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Abstract
KnowledgeGraphs (KGs) have become an increasingly important part of artificial intelligence, andKGs have beenwidely used
in artificial intelligence fields such as intelligent answering questions and personalized recommendation. Previous knowledge
graph completion methods require a large number of samples for each relation. But in fact, in KGs, many relationships are
long-tail relationships, and the existing researches on few-shot completion mainly focus on static knowledge graphs. In this
paper, we consider few-shot completion in Temporal Knowledge Graphs (TKGs) where the event may only hold for a specific
timestamp, and propose a model abbreviated as FTMO based onmeta-optimization. In this model, we combine the time-based
relational-aware heterogeneous neighbor encoder, the cyclic automatic aggregation network, and the matching network to
complete the few-shot temporal knowledge graph. We compare our model with the baseline models, and the experimental
results demostrate the performance advantages of our model.

Keywords Long-tail relationships · Meta-optimization · Few-shot temporal knowledge graph

Introduction

Knowledge Graph (KG) is a new concept proposed by
Google, which is used to construct multivariate relational
data. In recent years, KGs have been widely used in the arti-
ficial intelligence field, such as intelligent answers [28, 43]
and social network analysis [45]. However, because of the
incompleteness of KGs, the performances of tasks related to
knowledge graphs will be affected. Like many KGs, such as
WordNet [26], Freebase [1], and Google Knowledge Graph
[2], these KGs are static and have no temporal information.
In previous studies, researchers have proposed many mod-
els, such as TransE [3] and its improved models, to complete
KGs. Most of these models embed entities and relationships
into low-dimensional space and achieve good performance.

In the past few years, knowledge data usually con-
tain abundant temporal information. In this case, many
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researchers add timestamps to the traditional knowledge
graph triples (s, r, o) as temporal knowledge graph (TKG),
which is described as quadruples (s, r, o, t). ICEWS [4] and
GDELT [21] are two famous temporal knowledge graphs but
they are far from complete. The important task of a TKG is to
complete quadruples without correct subject–object entity or
relational information. For example, the form of an incom-
plete quadruple may be (?, r, o, t), (s, r,?, t) or (s, ?, o, t),
and we need to infer “?” from the quad we already have.
Although KG completion model has achieved remarkable
results, it has little effect on TKGs completion model. In this
case, the completion of TKGs still has a lot of research space,
and it also faces great difficulties. With the development of
research, researchers add temporal information processing
to the model, such as TTransE [19] and TA-TransE [9]. In
addition, some models based on recurrent neural networks
have also emerged such as RE-Net [16].

In the previously proposed method, the researchers
assumed that each relationship has a sufficient number of
entities to train for better performance. However, in fact, in
TKGs, a large number of relationships have few entity pairs,
which is called the long-tail relationship. For example, for
a “s the citizen of ” relationship, there may be thousands of
entities, but for a “is the president of ” relationship, there
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may be only a few hundred entities. The number of enti-
ties corresponding to the two relationships varies greatly,
so we should study this situation. The long-tail relationship
cannot be ignored in the real world. In this case, several mod-
els with few shots, such as GMatching [44], MetaR [5] and
FANN [34], were proposed successively. These models are
developed for static knowledge graph with few samples, and
cannot explain temporal knowledge graph. The encoders they
use cannot embed the temporal relation between entities into
the models, and the information sharing between fewer enti-
ties and the influence of heterogeneous neighborhoods is not
considered. After adding temporal information, we propose a
relational-aware heterogeneous neighborhood encoder based
on temporal information inspired by FSRL [49]. In addition,
the one-time learning environment cannot meet the training
situation with few samples, so it is necessary to design a new
model to realize the interaction between the reference set
and temporal information. In addition, we find that the meta-
optimizer can be combined with LSTM [12], and LSTM can
solve the problem of gradient descent and gradient explosion
in training. In addition, combining LSTM update and gradi-
ent descent can obtain the optimal parameters of the model
better and faster, update the training model through a small
number of gradients, realize fast learning of new tasks, and
train another neural network classifier through an optimiza-
tion algorithm in a small number of states.

In this paper, we combine several modules and propose a
newmodel to complete the short shot TKG. The paper makes
the following contributions:

• Wepropose a few-shot completionmodel,which addresses
few-shot completion in temporal knowledge graphs.

• We use timestamp information to enhance the represen-
tation of task entities and entity pairs by constructing
a time-based relationship-aware heterogeneous neighbor
encoder.

• We propose a cyclic automatic encoder aggregation net-
work for TKG.

• We conduct abundant experiments on two public datasets
to demonstrate that FTMO outperforms existing state-of-
the-art TKG embeddingmethods and few-shot completion
methods.

The rest of the paper is organized as follows. In “Related
work”, we describe related work. In “Our model”, we
illustrate the relevant task definitions and the details of
the proposed model. Experimental setups and comparative
analysis of the experimental results are presented in “Exper-
iments”. In “Conclusion”, we give a conclusion and possible
directions for future improvement.

Related work

Static knowledge graph completionmethods

There are two types of static knowledge graph completion
models: translation models and others.

