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Abstract
The widely employed tiny neural networks (TNNs) in mobile devices are vulnerable to adversarial attacks. However, more
advanced research on the robustness of TNNs is highly in demand. This work focuses on improving the robustness of TNNs
without sacrificing the model’s accuracy. To find the optimal trade-off networks in terms of the adversarial accuracy, clean
accuracy, and model size, we present TAM-NAS, a tiny adversarial multi-objective one-shot network architecture search
method. First, we build a novel search space comprised of new tiny blocks and channels to establish a balance between the
model size and adversarial performance.Then,wedemonstrate how the supernet facilitates the acquisition of the optimal subnet
under white-box adversarial attacks, provided that the supernet significantly impacts the subnet’s performance. Concretely,
we investigate a new adversarial training paradigm by evaluating the adversarial transferability, the width of the supernet,
and the distinction between training subnets from scratch and fine-tuning. Finally, we undertake statistical analysis for the
layer-wise combination of specific blocks and channels on the first non-dominated front, which can be utilized as a design
guideline for the design of TNNs.
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Introduction

Due to the fragility of tiny neural networks, there is a critical
need for systematically investigating how to design robust
tiny neural networks (TNNs). It is well known that deep neu-
ral networks are susceptible to attacks that introduce subtle
perturbations to the input data [1, 2]. To defend attacks, cur-
rent studies [3, 4] investigate the relationship between the
model’s capacity and its adversarial robustness via ResNet
[5] as the backbone network. It has been shown that adding
more neural network parameters may greatly improve the
model’s resilience. Despite the widespread usage of tiny
neural networks for mobile applications, little research con-
centrates on the improvement of the robustness of TNNs.
Typically, they are 10 K to 2M in size. Hence, the main
goal of our research is to re-design the TNN architecture to
enhance its robustness.
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Designing the neural network architecture is a promising
way to enhance robustness against adversarial examples. Pre-
vious studies [3, 4, 6, 7] have illustrated the significance of the
neural architecture for adversarial robustness.Huang et al. [8]
give a comprehensive investigation on the impact of network
width and depth on the robustness. Liu et al. [9] employ
multi-objective NAS to search for robust neural network
architectures. However, most of them do not target on the
desired FLOP count and address the tiny architecture design
issue. We presume that the tiny network design itself has
anti-adversarial capabilities. Thus, the purpose of our work
is to investigate the best trade-off architecture and present a
design principle for compact, resilient network architectures.

To identify the best tiny neural network architecture with
clean accuracy, adversarial accuracy, and model size, we
employ a multi-objective architecture search algorithm to
find the best trade-off architecture design. Most present
works adopt adversarial training [2, 10, 11] to increase the
robustness of themodel. However, most are solely concerned
with enhancing resilience, ignoring the degradation of clean
accuracy. Hence, we employ a multi-objective approach-
based NAS [12–14] to find the best architecture for the
trade-off solutions between the adversarial accuracy, the
clean accuracy, and the mode size. In our work, we mainly
address the trade-off problem based on the ShuffleNetV2
architecture [15], Xception block [16], SE layer [17], Non-
Local block [18], and their variants.

The contributions of this work can be summarized as fol-
lows:

– To find the best trade-off neural networks between the
adversarial accuracy, clean accuracy, and model size, we
propose three novel tiny robust blocks. Due to the inertial
self-attention mechanism, the layer-wise combination of
these three blocks can increase the robustness without
substantially degrading the clean performance.

– We explore a new adversarial training paradigm for the
supernet. Because the subnets heavily rely on the super-
net in one-shot NAS, the adversarial performance of the
subnets can be further improved using our proposed train-
ing paradigm. To this end, we examine how the width of
the supernet, the perturbation range, and the number of
attack steps for the supernet adversarial training affect
the performance of the subnets.

– We seamlessly integrate a multi-objective search algo-
rithm with a one-shot NAS algorithm. After the search
process, we can get the non-dominated front immedi-
ately, which makes it easier to find the best trade-off
subnets. In addition, we discover that training from
scratch outperforms fine-tuning for the non-dominated
subnets.

– We provide guidelines for how to design tiny robust neu-
ral networks. First, pure robust blocks and small robust

blocks should be placed in the shallow levels, while pure
tiny blocks should be placed in the deep layers. Sec-
ond, larger intermediate channels should be placed in
the shallow levels, whereas intermediate channels should
decrease gradually in the remaining layers. Finally, we
rebuild a tiny neural network using the guidelines and
find that it can reduce the model size and increase the
adversarial accuracy and the clean accuracy.

Related work

Adversarial training is the most popular defensive mecha-
nism against adversarial attacks [2], which uses both clean
and adversarial images for training. Derived from game the-
ory [19], the work in Ref. [10] reformulates the min–max
optimization problemof adversarial learning asNash equilib-
rium [20]. The game-theory-based optimization method [21]
can effectively reduce the high computational cost without
sacrificing adversarial accuracy. In addition, the work [11]
has empirically proved the trade-off information between the
adversarial accuracy and clean accuracy. Kannan et al. [22]
and Zhang et al. [23] develop a surrogate loss function to
reduce the disparity between clean images and adversarial
counterparts. Madry et al. [3] conclude that increasing the
capacity size of a neural network might enhance their perfor-
mance against adversarial attacks. It is well known that most
neural networkmodels deployed in our electronic devices are
quite small due to energy consumption and storage limita-
tions. Hence, we aim to figure out which kind of tiny neural
network architectures can be effective for the resilience of
adversarial perturbations.

White-box attacks assume that the adversary knows detailed
information about the targeted models, including model
architecture, hyperparameters, gradients, and training data.
In the following, we use X∗ and X to denote the adversar-
ial and clean examples, respectively. Then, �X measures the
gradients of the loss function l for X .

