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Abstract
As for the problems of boundary blurring and information loss in the multi-focus image fusion method based on the generative
decision maps, this paper proposes a new gradient-intensity joint proportional constraint generative adversarial network for
multi-focus image fusion, with the name of GIPC-GAN. First, a set of labeled multi-focus image datasets using the deep
region competition algorithm on a public dataset is constructed. It can train the network and generate fused images in an end-
to-end manner, while avoiding boundary errors caused by artificially constructed decision maps. Second, the most meaningful
information in the multi-focus image fusion task is defined as the target intensity and detail gradient, and a jointly constrained
loss function based on intensity and gradient proportional maintenance is proposed. Constrained by a specific loss function to
force the generated image to retain the information of target intensity, global texture and local texture of the source image as
much as possible and maintain the structural consistency between the fused image and the source image. Third, we introduce
GAN into the network, and establish an adversarial game between the generator and the discriminator, so that the intensity
structure and texture gradient retained by the fused image are kept in a balance, and the detailed information of the fused
image is further enhanced. Last but not least, experiments are conducted on twomulti-focus public datasets and a multi-source
multi-focus image sequence dataset and compared with other 7 state-of-the-art algorithms. The experimental results show
that the images fused by the GIPC-GAN model are superior to other comparison algorithms in both subjective performance
and objective measurement, and basically meet the requirements of real-time image fusion in terms of running efficiency and
mode parameters quantity.

Keywords Multi-focus image fusion · Gradient-intensity joint proportional constraint · Deep region competition algorithm ·
Target intensity and detail gradient · Generative adversarial network · GIPC-GAN

Introduction

Due to hardware limitations such as optical lenses, images
captured under a single shooting setting cannot comprehen-
sively and effectively image scene information. For example,
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in digital photography, under the condition of limited depth
of field, it is difficult to keep all-in-focus information of the
objects at different depths of field in the same image [1, 2]. It
is thereforewhat image fusion aims- to extract and reintegrate
effective information frommulti-source images to generate a
single image that is informative and conducive to other sub-
sequent computer vision tasks [3, 4]. As an important image
enhancementmethod in the field ofmultimodal image fusion,
multi-focus image fusion can effectively fuse different focus
areas in multi-source images to generate an all-in-focused
and all-clear image, which lays solid foundation for subse-
quent other computer vision tasks, such as medical diagnosis
[5, 6], object detection and recognition [7], image denoising
[8] and object segmentation [9, 10].

Multi-focus image fusion, as a research hotspot in image
fusion, has witnessed rapid development in recent years
[11–13]. For its problem, numerous research schemes have
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been proposed by scholars, which can be mainly divided into
traditional methods and deep-learning-based methods [14].

Traditional fusionmethodsmanuallymeasure activity lev-
els and design fusion rules in spatial or transform domains
through correspondingmathematical transformations, which
is therefore divided into spatial domain methods, transform
domain methods and hybrid domain methods. Specifically,
the spatial domain methods directly perform linear opera-
tions on the pixels of the image to complete image fusion
[15–17]; the transform domain method decomposes the
source image into other domains, and integrates and recon-
structs the image coefficients in the decomposed domain
to achieve image fusion, in which are further divided into
multi-scale transformmethod [18–20], sparse representation
method [21, 22], saliency method [23], subspace method
[24] and other methods [25]; and hybrid domain methods
combine the advantages of the above two methods, thus
having an improved fusion performance [26–28]. Despite
their good image fusion results, there are still some limita-
tions of the above methods. Firstly, traditional methods do
not take into account the feature differences of multi-source
images, and using same feature transformation in the feature
extraction process, is likely to cause poor feature expression
capabilities. Secondly, the fusion strategydesignedby the tra-
ditional methods is relatively rough, and there is little space
for improvement in image fusion performance. Finally, the
design strategies are usually complex,which is not conducive
to real-time image fusion tasks.

In recent years, deep learning has attracted extensive atten-
tion of scholars in the field of CV due to its powerful feature
expression. Introducing deep learning to the image fusion
task can overcome the above limitations of traditional fusion
methods [29–31]. Liu et al. [32] first used convolutional
neural network for multi-focus image fusion, which estab-
lished a direct mapping between source images and focus
images by binary classification of in-focus and de-focus
regions. It is worth noting that hand-constructed high-quality
image patches and Gaussian blurred versions are employed
as supervised training datasets to train the classifiers.Ma et al.
[33] proposed a two-stage unsupervised deep learning model
for multi-focus image fusion. The method exploits spatial
frequencies and adopts a gradient-based method to measure
sharp changes in the features extracted by the network. The
rate of change is used to characterize activity level measures
and generate initial decision maps. Consistency checking are
then conducted to refine the decision map and generate the
final fused image. Zhang et al. [2] proposed a generative
adversarial network with adaptive and gradient combined
constraints to fuse multi-focus images. In this model, an
adaptive decision block is introduced to determine the focus
characteristics of source image pixels according to the prin-
ciple of repeated blurring differences. Guided by the adaptive
decision block, a content loss function is specially designed

to dynamically guide the network optimization direction. In
the adversarial game of GAN networks, the gradient maps
of the generated images are forced to approximate the hand-
designed joint gradient maps.

On one hand, most of the existing deep learning-based
methods employ decision map to achieve multi-focus image
fusion. This kind of method based on decision map directly
combines the pixel regions of the source image, and can
maintain high pixel fidelity. However, it requires higher clas-
sification accuracy of decision map. Misclassification can
result in blurred edges and loss of information near the image
focus and defocus boundaries. On the other hand, most of
the deep learning-based methods need post-processing oper-
ations, such as guided filtering, consistency checking, and
fully convolutional conditional random fields, after gener-
ating the initial decision map, so as to further refine the
generated decision map, which increases the complexity of
the model. Deep-learning-based supervised models mostly
needs hand-designed decisionmaps andGaussian blurring of
clear images to generate multi-focus image pairs for model
training [34–36]. It is such artificial subjectivity that limits
the fusion performance of the algorithm.

To fix the above problems, this paper proposes a new
gradient-intensity joint constrained generative adversarial
network for multi-focus image fusion, named GIPC-GAN.
First, inspired by the literature [37], we define themostmean-
ingful information in the multi-focus image fusion task as
texture gradient and object intensity. Notably, in the fusion
process, both types of information from the source image
are treated as equally important. The main purpose of the
proposed algorithm is to make the fused image retain the
maximum intensity and gradient information in the source
image, that is, the focus information of the image. Second,
the DRC algorithm in [38] is deployed to automatically con-
struct a decision map on the public MFI-WHU dataset [2],
and a new multi-focus image fusion dataset is established
under the Gaussian blur principle. Third, a well-designed
network model for multi-scale and multi-level feature rep-
resentation and transfer of images, and a new loss function
with gradient and intensity joint proportional constraints for
themostmeaningful information ofmulti-focus image fusion
tasks, are presented in the paper. Last but not least, through
the adversarial game between the generator and the discrimi-
nator, an adversarial balance ismaintained, and the generated
image is forced to keep as much information of target inten-
sity and detail texture of the source image as possible.

The main contributions of this paper are as follows.

(1) This paper proposes a new generative adversarial net-
work based on combined constraints of gradient and
intensity for multi-focus image fusion. The proposed
network is based on overall reconstruction approach,
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instead of decision map. The model achieves an end-
to-end multi-focus image fusion through deep feature
extraction and overall feature reconstruction. It avoids
the problemof boundary blurring effect because the gen-
erator directly generates the fused image instead of the
decision map, that is, there is almost no information
loss and blurring in the focus and defocus boundary
line regions of the image. Without using decision maps,
the network of the proposed GIPC-GAN algorithm does
not require any post-processing operations, and it can
quickly achieve multi-focus image fusion in an end-to-
end manner.

(2) On the MFI-WHU public dataset of 120 high-quality
images, this paper adopts the Deep Region Compe-
tition (DRC) algorithm to extract the foreground and
background objects of the images, and automatically
construct a decision map, which avoids the subjective
arbitrariness of manually constructing decision maps
and thus improves segmentation accuracy. A training
dataset with 120 multi-focus image pairs is established
through the Gaussian blur principle and accurate seg-
mentation decisionmaps that can provide a new training
benchmark and options for multi-focus image fusion
tasks.