On one hand, the translation model transforms relation-
ships and entities into vectors, and calculates the dissimilarity
of vectors. Bordes et al. propose the famous TransE [3]
model, which interprets the relation vector as the seman-
tic translational operation of the entity vector in the vector
space. If s + r ≈ o is true, the completion result is cor-
rect. However, it only focuses on 1–1 relationship, and is
not a good fit for 1–N , N–1 and N–N relationships. To this
end, several improved models are taken into account such
as TransH [42], TransR [23], and TransD [14], etc. TransH
translates subject vector to the front of the object vector by
relation and projects the subject vector and object vector onto
a plane associated with the current relation. TransR uses the
mapping matrix corresponding to the relation to transform
entities into different relation semantic spaces to obtain dif-
ferent semantic representations. TransD uses entity-related
vectors and relation-related vectors to dynamically obtain
the projection matrix of the relation through cross-product
computation. On the other hand, one of the most important
other models is semantic model, which mainly calculates a
similarity score through the latent semantics between entity
vector and relation vector, and ranks the completion results
according to the calculated similarity score. DistMult [46]
proposes a framework, considering entities and relations as
low-dimensional vectors and bilinear and/or linear mapping
functions. ANALOGY [24] proposes a framework for opti-
mizing the latent representations in the case of the analogical
properties of the embedded entities and relations. RESCAL
[30] adopts a relation weight matrix to interact the latent fea-
tures of entities, but its function is too simple, which causes
it cannot get efficient vector representations. To have better
representations, NTN [36] and HolE [29] are proposed to
obtain a better vector representations for improvements. On
the other hand,MMKRL [25] can utilizemulti-modal knowl-
edge effectively to achieve better link prediction and triple
classification by summingdifferent plausibility functions and
using specific norm constraints. Wang et al. [41] propose the
modeling of complex internal logic by integrating the fusion
semantic information, which can make the model converge
faster. Huang et al. [13] propose local information fusion to
join entities and their adjacencies to obtain multi-relational
representations. However, these models cannot be applied to
temporal knowledge graph directly.
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Temporal knowledge graph completionmethods

With the growth of the amount of data information, tempo-
ral information has been widely considered. In recent years,
temporal stamps have been embedded into low-dimensional
space, and three elements (s, r, o) have been extended to four
elements (s, r, o, t) to complete TKG. Inspired by TransH
[42], Dasgupta et al. proposeHyTE [15]model which explic-
itly combines temporal information in the entity-relationship
space by associating each temporal stamp with the cor-
responding hyperplane. TTransE [19] upgrades TransE by
improving the scoring function and learns the temporal rep-
resentations from the temporal text by a recurrent neural
network, so TTransE can complete the temporal knowledge
graph andobtain great achievements.García-Durán et al. pro-
pose TA-TransE [9] and TA-DistMult [9] adding temporal
embeddings into its score function to use temporal infor-
mation to complete the graph. However, in these models,
all static temporal information ignores the relevance of the
related quad. In addition, the time dependency also needs
to be considered. To make good use of the time depen-
dency, Trivedi et al. present Know-Evolve [38], which is
an in-depth assessment of the knowledge semantic network
structure. RE-Net [16] chooses to aggregate the neighbor-
hoods of entities and applies the recurrent neural network
for time dependence. Chrono-Transation [33] deals with
temporal information using rule mining and graph embed-
ding operations. However, these models usually assume that
enough training quads are provided for all relationships, and
the long tail relationship is not considered, which leads to
poor performances in the environment with few samples.

Few-shot knowledge graph completionmethods

To obtain good performance, a large amount of data is often
used to train the model. But in a real knowledge graph, there
are relationships with few entities. Meta-learning methods
include metrics-based, model-based and optimization-based
methods, aiming at fast learning with a small number of sam-
ples.

Because long-tail relations are common in KGs, GMatch-
ing [44] learns a matching metric by the learned embeddings
and one-hop graph structures and proposes a one-shot rela-
tional learningmodel. By observing a few associative triples.
However, GMatching assumes that all local neighbors con-
tribute equally to entity embedding, while heterogeneous
neighbors may have different influences. It ignores that the
interaction between a few reference instances limits the
representation ability of reference sets. MetaR [5] stud-
ies few-shot link prediction in KGs. It enables the model
to learn faster by considering transferring relation-specific
meta information. Xiong et al. [44] propose a metric-
based approach to link prediction of long-tail relationships

with fewer samples. However, the performance of MetaR
is affected by the sparsity of entities and the number of
tasks, which affects the performances. FSRL [49] can infer
the true entity pairs effectively given the set of few-shot
reference entity pairs for every relation, which aims at dis-
covering facts of new relations with few-shot references.
FSRL does not consider the importance of timestamp infor-
mation for the completion of temporal knowledge graph.
REFORM [40] studies the problem of error-aware few-shot
KG completion to accumulate meta-knowledge across dif-
ferent meta-tasks, and propose neighbor encoder module,
cross-relation aggregationmodule, and errormitigationmod-
ule in each meta-task. MTransH [31] proposes a few-shot
relational learning model with the global stage and the local
stage. FAAN [34] proposes an adaptive attentional network
for few-shot KG completion, which is predictive for knowl-
edge acquisition. However, these methods are mainly aimed
at static knowledge graph, and cannot make good use of the
timestamp information in temporal knowledge graph.