Fast Gradient Sign Method (FGSM). It is a one-step and
non-target attack, which generates adversarial examples by
adding perturbations along the direction of the gradient sign
at each pixel [2]. The generated adversarial examples can be
calculated by

X∗ = X + ε · sign (�X l(X , ytrue)) , (1)

where ε is a hyperparameter that controls the magnitude of
the disturbance, and ytrue is the ground truth label.

Projected Gradient Descent (PGD). The PGD attack [3],
which combines randomized initialization with multi-step
attacks, is one of the strongest adversarial attacks against
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adversarial training. The adversarial examples generated by
the PGD attack can be expressed as

X∗
0 = X + U (−ε, ε) , (2)

X∗
n+1 =

∏

X ,ε

{
X∗
n + α · sign(�X∗

n
l(X∗

n, ytrue)
}
, (3)

whereU is a uniformdistribution, X∗
n is the adversarial exam-

ples after n steps, and
∏

X ,ε(B) is the projections of B(X , ε).
Neural network architecture search aims to replace hand-
crafted architecture design approacheswith automateddesign
using machine learning techniques. Representative search
algorithms include evolutionary algorithms [24, 25], rein-
forcement learning [26, 27], and gradient-based methods
[28–30]. In one-shot NAS [31], the authors [31] construct
a supernet that is capable of generating any potential archi-
tecture in the search space. The work in Ref. [31] trains
a supernet for once, and then during the search, they can
retrieve multiple fitness values for different subnets through
weight sharing from the supernet. However, most of them
employ a single-objective optimization approach to search,
which is not well suited for solving the trade-off problem
[11]. To solve the multi-objective optimization problem, we
adopt the elitist non-dominated sorting genetic algorithm
(NSGA-II) [32] as our search algorithm. Recently, several
papers have been published that explore the impact of the
network width and depth on robustness [8, 9]. In addition,
Huang et al. [33] propose a robust residual block and a com-
pound scaling rule to investigate the influence of network
width and depth. By contrast, TAM-NAS pays more atten-
tion to the resilience attack ability of tiny neural networks.

TAM-NAS

Our TAM-NAS approach consists of four steps as follows.
First, design a supernet search space and uniformly sample
different candidates from the supernet to increase our super-
net representation ability formany subnet architectures when
using a single supernet. Second, train the candidates sampled
from the supernet using adversarial examples andmake them
more robust in the presence of adversarial attacks. Third, per-
form multi-objective search of new subnets using NSGA-II
[32] and evaluate the clean accuracy, the adversarial accuracy,
and the number of parameters of each subnet by cloning its
weight from the pre-trained supernet. Finally, fine-tune each
subnet on the first non-dominated front and evaluate their
performance on the test dataset. Figure1 shows the overall
framework.

Problem definition

Without loss of generality, our supernet search space A can
be represented by a directed acyclic graph (DAG), denoted
as N (A,W ), where W is the weight of supernet. A sub-
net architecture is a subgraph a ∈ A, denoted as N (a, w),
where w is the weight of the subnet. �(A) is a prior distri-
bution of a ∈ A. Ladv−train (·) is the adversarial training
loss function on the adversarial training examples. The most
important factor for TAM-NAS is that the performance of the
subnets using inherited weights from the supernet (without
extra fine-tuning or training from scratch) should be highly
predictive. In other words, the supernet weights WA should
be optimized, so that all subnet architectures in the search
space A are optimized simultaneously. It can be expressed as

WA = argmin
W

Ea∼�(A)

[Ladv−train(N (a,W (a)))
]
. (4)

After finishing the training of supernet, the next step is to
find a set of Pareto optimal subnets a∗ ∈ A in terms of
our objectives: the adversarial error, the clean error, and the
model size. It can be expressed as

min
{
f1(a

∗), f2(a
∗), f3(a

∗)
}
,

s.t. a∗ ∈ A,
(5)

where f1, f2, f3 are the three objectives, the adversarial
error, the clean error, and the model size, respectively. Fig-
ure 2 shows the pipeline of multi-objective one-shot NAS.
Actually, it cannot get theminimumvalue for three objectives
simultaneously, since each objective has a strong trade-off
relationship with the other two objectives. For instance, if
the model size is larger, the adversarial error and the clean
error will become smaller. Our aim is to obtain a tiny model
with compatible performance in the adversarial dataset and
clean dataset.

Search space design

Sincewe aim to search tiny robust neural networks, our super-
net adopts one of state-of-the-art hand-crafted tiny network
architecture—ShuffleNetV2 [15] as the backbone model.
Since our experiments aremainly conducted on theCIFAR10
[34] and SVHN [35] datasets, the depth and width of the
supernet are different from the original ShuffleNetV2, which
is adapted from the Imagenet dataset [36]. Table 1 shows the
parameter settings of the overall architecture of the supernet.
BN represents the batch norm layer. 3 × 3 Conv represents
a convolutional layer, and its kernel size is 3. CB refers to
the choice block chosen from our pre-defined block search
space. SE refers to the SE layer [17]. Moreover, we design
a search space for the channel number search of each choice
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Fig. 1 The overall framework of TAM-NAS. The first step is to design
a supernet search space and uniformly sample the new subnet candi-
dates. Our sampling strategy is divided into two phases. One is the block
sampling phase, and the other is the block and channel jointly sampling
phase. The second step is to train the subnets sampled from the supernet

adversarially. The third step is to perform a multi-objective search for
the best trade-off subnets. The fitness value of the subnets is achieved
by cloning the weight from the supernet. The final step is to train from
scratch or fine-tune the non-dominated subnets

