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Abstract
Robustness of modern information confidentiality algorithm depends on its individual components. Modern block ciphers
highly depend on two components namely confusion and diffusion. These two main characteristics in any modern cipher are
achieved by substitution and permutation boxes. In this article, a decision-making algorithm is utilized for the selection of
optimum substitution box (S-box), which plays a significant role in the field of information confidentiality. For this purpose,
an interval-based Pythagorean fuzzy technique for order of preference by similarity to the ideal solution (IVPF–TOPSIS)
method is introduced to get the desired nonlinear confusion component of block cipher namely S-box. In this manner,
we performed cryptographic analyses of standard S-boxes namely nonlinearity (NL), strict avalanche criterion (SAC), bit-
independent criterion (BIC), absolute indicator (ABI), the sum of square and absolute indicator (SSAI), algebraic degree
(AD), algebraic immunity (AI), transparency order (TO), composite algebraic immunity (CAI), robustness (RB), signal to
noise ratio (SNR), confusion coefficient of variance (CCV). With these cryptographic characteristics, we have used interval-
valued based Pythagorean fuzzy TOPSIS multi-criteria decision-making technique to classify standard S-boxes suitable for
construction of modern block ciphers.

Keywords Substitution box · Multi-criteria decision-making · Interval-based Pythagorean fuzzy TOPSIS

Introduction

Decision-making plays an important role in our daily life.
A decision is an action of collection or option of one
accomplishment from various preferences. The process of
selecting an optimum and profitable plan of action from
two or more options to attain a preferred result is known
as decision-making. Our daily life is all about making deci-
sions. Decisions reinforce the completemanagement process
in any organization. Decision-making is needed for concen-
trating on main issues and optimized the gains from offered
prospects. Appropriate decisions reduce the complication,
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ambiguity, and variety of administrative situations. Several
subjective and objective types of multi-criteria decision-
making techniques were developed so far for the selection of
best options among different conflicting alternatives. There
are individual and group-based decision-making techniques
with different weighting mechanism to minimize or max-
imize various criteria upon which optimum selection of
alternatives is based on.

Multi-criteria decision-making (MCDM) techniques
deals with various complex problems in various fields of
sciences and engineering that cannot be resolved using clas-
sical methods due to a large number of uncertainties and
vagueness present in their data analysis. To counter these
problems, Zadeh [1] presented the idea of a fuzzy set in
which a membership value is assigned to every element of
a set within a unit interval [0,1]. However, fuzzy sets do not
provide a non-membership value which is sometimes nec-
essary to handle uncertain and vague information. To deal
with this, Attanassov [2] presented the idea of the intuition-
istic fuzzy set (IFS) where both, the membership values and
non-membership values are given with the property that their
addition does not exceed 1.
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In real-life problems, interval-based information is some-
times necessary to handle uncertain and vague information.
To deal with such a problem, Attanassov and Gargov [3] pre-
sented the idea of an interval-based intuitionistic fuzzy set
(IVIFS) in which interval-based membership value and non-
membership value are given. During the most recent couple
of years, IFS and IVIFS have effectively been utilized in
numerous fields of life such as disease diagnosis, and face
recognition [4–8]. However, in many real-life applications,
it is not constantly feasible to provide the preferences under
this limitation. For example, an individualmay assign aworth
0.7 and 0.5 to an object as a membership value and non-
membership value separately, then, at that point 0.7 + 0.5 >
1. Thus (IFS) fails to handle these types of preferences.

To deal with such preferences, Yagar [9, 10] generalized
IFS to Pythagorean fuzzy set (PFS) with condition that the
square sum of preference values does not exceed 1. In real-
life applications, PFS is used where IFS fails to handle the
situations. For instance, for the above-mentioned example, it
is easily observed that (0.7)2 +(0.5)2 ≤ 1. Thus, PFS better
handle those situations where IFS fails. Peng and Yang [11]
put forward an idea of an interval-based Pythagorean fuzzy
set (IVPFS). We will discuss these concepts in detail in the
next section.