Ourmodel

In this section, we design a model called FTMO to com-
plete the missing object entities in the dataset of the few-shot
temporal knowledge graph, shown in Fig. 1. FTMO mainly
includes the following aspects: entity embedding is gen-
erated by a time-based heterogeneous neighbor encoder; a
small number of reference entity pairs are aggregated by a
time-based cyclic automatic encoder to generate reference
set embedding; the similarity score between query pair and
reference set is calculated by the matching network, and the
candidate entities are sorted to obtain the highest ranked
entity. Throughout the paper, the main notations are sum-
marized in Table 1.

Few-shot completion task

The representation of TKG can be represented as (s, r, o, t),
where s and o represent entities, r represents relationships,
and t represents timestamps. The TKG tasks mainly include
three types: (1) given the subject entity s, the relationship r
and the timestamp t to predict the object entity o: (s, r, ?,
t); (2) given the relationship r, the object entity o, and the
timestamp t to predict the subject entity s: (?, r, o, t); (3) given
the subject entity s, the object entity o, and the timestamp t to
predict the relationship r: (s,?,o, t). In this study, the first case
is taken into consideration because we want to complete the
determination of the missing object entity in the relationship.

Definition 1 Few-shot TKG completion. Given a few-shot
TKG, assuming that the relation r and its few-shot refer-
ence entity pairs are known, few-shot TKG task is defined as
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(Part1) The overall of our model

(Part2) Temporal knowledge graph few-shot completion model based on meta-optimization
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Fig. 1 The framework of FTMO model

designing a machine learning model. The object candidate
entities of each new subject entity s are sorted according to
the known content, so that the similarity score of the real
object entities of the subject entity s is the highest.

Training task

Our goal is to design a machine learning model to predict
the missing object entities in a few-shot TKG. There are
two types of training models with few shots. (1) The first

is a metric-based method [18, 27, 35, 39], which can learn
effective metrics and the corresponding matching functions
in a set of training examples. (2) The second method is based
on meta-optimization [7, 8, 20, 22, 32, 47]. Its purpose is
to quickly optimize model parameters and give gradients on
a small number of shot data instances. Here, we use meta-
optimization [32] and addLSTM[12] on this basis,which can
learn the precise optimization algorithm in a small number of
shot states. The task of few-shot knowledgegraph completion
is described as follows:
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Table 1 The main notations in this paper

Symbol Meaning Symbol Meaning

(s, r, o, t) The
representation
of TKG

T Meta-training
set

Rr The set of
relations r

Nh Time-based
encoding
heterogeneous
neighbors

Dtrain
r The training set

of the relation
r

G ′ The
background
knowledge
graph

Dtest
r The test set of

the relation R
σ Activation unit

Qsi , r , ti The remaining
candidate
entities set

αi Attention
weight

� The set of model
parameters

⊕ Catenation
operator

L The loss
function of r

μro, Wro, brt Learnable
parameters

AG An aggregation
function

nk , dk Hidden states of
encoder and
decoder

εsk , ok , tk Representation
of (sk , ok , tk)
by applying
time-based
neighbor
encoder

RNNencoder
RNNdencoder

Recurrent
encoder and
decoder

k the size of
reference set

RNNmatch The LSTM cell

gt , ct The hidden state
and the cell
state of LSTM

Lrank The ranking
loss

Pεr The remaining
positive(true)
entity pairs

N εr The group of
negative
(false) entity
pairs N εr

ξ The safety
margin
distance

S(sl , ol , tl ) The similarity
score between
query pairs
(sl , ol ) and
reference set
Rr

Ljoint The final
objective
function

γ The trade-off
factor
between
Lrank and Lre

Given a training task, each relationship r ∈ R in the tem-
poral knowledge graph should have a corresponding training
dataset called Dtrain

r , which contains only few-shot entity
pairs about the relation r and a testing dataset called Dtest

r
contains all entity pairs about the relation r. Therefore, given
the test queries (si, r, ti) and a small number of reference pairs
in the Dtrain

r training, we can sort all the candidate entities and
test our model on this basis. In summary, the loss function of
r can be defined asL�

(
si , oi , ti |Qsi , r , ti , D

train
r

)
, where� is

a collection of all the parameters, and Qsi , r , ti represents the
remaining candidate entities set.

The process of meta-optimizer is as follows: first, the
parameters of meta-learning are initialized, and then n-
dimensional learning tasks are cycled. Each task samples
Dmeta−train
r and Dmeta−test

r from Dtrain
r data set, that is, sup-

port set and reference set. For each meta-learning task, T
quadruples are extracted from Dmeta−train

r as reference set,
one batch is extracted as query set, and then another query
set is obtained by processing its query set, and its match-
ing score is calculated, respectively. After calculating its loss
function, LSTMnetwork is used for gradient calculation, and
meta-learning parameters are updated. After doing the same
for Dmeta−test

r , update the related parameters of meta-train.
Meta-testing refers to the fact that after sufficient data

training, the learning model can be learned spontaneously,
and then it can be used to predict the fact that every relation-
ship r ∈ R in TKG. It should be noted that in the self-learning
process of a meta-learning model, every relationship is invis-
ible to the outside world. In addition, in the same pattern as
mentioned earlier, every relation r ′ in meta-testing should
also have a few-shot training data P train

r ′ that contains only
few-shot entity pairs about the relation r ′ and a few-shot test-
ing data P test

r ′ that contains all entity pairs about the relation
r ′. The objective of model training can be defined as Eq. (1)
as follows:

min�ET

⎡

⎢
⎣

∑

(
si , oi , ti , Qsi , r , ti

)∈Dtest
r

L�
(
si , oi , ti |Qsi , r , ti , D

train
r

)

|Dtest
r |

⎤

⎥
⎦.