Fig. 2 The proposed multi-objective one-shot NAS framework. (1)
Design the supernet search space and the loss function. (2) Sample
different subnets architectures from the supernet under a fixed distri-
bution and train the subnets for a small number of epochs. (3) Perform

multi-objective search for the best trade-off subnets and obtain the fit-
ness value of the subnets by cloning the weight from the supernet. (4)
Train the non-dominated subnets

Table 1 Supernet architecture

Input shape Block Channels Repeat Stride

322×3 3×3 Conv 24 1 1

322×24 BN 24 1

322×24 CB 48 1 2

162×48 CB 48 3 1

162×48 CB 96 1 2

82×96 CB 96 7 1

82×96 CB 192 1 2

42×192 CB 192 3 1

42×192 1×1 Conv 176 1 1

42×176 BN 176 1

12×176 Pooling 176 1

12×176 SE 920 1

12×920 1×1 Conv 1024 1 1

12×1024 FC 10 1

block. In total, we provide 22 block choices and 10 channel
number choices for the search space. We will describe our
search space in detail.

Block search spaces

In block search spaces, we design three types of blocks,
namely pure tiny blocks, pure robust blocks, and tiny robust
blocks.

(1) Pure Tiny Blocks: Pure tiny blocks mainly come from
ShuffleNetV2 [15]. We add the self-attention layer—SE
layer [17] into the main branch for balancing between
the accuracy and inference speed. Figure3a will become
the pure tiny blocks if the non-local layer from the main
branch is removed.

(2) Pure Robust Blocks: First, we design a non-local block
for image denoising, inspired by Refs. [18, 37]. We also
add another self-attention layer—SE layer [17] as the last
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Fig. 3 a and b Internal architectures of the tiny robust blocks. K refers
to the kernel size, and it ranges from 3, 5, and 7. The dashed line indi-
cates the internal search space for the tiny robust blocks. Therefore, if
we removed the non-local layer from the main branch of (a) and (b),
a and b will denote the pure tiny blocks. c Internal architectures of the

pure robust blocks. The upper part of (c) represents the combination
of SE layer and Embedded-Gaussian non-local layer. The bottom part
of (c) represents the combination of SE layer and Gaussian non-local
layer

Fig. 4 a–c How we add the channel selector into the tiny robust blocks
and the pure robust blocks, respectively. The kernel size is set to 3, 5,
and 7, respectively. The dashed line indicates the internal search space

for the tiny robust blocks. Therefore, if we remove the non-local layer
from the main branch of (a) and (b), a and b will denote the pure tiny
blocks

layer of the non-local block, since it has been found [18]
that the self-attention mechanism could make the neu-
ral network more robust. Figure3 shows two non-local
blocks, which are referred to as Embedded-Gaussian ver-
sion and Gaussian version [18]. The non-local block is
only one of the choice blocks in the stride-1 layer of
the supernet, because its output feature map size is not
compatible with the stride-1 layer. Figure3b shows the
internal architecture of the pure robust blocks.

(3) Tiny Robust Blocks: In addition, we borrow the idea
fromRefs. [15, 16, 38] to design shufflev2 and shufflev2-

xception blocks. To make them more robust, we try to
add the non-local block and the SE layer into the main
branch of the original shufflev2 and shufflev2-xception
block. Figures3a and b show the internal architecture of
the tiny robust block. The kernel sizes of the depth-wise
convolutional layer are 3, 5, and 7, respectively. Further-
more, since the non-local layer will add more parameters
for our shufflev2 or shufflev2-xception block, we set the
non-local layer of shufflev2 and shufflev2-xception block
as an optional choice, which means that it is also another
new search space. When we remove the non-local layer
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and SE layer in tiny robust blocks, they will work as pure
tiny blocks. In Fig. 3, the dashed line indicates the inter-
nal search space for each block. The encoding method of
choice blocks is to assign an order from 0 to 21 for each
block.

Channel search spaces

The channel number plays an essential role in the neural net-
work’s efficiency and computational cost [29].Apart from the
adversarial and clean accuracy, we select the total number of
parameters as the third objective. We only search the inter-
mediate channel number of each block, including pure robust
blocks, pure tiny blocks, and tiny robust blocks.Heuristically,
the reduction of intermediate channel numbers will not give
rise to the deterioration of adversarial accuracy and clean
accuracy, which is well suited for the balance between the
performance of neural networks and their model size. Specif-
ically, Fig. 4 shows how we add a channel selector into the
intermediate part of pure tiny blocks, pure robust blocks, and
tiny robust blocks. The channel selector ratio ranges from 0
to 2, and its interval is 0.2. The encoding method of choice
channels is to assign an order from 0 to 10 for each channel
selector ratio.

Uniform sampling

Our supernet sampling strategy is to sample choice blocks at
first and then jointly sample choice blocks and choice chan-
nels once the warm-up training of the supernet is completed.
We find that it is challenging for our supernet to converge
when we jointly sample block choices and channel choices
in the beginning. We build up a parameter table in advance to
speed up the sampling procedure. We will give more details
about block sampling and channel sampling.

Block sampling

We investigate many network architectures on the CIFAR10
and SVHN dataset and our pilot studies suggest that the tiny
supernet size ranges from 1.5 to 4M. In the block sampling
phase, we only search block choices for the supernet archi-
tecture and set a constraint that the number of the supernet
parameters range from 1.823 to 2.375M. In all experiments,
we train the supernet for 500 epochs in block sampling phases
and sample a new architecture every 20 epochs.

Block and channel jointly sampling

The supernet jointly searches block and channel choices after
the phase of block sampling. We refer to this phase as block
and channel jointly sampling. We set another constraint that
the number of the supernet parameters should range from
1.61 to 2.37M in this phase. In all experiments, we train the
supernet for 500 epochs in block and channel jointly sam-
pling phase and sample a new architecture every 20 epochs.