MCDM is a commonly applied methodology for solv-
ing real-life decision problems effectively. It aims to find
the ideal alternatives from the set of possible alterna-
tives, characterized by multiple criteria. Over the past few
decades, various techniques have been set up for tack-
ling MCDM issues [12–15]. The most commonly used
MCDM techniques includes Analytical hierarchy process
(AHP), Fuzzy analytical hierarchy process (FAHP), Entropy
method, Weighted aggregated sum (WAS), Weighted aggre-
gated product method (WASPM) and Vise Kriterijumska
Optimizacija Kompromisno Revenge (VIKOR).

Among them, TOPSIS [16] is the most effective method
that utilizes the idea of choosing an ideal solution that is
nearer to a positive ideal solution (PIS) and a longway from a
negative ideal solution (NIS). TOPSISmethodhas effectively
been applied by many researchers in a fuzzy environment
[17–22]. Zhang and Xu [23] applied (PF) TOPSIS method
in decision-making applications. Garg [24] utilizes interval-
based data by introducing the IVPF-TOPSIS method. In this
work, we use the technique [24] to select the best (S-box).

In the present world, security and confidentiality are
the existing challenges for researchers. To overcome these
challenges, strong cryptographic algorithms are designed
nowadays, keeping the property to resist any differential
and linear cryptanalysis attacks. The construction of modern
block cipher is based on confusion and diffusion compo-
nents. These two components are building blocks of any
modern information confidentiality mechanisms. The idea to
add confusion and diffusion in modern information secrecy

techniques is to make it resistant against various crypto-
graphic attacks. These two characteristics can be achieved
through substitution box (S-box) and permutation box (P-
box). An S-box is generally a nonlinear mapping which is
used nowadays in modern ciphers schemes. The ability of
encryption depends on the strength of this nonlinear compo-
nent in manipulating the input information.Many techniques
have been introduced in the literature for constructing secure
S-boxes [25–42]. Multi-criteria decision-making techniques
were already used extensively for various problems in liter-
ature [42–49].

Our contributions

In this work, a decision-making algorithm is utilized to select
the suitable S-box. Our contributions are summarized as fol-
lows:

• We first look into the results by investigating the crypto-
graphic properties of some standard S-boxes.

• Secondly, the TOPSIS method based on the IVPF set is
applied to analyze the results to reach the final decision.

• We ranked best nonlinear confusion component of block
ciphers which can be utilized in any modern information
confidentiality mechanism.

The rest of the article is organized as follows: “Some basic
preliminaries” is devoted to background. In “Cryptographic
properties of S-boxes”, we added standard cryptographic
analysis. The IVPF-based TOPSIS method is applied to
choose the desired S-box is presented in “Selection of
optimum nonlinear confusion component based on interval–
valued Pythagorean fuzzy set”. In “Results and discussion”,
we added results and discussions of our proposed method on
S-boxes. “Conclusion” is dedicated to conclusion and future
recommendations.

Some basic preliminaries

In this section, we will defined some fundamental definitions
will be helpful in following sections of our article.

Definition 1. Let G be a ground set. A fuzzy set F in G is
defined as

F � {(g, αF(g)) | g ∈ G}, whereF : G → [0, 1], is the
membership value of every element g ∈ G to F [1].

Definition 2. Let G be a ground set. An intuitionistic fuzzy
set (IFS) I in G is defined as.

I � {(g, α1(g), β1(g))| g ∈ G},
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where αI : G → [0, 1] and βI : G → [0, 1] indi-
cates the membership value and non-membership value of
every element g ∈ G to I, respectively, with the condition
0 ≤ α I (g) + βI (g)≤ 1. The indeterminacy value is given by
ρI (g) � 1 − αI (g) − βI (g). For simplicity, Yager and Xu
called the pair (αI (g),βI (g)) an IF number and is represented
by I � (αI , βI ) [2].

Definition 3. Let G be a ground set. An interval-valued intu-
itionistic fuzzy set (IVIFS) A in G is defined as

A �
{(

g,
[
(αA(g))l , , (αA(g))u

]
,

×
[
(βA(g))l , (βA(g))u

])
, |g ∈ G

}
,

where αA : G → L[0, 1] is the membership interval
denoted by[(αA(g))l , (αA(g))u] with (αA(g))l ≤ (αA(g))u

and βA : G → L[0, 1]is the non-membership interval
denoted by[(βA(g))l ,(βA(g))u] with (βA(g))l ≤ (βA(g))u to
each element g ∈ G to A, respectively, with condition
(αA(g))u + (βA(g))u ≤ 1. Foreveryg ∈ G, αA and βA are
the closed subinterval of[0, 1]. For simplicity, the IVIF num-
ber is represented by A � ([a1, b1], [a2, b2]), where b1 + b2
≤ 1 [3].