(1)

Note that the meta-optimization is performed over the
model parameters �, whereas the objective is computed
using the updated model parameters �.where |Dtest

r | is the
number of quad (s, r, o, t) in Dtest

r . Details on how to calcu-
late each function section and how to modify and optimize
the functionality are discussed in subsequent sections.
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Time-based relational aware encoding
heterogeneous neighbors

In this section, we propose a time-based relationship-aware
heterogeneous neighbor encoder. The local coding struc-
ture of explicit graphs performs well in relation prediction
[37]. In the previous neighborhood encoders, the average of
the encoded features between neighbors is used to embed
a given entity. Although embedding with the feature vector
average can achieve good performance, this method ignores
the different influences that heterogeneous neighbors may
bring when calculating feature vectors, and this influence
will produce differences in the final results [48]. Because of
the existence of temporal elements, we design a relational
aware heterogeneous neighbor encoder based on time com-
bined with previous work.

Different from FSRL [49], in this process, we upgrade
the matrix from three dimensional to four dimensional. In
the neighbor coding process, our model first calculates the
temporal information and relationship information once and
then calculates the temporal information and entity informa-
tion in a unified and joint way in the subsequent operation.
Given a header entity s, the set of time-based relationship
neighbors (relationship, entity, time) can be represented as
Nh � {

(ri , oi , ti )|(s, r i , oi , ti ) ∈ G ′}, where G ′ is the
background TKG, and ri , oi , and ti are the i-th relation, the
corresponding object entity, and the current time point s.
Therefore, the time-based heterogeneous neighbor encoder
can comprehensively consider the different influences of iso-
morphic and heterogeneous neighbors (ri , oi , ti ) ∈ Nh , and
combine entity and temporal information to calculate the fea-
ture vector representation of specific entities. On the basis of
this, it can encodeNh and output a feature representation of
s well. The attention module and formula for embedding s
are defined as follows:

fθ (s) � σ
(∑

i
zi

)
, (2)

αi � exp{μO
ro

(Wro
(
eli ⊕ eoi

)
+ bro + brt

}

∑
iexp{μO

ro

(Wro
(
eli ⊕ eoi

)
+ bro + brt

} , (3)

eli � eri ⊕ eti , (4)

zi � αi eoi eti , (5)

where σ denotes the activation unit, ⊕ represents the con-
catenation operator, eri , eoi , and eti ∈R(d×d×1) are pretrained
embeddings of ri , oi and ti , and eli represents the variable
of the eri and eti join operations. In addition, μro∈R(d×d×1),
Wro∈R(d×d×2d) and brt∈R(d×d×1) (d: pretrained embedding
dimension) are learnable parameters.

By leveraging the embeddings of entity oi , relation ri and
temporal stamp ti to compute αi and obtain good use of the

attention weightαi , the formulation of fθ (s) can consider
the different impacts of heterogeneous relational neighbors
well. The specific details of the time-based relational aware
heterogeneous neighbor encoder are shown in Fig. 2. First,
the relationship information and temporal information of the
quadruple related to the same subject entity are embedded,
then the new variable is embedded with the object entity and
temporal stamp, and then the weight factor is calculated with
the intermediate quantity. Finally, the characteristic repre-
sentation of the main entity is calculated.

Aggregation network of cyclic automatic encoders

In this section,we design an aggregator network consisting of
recurrent autoencoder aggregators. (sk , ok , tk) can be repre-
sented as εsk , ok , tk � [

fθ (sk)⊕ f θ (ok) ⊕ fθ (tk)
]
by applying

the time-based neighbor encoder fθ (s) to each entity pair
(sk , ok , tk) ∈ Rr . The embedding of Rr can be represented
as follows [6, 35]:

fε(Rr ) � AG(sk , ok , tk )∈Rr

{
εsk , ok , tk

}
, (6)

whereAG is an aggregate function for pooling operation and
feedforward neural network.

To apply current neural network aggregators in graph
embedding [10], we study a cyclic automatic encoder aggre-
gator between a few samples. Specifically, the entity pair
embeddings εsk , ok , tk ∈ Rr are fed into a recurrent autoen-
coder sequentially by Eq. (7):

εs1, o1, t1 → n1 → · · · → nk → dk → · · · → d1, (7)

where k is the size of the reference set.
In Eq. (7), nk denotes encoding and dk−1 denotes decod-

ing, which are both hidden states of the decoder. nk and dk−1

are calculated as Eqs. (8) and (9):

nk � RNNencoder
(
εsk , ok , tk , nk−1

)
, (8)

dk−1 � RNNdencoder(dk), (9)

where RNNencoder represents the recurrent encoder and
RNNdecoder describes the decoder.

The reconstruction loss for optimizing the autoencoder
can be measured as Eq. (10):

Lre(Rr ) �
∑

k

‖dk − εsk , ok , tk‖22. (10)

The role of Lre is to merge with relationship-level losses
to optimize the representation for each entity pair, thereby
improving the model performance.