(3) The most meaningful information in the multi-focus
image fusion task is defined as texture gradient and tar-
get intensity. In otherwords, the goal of our fusion image
is to preserve asmuch information of target intensity and
gradient texture in the source image as possible, and that
is consistent with the multi-focus image fusion task of
generating an all-in-focused and all-clear image.

(4) Based on the important information of gradient and
intensity defined in the above multi-focus fusion task,
this paper designs a new combined-constraint adver-
sarial loss function that maintain proportional gradient
and intensity information. It is known that, for the first
time in image fusionmethods, both intensity discrimina-
tion loss and gradient discrimination loss are taken into
account in the discrimination loss function. A specific
loss function is used to guide the direction of network
training and optimization, and to further enhance the tar-
get intensity and detail texture of the fused image while
maintaining the balance of the target intensity and detail
texture information retained in the fused image.

(5) The GIPC-GAN model based on overall reconstruction
forces the generated image to continuously approximate
the probability distribution of the source image at the
pixel level or feature level. The fused image also retains
as much texture and intensity information of the source
image as possible, and has higher pixel fidelity.

(6) Extensive experiments and ablation studies on two
multi-focus public datasets and a multi-source multi-
focus image sequence dataset demonstrate the impor-
tance of the designed intensity and gradient joint
proportional-constrained loss function for multi-focus
image fusion. Experimental results demonstrate that
GIPC-GAN outperforms other state-of-the-art methods
in qualitative and quantitative comparisons and meets
the requirements of real-time image fusion.

The structure of the rest part is as follows. Section "Related
work" gives an overview of relevant theory and work. The
proposed network model is elaborated in Section "GIPC–
GAN algorithm". Section "Experimental results" is the detail
about the experimental configuration and used datasets,
and subjective and objective comparative experiments and
experimental evaluations with 7 state-of-the-art fusion algo-
rithms on two public datasets, are conducted in this part. In
addition, comparison of running efficiency and model calcu-
lation parameters, ablation experiments, fusion experiments
and generalization experiments of multi-source and multi-
focus image sequence pairs are conducted in this section.
Section "Conclusions" is the summary and outlook.

Related work

In this section, a brief introduction of deep learning methods
relevant to our work is made. For example, the original Gen-
erative Adversarial Networks (GANs) [39], LSGANs [40]
for stabilizing the GAN training process, and FusionGAN
[41], which used GANs for image fusion for the first time.

GANs [39]

GANs were first proposed by Goodfellow in 2014, and
received huge attention in the field of deep learning immedi-
ately. Based on the principle of two-player zero-sum games,
it can evaluate the target distribution and generate new sam-
ples without any supervision. An adversarial game between
theGenerator (G) and theDiscriminator (D) is established, in
which the former generates samples that deceive the discrim-
inator, and the latter aims to discriminate whether the input
samples are from the generator or the real samples, until it
cannot distinguish the input samples.

Mathematically, the adversarial process is represented by
maximizing D and minimizingG, and the objective function
is shown in formula (1).

min
G

max
D

VGAN (G, D) � Ex∼pdata (x)
[
log D(x)

]

+ Ez∼pz (z)
[
log 1 (−D(G(z)))

]
,

(1)
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whereG and D is the generator and the discriminator, respec-
tively, pdata and pz represent real sample distribution and
generated sample distribution, and x and z represent the real
sample and the generated sample, respectively. D, is to make
VGAN (G, D) as large as possible, that is, strong recogni-
tion capability. For G, VGAN (G, D) should be minimized
as much as possible, that is, the generated data is close to
the real data. The whole training of GAN is the process of
continuous and iterative training of G and D.

LSGANs [40]

Conventional GANs deploy a sigmoid cross-entropy loss
function in the discriminator, which leads to the problem
of vanishing gradients during training. Due to instability in
training, it is difficult to obtain better models by alternat-
ing training. To address the problem, Mao et al. proposed
least squares generative adversarial networks (LSGANs) in
2017. As an improved version of GANs, LSGANs adopts
the least squares loss function in the discriminator and intro-
duces labels to stabilize the network optimization process.
The objective function is shown in formula (2) and formula
(3).

(2)

min VLSGAN (D) � 1

2
Ex∼pdata (x)

[
(D(x) − a)2

]

+
1

2
Ez∼pz (z)

[
(D(G(z)) − b)2

]

min VLSGAN (G) � 1

2
Ez∼pz (z)

[
(D(G(z)) − c)2

]
, (3)

where G and D represent the generator and the discrimina-
tor, respectively. a, b and c respectively indicate that D is
expected to discriminate real data as true labels, D to dis-
criminate generated data as false labels, and G expects D to
discriminate generated data as true labels. It is obvious that
the true labels a and c should be as close to 1 as possible,
while the false label b should be as close to 0 as possible.

FusionGAN [41]

In 2019, Ma et al. applied GAN to image fusion for the first
time. FusionGANsets up an adversarial game between a gen-
erator and a discriminator to fuse infrared and visible images,
whose generator can generate fused images with primary
infrared targets and secondary visible light detail textures
at the very beginning. At this time, the fused image contains
more infrared target information and less texture information
of the visible image, thus having unbalanced infrared target
and visible light texture information. To address it, Fusion-
GAN feeds the visible light image and the fused image into
the discriminator, respectively, forcing the fused image and

the visible light image to keep the distribution consistency
through adversarial learning. The loss functions of its gener-
ator and discriminator are shown in formula (4) and formula
(5), respectively.

(4)

�G � 1

N

N∑

n�1

(
DθD

(
I nf

)
− c

)2

+ λ

[
1

HW

(∥∥I f − Ir
∥∥2
F + ξ

∥∥∇ I f − ∇ Iv
∥∥2
F

)]

�D � 1

N

N∑

n�1

(
DθD (Iv) − b

)2 +
1

N

N∑

n�1

(
DθD

(
I f

) − a
)2,

(5)

where I f , Ir , and Iv represent fused image, infrared source
image, and visible light source image, respectively; H and
W signify the height andwidth of the image; N is the number
of fused images; ‖·‖F represents the Frobenius norm;∇ rep-
resents the gradient operator, and λ and ξ represent balance
parameters. a, b, and c represent the labels that the discrim-
inator is expected to identify the fused image as fake, the
discriminator to identify the visible light image as true, and
the generator expects the discriminator to identify the fused
image as true, respectively. The least squares loss function
follows the minimization of Pearson’s χ2 divergence, which
can make the network training process more stable and make
the loss function achieve fast convergence.

GIPC-GAN algorithm

Introduction the proposedGIPC-GANismade in this section.
First is an overview of the model. Then, the architecture of
the GIPC-GAN network is detailed. Last, the loss function
of the model is designed.

Overview of GIPC-GANmethod

Image fusion refers to the feature extraction and reintegration
of the most meaningful information in source image, to gen-
erate a single imagewith rich information and can be used for
subsequent specific fusion tasks. For the multi-focus image,
focus pixel is the most meaningful information of the multi-
focus image. Inspired by the Literature [37], it is inferred that
the intensity of pixels can represent the histogramdistribution
of the image, the pixel gradient can denote the degree of dif-
ference between image pixels and the gradient information
represents the detailed texture in the image. Therefore, we
characterize the focus information of the source image in the
intensity distribution as well as gradient distribution, and fur-
ther define the most meaningful information in multi-focus
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Fig. 1 Overall fusion framework of our GIPC-GAN

image fusion as texture gradient and target intensity. In other
words, the purpose of our image fusion is to retain the infor-
mation of target intensity and gradient texture in the source
image as much as possible, so that the fused image can enjoy
better visual effect and higher information fidelity. This is
consistent with the task of multi-focus image fusion to gener-
ate an all-in-focused and all-clear image. Hence, we propose
a novel gradient and intensity joint proportional constraint
generative adversarial model for multi-focus image fusion.
To better retain the intensity and gradient information of the
source image, we need to get them in a balanced way. It is
mainly reflected in the network architecture and loss function
of the subsequent design. The GIPC-GAN overall network
architecture is shown in Fig. 1, which is an end-to-endmodel.