Definition 4. Let G be a ground set. A Pythagorean fuzzy
set (PFS) P in G is defined as [9]

P � {(
g, αp(g), βp(g)

)| g ∈ G,
}

where αP : G → [0, 1] indicates the membership value and
βP : G → [0, 1] indicates the non-membership value of an
element g ∈ G to the set P, respectively, with condition 0 ≤
(αP (g))2 +(βP (g))2 ≤ 1. The indeterminacy value is given
by

ρP (g) � (1 −
(
(αP (g))2 + (βP (g))2

)
)
0.5

Zhang andXudenote the pair (αP (g),βP (g)) as PFnumber
and is represented by P � (αP ,βP).

Definition 5. Let G be a ground set. An interval-valued
Pythagorean fuzzy set (IVPFS) IP in G is defined as [11]

Ip �
{(

g,
[(

αIP (g)
)l , (

αIP (g)
)u],

×
[(

βIP (g)
)l , (

βIP (g)
)u])|g ∈ G

}

where αIPG → L[0, 1] ithe membership interval denoted
by[(αIP (g))

l , (αIP (g))
u] with (αIP (g))

l ≤ (αIP (g))
u and

βIP : G → [0, 1] is the non-membership interval denoted by
[(βIP (g))

l ,(βIP (g))
u] with (βIP (g))

l ≤ (βIP (g))
u to each ele-

ment g ∈ G to IP , respectively,with condition ((αIP (g))
u)2+

((βIP (g))
u)2 ≤ 1. For every g g∈ G, αIP and vIP are the

closed subinterval of [0, 1].For simplicity IVPF number is
denoted by IP � ([a1, b1], [a2, b2]) b12 + b22 ≤ 1. The
indeterminacy value is given by:

ρIP (g) �
[(

1−((
αIP (g)

)u)2 − ((
βIP (g)

)u)2)0.5,
(
1−

((
αIP (g)

)l)2 −
((

βIP (g)
)l)2)0.5

]

.

Definition 6. Interval-valued Pythagorean fuzzy numbers
can be graded using score function which is given as fol-
lows [9]:

S(IP ) � (a12 + b12 − a22 − b22)

2
, (1)

where IP � ([a1, b1], [a2,b2]) be any IVPF number with
−1 ≤ S (IP ) ≤ 1. However, it is observed in many cases that
score function is unable to grade IVPF number. For example,
let IP1 � [0.4, 0.5], [0.4, 0.5] and IP2 � [0.6, 0.7], [0.6, 0.7]
be two IVPF numbers, then using Eq. (1), we have S (IP1)
� S (IP2) � 0. Thus, it is unable to find the best between
them. To counter this problem an accuracy function [9] is
introduced which is defined as:

Z(IP ) � (a12 + b12 + a22 + b22)

2
(2)

where 0 ≤ Z (IP ) ≤1. If we apply Eq. (2) in above example,
we get Z (IP1) � 0.41 and Z (IP2) � 0.85. Here it is clearly
observed that IP1 < IP2.Based on above observation, a com-
parison method is formulated as follows:

Proposition For any two IVPF numbers, IP1 and IP2 the
following results hold [9],

1. If S (IP1) < S (IP2), then IP1 < IP2.
2 If S (IP1) > S (IP2), then IP1 > IP2.
3 If S (IP1) � S (IP2),

(i) If Z (IP1) < Z (IP2), then IP1 < IP2.

(ii) If Z (IP1) > Z (IP2), then IP1 > IP2.

(iii) If Z (IP1) � Z (IP2), then IP1 ∼ IP2.

Limitations of existing score and accuracy function

Here, we consider an examplewhich illustrates that, both, the
score and the accuracy functions are inadequate to provide
the correct information about the IVPF numbers used in the
decision process.
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Example Let IP1� ([0, 0.5], [0.1, 0.8]) and IP2 � ([0.3,
0.4], [0.4, 0.7]) be two IVPF numbers, then using Eq. (1), we
have.