123



Complex & Intelligent Systems (2023) 9:7461–7474 7467

Fig. 2 Time-based relation-aware
heterogeneous neighbor encoder
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To embed the reference set, the hidden states of the
encoder, residual links [11], and attention weights are aggre-
gated and defined as follows:

n′
k � nk + εsk , ok , tk , (11)

βk � exp{μT
R(WRn′

k + bR)}
∑

k′
exp{μT

R(WRn′
k′ + bR)}

, (12)

fε(Rr ) �
∑

k

βkn
′
k , (13)

where μR ∈ R
(d×d×1), WR ∈ R

(d×d×2d), and bR ∈
R

(d×d×1) (d: pretrained embedding dimension).
Compared with FSRL, our model not only improves tem-

poral information processing and the matrix dimension, but
also uses a smaller gradient in combination with LSTM,
which makes the result better. The cyclic automatic aggre-
gation network for reference set contains encoder part and
decoder part, as shown in Fig. 3. The encoder combines the
LSTM aggregation of a small number of reference sets and
feature representation vectors of entities to generate rela-
tionswith small sample embeddings. The decoder aggregates
the LSTM and aggregates a small number of reference sets
and intermediate amounts of feature representation vectors
of entities to compute the loss function.

Matching query and reference set

For matching Rr with each (sl , ol , tl) in r, temporal
information is considered in the process of the match-
ing network. According to the previous efforts, there are
two types of embedding vectors, which are εsl , ol , tl �[
fθ (sl )⊕ f θ (ol ) ⊕ fθ (tl )

]
and fε(Rr ). For the recurrent pro-

cessor, we adopt fμ [11] for multiple step matchings to
measure the similarity between these two vectors. The t-th
process step can be represented as follows:

g′
t , ct � RNNmatch

(
εsl , ol , tl ,

[
gt−1 ⊕ fε(Rr )

]
, ct−1

)
, (14)

gt � g′
t + εsl , ol , tl , (15)

where RNNmatch is the LSTM cell [12], including the hidden
state gt and the cell state ct .

The inner product results between εsl , ol , tl and fε(Rr ) are
employed as the similarity score. The matching network for
query pair and reference set is shown in Fig. 4.

The query set and LSTM are combined for embedding,
then the reference set and LSTM are combined for calcu-
lation, and finally the similarity score is obtained. First, the
query set and LSTM are combined for embedding. Second,
the reference set and LSTM are combined for calculation.
Finally, the similarity score can be obtained.

Target mode training

To test the performance of the model in obtaining a
reference set Rr for the query relation r, we select
randomly a set of few positive (true) entity pairs
{(sk , ok , tk)|(sk , r , ok , tk) ∈ G}. After that, the remain-
ing positive (true) entity pairs can be represented as Pεr �{
(sl , ol , tl)|(sl , r , ol , tl) ∈ G

⋂
(sl , ol , tl) /∈ Rr

}
, where

Pεr is the positive entity pairs.On the other hand, the negative
(false) entity pairs N εr � {(

sl , o
−
l , tl

)|(sl , r , o−
l , tl

)
/∈ G

}

are created by polluting the tail entities. The ranking loss
can be computed by Eq. (16):

Lrank �
∑

r

∑

(sl , ol , tl )∈Pεr
∑

(
sl , o

−
l , tl

)∈N εr

[
ξ + S(

sl , o
−
l , tl

) − S(sl , ol , tl )

]

+
, (16)

where [x]+ � max[0, x] is the standard hinge loss, ξ

is the safety margin distance in the model, and S(
sl , o

−
l , tl

)

and S(sl , ol , tl ) are the similarity scores between query pairs(
sl , ol/o

−
l , tl

)
and reference set Rr .

The final objective function can be formulated as Eq. (17):

Ljoint � Lrank + γLre, (17)

where γ is the trade-off factor between Lrank and Lre. γ is a
hyperparameter because the final joint loss function cannot
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Fig. 3 The cyclic automatic
aggregation network for
reference set +
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be computed directly using the sum of the two partial loss
functions. In the experiments, we make the loss function of
the two parts an order of magnitude by observing the loss
function of the two parts and then finally determine the value
of γ .

To minimize Ljoint and optimize the parameters, we deal
with each relation as one task and design a batch sampling on
the basis of the meta-training. In each training task, few-shot
entity pairs and a set of query sets are firstly selected and
extracted. Then, a set of negative entity pairs is created by
polluting object entities. The feature representation of subject
entities, the reconstruction loss for optimizing autoencoder,
the challenge and embedding formulation, the ranking loss
and the loss function are successively calculated according
to the formula proposed in this paper. The optimizer parame-
ters are updated until the task is finished. Finally, an optimal
parameter can be returned.