The target intensity and texture details contained in the
fused image are further enhanced through an adversarial
game between the generator and the discriminator. Specific
operations are as follows: (1) For fused image (IF ) and the
source all-in-focused image (IS_clear ), Laplacian gradient
operator is used to obtain the gradient map of the fusion
image (GMF ) and the gradient map of source all-in-focused
image (GMs_clear ). (2) We take IS_clear and GMS_clear as
real images and IF and GMF as fake images, and then feed

them to the discriminator respectively for recognition. (3)
IS_clear and GMS_clear are recognized as real data by the
discriminator and IF and GMF as fake data in terms of pixel
intensity and gradient texture. (4) The discriminator contin-
uously guides and optimizes the generator while improving
its discriminative ability through continuous learning.

Through continuous adversarial learning and gaming, the
generator thus improves its data generation ability to fool the
discriminator.Ongoing adversarial learning between the gen-
erator and the discriminator can lead the generator to better
balance source image texture details while paying attention
to source image target intensities. Therefore, the images gen-
erated by our model have higher fusion quality.

GIPC-GAN network architecture

As an improved version of GANs, the GIPC-GAN network
mainly consists of a generator and a discriminator. Consider-
ing that the three source images input by the model are color
RGB images, it is of necessity to convert these images from
RGB space to YCBCR color space. The Y channel of the
near-focus source image and the Y-channel of the far-focus
source image are input to the generator, which is designed to
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generate an all-in-focused grayscale fusion image. While the
input of the discriminator is the Y channel of the all-in-focus
source image, the gradient map of the Y-channel of the all-
in-focus source image, the grayscale fusion image, and the
gradient map of the grayscale fusion image, which aims to
distinguish the real source image from the fused image.

Generator architecture

The input of multi-focus image fusion is two different
images, and thus have quite different information contained
in them. For example, image A shows a clear foreground
yet blurred background, while image B has a blurred fore-
ground yet clear background. Referring to [2, 13], our model
therefore adopts pseudo-Siamese network architecture that is
good at dealingwith relatively different inputs. The generator
network architecture is shown in Fig. 2.

The generator contains two feature encoding paths, corre-
sponding to near-focus and far-focus source images, respec-
tively, in which the two paths have the same structure but do
not share weight parameters. The architecture of the genera-
tor is based on the decoder-encoder, which mainly includes
three main modules: encoder, feature generator and decoder.

The encoder consists of two image feature extraction
paths, and each path consists of four convolutional block
layers. Among them, each convolutional block layer con-
sists of a convolutional layer, a BN layer and a LeakRelu
layer. The size of the convolution kernel used in the first,
second, third and fourth convolutional block layers is all set
to 3 × 3, and the channel dimension of these four convolu-
tional blocks is all set to 16. In the process of convolution,
the problem of image feature loss usually occurs with the
increase of the number of convolution layers. To address it,
we employ dense connections [42] with regularization effect
during feature transfer. That is, the output of the previous
layer of each convolutional layer is concatenated with the
subsequent convolutional layers, so as to compensate for the
loss of information during feature transfer. In view of the fact
that inputs in these two encoding paths are different, we con-
duct information exchange on all four convolutional block
layers in the encoder to further supplement useful informa-
tion. The feature generation module has only a convolutional
block layer, whose convolution kernel size is set to 1×1 and
the channel dimension is 128. It is input with the concate-
nation of features extracted by the near-focus encoding path
and the far-focus encoding path, to further integrate the useful
information extracted by these two encoding paths. In order
to prevent the sudden change of the extracted features in the
channel dimension, we design three convolutional block lay-
ers, a convolutional layer and a tanh activation function in the
decoder module. Among which the first convolutional block
layer contains a convolutional layer and aLeakRelu layer; the
second and third contain a convolutional layer, aBN layer and

a LeakRelu layer, with the kernel size of these three convo-
lutional block layers of 3×3, and the channel dimensions of
64, 32, and 16, respectively. Then, the fused image is output
through a convolutional layer and a tanh activation function;
the kernel size of the last convolutional layer is set to 3 × 3,
and the channel dimension is set to 1.Notably,we set Padding
to “SAME” for all convolutional layers to prevent informa-
tion loss during convolution down-sampling. The step length
of convolutional kernel sizes 3×3 and 1×1 are set to 1 and 0,
respectively, so that the feature dimensions of our input and
output images remain unchanged throughout the generator
architecture. The specific settings of all convolutional layers
in the generator are shown in Table 1.

Discriminator architecture

The architecture of the discriminator is shown inFig. 3,which
mainly consists of four convolutional block layers and one
linear layer, where the convolution kernel size of the first,
second, third and fourth convolutional block layers is set to
3 × 3, and the channel dimensions are set to 16, 32, 64 and
128, respectively. In specific, the first convolutional block
layer consists of a convolutional layer and a LeakRelu layer;
the second, third, and fourth convolutional block layers all
consist of a convolutional layer, a BN layer, and a LeakRelu
layer, and the channel dimension of the last linear layer is
set to 1, aiming to classify the input probabilities. The size
length of all convolutional layers in the discriminator is set
to 2. In order to better balance the retained intensity and gra-
dient information of fused images, we design the input of
the discriminator as all-in-focus image, all-in-focus gradi-
ent map, fused image and fused gradient map. The specific
settings of all convolutional layers in the discriminator are
shown in Table 2.

Loss function

It is known that loss functions play a crucial role in deep
learning. The GIPC-GAN network is based on generative
adversarial network, which mainly consists of generator loss
(�G) and discriminator loss (�D).

Generator loss function

The generator loss guides and optimizes the generator,
mainly including adversarial loss (�Gadv

) and content loss
(�Cont ). The mathematical definition is shown in formula
(6).

�G � �Gadv
+ λ�Cont , (6)

where λ is a balance coefficient that controls the balance
between adversarial loss and content loss.
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Fig. 2 Network architecture of the Generator

The adversarial loss is used to maintain a balance among
the retained information, and can further enhance the tar-
get intensity and texture information of the fused image. It
consists of a intensity adversarial loss (�Gadv_i ) and a gradi-
ent adversarial loss (�Gadv_g ). The mathematical definition is
shown in formulas (7)–(9).

�Gadv
� λ1�Gadv_i+λ2�Gadv_g (7)

�Gadv_i � 1

N

N∑

n�1

[
D

(
I nf used

)
− a1

]2
(8)

�Gadv_g � 1

N

N∑

n�1

[
D

(
∇ I nf used

)
− a2

]2
, (9)

where N is the number of fused images; ∇(·) refers to the
Laplace gradient operator; λ1 and λ2 are balance coefficients
of fusion image adversarial loss and fusion image gradient
adversarial loss respectively; a1 and a2 are the probabilistic
labels that the generator expects the discriminator to identify
with the fused image and the fused gradient map. These two
adversarial losses help maintain the balance of target inten-
sity information and gradient texture information retained in
the fused image, and force the generator to further focus on
keeping image intensity and texture details. The generator
expects a1 and a2 to be as large as possible. For the sake of
calculation convenience, a1 � a2 � 1 is set here.

Content loss constrains the extraction and reconstruction
of image information. As the most important information of
the multi-focus image is defined as the target intensity and
texture gradient, the content loss includes two parts: inten-
sity loss (�int ) and gradient loss (�gad ). The mathematical
definition is shown in formula (10)–(12).

�Cont � β1�int+β2�gad (10)

�int � ∥∥I f used − I f ocus
∥∥2
F (11)

�gad � ∥
∥∇ I f used − ∇ I f ocus

∥
∥2
F , (12)

where β1 and β2 are the weight coefficients to keep the bal-
ance between the loss of the intensity term and the loss of
the gradient term, and ‖·‖2F represents the second norm of
Frobenius, ∇ I f used and ∇ I f ocus denote the gradient map
of the fused image and the gradient map of the all-in-focus
image, respectively.