S (IP1) � −0.2 and S (IP2) � −0.2

Now using Eq. (2), we have.

S (IP1) � −0.2 and S (IP2) � −0.2

Therefore, by proposition 2.1 (iii) IP1 ∼ IP2. But it is clear
that IP1 �� IP2. Hence, both score function and accuracy
function are not sufficient to grade IVPF numbers, so there
is a need of an efficient score function which addresses this
problem.

Improved score function

Garg [22] improved the score function by taking into account
the indeterminacy information of an IVPF number which is
given by:

Q(IP )� (a21−a22 )(1 + (1−a21 − a22 )
o.5) + (b21−b22)(1 + (1−b21−b22)

0.5)

2
(3)

where −1 ≤ Q (IP ) ≤ 1. Garg presented comparison laws
based on improved score function which is defined as fol-
lows:

If Q (IP1) < Q (IP2), then IP1 <IP2.
If Q (IP1) > Q (IP2), then IP1 >IP2.
If Q (IP1) � Q (IP2), then IP1 ∼ IP2.

Now, let us check the effectiveness of the proposed score
functions. Consider two IVPF numbers defined in Example
2.1 then after applying Eq. (3), we have.

Q (IP1) � −0.5393 and Q (IP2) � −0.6558

Hence Q (IP1) > Q (IP2) ⇒ IP1 >IP2. Garg [22] proved
some important results for improved score function which
are discussed below:

If Ip � ([1, 1], [0, 0]) then Q (Ip) � 1. (4)

If Ip � ([0, 0], [1, 1]) then Q (Ip) � −1. (5)

The classification of different types of set are given in
Figs. 1, 2 shows different types of uncertain parameters in
fuzzy numbers. The generalization of fuzzy sets and their
corresponding extensions are given in Fig. 3, along with their

historical publication years and name of researchers. These
classifications are nowadays used in several designs of multi-
criteria decision-making schemes for the classification and
ranking of given data set.

Multi-criteria decision-making

Multi-criteria decision-making is defined as a mathematical
tool permit the comparative investigation of various avail-
able situations or alternatives based on several criteria and
sub-criteria, often conflicting to direct the policy makers or
stakeholders concerning an optimum selection. Mathemati-
cally, MCDM is multivalued function defined as:

f : A × C × W × Ag → R,

where A � {A1, A2, A3,…, An} set of possible alternatives,
C � {C1, C2, C3,…,Cm} set of criteria, W � {w1, w2,
w3,…,wm} set of weights corresponding to each criteria, Ag
is aggregation andR is set of ranks after applying aggregation
methods. The multi-criteria decision-making scheme com-
prises of the following fundamental steps for the selection
of optimum alternatives among various available conflicting
options to be followed (see Fig. 4):

i. Defining the formulation/objective/goal of the decision-
making process

ii. Selection of Parameters/Features/Issues/Criteria/Play-
off

iii. Selection of the Choices/Options/ Substitutes/ Replace-
ments/Alternatives

iv. Selection of best weighing technique to represent the
importance of each criterion

v. Technique to be applied for ranking namely method of
aggregation

vi. Ranking/Classification of alternatives based on the
aggregation results

MCDM is further classified into subjective and objective
information. In subjective techniques we mapped qualitative
information to quantitative date set. The subjective MCDM
techniques fundamentally depends on the partialities of deci-
sion makers or experts. These experts ultimately determine
weights for each criterion on which alternatives are to be
ranked. Mostly commonly subjective methods based on lin-
guistics terms which consists of degree of agreement or dis-
agreement, respectively. Mostly fuzzy set-based techniques
fall in the category of subjective mechanisms for instance,
fuzzyAHP, fuzzyANP, fuzzy TOPSIS, interval-valued fuzzy
TOPSIS, Pythagorean fuzzy TOPSIS and interval-valued
Pythagorean fuzzy TOPSIS method (see Fig. 5). There are
various objective based methods for the selection of best
alternatives. The objective MCDM techniques used different
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Fig. 1 Classical to fuzzy sets
classification

Classical Set

Fuzzy Set

Hesitant fuzzy set

Interval valued 

fuzzy set

complex fuzzy 

sets

Intuitionistic fuzzy set 

(IFS)