Experiments

Experiment setup

Datasets preprocessing

In the previous knowledge graph completion model, every
relation in the existing dataset contained a large number of
entity pairs, so it could ensure training accuracy. However,
in the real world, there are many relations with a small num-
ber of entities. Therefore, to study this kind of relationship
called long-tail relationship, each relation should have a small
number of entity pairs in a small number of datasets. There-
fore, based on the less beat standard [18, 35] and inspired by

GMatching [44],we adjust the number of entities in each rela-
tionship based on the existing dataset and control the number
in a lower range. For example, in a normal TKG dataset, the
relationship “is the president of ” may have approximately
10,000 entity pairs, but in a few-shot dataset, it may only have
50–500 entity pairs. To test the performance of ourmodel, we
should adjust the existing TKG dataset accordingly. There-
fore, we keep the number of entities per relationship in the
dataset within this range and reduce the number of relation-
ships to less than 100. Details of specific dataset processing
are described as follows:

In the experiments, ICEWS [4] and GDELT [21] are used
for evaluations. The number of entities for one relationmain-
tains between 50 and 500, and the number of relations is
controlled under 100. We divide the dataset into the training
set, test set and verification set with a ratio of 70: 15: 7. The
statistics of ICEWS and GDELT are listed in Table 2.

Baselines

We perform two kinds of baseline models for comparisons.
One kind is the vector representation and relational embed-
dingmodels such asTransE [3],DistMult [46], TTransE [19],
TA-TransE [9] and TA-DistMult [9]. The other kind is neigh-
borhood coding models such as RE-Net [16], GMatching
[44], MetaR [5] and FSRL [49].

Parameter settings

For GMatching, MetaR, FSRL, and FTMO, the optimal
hyper-parameters are listed in Table 3, where n is the embed-
ding dimension, λ is the learning rate, x is the maximum size
of ICEWS and GDELT, h is the hidden dimension, q is the
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Table 2 Statistics of
ICEWS-Few and GDELT-Few Dataset #Ents #Quads #Relations #Tasks #Times

ICEWS-Few 7531 391,936 253 102 632

GDELT-Few 4570 270,858 225 90 485

Table 3 The optimal hyper-parameters for baseline models on both datasets

Model n λ x h q p a m f

GMatching [44] 100 0.001 1000 200 30 2 0.25 5.0 0.0001

MetaR [5] 100 0.001 1000 200 30 2 0.25 5.0 0.0001

FSRL [49] 100 0.001 1000 200 30 2 0.25 5.0 0.0001

FTMO 100 0.001 1000 200 30 2 0.25 5.0 0.0001

Table 4 The optimal
hyper-parameters for baseline
models on each dataset

Model ICEWS-Few GDELT-Few

λ n B v λ n B v

TransE [3] 0.0001 512 512 – 0.0001 512 512 –

DistMult [46] 0.01 512 1024 – 0.01 512 1024 –

TTransE [19] 0.001 512 512 0.0 0.001 256 512 0.0

TA-TransE [9] 0.001 512 512 0.0 0.001 256 512 0.0

TA-DistMult [9] 0.001 512 1024 0.0 0.001 512 1024 0.0

RE-Net [16] 0.001 256 1024 0.5 0.001 256 1024 0.5

maximum local neighborhood number of the heterogeneous
neighborhood encoder species, p is the number of steps, a is
the weight attenuation, m is the edge distance, and f is the
transaction factor. For the other baselines, the optimal hyper-
parameters are listed in Table 4, where n is the latitude of
vector embedding, B is the batch size of training data, v is
the discard probability. Adam optimizer [17] is selected in
the process of updating parameters.

Evaluation index

We use the hit ratio (Hits@1, Hits@5, and Hits@10) and the
mean reciprocal rank (MRR) to evaluate the performances.

Experimental results

Comparisons with baselines

In this group of experiments, performance comparisons with
baselines on ICEWS-Few and GDELT-Few are presented
in Table 5, where the pre/post scores describe experimental
results from the validation/test set. In Table 5, the best exper-
imental results are shown in bold, and the best experimental
results of the comparative baselines are underlined.

From Table 5, we can make the following conclusions.

(1) In two different comparison models, we can clearly see
that the results of the model using graph neighborhood
coding are better than those of the relational embed-
ding method, which shows that neighborhood coding
can better deal with heterogeneous relational entities,
and the method combined with the matching network
can better represent and embed entities, thus enhancing
the performance of entity completion.

(2) Our model achieves the best performance in all the eval-
uation parameters, which proves the effectiveness of our
model, indicating that preprocessing relational and tem-
poral attributes and the combined use of heterogeneous
neighborhood encoder and cyclic autoencoder aggrega-
tion network can complete the work of few-shot entities
well.

Comparisons over different relations

In this group of experiments, we perform comparative exper-
iments over different relations to evaluate the validity and
stability. The comparisons are performed between FSRL
and FTMO over ICEWS-Few and GDELT-Few. The exper-
imental results are shown in Tables 6 and 7, where the
pre/post scores represent the experimental scores of FSRL
and FTMO, respectively.
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Table 5 Performance comparisons on ICEWS-Few and GDELT-Few

Model ICEWS-Few GDELT-Few

Hits@1 Hits@5 Hits@10 MRR Hits@1 Hits@5 Hits@10 MRR

TransE [3] 0.064/0.145 0.127/0.264 0.208/0.321 0.115/0.188 0.164/0.081 0.241/0.096 0.306/0.117 0.281/0.129

DistMult [46] 0.071/0.158 0.145/0.291 0.202/0.329 0.126/0.213 0.186/0.076 0.265/0.101 0.324/0.133 0.334/0.125

TTransE [19] 0.126/0.196 0.281/0.345 0.315/0.380 0.256/0.217 0.215/0.088 0.396/0.135 0.429/0.207 0.350/0.153