Discriminator loss function

The discriminator loss guides and optimizes the discrimina-
tor. It improves the discriminative ability through continuous
training, and can distinguish the fused fake images from the
real source images effectively. In our model, the fake image
is the fused image and the gradient map of the fused image,
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Table 1 Specific settings for all
convolutional layers of the
generator

Generator Convolutional
layers

Kernel
size

Strides Activation
function

Input
channals

Output
channals

Encoder Conv-Block
layers-1

3 × 3 1 LRelu 1 16

Conv-Block
layers-2

3 × 3 1 LRelu 32 16

Con-Block
layers-3

3 × 3 1 LRelu 48 16

Conv-Block
layers-4

3 × 3 1 LRelu 64 16

Feature
Generator

Conv-Block
layers-5

1 × 1 0 LRelu 128 128

Decoder Conv-Block
layers-6

3 × 3 1 LRelu 128 64

Conv-Block
layers-7

3 × 3 1 LRelu 64 32

Conv-Block
layers-8

3 × 3 1 LRelu 32 16

Conv-1 3 × 3 1 Tanh 16 1

Fig. 3 Network architecture of the discriminator
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Table 2 Specific settings for all
convolutional layers of the
discriminator

Discriminator Convolutional
layers

kernel
size

Strides Activation
function

Input
channals

Output
channals

Conv-Block
layers-1

3 × 3 2 LRelu 1 16

Conv-Block
layers-2

3 × 3 2 LRelu 16 32

Con-Block
layers-3

3 × 3 2 LRelu 32 64

Conv-Block
layers-4

3 × 3 2 LRelu 64 128

Linear
layers-1

1 × 1 0 / 128*H*W 1

and the real image is the all-in-focus source image and the
gradient map of the all-in-focus source image. Therefore, our
discriminator loss consists of four parts: fused image discrim-
ination loss (�F_adv), fused image gradient discrimination
loss (�Fg_adv), all-in-focus source image discrimination loss
(�FC_adv), and all-in-focus source image gradient discrimi-
nation loss (�FCg_adv). Themathematical definition is shown
in formula (13)-formula (17).

�D � λ3�F_adv+λ4�Fg_adv+λ5�FC_adv+λ6�FCg_adv (13)

�F_adv � 1

N

N∑

n�1

[
D

(
I f used

) − b1
]2 (14)

�Fg_adv � 1

N

N∑

n�1

[
D

(∇ I f used
) − b2

]2 (15)

�FC_adv � 1

N

N∑

n�1

[
D

(
I f oucs

) − c1
]2 (16)

�FCg_adv � 1

N

N∑

n�1

[
D

(∇ I f oucs
) − c2

]2, (17)

where b1, b2, c1 and c2 are the probability labels of the
discriminator to identify the fused image, the fused image
gradient, the all-in-focus source image, and the all-in-focus
source image gradient, respectively. The discriminator is
expected to identify fake data and real data accurately, so
b1 and b2 are expected to be as small as possible, and c1
and c2 to be as large as possible. For convenience, here we
set b1 � b2 � 0 and c1 � c2 � 1. λ3, λ4, λ5 and λ6 is
the balance coefficients of fusion image discrimination loss,
fusion image gradient discrimination loss, source all-focus
image discrimination loss and source all-focus image gradi-
ent discrimination loss respectively.

In order to maintain a balance between the target inten-
sity and texture gradient information retained in the fused
image, we set the same ratio of the two types of information

in the discriminator and the generator, that is, the gradient
and intensity information follow the ratio maintain consis-
tency strategy. Under the constraint of discrimination loss,
the discriminator can guide the optimization direction of the
generator so as to generate a fused image that contains more
and balanced target intensity and texture gradients informa-
tion.

Experimental results

In this section, we first elaborate the experimental details,
including the use of datasets, evaluation metrics, and set-
tings of model parameters. Second, the GIPC-GAN model
is compared and evaluated qualitatively and quantitatively
with 7 state-of-the-art multi-focus fusion algorithms on two
multi-focus public datasets,which are theBF [43] andDSIFT
[44] based on spatial domain, the MWGF [45] based on
transform domain, and the deep-learning-based CNN [32],
SESF [33], ACGAN [54] andMFF-GAN [2]. Third, we con-
ductedmodel complexity comparison experiments of various
algorithms to comprehensively verify the efficiency of our
proposed GIC-GAN model from the time complexity and
space complexity of the algorithm. Fourth, we also con-
duct ablation experiments on the model. Final, applying the
proposed GIPC-GAN model to multi-focus sequence image
pairs to further verify the generalization of the model on
multi-source multi-focus image pairs.

Experimental settings

Datasets

The training dataset is constructed on 120 all-focus images
of MFI-WHU provided in Literature [2]. It is worth noting
that the MFI-WHU dataset utilizes Gaussian blurring and
manually-constructed decision maps to generate multi-focus
image pairs, and is inevitably subjective. Such artificiality
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and subjectivity will unavoidably lead to inaccurate seg-
mentation decision maps and make it difficult to model
multi-focus images in real scenes. Literature [38] proposed a
Deep Region Competition (DRC) algorithm, which aims to
extract foreground objects from images in a completely unsu-
pervisedmanner. This algorithm treats foreground extraction
as a special case of general image segmentation, focuses on
identifying and separating objects from background, and is
more competitive on complex real-world data and challeng-
ing multi-object scenes performance. Taking advantage of
the Literature [36], we apply the DRC algorithm on the
MFI-WHU public dataset to automatically generate deci-
sion maps. In this way, it not only avoids the tedious manual
operation of the decision maps, but also improves the accu-
racy of generating the segmentation decision maps. Then the
Gaussian blur algorithm is used to simulate the multi-focus
image to generate multi-focus image pairs. The newly gen-
erated multi-focus image dataset is named MFI-DRC. The
constructed multi-focus image pair can be represented by
formula (18) and formula (19).

IA � F ∗ I + (1 − F) ∗ (G(x , y; σ ) ⊗ I ) (18)

IB � F ∗ (G(x , y; σ ) ⊗ I ) + (1 − F) ∗ I , (19)

where IA and IB represent the source imagewith a clear fore-
ground and a blurred background and the source image with
a blurred foreground and a clear background, respectively; I
is the all-clear source image; F is the decision map; G(x , y;
σ ) refers to a Gaussian filter, and ⊗ denote the convolution
operation.

The MFI-DRC training set contains a total of three sets of
images, IA, IB , and I , each of which contains 120 images. In
view that MFI-DRC is based on the full-focus dataset MFI-
WHU, it contains rich scene types such asmountains, houses,
buildings, and animals. For model training, a large training
dataset is usually required to avoid model overfitting. To get
more training data, we employ a strategy of data augmen-
tation to crop and decompose images. Specifically, 90 pairs
of source images in the MFI-DRC dataset are selected ran-
domly, and are crop into 184,885 pairs of image patches of
resolution 80 × 80.

For the test dataset, experiments are performed on two
datasets, Lytro [46] and MFI-DRC. For Lytro, a commonly
used dataset for multi-focus image fusion, it contains 20
image pairs and 4 multi-focus image sequences. Therefore,
the 20 image pairs and the rest 30 image pairs of the Lytro and
MFI-DRC datasets are selected as our test datasets, respec-
tively. Notably, no data augmentation is required for the test
dataset.

Training settings

During the training, the generator and discriminator are opti-
mized alternately. Tomaintain the stability of training, we set
the ratio of discriminator training times to generator training
times as t , that is, t� 2 : 1. The total training times epoch is
set to n, that is, n � 10. The batch size is set to b, that is,
b � 32. Each epoch requires training samples of batch m,
wherem denotes the ratio of the total number of training sam-
ples n to the number of sample batches b, that is, m � n/b.
The Adam optimizer is adopted, with two default parameters
β1 and β2 initialized to 0.5 and 0.999, respectively, to update
and optimize the objective function. The initial learning rate
of G and D is set to lr , that is, lr � 0.0001. In the training
process, the learning rate is updated dynamically by using a
linear decline strategy. To better understand the process of the
algorithm, we summarized the training process of the whole
model, as shown in Algorithm 1.