Interval valued 

Intuitionistic fuzzy set

Pythagorean fuzzy sets 

(PFS)

Interval Neutrosopic 

set

Interval valued 

paraconsistent set
Paraconsistent set

Neutrosophic set

Hesitant IFS Interval valued IFS Complex IFS

Hesitant PFS Interval valued PFS Complex PFS

Fig. 2 Different types of uncertainty parameters of fuzzy numbers
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Fig. 3 Extension and generalization of fuzzy set

Fig. 4 Multi-criteria decision-making technique components and process
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Fig. 5 Fuzzy-based multi-criteria decision-making techniques

aggregation operations or mathematical techniques and there
is no role of decision makers to influential the relative impor-
tance of criteria. The most common used objective MCDM
are TOPSIS, VIKOR, PROMETHEE, ELECTRE and hybrid
techniques.

Cryptographic properties of S-boxes

This section mainly deals with some well-known crypto-
graphic properties of nonlinear confusion component of
block ciphers.

Nonlinearity

It is defined as minimum hamming distance of any Boolean
function h from all affine functions. The mathematical
expression for nonlinear of Boolean function h is given as
follows:

NLh � minaεAnd(h, a),

where aεAn an affine function, d is the distance between a
Boolean function h and set of all affine functions An . High
value of nonlinearity increases the resistance against any
cryptanalytic attack optimum value of nonlinearity is 120
[35].

Strict avalanche criterion (SAC)

It is used to determine the confusion ability of multivalued
Boolean function namely S-box. The optimum value of SAC
is 0.5.

Bit-independent criterion

Bit-independent criterion (BIC) defines the relationship
between bit independent and nonlinearity. It also defines the
relationship between bit independent and SAC. It is noticed
that if nonlinearity and SAC are satisfied, then BIC is also
satisfied [33].
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Sum of square and absolute indicator

The absolute indicator is the maximum absolute value of
δH (w) ∀ w ε{1…2n−1}. The sum of square indicator is
denoted by σh and is given by

∑
w (δ(w))2 where δ(w) is

an autocorrelation of n variable Boolean function h.

Algebraic degree

It is defined as the highest number of confusion component
in truth table. Low value of algebraic degree decreases the
resistance against any cryptanalytic attack [36].

Algebraic immunity

High level of algebraic immunity is required to overcome the
algebraic attacks in breaking an encryption system [37].

Transparency order

Low value of transparency order is required to resist against
any differential power analysis (DPA) attack [38].

Robustness to differential cryptanalysis

Suppose F � (f 1, f 2,…, f s) be an n × s S-box, where hj (j
� 1,…,s) is a function on GF (2n). If L is the highest value
of differential characteristic Table on F and k is the number
of non-zero values in the first column of the table where the
value of 2n is not calculated in either case [39]. Then, F is
ε – robustness against the differential cryptanalysis, where ε

is defined by:

ε �
(
1 − k

2n

)(
1 − L

2n

)

Signal to noise ratio

High value of signal to noise ratio (SNR) is required for
strong S-box, which is close to maximum bound [40].

Confusion coefficient variance

The confusion coefficient variance (CCV) indicates the resis-
tance of S-boxes against any cryptanalytic attack. High value
of confusion coefficient variance is required, which infers
that the S-box output is distinctive [41].

Selection of optimum nonlinear confusion
component based on interval-valued
Pythagorean fuzzy set

TOPSIS [16] is one of the popular and preferable MCDM
methods used to find a solution which is nearer to positive
ideal solution (PIS) and a long way from negative ideal solu-
tion (NIS). With the passage of time, researchers applied
TOPSISmethod to solve decision problems in different fuzzy
environments.

Chen [21] used TOPSIS method for fuzzy environment,
Park in [22] extended it for interval-valued fuzzy environ-
ment. All above extensions were not able to handle decision
problems using Pythagorean fuzzy information. Therefore,
Hang and Xu [23] in 2014 introduced Pythagorean fuzzy
TOPSIS method to solve decision problems using PFSs.
Further, Garg [24] utilizes TOPSIS method for solving deci-
sion problems containing IVPF information by introducing
improved score function. The detailed steps of IVPFS-based
MCDM are given in [24]. The thirst for searching and con-
struction of ideal S-box is always an interesting problem
among cryptographers in literature. Our principal goal here
is to use IVPFS-based MCDM for the selection of best non-
linear confusion component of modern block ciphers.

