51 0.47 0.02
50D  0.94 0.05 0.01 50D 049 0.33 0.18
F4 30b  0.52 0.42 0.06
50D  0.80 0.19 0.01
F5 30D 0.67 0.31 0.02 mal solution, thus reducing the overall convergence speed
50D 0.90 0.09 0.01 of the algorithm and the ability to find the optimal solution.
F6 30D 0.76 0.22 0.02 Standard MDE-ctd uses dynamic regrouping based on con-
50D  0.86 0.13 0.01 tribution degree. From experiment, both the convergence rate
F7 30D 0.48 0.26 0.26 and the ability to find the global optimal solution of Standard
50D 0.53 0.24 0.23 MDE-ctd are better than MDE-ctd(c1).
F8 30D 036 0.31 0.33 On the mixed function (F15-F25), the performance of
50D 035 0.28 0.37 MDE-ctd (c1), MDE-ctd (c2) and standard MDE-ctd are sim-
F9 30D 0.52 0.15 033 ilar. This is because there are many local optimizations on
50D 0.44 0.19 0.37 highly complex mixed functions. Only the reallocation of
F10 30D 041 0.44 0.15 computing resources can not make the MDE-ctd jump out of
50D 041 038 021 tbe local optima, an(.i tf.lere.must be multiple strategies .to solve
Fl1 0D 076 011 013 h11ghly complex optlrrln'zatlonlprf)blems. Thellre.fore, this paper
oD 0.89 0.07 0.04 also plroposlelzsdaf mlll\;g})zopudatw;l' ind mu (tll-strailegy inte-
Fl2 30D 0.56 0.28 016 grathn met 0. or ‘-ct , W 1c. can reduce the 1mpact
of using multiple mutation strategies on the convergence
50D  0.74 0.08 0.18 . . L . .
speed of the algorithm while maintaining population diver-
F13 30D  0.73 0.02 0.25 . - . .
sity. Table 6, Figs. 5 and 6 shows that the multi-population
50D  0.88 0.02 0.10 . . .
and multi-strategy integration method used alone has a good
Fla 30D 0.65 0.24 011 effect on the mixed function (F15-F25). Using the multi-
0D 0.79 0.16 0.05 population and multi-strategy integration method, MDE-ctd
F13 30D 0.46 0.24 030 can have powerful search capabilities in the evolutionary pro-
50D 047 0.21 0.32 cess.
Fl16 30D 045 0.46 0.09
0D 050 0.31 0.19 Parameter sensitivity
F17 30D 0.46 0.46 0.08
50D 0.52 037 0.11 The influence of parameters ng and NP on the performance
F18 30D 0.06 0.01 0.93 of MDE-ctd were analyzed. The different combinations of ng
50D 0.27 0.01 0.72 and NP values were compared on the CEC2005 benchmark
F19 30D 0.05 0.01 0.94 function suite and used the mean value to judge the results.
50D 0.47 0.28 025 The sensitivity analysis results of parameters ng and NP are
F20 30b  0.05 0.02 0.93 shown in Table 7 and Fig. 7.
50D  0.41 0.18 0.41 In parameter sensitivity analysis, when one parameter is
F21 30D 035 0.39 0.26 analyzed, other parameters are set as standard values (i.e.
50D  0.16 0.01 0.83 ng = 5 or NP = 210). From the analysis results of the
F22 30D 0.04 0.03 0.93 parameters ng and NP in Table 7 and Fig. 5, it can be found
50D 0.14 0.01 0.85 that MDE-ctd is sensitive to the parameters ng and NP of

many benchmark functions. If the parameter ng is too large,
this change can not reflect the search situation in time. If the
parameter ng is too small, the frequent grouping will make the
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Fig.4 Contribution degree of
sub-population to different test
functions
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Table 6 Effectiveness of strategys CEC2005 benchmark (30D)