Like most image fusion methods, the hyperparameters of
the loss function of GIPC-GAN model are also determined
through the empirical values and experimental research of
other relevant literature. Referring to literature [2, 54] and
mode parameter tuning, we set the weight parameters in the
generator loss function as λ � 9.3, β1 � 1.3 and β2 � 4.5.
To make the model training more stable, inspired from Lit-
erature [38], we set a1, a2, b1, b2, c1 and c2 as soft labels.
Specifically, for real value labels (a1, a2, c1, and c2) and fake
value labels (b1 and b2), we set random numbers between
(0.7, 1.2) and (0, 0.3), respectively. As for the fused image
adversarial loss and fused image gradient adversarial loss in
the generator, we found that when λ1 � 0.1 and λ2 � 1, the
model can achieve better fusion effect through training. Since
the information retention ratio of the intensity loss and gra-
dient loss in the generator is 1:10, we implement the strategy
of keeping the information ratio consistent for the intensity
loss and gradient loss in the discriminator to set the discrim-
ination loss balance parameters in the discriminator, that is,
set λ3 � λ5 � 0.1 and λ4 � λ6 � 1.
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Algorithm 1 Training Procedure of GIPC-GAN 

Input: source foreground focus image _s ffocusI , source 

background focus image _s bfocusI  and source 

all-focus image _s allfocusI  

Output: fused all-focus image _f allfocusI  
1 for n  epochs do 

2 for m  steps do 

3 for t  times do 

4 Select b  source foreground focus patches 

{
1 2

_ _ _, ,..., b
s ffocus s ffocus s ffocusI I I }; 

5 Select b  source background focus patches 

{
1 2

_ _ _, ,..., b
s bfocus s bfocus s bfocusI I I }; 

6 Select b  source all-focus patches 

{
1 2

_ _ _, ,..., b
s allfocus s allfocus s allfocusI I I }; 

7 Select b  fused all-focus patches 

{
1 2

_ _ _, ,..., b
f allfocus f allfocus f allfocusI I I }; 

8 Update the parameters of the discriminator by 

AdamOptimizer: ( )DD L  in Eq. (13); 

9 end for 

10 Select b source foreground focus patches 

{
1 2

_ _ _, ,..., b
s ffocus s ffocus s ffocusI I I }; 

11 Select b source background focus patches 

{
1 2

_ _ _, ,..., b
s bfocus s bfocus s bfocusI I I }; 

12 Generate fused all-focus patches 

{
1 2

_ _ _, ,..., b
f allfocus f allfocus f allfocusI I I  by G  

13 Update the parameters of the generator by 

AdamOptimizer: ( )GG L  in Eq. (6); 
14 end for 
15 end for 

∇

∇

Training details and environment configurations

As the source image of multi-focus image fusion is a color
RGB image, it needs to convert the input source image from
RGBcolor space toYCBCRcolor space before training. And
our method is to fuse the Y channel of the source image. For
the CB and CR color channels of the source image, we use
traditional methods to fuse them. And the obtained fused
components of YCBCR space are converted to RGB color
space to complete the final fusion of color RGB images.

TheGPUconfiguration based on the deep learningmethod
in this paper is: GPU-RTX 3090 24G, and the CPU setting
based on the traditional method is: CPU-AMDRyzen 9 3900
× 12-Core 3.79GHzmemory-32G. The software used in this
paper is Tensorflow 2 and Matlab 2022a.

Evaluation metrics

Quality assessment of fused images is an important and com-
plex research issue in image fusion tasks. In order to analyze
the fusion performance of different methods in comprehen-
sive way, it is of necessity to integrate both qualitative and
quantitative analysis aspects to evaluate the fusion results.
Among which, the qualitative evaluation is based on the
human subjective visual system, and judges the performance
of the fused images with human subjective awareness. For
multi-focus image fusion tasks, the goal of fusion is to obtain
all-in-focused and all-clear images within a limited depth of
field range; while quantitative evaluation is based on math-
ematical statistical indicators to analyze and evaluate the
quality of fused images fromdifferent statistical perspectives.
In this paper, we select 6 objective quantitative indicators to
comprehensively analyze the fusion performance of those
algorithms, and they are: Entropy (EN) [47], Spatial Fre-
quency (SF) [48], Standard Deviation (SD) [49], correlation
coefficient (CC) [50], and Multiscale Structural Similarity
(MS-SSIM) [51].

(1) EN measures the richness of information contained
in images. The higher the value, the more information the
fused image contains and the higher the fusion quality. The
definition of EN is shown in formula (20).

EN � −
L−1∑

i�0

Pi log2(Pi ), (20)

where L is the total gray level of the image, and Pi is the
normalized histogram corresponding to the gray level i .

(2) SF reflects the gray level change rate of the image.
The higher the value, the clearer the fused image, the richer
the edge and texture details, and the better the fused image
quality. The definition of SF is shown in formula (21).

SF �
√
RF2 + CF2 (21)

where RF �
√

1
M×N

∑M
i�1

∑N
j�2 [F(i , j) − F(i , j − 1)]2

is the spatial row frequency, CF �√
1

M×N

∑M
i�2

∑N
j�1 [F(i , j) − F(i − 1, j)]2 is the spatial

column frequency, and M and N are the image sizes.
(3) SD measures the information richness of the image.

The larger the value, the more dispersed the gray level dis-
tribution of the image, the higher the contrast, and the better
the subjective visual quality of the image. The definition of
SD is shown in formula (22).

SD �
√√
√√ 1

M × N

M∑

i�1

N∑

j�1

(F(i , j) − μ)2, (22)
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where F(i , j) and μ are the gray value and mean value of
the image at (i , j).

(4) CCmeasures the linear correlation between the source
image and the fused image. The higher the value, the more
similar the fusion image is to the source image. The definition
of CC is shown in formula (23).

CC � ωArAF + ωBrBF , (23)

where rXF �
∑M

i�1
∑N

j�1 (Xi , j−μX )(Fi , j−μF )√∑M
i�1

∑N
j�1 (Xi , j−μX )2

∑M
i�1

∑N
j�1 (Fi , j−μF )2

,

μX andμF are the mean values of source image X and fused
image F respectively, and ωA and ωB are the weight coeffi-
cients of rAF and rBF respectively.

(5) QAB/F uses local metrics to evaluate the amount of
edge information transferred from the source image to the
fused image. The higher the value, the more prominent the
edge of the fused image, and the better the fusion quality.
The definition of QAB/F is shown in formula (24).

QAB/F

�
∑M

i�1
∑N

j�1 (QAF (i , j) × ωA(i , j) + QBF (i , j) × ωB (i , j))
∑M

i�1
∑N

j�1 (ωA(i , j) + ωB (i , j))
,

(24)

where (i , j) is the pixel position, QAF and QBF represent the
edge intensity between source image A, B and fused image
F respectively, and ωA and ωB represent the quantization
weight of QAF and QBF respectively.

(6) MS-SSIM evaluates the structural similarity between
the fused image and the source image from amulti-scale per-
spective. MS-SSIM can be better consistent with the human
visual perception system, and its evaluation effect is usually
better than SSIM. The larger the value, the more similar the
structure between the fused image and the source image. The
definition of MS-SSIM is shown in formula (25).

MS − SSI M �
[
lS(A, B)]

αS
] S∏

i�1

[ci (A, B)]
βi [si (A, B)]

γi ,

(25)

where l is the comparative brightness between image A and
B, c is the image contrast, s is the image structure, α, β and γ

are the relative importance of adjusting the image brightness,
contrast and structure, respectively, and S is the image scale.

Notably, for the above six indicators, the larger the value,
the higher the quality of image fusion.

Experimental comparisons

Experimental results on the MFI-DRC dataset

Qualitative experiments: To verify the advantages of our
GIPC-GAN model over other state-of-the-art algorithms,
we selected three representative image pairs from the MFI-
DRC dataset and performed qualitative analysis on them.
The fusion results are shown in Figs. 4, 5 and 6. For the
sake of observation, we selected two details in these three
sets of image pairs for analysis, marked with red and green
rectangles respectively, and zoomed in on these two details.