Our aim here is to use IVPFS-based MCDM scheme for
the selection of best nonlinear confusion component of block
ciphers [24]. For this purpose, let S � {S1, S2, S3, S4, S5, S6}
be a set of six S-boxes, in which S1 represents (AES) S-box,
S2 represents APA S-box, S3 represents Gray S-box, S4 rep-
resents Prime S-box, S5 represents Skipjack S-box and S6
represents (XYI) S-box, and T � {T1, T2, T3, T4, T5, T6, T7,

T8, T9, T10, T11, T12, T13} be a set of criteria, in which T1 is
nonlinearity, T2 is strict avalanche criterion (SAC), T3 is bit-
independent criterion (BIC-SAC), T4 is BIC-Nonlinearity,
T5 is absolute indicator, T6 is sum of square indicator, T7

is algebraic degree, T8 is algebraic immunity, T9 is trans-
parency order, T10 is composite algebraic immunity, T11 is
robustness, T12 is signal to noise ratio (SNR), T13 is confu-
sion coefficient variance.

The criteriaweights, provided by an expert, are given byW
� {0.0738, 0.0818, 0.0907, 0.0912, 0.0421, 0.0424, 0.0926,
0.0926, 0.0915, 0.0926, 0.0787, 0.0774, 0.0528}t such that∑

w� 1. The S-boxes are examined using IVPF information
given by decisionmakerwhich satisfies the above-mentioned
criteria. The decision maker utilizes the (IVPF) TOPSIS
method to select the desired S-box.

The detail of the procedure is given below:
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Table 3 The score matrix of given information

R �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7266 0.7266 0.7266 0.1689 0.1689 −0.0796

0.7266 0.7266 0.7266 0.1689 0.4948 0.4948

0.7266 0.4163 0.7266 0.5893 0.4163 0.7266

0.7266 0.4163 0.7266 0.7266 0.4163 0.7266

−0.4163 −0.4163 −0.4163 0.7266 0.0796 0.0796

−0.4163 −0.4163 −0.4651 0.4163 0 0.2343

0.4163 0.4163 0.4163 0.4163 0.4163 0.4163

0.4163 0.4163 0.4163 0.4163 0.4163 0.4163

0.4163 0.4163 0.4163 0.0796 0.1689 0.4163

0.4163 0.4163 0.4163 0.4163 0.4163 0.4163

0.1689 0.1689 0.0796 −0.0796 0.4977 0.4163

0.4163 0.1689 0.4163 0.7266 0.1689 0.4948

−0.0796 −0.4163 −0.3245 0.0796 −0.7266 −0.4163

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 1

Initially, a decision matrix is constructed in which all the
preferences are given as, IVPF numbers. For this purpose,
Let IP� (Tm(Sn))m×n � ([am, n, bm, n], [cm, n , dm, n])m×n be
an IVPF decision matrix as defined in Table 1, where [am, n ,
bm, n] denotes the degree of membership of the S-box Sn(n
� 1,2…,6) with respect to the criterion Tm (m � 1,2…,13)
and [cm, n , dm, n] denotes the degree of non-membership with
(bm, n)2 + (dm, n)2 ≤ 1.

In Table 1, the element T1(S1) � ([0.7, 0.8], [0.2, 0.4])
(first row and first column) corresponding to S1( AES) and
T1 (Nonlinearity) represents the degree to which an S-box
S1 satisfies the criteria T1, is expressed as [0.7, 0.8] and
the degree to which an S-box S2 dissatisfies the criteria is
expressed as [0.2, 0.4]). The remaining elements in Table 1
represent the same meaning.

Step 2

Normalization of the decision matrix IP� (Tm(Sn))m×n is
performed in this step, which is defined as

Nm, n �
{

Tm(Sn); m ∈ B
(Tm(Sn))c; m ∈ C ,

(6)

where (Tm(Sn))c represents the complement of Tm(Sn), B
and C represents the benefit and cost criteria, respectively.
The results are shown in Table 2.

Step 3

Next, we construct a scorematrixR, usingEq. (3). The results
are presented in Table 3.