Function MDE-ctd(c1) mean (std dev) MDE-ctd(c2) mean (std dev) MDE-ctd mean (std dev)
F1 0.00E+00 (0.00E+00)~ 0.00E+00 (0.00E+00)~ 0.00E+00 (0.00E+00)
F2 6.02E—19 (9.35E—19)— 1.19E—28 (9.48E—29)— 7.68E—30 (1.24E—29)
F3 5.71E+01 (1.68E+01)— 2.72E—01 (2.98E—01)— 7.12E—02 (5.99E—02)
F4 6.23E—14 (9.53E—14)— 5.97E—-22 (5.76E—22)— 5.44E—23 (3.95E—23)
F5 8.48E—06 (6.81E—06)— 2.58E—06 (1.46E—06)— 6.30E—07 (1.24E—06)
Fo6 3.77E+00 (6.54E+00)— 2.20E—06 (2.59E—05)— 6.02E—16 (4.38E—16)
F7 3.29E—03 (5.69E—03)— 4.11E-03 (7.11E-03)— 1.23E—-03 (3.89E—-03)
F8 2.10E+01 (2.08E—03)~ 2.10E+01 (1.04E—02)~ 2.09E+01 (3.74E—02)
F9 0.00E+00 (0.00E+00)~ 0.00E+00 (0.00E+00)~ 0.00E+00 (0.00E+00)
F10 4.23E+01 (9.37E+00)— 2.92E+01 (7.20E+00)— 1.77E+01 (4.97E+00)
F11 2.74E+01 (1.72E+00)— 2.57E+01 (5.23E+00)~ 2.56E+01 (4.41E—-01)
F12 2.14E+04 (4.46E+03)— 3.17E+03 (6.48E+02)— 1.29E+03 (7.17E+02)
F13 2.49E+00 (1.70E—01)— 2.23E+00 (2.60E—01)— 1.93E+00 (2.55E—01)
F14 1.29E+01 (1.34E—-01)— 1.26E+01 (4.37E—02)— 1.23E+01 (4.79E—01)
F15 3.57E+02 (1.07E+02)— 3.73E4+02 (3.91E+02)— 3.14E+02 (9.91E+01)
Fl16 6.77E+01 (2.12E—01)— 1.67E+02 (2.03E+02)— 4.39E+01 (5.89E+00)
F17 1.24E+02 (1.08E+02)— 4.90E+01 (1.58E+01)— 4.18E+01 (6.27E+00)
F18 8.23E+02 (1.15E—-02)— 9.04E+02 (1.58E+01)— 8.16E+02 (2.12E—01)
F19 8.22E+02 (1.93E—-01)— 9.04E+02 (4.05E—01)— 8.17E+02 (3.96E—01)
F20 8.22E+02 (8.39E—02)— 9.04E+02 (5.28E—01)— 8.17E+02 (7.07E—02)
F21 6.20E+02 (2.08E+02)— 5.00E+02 (3.36E—09)~ 5.00E+02 (4.62E—06)
F22 5.00E+02 (1.25E—01)~ 8.70E+02 (2.59E+01)— 5.02E+02 (7.07E+00)
F23 6.45E+02 (1.93E+02) 5.34E+02 (7.82E—03)~ 5.34E+02 (5.82E—03)
F24 2.11E+02 (1.91E—-01)~ 2.00E+02 (6.57TE—13)+ 2.10E+02 (2.17E—14)
F25 2.10E+02 (1.87E—01)~ 2.09E+02 (2.15E—01)~ 2.09E+02 (1.13E—01)
[+~ 19/0/6 17/117

algorithm unable to effectively evaluate the evolution. Com-
pared with the ng parameter, the NP parameter has a greater
impact on the performance of MDE-ctd. Traditionally, it is
believed that a larger population is conducive to solving mul-
timodal optimization problems, while a smaller population
is conducive to solving single-mode optimization problems.
However, the case, which was found in our experiments, is
not always unchanged, For example, when dealing with uni-
modal function F3, the performance of MDE-ctd increases
with the increase of population. When dealing with multi-
modal function F11, the performance of MDE-ctd increases
with the decrease in population.

According to the analysis of the experimental data, when
ng = 5, it can not only reflect the search situation in time,
but also reduce the population grouping frequency and effec-
tively evaluate the evolution process. When NP = 210, it
can well reduce the impact of population size on the algo-
rithm in the evolution process. Therefore, when ng = 5 and
NP = 210, the comprehensive performance of MDE-ctd is
the best.

Conclusion and future work

This work offered an integrated differential evolution of mul-
tiple populations based on contribution degree, known as
MDE-ctd, in order to address the deficiencies of the origi-
nal difference approach in computing resource allocation and
handling highly complex optimization issues. In MDE-ctd,
three sub-populations (archival sub-population, exploration
sub-population, and integrated sub-population) co-evolved
at the same time and used a variety of mutation strategies
with different advantages to balance exploration and devel-
opment. In the process of evolution, the contribution of each
sub-population to the optimization problem is tracked by the
contribution degree, and the dynamic grouping mechanism
is adopted to maximize the advantages of different sub-
populations and improve the global optimality of MDE-ctd.
We effectively realize the dynamic allocation of comput-
ing resources among different sub-populations, and allocate
more computing resources to the best sub-population in time,
thus reducing the waste of computing resources.
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Fig.5 Convergence curves of
MDE-ctd(c1), MDE-ctd(c2),
MDE-ctd on CEC2005
benchmark functions F2-F13
with 30D
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Fig.6 Convergence curves of
MDE-ctd(c1), MDE-ctd(c2),
MDE-ctd on CEC2005
benchmark functions F14-F25
with 30D
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Fig.7 Bar comparison results of different parameters (ng and NP)

In the following research, the computing resource regroup-
ing method based on contribution degree can provide a new
scheme for other multi-population DE algorithms. Mean-
while, MDE-ctd can be applied to some real application
problems, such as cloud computing resources scheduling
problems, to further test its performance.
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