TA-TransE [9] 0.117/0.190 0.284/0.351 0.333/0.378 0.255/0.222 0.214/0.093 0.385/0.146 0.428/0.213 0.349/0.152

TA-DistMult [9] 0.131/0.198 0.294/0.337 0.356/0.379 0.273/0.246 0.223/0.114 0.397/0.140 0.437/0.235 0.351/0.167

RE-Net [16] 0.178/0.177 0.337/0.361 0.487/0.471 0.318/0.330 0.276/0.156 0.406/0.241 0.461/0.342 0.366/0.229

GMatching [44] 0.256/0.204 0.436/0.398 0.493/0.483 0.347/0.298 0.267/0.147 0.400/0.253 0.441/0.341 0.353/0.230

MetaR [5] 0.250/0.208 0.425/0.365 0.510/0.509 0.386/0.280 0.265/0.143 0.415/0.270 0.432/0.361 0.352/0.221

FSRL [49] 0.281/0.202 0.443/0.377 0.508/0.514 0.377/0.298 0.279/0.145 0.448/0.264 0.459/0.355 0.367/0.225

FTMO 0.361/0.223 0.523/0.446 0.573/0.562 0.435/0.346 0.358/0.157 0.507/0.319 0.546/0.400 0.413/0.267

Best experimental results are shown in bold, and the best experimental results of the comparative baselines are underlined

Table 6 The results of FSRL and
FTMO for each relation in
dataset ICEWS-Few

RelationId Hits@1 Hits@5 Hits@10 MRR

1 0.899/0.968 0.976/0.988 1.000/1.000 0.983/0.972

2 0.016/0.051 0.029/0.228 0.083/0.465 0.034/0.147

3 0.288/0.965 0.418/0.972 0.431/0.983 0.344/0.981

4 0.055/0.476 0.109/0.431 0.147/0.378 0.120/0.421

5 0.073/0.069 0.156/0.216 0.176/0.378 0.135/0.198

6 0.203/0.376 0.528/0.526 0.587/0.653 0.345/0.478

7 0.530/0.493 0.698/0.703 0.881/0.867 0.598/0.615

8 0.142/0.168 0.558/0.606 0.678/0.698 0.314/0.397

9 0.645/0.598 0.609/0.701 0.728/0.831 0.587/0.552

10 0.054/0.070 0.135/0.223 0.208/0.331 0.095/0.127

Table 7 The results of our model
and FSRL for each relation in
dataset GDELT-Few

RelationId Hits@1 Hits@5 Hits@10 MRR

1 0.923/0.986 0.949/0.990 1.000/1.000 0.989/0.992

2 0.035/0.069 0.098/0.314 0.165/0.537 0.045/0.198

3 0.321/0.980 0.459/0.988 0.512/0.992 0.378/0.990

4 0.067/0.541 0.186/0.630 0.209/0.629 0.192/0.597

5 0.088/0.071 0.198/0.256 0.223/0.459 0.172/0.271

6 0.196/0.335 0.488/0.500 0.539/0.570 0.333/0.509

7 0.601/0.555 0.706/0.724 0.901/0.888 0.700/0.719

8 0.157/0.189 0.598/0.676 0.666/0.727 0.420/0.498

9 0.536/0.623 0.645/0.736 0.780/0.891 0.653/0.748

10 0.036/0.085 0.110/0.196 0.214/0.369 0.106/0.237
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From Tables 6 and 7, we can make the following conclu-
sions.

(1) From the results, we can see that the variance values
of the two models we used are higher in different rela-
tionships. This is because in the evaluation process, the
size of candidate sets is different for different relation-
ships, so it is normal to have a large variance. As seen in
the table, relationships with smaller candidate sets score
relatively higher.

(2) It can be observed that our model has strong robustness
for different relationships, which shows that our model
has strong stability and can handle abnormal situations.
The results show that in most cases, our model performs
better for most relationships.

Ablation experiments

In this group of experiments, we perform ablation experi-
ments to evaluate the impact of each module in FTMO from
three viewpoints: without the time-based relational-aware
heterogeneous neighbor encoder (W1), without the cyclic
autoencoder (W2), and without the matching network (W3).
We replace the relationship-aware heterogeneous neighbor
encoder with an embedded average pool layer covering all
neighbors inW1. InW2, the cyclic automatic encoder aggre-
gator network is replaced by an average pool operation. In
W3, LSTM is canceled and the inner product between the
query embedding and reference embedding is used as the
similarity score. The evaluations are performed over ICEWS-
Few and GDELT-Few. The experimental results are shown
in Tables 8 and 9, where the pre/post scores indicate the
experimental results from the validation/test set. Different
experimental results can be observed from Tables 8 and 9,
and the performance differences indicate their impact of dif-
ferent modules in FTMO.

Stability

Impact of few-shot size. The main task of this paper is to
investigate TKG completion with small samples, so we study
the influence of the size of K . The few-shot size describes
the size of K , and K is the size of the hit ratio (Hits@). We
conduct experiments on FTMO, FSRL, and GMatching. The
evaluations are performed over ICEWS-Few and GDELT-
Few, and the experimental results are shown in Figs. 5 and
6. It can be observed that the completion performance of
FTMO, FSRL, and GMatching improve with the increase of
K value, and the performance of FTMO is always higher than
that of FSRL and GMatching. It shows that FTMO has better
stability and robustnesswhen completing few-shot TKG, and
is more suitable for completing few-shot TKG.