Adversarial training

Weaim to explore the influence of network architecture on its
robustness against adversarial attacks. Therefore, we focus
on white-box adversarial attacks bounded by l∞. As we all
know,PGD[3] adversarial training is computationally expen-
sive and hard to converge. We follow [21, 23] and adopt the
TRADES-YOPO-m-n algorithm [21] to speed up our adver-
sarial training. This work adopts the loss function in Ref.
[23], which is described as below

minE

{
L( fθ (x), y) + max‖η≤ε‖L( fθ (x), fθ (x + η))/λ

}
, (6)

where L (., .) denotes the cross-entropy loss function; fθ (x)
denotes the output vector of the neural network, which is
parameterized by θ . y is the label-indicator vector; η denotes
the image noise (perturbation); λ is a balancing hyperparam-
eter. fθ (x+η) denotes the output vector of the neural network
where its input has been added into the perturbation η.

This loss function reduces the gap between adversar-
ial and non-adversarial examples when the model under-
takes the classification task, i.e., make the classification
boundary more smooth. YOPO-m-n borrows the idea from
Pontryagin’s Maximum Principle [39] to approximate the
back-propagation. One of YOPO’s assumptions is that the
adversarial perturbation only affects the first layer’s weights.
TRADES-YOPO-m-n is to perform n times gradient descent
to update the weights of the first layer and iteratively runs
m times for each datum. Zhang et al. [21] state that m × n
should be larger than the number of attack iterations, so that
TRADES-YOPO-m-n could achieve a competitive result. In
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our experimental setting, the number of outer loops m is set
to 5, and the number of inner loops n is set to 3 if we desire to
attack the models in ten iterations by PGD [3]. The training
time for each epoch is 2.5min running in the training platform
equipped with a single GPU V100. The supernet adver-
sarial training algorithm is presented in Algorithm 3.2.1.

Multi-objective search

We use NSGA-II [32] as the multi-objective search algo-
rithm. The multi-objective search algorithm is presented in
Algorithm 3.4. The first objective is the clean accuracy. It
evaluates the performance of the model on the clean train-
ing data. The second objective is the adversarial accuracy.
It evaluates the performance of a model under a white-box
PGD attack bounded by l∞. The third objective is to evaluate
the number of parameters of our searched subnet. More-
over, the weights of each searched subnet are cloned from

the corresponding part of the supernet. Therefore, there is
no need to train any searched subnet in the whole search
process. We are able to get the first objective value and
second objective value after the inference of each searched
subnet, and we can quickly obtain the number of parameters

for each searched subnet by checking our parameters table.
In the initialization of NSGA-II (Lines 1–13 in Algorithm
2), we randomly initialize the parent population P0 at the
beginning, where each individual (subnet) of the population
is evaluated with three fitness values: the adversarial error,
clean error, and the number of parameters. The weights of
each subnet are cloned from those of the corresponding part
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of the supernet. Therefore, the adversarial error and clean
error of each subnet can be calculated by the inference with
the weight from the supernet, while the model size of each
subnet is closely related to its network architecture. Then, P0
is sorted based on the non-dominated sorting. From Line 9 to
Line 10 in Algorithm 2, we employ the tournament scheme
and mutation operator to generate the offspring population
Q0. During the iteration of optimization (Lines 14–32), a
combined population Rt = Pt ∪ Qt is formed. Then, Rt

will be sorted into fronts of individuals in an ascending order
according to the non-dominated sorting, as described in Line
16. The new population Pt+1 is achieved from Rt by select-
ing the elite solutions front by front according to their front
number in an ascending order, as shown in Lines 19–23. The
selection continues until Fi

g , from which only a subset of
the solutions are selected according to the crowding distance
values in a descending order. We will present the details of
crossover and mutation operators in the next.

Crossover

Before crossover, our multi-objective search adopts the
tournament selection for choosing two parents. In the exper-
imental settings, the number of individuals that participate
in the tournament scheme is set to 10. Our crossover oper-
ator inherits and recombines the block or channel from
the two parents to generate a new subnet. To solve the
channel dimensional mismatch problems, we aim to pre-
allocate the weight matrix for the convolutional kernels, i.e.,
max_output_channel, max_input_channel, and
kernel_size. Our maximum channel dimension is two
times as much as the original dimension. After crossover,
the dimension of the weight matrix for the current batch
is still unchanged. However, we only keep the value of the
weight matrix for the current input and output channel [:
c_out,: c_in,: ]. Moreover, the value of other chan-
nels in the weight matrix is forced to be zero. In this case, we
not only solve the channel dimension inconsistency problem
but also implement channel crossover and mutation. More-
over, we have to move the non-local block out of the search
space in the stride-2 layer, since the non-local block is not
able to present in the stride-2 layer of the new subnet, since
the size of the output feature map of the non-local block
cannot match the input size of the stride-1 layer.

Mutation

The mutation operator is to re-assign each block or channel
selector ratio of subnets from the search space. The mutation
operator will be triggered if the randomized probability is
larger than the pre-defined mutation probability. Our block
encoding scheme is from 0 to 21. The block that contains the
non-local layer is from 12 to 21. Most blocks can be arbitrar-

ilymutated in each layer except for the stride-2 layer.Because
the non-local block is not able to present in the stride-2 layer
of new subnet, since the size of the output feature map of the
non-local block cannot match the input size of the stride-1
layer. To enhance the diversity of the population and prohibit
creating completely different network architectures, we set
the mutation probability to 0.1, which means that the sub-
net has 10% opportunity to change the block or the channel
number.