As can be seen from Figs. 4, 5 and 6, the GIPC-
GAN method and the other 7 state-of-the-art algorithms can
achieve better fusion results. But among all, the GIPC-GAN
model has obvious advantages. First, the proposed method
preserves the target intensity and texture details of the source
image accurately, with clear textures at the boundaries of
in-focus and de-focus regions. Second, the GIPC-GAN can
better retain the edge contour of the source image, and the
texture of the fused image is more prominent overall. While
the other 7 algorithms have problems of blurring and tex-
ture loss at the boundaries of in-focus and de-focus regions.
Three decision map-based methods, such as CNN, SESF and
DSIFT, lose details at the boundaries of in-focus and de-focus
regions due to decision map classification errors, while the
other two traditionalmethods, BF andMWGF, have the prob-
lem of blurred details due to the limitations of extracting and
fusing features. ACGAN and MFF-GAN, which are based
on deep learning, will cause the imbalance of the two kinds
of information retained in the fused image because their dis-
criminator loss function only contains a single intensity loss
term or gradient loss term. Therefore, the images fused by
these two models will lose some contour and detail informa-
tion to some extent.

These problems can be seen in the red and green rectangles
marked in Figs. 4, 5 and 6. As can be seen from the enlarged
part in Fig. 4, ourmodel has themost prominent contours and
clear texture details at the grass, while the contour texture is
relatively blurry in the grass in other six methods. It can also
be seen from the enlarged image in Fig. 5, our model has the
most prominent contours at the soil walls marked with red
boxes and the clearest textures at the trees marked with green
boxes. And it can be found that in Fig. 6, our model has the
clearest texture details at the grass and the most prominent
edge contour at the wall slate, while the other 7 methods lose
details to some extent, especially in CNN, SESF, ACGAN,
MFF-GAN and DSIFT models, outlines at the wall slate are
blurred. Overall, the GIPC-GAN model has the best fusion
performance compared to other state-of-the-art algorithms.
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Fig. 4 Qualitative comparison of GIPC-GAN with 7 state-of-the-art methods on the “Desert plants” image pair from the MFI-DRC dataset

Quantitative experiments: To further verify the fusion
advantage of the GIPC-GAN model, we quantitatively com-
pare it with other 7 algorithms on the rest 30 image pairs
in the MFI-DRC dataset. The results of various algorithms
are shown in Fig. 7. For the convenience of observation, we
highlight the mean values of the top three indicators in red,
green and blue fonts respectively in the statistical table. As
can be seen from Fig. 7, the GIPC-GAN model ranks first in
the three statistical mean indicators of SF, SD and CC, sec-
ond in the EN mean indicator, and third in the QAB/F and
MS-SSIM mean indicators, and it is only 0.0188, 0.003, and

0.0022 less than the top-ranked metrics on EN, QAB/F , and
MS-SSIM metrics, respectively, which is very small.

Through careful analysis, it can be concluded that the
images fused by the GIPC-GAN method have high con-
trast, clear images, with prominent contours and clear texture
details, and have the most similar linear correlation with the
source images. In addition, the images fused by the proposed
algorithmhave rich information, clear edge contours andhigh
structural similarity with the source images, which are indis-
tinguishable from the fusion performance of MFF-GAN,
DSIFT and SESF models in these three aspects respectively.
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Fig. 5 Qualitative comparison of GIPC-GAN with 7 state-of-the-art methods on the “Dirt wall” image pair from the MFI-DRC dataset

Overall, theGIPC-GANmodel performs the best in objective
statistical evaluation.

Experimental results on the Lytro Dataset

Qualitative experiment: Another indicator to evaluate the
quality of the model is the generalization of the model. In
order to verify that the GIPC-GAN model has good gen-
eralization performance compared to other algorithms, we
selected three representative image pairs in the Lytro dataset
and conduct qualitative analysis on them. The fusion results

are shown in Figs. 8, 9 and 10. For the convenience of obser-
vation, we selected two details in these three sets of image
pairs for analysis, marked with red and green rectangles
respectively, and zoomed in on these two details.

It can be seen fromFigs. 8, 9 and 10 that the image fused by
theGIPC-GANmodel can retain asmuch target intensity and
texture gradient information as possible, which is reflected
on the multi-focus image with prominent target contour and
clear texture details. Since our model adopts an end-to-end
approach, without using decision maps, the fused images
can better maintain regular textures near the boundaries of
in-focus and de-focus regions. To be specific, the pipe on the
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Fig. 6 Qualitative comparison of GIPC-GAN with 7 state-of-the-art methods on the “Apartment” image pair from the MFI-DRC dataset

ceiling in Fig. 8 and the golf ball in Fig. 9. For DSIFT, CNN,
and SESF decision-map-based methods, they usually lose
details near the boundary of in-focus and de-focus regions
due to misclassification. For example, there lack of a rail of
the pipe on the ceiling in Fig. 8, and a ball in golf ball area
in Fig. 9. The traditional BF andMWGFmethods also suffer
from blurring or loss of details. For example, the golf ball in
Fig. 9 appears blurry and the hat folds in Fig. 10 are lost in
detail. In contrast, the ACGAN, MFF-GAN and GIPC-GAN
algorithms achieve better fusion results. However, ACGAN
andMFF-GANalso has the problemof loss of details, such as
the indistinct texture and low contrast at the folds of the hat in

Fig. 10.Overall, the images fused by theGIPC-GANhave the
best subjective visual effect, high contrast and clear texture
details. Compared with the other 7 algorithms, the GIPC-
GAN model achieves the best generalization performance.

Quantitative experiments: To further verify the general-
ization performance of the GIPC-GAN model, quantitative
comparison of 20 image pairs on the Lytro dataset with other
7 algorithms are conducted. The results are shown in Fig. 11.
For convenience, we highlight the top three index means in
the chart with red, green and blue fonts respectively.

As can be seen from Fig. 11, the GIPC-GANmodel ranks
first in the three statistical mean indicators of EN, SF, SD,
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Fig. 7 Quantitative comparisons of the six metrics, on 30 image pairs from the MFI-DRC dataset

second in theMS-SSIMmean indicator, third in the CCmean
indicator andRanked fourth on theQAB/F Meansmetric, and
it is only 0.0039, 0.0076, and 0.0012 less than the top-ranked
metrics on CC, QAB/F , and MS-SSIMmetrics, respectively,
which is very small. The results show that the GIPC-GAN
algorithm also has the best fusion performance on the Lytro

dataset. To sum up, our proposed GIPC-GANmodel has bet-
ter generalization performance than other 7 state-of-the-art
algorithms.

Summary of experimental results

It can be seen from Section "Experimental results on the
MFI-DRC dataset" and Section "Experimental results on
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Fig. 8 Qualitative comparison of
GIPC-GAN with 7
state-of-the-art methods on the
“Volleyball court” image pair
from the Lytro dataset

the Lytro Dataset" that our GIPC-GAN has achieved better
fusion effect and generalization performance than other state-
of-the-art models in MFI-DRC dataset and Lytro dataset,
owing to the goodnetwork architecture design and a new joint
proportional maintain constraint to adversarial loss function
with gradient and intensity. Specifically, it can be summa-
rized into the following 5 points:

(1) Our GIPC-GAN model is a fusion method based on
global reconstruction, which helps eliminate the bound-
ary blurring effect because it directly generates fusion
images instead of decision maps. Therefore, there is
almost no information loss and blurring in the focus-
ing and defocusing boundary areas. However, the fusion
methods of DSIFT, CNN and SESF based on decision
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Fig. 9 Qualitative comparison of
GIPC-GAN with 7
state-of-the-art methods on the
“Golf course” image pair from
the Lytro dataset

maps usually lose details near the boundary of focus-
ing and defocusing regions due to classification errors,
while the three traditional methods—BF, DSIFT and
MWGF, have the problem of fuzzy details due to the
limitations of activity levelmeasurement and fusion fea-
tures.

(2) The generator designed in our model is based on the
architecture of encoder, feature generator and decoder.
Compared with deep-learning-based SESF, ACGAN
and MFF-GAN, its training model is more stable than
that of the above methods. Therefore, the features
extracted by GIPC-GAN model are more balanced.
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Fig. 10 Qualitative comparison
of GIPC-GAN with 7
state-of-the-art methods on the
“Amusement park” image pair
from the Lytro dataset

(3) The most meaningful information in the multi-focus
image fusion task is defined as texture gradient infor-
mation and target intensity information, which sheds
new light on the optimization of GIPC-GAN model.