Computational complexity analysis

The time cost of FTMO mainly comes from neighbor
encoder, aggregation and matching modules. The compu-
tational complexity of neighbor coding is expressed as
O(|R||E|d), where |R| is the maximum number of neigh-
bor relationships of task relationship r, |E| is the number
of neighbor entities of task entities involved in the training
process, and d is the embedded representation dimension
in the experiments. For the aggregation of FTMO, the time
cost of updating the entity representation is O(|E|Ld), where
L is the number of aggregation layers, d is the embedding
dimension. The computational complexity of the matching
processor is O(|R|(|E| +|T |), where the embedding represen-
tation of the input entity pair isO(|R||E|) and |T | is the number
of neighbor timestamps of task entities involved in the train-
ing process. The computational complexity of timestamp
information between entities is O(|R||T |). The initial repre-
sentation complexity of entity, relationship and timestamp
information in the dataset isO(|g|d), where |g| is the number
of tuples in the training set in the temporal knowledge graph.
Because there are N iterations in the training process, the
total computational complexity of the model is O(N(|R||E|d
+|E|Ld +|R|(|E| +|T|) +|g|d)). By analyzing the computational
complexity of the model in the training process, we found
that compared with the baseline, we increase the processing
of time information, which leads to an increase in computa-
tional complexity. When the number of neighbors facing the
task relationship increases, the time complexity is further
improved, that is, it takes a lot of time to train large-scale
datasets, so the computational efficiency of the model will
become lower for training large-scale datasets.

Defects analysis

Our model combines a time-based relational-aware het-
erogeneous neighbor encoder, cyclic automatic encoder
aggregationnetwork, andmatchingnetwork to complete few-
shot TKG. Although FTMO has better stability and is more
suitable for completing few-shot TKG, there are several lim-
itations:

(1) Datasets limitations: Although the model achieves good
performance on two datasets, our model is suitable
for specific temporal datasets with few samples. When
applied to other datasets, the dataset needs to be pro-
cessed into a few-shot temporal dataset with only a few
relationships and a few entity pairs.

(2) Method limitation: In the process of time-based
relational-aware neighborhood coding, the complete-
ness of temporal knowledge graph is improved by
processing relational information and temporal infor-
mation first. Because the data in the dataset do not
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Table 8 The results of ablation
Experiment for our model and
FSRL in dataset ICEWS-Few

Experiment Hits@1 Hits@5 Hits@10 MRR

W1 0.108/0.169 0.322/0.365 0.441/0.478 0.244/0.256

W2 0.288/0.198 0.489/0.442 0.522/0.519 0.370/0.311

W3 0.268/0.213 0.449/0.398 0.550/0.488 0.359/0.317

FTMO 0.361/0.223 0.523/0.446 0.573/0.562 0.435/0.346

Best experimental results are shown in bold

Table 9 The results of ablation
Experiment for our model and
FSRL in dataset GDELT-Few

Experiment Hits@1 Hits@5 Hits@10 MRR

W1 0.155/0.103 0.399/0.207 0.487/0.335 0.301/0.239

W2 0.301/0.116 0.457/0.265 0.509/0.369 0.366/0.235

W3 0.283/0.126 0.456/0.281 0.520/0.372 0.379/0.244

FTMO 0.358/0.157 0.507/0.319 0.546/0.400 0.413/0.267

Best experimental results are shown in bold

Fig. 5 Impact of few-shot size K
in dataset ICEWS-Few
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necessarily contain temporal information, the embed-
ding ability of entities and relationships is unknown for
the data without temporal information, which may have
an uncertain impact on the final results.

Conclusion

In this paper, we first extracted few-shot datasets from two
common datasets according to the rule of few-shot samples
and proposed an innovative small relational model to solve
the problem of few-shot TKG completion. The proposed

model combines the time-based relational-aware heteroge-
neous neighbor encoder, cyclic automatic encoder aggregator
network and matching network, and obtains good results
through experiments.Weperformed experiments on two few-
shot datasets, and the results are superior to those of the
existing baseline methods. The completion ability of our
model significantly improved in comparative experiments, up
to 12% in ICEWS-Fewdataset and up to 18% inGDELT-Few
dataset. In addition, we also conducted ablation experiments
and K-size analysis experiments, and the results show the
effectiveness of each module for model performance and the
stability of our model for entity completion.
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Fig. 6 Impact of few-shot size K
in dataset GDELT-Few
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Due to the complex structure of the neural network of
FTMO model and the consideration of timestamp informa-
tion, the tensor in FTMO is higher than that in baselines,
which leads to the increase of computational complexity.
Although the high tensor increases the complexity, it also
makes the effect of entity embedding and aggregation of
entity pairs in FTMO model higher than that in baselines, so
that the performances of FTMO model with few-shot com-
pletion is higher than that of the baselines. In the future, we
will consider these issues and make optimizations. In addi-
tion, there are other studies on few-shot TKG completion in
the future. For example, we can combine entity attributes or
text descriptions to improve entity embedding quality, or we
can consider the relationship between different timestamps of
the same triplewhen processing temporal information. These
improvements may further improve themodel performances.
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