Training from scratch or fine-tuning

After finishing the multi-objective search, we obtain one set
of non-dominated architectures. Generally speaking, there
are two ways to deal with each searched subnet on the non-
dominated front. One is to inherit the weights from the
supernet and fine-tune them, and the other is to train each
subnet from scratch. We also use TRADES-YOPO-m-n for
our adversarial training algorithm. We will examine the dif-
ferences between these two approaches in the next section.

Experimental result and analysis

In this section, we introduce our experimental settings for the
overall framework, including the supernet training, NSGA-II
search, and training from scratch or fine-tuning. In addition,
following our search results, we try to give a guideline for
how to devise neural network architectures to defend against
adversarial attacks. We conduct several ablation studies to
reveal how the network architecture influences the robustness
against adversarial attacks. We perform extensive studies on
CIFAR-10 [34] and SVHN [35] to validate the effectiveness
of our overall framework. On CIFAR-10, we do the zero-
padding with the 4 pixels on each side and randomly crop
back into the original size. Then,we randomly flip the images
horizontally and normalize them into [0, 1] for CIFAR and
SVHN datasets. To better investigate the influence of the net-
work architecture on robustness under adversarial attacks,we
assume that the adversary has a complete access to a neural
network, including the architecture and all parameters. That
is why, we focus on white-box attacks on different architec-
tures of neural networks.

Experimental settings

Supernet

According to Algorithm 3.2.1, our supernet first enters into
the block sampling phase, and themaximumnumber of train-
ing epochs is set to 500. We provide 22 different blocks for
the block sampling search space. Figure3 gives the detail
of our choices block. We use the stochastic gradient descent
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method (SGD) as our optimizer. We use a batch size of 512,
a momentum of 0.9, and a weight decay of 5e − 4. The
initial learning rate in block sampling is set to 0.1 and is low-
ered by ten times at epochs 200, 400, and 450. The number
of supernet parameters ranges from 1.823 to 2.375M. After
that, we jointly sample the blocks and channels of each layer
in our supernet. We provide ten channel selectors for each
block, and Fig. 4 presents the details of the channel selector
choices for different types of blocks.We increase the number
of epochs to 1000 with a batch size of 512, a momentum of
0.9 and a weight decay of 5e − 4. Specifically, we gradually
enlarge the channel selector search space in every 20 epochs,
which can help the supernet quickly converge. For exam-
ple, we set our channel selector ratio to 1.8 and 2.0 before
epoch 520 and add one more channel selector ratio of 1.6 at
epoch 540. The channel selector ratio search space ranges
from 0.2 to 2.0, and the interval is 0.2. The initial learning
rate in block and channel jointly sampling is set to 0.1 and
is lowered by ten times at epochs 600, 700, and 800. As for
PGD attacks, the size of perturbations is set to ε = 8/255
in an infinite norm. The outer loops m and the inner loops n
of our adversarial training algorithm YOPO-m-n are set to 5
and 3, respectively. λ in Eq.6 is set to 1, which means that
we try to balance the model performance on the adversarial
and non-adversarial examples.

NSGA-II

In our experiment settings, our total population size is 100.
Then, P0 is sorted based on the non-dominated sorting, and
the size of P0 is 50. From Line 9 to Line 10 in Algorithm
2, we employ the tournament scheme and mutation operator
discussed in Sects. “Crossover” and “Mutation” to generate
the offspring population Q0 of size 50. The mutation proba-
bility is set to 0.1, which means that we have 10% to trigger
the mutation operator. The number of individuals that takes
part in the tournament scheme is set to 10. During the iter-
ation of optimization (Lines 14-32), a combined population
Rt = Pt∪Qt is formed, and the size of Rt is 100.Note that the
population sizes of Pt+1 and Qt+1 are both 50. The number
of generations is set to 20. We use the hypervolume (HV) to
indicate whether our search algorithm has converged or not.
Most of our experiments indicate that our multi-objective
search algorithm has converged around the 18th generation.

Training from scratch

According to Fig. 1, we can obtain one set of non-dominated
subnet architectures. We randomly initialize each subnet’s
weights and set the training epoch for every subnet to 100.
However, we find that most of the subnets have converged
at epoch 40. The initial learning rate of each subnet is 0.1
and is lowered by ten times at epochs 20, 40, and 80. The Ta
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optimizer we use here is SGD. We use a batch size of 512,
a momentum of 0.9, and a weight decay of 5e − 3. We eval-
uate our model on white-box linf bounded PGD attack with
different epsilon values and step-sizes. The epsilon for eval-
uation ranges from 2/255 to 8/255, and its interval is 2/255.
The number of PGD attack steps for evaluation ranges from
10 to 50. The hyperparameter of the fine-tuning method is
the same as mentioned above. Fine-tuning is to inherit the
weights from the supernet for each subnet as initialization,
while training from scratch is to initialize the weights of each
subnet randomly.

Supernet transferability

In this section, we aim to understand whether the use of a
weaker PGD attack for adversarial training of the supernet
will considerably deteriorate the adversarial learning perfor-
mance of subnets. Specifically, we adjust the degree of the
PGD attack by changing the number of attack steps and the
epsilon size. To begin with, we build up a baseline for our
best subnet in the CIFAR-10 and SVHN dataset, which is
presented in the first row of Tables 2 and 3. The first column
denotes howwe train the supernet. For instance, the subscript
of S108/255 is the epsilon size of the PGD attack for the super-
net, which is set to 8/255. And the superscript is the number
of attack steps, which is set to 10. The last column denotes the
best adversarial accuracy of the subnet model under differ-
ent degrees of attacks. For example, P10

8/255 means the subnet
is under the PGD attack with an epsilon size of 8/255 and
ten attack steps. Since we focus on the network architecture
under adversarial attacks, the subnet presented in the follow-
ing tables is the non-dominated architecture that achieves the
best adversarial performance after trained from scratch.