(4) A new joint proportional maintain constraint adversar-
ial loss function with gradient and intensity, is designed.
The specific loss function is used to guide the training

and optimization direction of the network and further
enhance the target intensity and detail texture of the
fused image while maintaining the balance of the tar-
get intensity and detail texture information retained in
the fused image. However, ACGAN andMFF-GAN are
based on GAN, because their discriminator loss func-
tion only contains a single intensity loss term or gradient

123



7414 Complex & Intelligent Systems (2023) 9:7395–7422

0 2 4 6 8 10 12 14 16 18 20
6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

8.0

8.1  BF:7.5315  DSIFT:7.5347

 MWGF:7.5333  CNN:7.5332  SESF:7.5338

 ACGAN:7.5555  MFF-GAN:7.5840  OURS:7.6141

 se
ula

v crite
M

Image pairs

EN

 
0 2 4 6 8 10 12 14 16 18 20

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

0.15  BF:0.0746  DSIFT:0.0758

 MWGF:0.0749  CNN:0.0751  SESF:0.0761

 ACGAN:0.0699  MFF-GAN:0.0818  OURS:0.0839

 se
ula

v crite
M

Image pairs

SF

 

0 2 4 6 8 10 12 14 16 18 20

9.0

9.2

9.4

9.6

9.8

10.0

10.2

10.4

10.6

10.8

11.0

11.2

11.4

11.6

11.8
 BF:10.2654  DSIFT:10.2649

 MWGF:10.2645  CNN:10.2673  SESF:10.2854 

 ACGAN:10.3410  MFF-GAN:10.3136  OURS:10.3978

 se
ula

v crite
M

Image pairs

SD

 
0 2 4 6 8 10 12 14 16 18 20

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01
 BF:0.9712  DSIFT:0.9712

 MWGF:0.9711  CNN:0.9717  SESF:0.9712

 ACGAN:0.9756  MFF-GAN:0.9736  OURS:0.9717

 se
ula

v crite
M

Image pairs

CC

 

0 2 4 6 8 10 12 14 16 18 20

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
 BF:0.6748  DSIFT:0.6794

 MWGF:0.6703  CNN:0.6805  SESF:0.5360

 ACGAN:0.5891  MFF-GAN:0.6380  OURS:0.6729

 se
ula

v crite
M

Image pairs

QAB/F

 

0 2 4 6 8 10 12 14 16 18 20
0.940

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

1.010
 BF:0.9896  DSIFT:0.9919

 MWGF:0.9871  CNN:0.9925  SESF:0.9937

 ACGAN:0.9664  MFF-GAN:0.9774  OURS:0.9925

 se
ula

v crite
M

Image pairs

MS-SSIM

 

Fig. 11 Quantitative comparisons of the six metrics, on 20 image pairs from the Lytro dataset

loss term, it will cause the imbalance of the two kinds
of information retained in the fused image.

(5) The network does not need any post-processing opera-
tions since there are no decision maps. GIPC-GAN can
quickly achieve multi-focus image fusion in an end-to-
end manner.

Model complexity analysis

As we all know, computational model complexity is viewed
as an important measure to evaluate model performance
in deep-learning-based methods. Specifically, the compu-
tational complexity of the model mainly includes the time
complexity and the space complexity of the model. A quan-
titative comparative evaluation of the proposed GIC-GAN
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and other state-of-the-art models is conducted from these
two aspects.

Mode running efficiency comparison

In the image fusion methods based on deep learning [2, 13,
33], the time complexity based on the average running time of
the algorithm is an important indicator to evaluate the quality
of the model. In order to evaluate the GIPC-GANmodel in a
more comprehensive and objective way, we conduct compar-
ative experiments on the running time of various advanced
algorithms on the MFI-DRC dataset and Lytro dataset, as
shown in Table 3. For the convenience, we highlight the top
three statistics for average runtime in red, green, and blue
fonts, respectively. Note that the traditional algorithms of BF,
DSIFT andMWGF and deep-learning algorithm of CNN run
on CPU, while SESF, ACGAN, MFF-GAN and the GIPC-
GAN model operate on GPU.

It can be seen from Table 3 that our GIC-GAN algorithm
achieves the second fastest running efficiency on MFI-DRC
and Lytro datasets compared with the other 7 state-of-the-
art comparison methods. On MFI-DRC dataset and Lytro
dataset, GIC-GANmodel is 0.1882s and 0.0985 s faster than
ACGANmodel which ranks first, respectively and the differ-
ence is very small. ACGAN, MFF-GAN and GIC-GAN are
all based on end-to-end methods without post-processing,
so the running time of these three algorithms is relatively
short. SESF is a based decision maps method that requires
post-processing operations, which will undoubtedly increase
the running time of the algorithm. In the process of model
training, MFF-GAN needs to calculate the weight screening
maps of the source image, which will inevitably increase the
running time of the algorithm. Due to the powerful graphics
matrix acceleration capability of the GPU, it has advantages
over the three traditional algorithms that run on the CPU: BF,
DSIFT andMWGF.GIC-GANmodel runs efficiently among
the 8 fusion methods and basically meets the requirements
of real-time image fusion tasks, when not taking the differ-
ences between CPU and GPU hardware environments into
consideration.

Model parameters quantity comparison

As a classic and commonly used space complexity eval-
uation metric in deep learning-based methods [2, 55], the
model parameter plays a vital role in evaluating the model
performance of image fusion. As the image fusion method
based on deep learning usually runs in GPU environment, we
only compare and analyze the model parameters of SESF,
ACGAN, MFF-GAN and GIC-GAN, which are four models
based on deep learning. Generally, methods based on deep
learning can be divided into two stages: training and testing.
In order to analyze the space complexity of the models in

a comprehensive way, we compared the parameters of the
training model and the test model for these four models. The
experimental results are shown in Table 4. For the conve-
nience of observation, the top two statistical values of the
number of model parameters are highlighted with red and
green fonts respectively.

It can be seen from Table 4 that in the model train-
ing stage, our GIPC-GAN model parameters ranked third,
0.3403 M more than the SESF model parameters ranks first,
and 0.0052 Mmore than the ACGAN andMFF-GANmodel
parameters ranks second. In the model testing phase, our
GIPC-GANmodel parameters ranked second, only 0.0022M
more than the ACGAN and MFF-GANmodels, which ranks
first, and the difference is very small. The parameters of SESF
model reach0.0748M.Because the task ofmulti-focus image
fusion is to integratemultiple partially focused source images
into an all-focus fusion image, and this image fusion process
is exactly completed in the test phase. Through comprehen-
sive analysis, it can be concluded that the GIPC-GAN fusion
model proposed by us has achieved a low complexity com-
parable to other state-of-the-art comparison models both in
the model training stage and in the model testing stage. In
terms of model space complexity, GIPC-GAN also basically
achieves the performance of real-time image fusion.

Model ablation study

For the two important information of target intensity and tex-
ture gradient defined above, this paper designs a combined-
constraint loss function based on the proportional infor-
mation of intensity and gradient in the generator and the
discriminator loss function. As far as we know, the existing
fusion methods in multi-focus image or infrared and visi-
ble light image [2, 37], only take into consideration of the
intensity information andgradient information of the retained
source image in the content loss function of the model, but
not in the discriminator loss function. Previous methods are
of a certain degree of human subjectivity when setting the
weight of the intensity and gradient loss in the content loss,
and such a design will inevitably cause the imbalance of
the intensity and gradient information retained in the fused
image and the loss of detail information. To solve the above
problem, we not only consider the intensity loss and gra-
dient loss in the generator, but also put these two kinds of
information in the discriminator. The ratio of intensity loss
and gradient loss weights in the generator to the image pixel
discrimination loss, and image gradient discrimination loss
weights in the discriminator are required to follow a propor-
tional maintenance strategy, i.e., the ratio of weights remains
the same order of magnitude (101 order of magnitude). With
such design, not only the generator is able to maintain a
balance between the source image target intensity and gra-
dient details during the process of fusing images, but also in
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Table 3 The mean and standard
deviation of running time of
different methods on MFI-DRC
and Lytro datasets (unit: second)

 MFI-DRC Lytro 

BF [41] 0.7221±0.3442 0.5190±0.0527 

DSIFT [42] 5.0708±2.0453 3.6310±0.6978 

MWGF [43] 1.9136±0.7291 1.5505±0.2849 

CNN [30] 123.8767±41.0987 99.5241±1.9322 

SESF [31] 0.4133±0.5306 0.3858±0.5970 

ACGAN [54] 0.0344±0.0125 0.0282±0.0069 

MFF-GAN [2] 0.2622±0.4059 0.1338±0.4950 

Ours 0.2226±0.4039 0.1267±0.5056 

Table 4 Analysis of model
parameters based on four deep
learning fusion methods (unit:
M)

 Train Test 

SESF [31] 0.0748 0.0748 

ACGAN [54] 0.4099
 

0.0382 

MFF-GAN [2] 0.4099 0.0382

Ours 0.4151 0.0404 

the process of discrimination, the discriminator could con-
tinuously guide and optimize the generator with balanced
information of intensity and gradient so as to deceive the
discriminator.