Step 4

Separation measure of each alternative, from interval-valued
Pythagorean positive ideal solution (IVPIS) and interval-
valued Pythagorean negative ideal solution (IVPNIS) is
calculated, which is given by the formula

(7)

D(Sn , s
+) �

(∑
m

{
wm

(
Q

(
s+

) − Q
(
n(m, n)

))2} 2

)0.5

,

(m � 1, 2, ..., 13) and (n � 1, 2, . . . , 6)

(8)

D(Sn , s
+) �

(∑
m

{wm
(
Q

(
n(m, n)

) − Q
(
s−))2

)}2
)0.5

,

(m � 1, 2, . . . 13) and (n � 1, 2, . . . , 6)

where s+ � {[1, 1], [0, 0]} and s− � {[0, 0], [1, 1]} represents
IVPPIS and IVPNIS, respectively.AlsoQ(s+)�1 andQ(s−)
� − 1 (from Eqs. (4) and (5)). The calculated results are
shown in Table 4. For better understanding, the results are
shown geometrically in Fig. 6.

Figure 6 illustrates that the distance of AES S-box and
prime S-box from interval-valued Pythagorean PIS is min-
imum, where the distance of AES S- box and Gray S-box
from interval-valued Pythagorean NIS is maximum.

Step 5

Relative closeness coefficient ismeasured to evaluate the per-
formance score of each S-box. Relative closeness coefficient
RC Ci of each alternative from ideal solution is given by:

RCCi � D(Sn , s−)
D

(
Sn , s−)

+ D(Sn , s+)
(9)

The results are presented in Table 5.

Step 6

The S-box with high rank is considered as the best S-box,
and it is clear from Table 5 that AES S-box box is the desired
S-box with respect to above-mentioned criteria. It can be
visualized geometrically as shown in Fig. 7.

Results and discussion

The quality of modern information confidentiality mecha-
nism highly depends on its nonlinear confusion component.
This nonlinear confusion component which is responsible
for adding confusion capability in encryption algorithm.
The confusion is used to make relationship between the
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Table 4 Separation measure of
each alternative from IVPPIS and
IVPNIS

S1 S2 S3 S4 S5 S6

D(Sn , s+) 0.1610 0.1932 0.1823 0.1604 0.2074 0.1615

D(Sn , s−) 0.0965 0.0714 0.0967 0.0794 0.0533 0.081

Fig. 6 Distance of each
alternative from IVPPIS and
IVPNIS

0

0.05

0.1

0.15

0.2

0.25

Table 5 Relative closeness
coefficient and rank of each
S-box

S1 S2 S3 S4 S5 S6

RCCi 0.3747 0.2699 0.3467 0.3312 0.2045 0.3358

Rank 1 5 2 4 6 3

Fig. 7 Relative closeness of each
alternative

0

1

2

3

4

5

6

7

Closeness Coefficient Rank
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Fig. 8 Proposed optimum S-box selection criteria based on interval-valued Pythagorean fuzzy set

key and the ciphertext as complex as possible in order not
to retrieve plaintext. In modern block ciphers, confusion is
achieved through substitution box (S-box) which is nonlin-
ear confusion component. With this study, we have studied
various standard S-boxes based on their standard crypto-
graphic characteristics. We have studied AES, APA, Gray,
Prime, Skipjack and XYI S-boxes, respectively. It is quite
evident from Fig. 7, that AES S-box is the best nonlinear

confusion component of modern block ciphers. In this arti-
cle, we fundamentally tested standard six S-boxes based on
thirteen cryptographic characteristics (see Fig. 8). We have
taken decision matrix based on these thirteen cryptographic
characteristics for six standard S-boxes. The relative close-
ness of AES S-box is high as compared to other standard
S-boxes which clearly elucidate its distance from positive
idea solution is maximum and negative ideal solution is min-
imum.
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Conclusion

With this investigation, we can easily determine the best S-
box which is one of the nonlinear confusion component of
modern block cipher mechanism. We have used an interval-
valued Pythagorean fuzzy set-based TOPSIS technique to
scrutinize the suitable S-box, whereas the preference val-
ues of each S-box are taken in the form of IVPF number.
This technique can easily be utilized for the classification
of encryption algorithms based on various security analyses.
These security analyses can be taken as criteria and encryp-
tion algorithms are taken to be alternatives.
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