Number of attack steps

Table 2 indicates that the subnet performs better even if
the supernet is under fewer attack steps during the adver-
sarial training. The third row S28/255 denotes the supernet is
under white-box PGD attack with two steps in adversarial
training, and the second row S18/255 denotes the supernet is
under white-box PGD attack with 1 step in adversarial train-
ing. In comparison with S108/255, S

2
8/255 helps to increase the

adversarial accuracy and clean accuracy by 6.4% and 4.5%,
respectively, and reduce its subnet model size by 3.6%. In
addition, the gap between S18/255 and our baseline S108/255 is
very tiny for different objectives. Therefore, we surmise that
the supernet will have strong transferability even if we reduce
the attack steps for its adversarial training. Moreover, we
can easily observe that the adversarial accuracy of subnets is
strongly affected by the epsilon size but not the number of
attack steps. For example, the difference of the adversarial
accuracy P10

2/255, P
30
2/255 and P2/255 is very small regardless

how the supernet is trained. It meets the same conclusion in
Table 3. Therefore, we think that this observation not only
helps us to save much more training time by reducing the
number of attack steps but also makes it possible for the sub-
nets to obtain stronger adversarial defensive ability.

Epsilon size

Table 4 indicates that the supernet can improve its subnets’
representation abilities if it is not overloaded with the epsilon
size. First, the subnet of S102/255 achieves the highest clean
accuracy up to 81.95%, but the adversarial accuracy of its
subnet under P10

8/255, P
30
8/255, P

50
8/255 attacks is unable to sur-

pass 9%. Our assumption is that the subnet has not fully
developed its resilience ability, since its supernet is inca-
pable of learning by generating adversarial examples with a
larger epsilon size. The assumption has been verified that the
subnet of S104/255 and S106/255 hugely increase the adversarial

accuracy when it is under P10
8/255 attack. Specifically, when

in comparison S104/255 with S102/255, we find that the adver-

sarial performance of their subnets under P10
8/255, P30

8/255,

P50
8/255 increase by 146.2%, 156.4%, and 157.0%. Another

assumption is that if the epsilon size exceeds the supernet’s
workload, it will reduce both the clean accuracy and adver-
sarial accuracy of subnets. We can easily observe that the
subnet of S106/255 obtains the best adversarial performance.

In comparison, S108/255 largely weakens its subnet’s perfor-

mance regardless of clean accuracy, or under P10
8/255, P

10
6/255,

P10
4/255 attacks. Specifically, when comparing the subnet of

S106/255 with S108/255, the clean accuracy of subnet is increased
by 7.447% and adversarial accuracy by 1.63%, 5.338%, and
8.256% under P10

6/255, P
10
4/255, and P10

2/255 attacks. However,
when the epsilon size exceeds 6/255 in our case, the subnet
performance begins to decline gradually. It meets the same
conclusion in Table 5.

Model size

Table 6 shows that the adversarial performance of the model
may not be closely correlated with the model size, which is
inconsistent with the conclusion in Ref. [3]. When compar-
ing S28/255 with our baseline model S108/255, the subnet model
size drops by 3.751% but the clean accuracy and adversar-
ial accuracy in P10

8/255, P
10
6/255, P

10
4/255, and P10

2/255 separately
increase by 4.591%, 2.642%, 4.864%, 5.838%, and 6.420%.
When comparing with the subnet of S106/255 and S108/255, we
find that the best subnet size drops by 3.640%, but the clean
accuracy and the adversarial accuracy in P10

6/255, P
10
4/255, and

P10
2/255 separately increase by 7.447%, 1.63%, 5.338%, and

8.256%. We can achieve the same result in Table 7. There-
fore, we think that the performance of the subnet, including
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Fig. 5 Difference between training from scratch and fine-tuning. The
red points represent the solutions on the non-dominated front obtained
by NSGA-II, where the weights for subnets are randomly initialized.

By contrast, the blue points are different solutions achieved by the same
way, but the weights of the subnets are inherited from supernet

Fig. 6 The first non-dominated front before training from scratch
among the adversarial error, clean error, and number of parameters
of subnets on CIFAR-10. The size of circle indicates the number of

parameter of subnets. The vertical axis represents the clean error of the
subnets, while the horizontal axis represents the adversarial error of the
subnets

Fig. 7 The first non-dominated front after trained from scratch on
CIFAR-10. The size of circle indicates the number of parameters of
the subnets. The vertical axis represents the clean error of the subnets,

while the horizontal axis represents the adversarial error of the sub-
nets. The same color of circles in Fig. 7 means that they hold the same
network architecture

the clean accuracy and adversarial accuracy, has a strong
correlation with the training mode of its supernet but not the
mode size of itself.

Width impact of supernet

Table 8 indicates that the width of the supernet makes a large
impact on the defensive ability of subnets. However, it does
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Fig. 8 Block statistics for each layer of the top ten subnets on CIFAR-
10. The horizontal axis represents the layer IDs of the subnets. For
instance, 0 means the first layer on the subnets. The vertical axis rep-
resents which two blocks are the most frequently adopted in a certain

layer. For instance, block ID 15 is the most frequently used in the first
layer of the top ten subnets. Moreover, block ID 13 and block ID 4 are
the second most frequently used in the first layer