To verify the effectiveness of the combined-constrained
loss function with proportional information of intensity and
gradient, ablation experiments is conducted on the model. To
be specific, in the ablation model, the intensity discrimina-
tion loss in fused image and the all-in-focus source image
are removed in the discrimination loss function, i.e., set
λ1 � λ3 � 0, with the name ofWithout_int model. Also, the
gradient discrimination loss in the fused image gradient and
the all-in-focus source image are removed in the discrimina-
tion loss function, that is, set λ2 � λ4 � 0, with the name of
Without_gra model. To verify the efficiency of the designed
combined-constraint loss function, subjective ablation stud-
ies on two multi-focus datasets—MFI-DRC and Lytro, are
conducted. The subjective ablation results of the model are
shown in Figs. 12 and 13.

Figures 12 and 13 show the subjective ablation compari-
son results of the GIPC-GAN model on a typical image pair
of the MFI-DRC and Lytro datasets, respectively. For the
convenience of analysis, we select two prominent details for
analysis in Figs. 12 and 13, respectively, and mark themwith
red and green rectangles. It can be seen from Figs. 12 and 13
that, both Without_int and Without_gra and the GIPC-GAN
model can achieve to a relatively ideal fused result. How-
ever, most of the results of the fusion of Without_int and

Without_gra models have problems of texture blurring and
loss of details. For example, at the window marked by the
red box and the bench marked by the green in Fig. 12, the
Without_int model loses the contour of the window railing
and the stripe information in the middle of the bench because
of its high brightness, while the Without_int model blurs the
contour of the window railing and the stripe information in
the middle of the bench because it retains too much intensity
information of the source image. In Fig. 13, the hair tex-
ture marked by the red box and the watch outline marked by
the green box also have the same problem as Fig. 12. It is
because the Without_int model and the Without_gra model
only focus on retaining either gradient or intensity informa-
tion in the source image, resulting in an imbalance between
the texture gradient and target intensity retained in the fused
image. Therefore, these twomodels inevitably lose important
information in the source image.

In contrast, our GIPC-GAN model can give attention to
both the intensity and gradient information of the source
image during the adversarial gaming, and make the fused
image better balance and retain the target intensity and tex-
ture detail information in the source image and thus have
better subjective visuals, which can be concluded from the
red and green rectangles marked in Figs. 12 and 13. The
desirable results of the GIPC-GAN model benefit from our
designed combined-constraint loss function based on the pro-
portional information of intensity and gradient. It indicates
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Fig. 12 Subjective experiments of ablation on the "Art gallery" image pair of the MFI-DRC dataset (The first row to the third row is the source
image, the fused grayscale image and the fused RGB image respectively)

this specialized combined-constraint loss function plays a
critical role in image fusion.

Fusion of multi-focus sequential image pairs

In order to verify that our GIPC-GANmodel has good fusion
performance and generalization on multi-focus sequence
image pairs, we conducted fusion comparison experiments
with other 7 algorithms on the multi-source multi-focus
image sequence provided by Lytro. Specifically, fusion
operations on the multi-source and multi-focus images are
perform in turn, to obtain the final fused image. The experi-
mental results are shown in Figs. 14 and 15. For convenience,
two prominent details are selected for analysis in Figs. 14 and
15, respectively, and marked with red and green rectangles.

As can be seen from Figs. 14 and 15, both the GIPC-
GAN model and the other 7 algorithms can achieve good
fusion results on multi-source multi-focus image pairs. Yet,
the images fused by the GIPC-GAN model have the best
subjective visual effect and retain more target intensity and
texture detail information of the source image,while the other

7 algorithms loss details loss or blurring. For example, at the
red boxmarked inFig. 14, the images fusedby theBF,DSIFT,
MWGF, CNN, ACGAN and SESF models have blurry logos
and texts on the oxygen tank. At the green box marked in
Fig. 14, the contours of the images fused by the CNN, SESF,
ACGAN and MFF-GAN models are blurred at the island.
Similar situation happens in Fig. 15. Through comprehensive
analysis, conclusion can be drawn that the fusion result of
the GIPC-GAN model has the clearest image and the best
all-focus on the whole and has the best generalization on
the multi-source multi-focus image sequence of the Lytro
dataset.

Conclusions

In this paper, a novel gradient and intensity joint proportional
constraint generative adversarial network (GIPC-GAN) is
proposed for multi-focus image fusion. First, Deep Region
Competition (DRC) algorithm is used to automatically gen-
erate decision maps and a set of labeled multi-focus image
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Fig. 13 Subjective experiments of ablation on the "Golf course" image pair of the Lytro dataset (The first row to the third row is the source image,
the fused grayscale image and the fused RGB image respectively)

datasets on a public dataset is constructed, which avoids the
boundary errors that occur in artificially constructing deci-
sion maps. Second, the most meaningful information for the
multi-focus image fusion task is defined as the target intensity
and detail gradient. With this regard, we propose a combined
constraint loss function of proportional intensity and gradi-
ent. Third, we take the source image, the gradient map of the
source image, the fusion image and the gradient of the fusion
image as the input of the discriminator in the GAN network

to further preserve the target intensity and detail informa-
tion of the fusion image in a more balanced way. Final,
through experimental verification on two multi-focus pub-
lic datasets and a multi-source multi-focus image sequence
dataset, GIPC-GAN model stands out among other state-of-
the-art algorithms in terms of efficiency. It is worth noting
that our GIC-GAN model has fast operation efficiency and
low overall parameters, which basically meets the require-
ments of real-time image fusion.
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Fig. 14 Qualitative comparison
of GIPC-GAN with 7
state-of-the-art methods on the
first multi-focus image sequence
pair on the Lytro dataset

TheGIPC-GANmodel proposed in this paper is consistent
withmostmainstreammulti-focus image fusionmethods and
is also trained on noise-free images. At present, there are
relatively few publicly available public multi-focus image
datasets, and all datasets are noise free. So far, we have not
conducted training or testing onmulti-focus image pairs with
noise and this makes our GIPC-GANmodel have limitations

in processing multi-focus source images with noise to some
extent. In the future, we plan to conduct research on image
denoising and image fusion as a whole, which it to design a
unified model for image denoising and image fusion, as well
as a specialized loss function for image denoising and image
fusion to achieve the mutual promotion of image denoising
and image fusion in multi-focus image fusion tasks.
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Fig. 15 Qualitative comparison
of GIPC-GAN with 7
state-of-the-art methods on the
second multi-focus image
sequence pair on the Lytro
dataset

How to avoid the defocus diffusion effect at the bound-
ary of the in-focus and de-focus regions, is another popular
research issue in multi-focus image fusion, yet with little
attention in most of the existing models. Among the exist-
ing methods, general image fusion methods [52, 53] have
achieved good results not only in multi-focus images, but
also in other image fusion tasks such as infrared and visible

light images, medical images, and remote sensing images.
Therefore, to design a general fusion network framework
and take into account defocus diffusion problem in multi-
focus image fusion, is put on future research plan, which can
complete various image fusion tasks by using one general
fusion framework.
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