Fig. 9 Channel statistics for each layer of the top ten subnets onCIFAR-
10. The horizontal axis represents the layer id of subnets. For instance,
0 means the first layer on the subnets. The vertical axis represents which
two-channel expansion ratio is the most frequently used in certain lay-

ers. For instance, channel expansion ratio 1.8 is the most frequently
used in the first layer of the top ten subnets and channel expansion ratio
1.6 is the second most frequently used in the first layer

not mean that an infinite large width of a neural network can
improve the adversarial performance of subnets. Specifically,
we try to enlarge the channels of each layer of the supernet,
and the expansion ratio ranges from [1, 2, 4, 8], but the chan-
nel selection remains the same ranging from 0 to 2, and the
interval is 0.2. 2S18/255 denotes that we double the channel
size of each layer of our supernet, and we use PGD attack
with an epsilon size of 8/255 and 1 step to generate adver-
sarial examples for the supernet training. 2S18/255 increases
the adversarial accuracy by 10.9% and clean accuracy by
9.1% in comparison with S18/255. Even though we double the
channel size of each layer of our supernet, theoretically the
model size of the subnet of 2S18/255 should be twice as large

as the subnet of S18/255. However, the model size of the sub-

net of 2S18/255 just increases by 24.4% in comparison with

the subnet model size of S18/255, which proves that our NAS
framework is very efficient. In addition, we also try to enlarge
the channel size of the neural network by a factor of 4 and
8, but we find that it is too difficult to converge. It meets the
same conclusion in Table 9. Therefore, it is hard to say that
there is a linear correlation between the width of the supernet
and its adversarial performance.

Training from scratch or fine-tuning

We can easily observe there exists a huge gap between train-
ing from scratch and fine-tuning from Fig. 5. The three axes
for each graph represent the number of parameters, the adver-
sarial error, and the clean error for each subnet, respectively.
The subscript for each graph in Fig. 5 denotes the super-
net training mode. The red points represent the solutions on
the non-dominated front obtained by NSGA-II, where the
weights for subnets are randomly initialized. By contrast,
the blue points are different solutions achieved in the same
way, but the weights of the subnets are inherited from the
supernet. For example, Fig. 5a presents the distribution of
subnets for training from scratch and fine-tuning. And the
PGDattack of their supernet in Fig. 5b is with the epsilon size
of 8/255 and ten steps. We can clearly observe that no mat-
ter how we train the supernet, the subnets which are trained
from scratch performbetter on adversarial examples and non-
adversarial examples. Table 10 quantifies the gap between
training from scratch and fine-tuning under PGD attacks
with different epsilon sizes and attack steps. The first col-
umn of Table 10 indicates the training mode of the supernet.
The second column of Table 10 shows the difference in the
subnets’ performance on non-adversarial examples, which
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Table 11 Block encoding
scheme and layer statistics on
CIFAR-10

Architecture

Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S � � � � � � � � �
SX � � � � � � � � �
NE � � � � � � � �
NG � � � � � � � �
BN � �
K=3 � � � � � �
K=5 � � � � � �
K=7 � � � � � �
Layer Statistics

0 1 2 1 2 4

1 2 4 1 3

2 1 2 4 2 1

3 1 1 1 1 2 1 1 2

4 4 2 4

5 4 3 3

6 4 1 2 1 1 1

7 1 1 3 1 1 3

8 2 2 1 5

9 2 3 2 2 1

10 3 1 1 1 1 1 1 1

11 4 1 1 1 1 1 1

12 5 1 1 2 1

13 6 1 1 1 1

14 2 3 2 1 1 1

15 2 4 1 1 2

Shuffle+SE: S, Shuffle-Xception+SE: SX, Non-Local-EmbeddedGaussian+SE: NE, Non-Local-
Gaussian+SE: NG, BatchNorm: BN; K: kernel size

adopt training from scratch and fine-tuning, respectively. The
minimum of average value is 9.614 in S104/255 and the max-

imum average value is 25.94 in S28/255. Therefore, it also
clearly indicates that training from scratch surpasses fine-
tuning by at least 20% in terms of theb clean accuracy. As for
the adversarial performance, the minimum average is 5.391
in (S104/255, P

10
8/255). In other words, the model trained from

scratch surpasses the model with fine-tuning by 48% for the
adversarial accuracy, because the average value of adversar-
ial performance in (S104/255, P

10
8/255) is 11.23. We hypothesize

that the role of the supernet in our NAS framework is to find
the best architecture for the subnet but not to deliver the best
weights to the subnet. Fine-tuning is not always beneficial
to the training. The reason may be that the weights of each
newly sampled subnet are not good enough, as there are only
20 training epoches. However, we can find the best subnets
among them by means of NSGA-II during the optimization
in terms of the objectives.

Subnets’ analysis

This section analyzes the top ten subnet architectures in terms
of the clean accuracy and adversarial accuracy and their
corresponding supernet training method on CIFAR-10 and
SVHN. Our aim is to gain insights from our top best results
and reveal the rule for how to design amore robust tiny neural
network.

Adversarial error, clean error, and the size of neural network

Figure6 shows the non-dominated subsets obtained by
NSGA-II on the CIFAR-10 dataset and their corresponding
supernets are 2S18/255, S

10
6/255, and S28/255, respectively. We

use circles to represent the subnets, and the size of the circle
indicates its size (number of parameters). In Fig. 6b and c, it
can be easily observed that there does exist a trade-off rela-
tionship between the adversarial error, clean error, and size
of neural networks. Figure7 shows that the order of non-
dominated subnets has greatly changed after trained from
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scratch. To clearly illustrate how the order of non-dominated
subnets changes after trained from scratch, each subnet (cir-
cle) is denoted by a different color. The same color circles
in Figs. 6 and 7 indicate that they own the same network
architecture. We get an important observation from Figs. 6
and 7 that most tiny neural networks (tiny circles) achieve a
significant reduction on both the adversarial error and clean
error after trained from scratch. For instance, the G point in
Fig. 7a, which owns the lowest clean error and lowest adver-
sarial error, has a larger adversarial error and clean error
before training from scratch. It also meets the same observa-
tion for the F point when we compare with Figs. 6a and 7b.
Hence, we conclude that our pipeline can effectively increase
the adversarial accuracy and clean accuracy of tiny neural
networks.

Block and channel analysis

Wemake another statistics analysis of which block and chan-
nel expansion ratio are used most frequently in the top ten
subnets. The best trade-off tiny neural network architectures
can be viewed as a combinatorial optimization problem.
Namely, each layer of network architecture could be viewed
as the combination of specific blocks and channels. The opti-
mumnetwork architecture could be viewed as different layers
of neural network combinatorial optimization problems.

Table 11 shows our block encoding scheme and layer
statistics. The upper part of Table 11 explains how to build
up a certain block for each block identifier. For instance,
Block 0 comprises the ShuffleV2 block and the SE layer.
The kernel size of Block 0 is 3. The specific block internal
composition can be referred to in Fig. 3a. The lower part
of Table 11 shows the number of occurrences for a certain
block in each layer. For example, the 15th block represents
four times in the first layer (layer 0) of our top ten subnets,
while the 13th and 2nd blocks represent 2 times in the first
layer (layer 0). In addition, Fig. 8 shows which two blocks
are the most frequently adopted in a certain layer. The data in
Fig. 8 come from Table 11. For our block encoding scheme,
blocks with fewer than eight are denoted as pure tiny blocks,
i.e., they are meant to make our neural network tinier. Block
identifiers between 9 and 17 are denoted as tiny robust blocks
and used to enhance the robustness of the tiny blocks. Block
identifiers larger than 18 denote pure robust blocks, i.e., they
are meant to increase the adversarial performance of neural
networks. From Fig. 8, we can observe the trend that the top
trade-off tiny neural networks prefer to use robust or tiny
robust blocks in the first four layers, while the last eight lay-
ers prefer to adopt pure tiny blocks.We surmise that since the
PGD attack mainly focuses on pixel-wise perturbations, the
robust blocks can mitigate the attack effect in the first several
layers. The tiny blocks can help the neural network to keep

Table 12 Channel encoding scheme and layer statistics on CIFAR-10

Architecture

Channel 0 1 2 3 4 5 6 7 8 9

0.2 �
0.4 �
0.6 �
0.8 �
1.0 �
1.2 �
1.4 �
1.6 �
1.8 �
2.0 �
Layer Statistics

0 1 1 2 6

1 1 1 4 4

2 1 2 1 1 1 4

3 3 1 6

4 1 1 3 2 1

5 1 4 4 1

6 5 4 1

7 2 2 1 1 2 1 1

8 1 1 3 2 3

9 4 1 3 1 1

10 1 4 1 4

11 1 3 1 1 3 1

12 2 8

13 6 3 1

14 7 1 1 1

15 10

a balance between the clean performance and the number of
parameters.

Table 12 shows our channel expansion ratio encoding
scheme and the layer statistics. The upper part of Table 12
introduces the relationship between the encoding channel
identifier and the channel expansion ratio. The lower part
of Table 12 shows the number of occurrences for a certain
channel expansion ratio. For example, the channel expansion
ratios 1.8 and 1.6 represent six times and two times in the
first layer of the top 10 subnets, respectively. Figure9 shows
which two channel expansion ratios are usedmost frequently
in a certain layer. From Fig. 9, we can observe that the top
trade-off tiny neural networks prefer to adopt larger channels
in the first three layers, and then, the channel number for the
rest of the layers gradually declines. The top ten tiny subnets
use the smallest channel number in the last three layers. Our
explanation is that since the PGD attack mainly focuses on
pixel-wise perturbations, the wider channel in the first sev-
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Table 15 Benchmark on CIFAR-10 (%)

Supernet training Subnet model
size

Clean Acc P20
8/255 P100

8/255 P100
2/255

RobNet-small
[30]

4.41M 78.05 48.32 48.07 –

PreAct
ResNet-18 [40]

3.42M 60.78 28.02 27.69 28.01

MORNAS [9] 3.56M 59.98 34.56 34.50 –

LEGO 2S18/255 2.1546M 80.50 35.01 34.41 70.66

2S18/255 2.1878M 79.87 31.73 31.09 69.35

S106/255 1.6840M 78.63 29.02 28.07 67.75

S28/255 1.6822M 76.54 31.80 31.25 66.35

eral layers can help mitigate the adversarial attacks, and the
gradually declining channel number can reduce the size of
the neural network.

Assumption verification

To verify our assumption, the most frequently used blocks
and channels of each layer in Figs. 8 and 9 are selected as
the block and channel choices, respectively, in ourmodel.We
call this new subnet architecture as Lego-Net. Table 13 shows
that Lego-Net performs better than our state-of-the-art subnet
2S18/255, especially in adversarial performance. Specifically,
Lego-Net can increase adversarial accuracy by 10.36% in
P10
8/255 and clean accuracy by 0.78%, while the size of Lego-

Net drops by 1.52%. We also achieve the same result on
the SVHN dataset, as shown in Table 14. To conclude, we
should put pure robust or tiny robust blocks in the shallow
layers and pure tiny blocks in the rest of the layers to build up
tiny robust neural networks. In terms of channel design, we
should put wider intermediate channels in the shallow layers
and gradually reduce the intermediate channels in the rest of
the layers.

Main comparisons

We discuss the difference between Guo et al. [30] and our
work. First, our backbone supernet uses ShuffleNetV2 [15],
which is one of the typical tiny neural networks, while Guo
et al. [30] employ ResNet [5] as the backbone of super-
net. Moreover, the authors [30] design the connection of
blocks as their search space, and there are only three choices
(3 × 3 separable convolution, identity, and zero) for their
candidate blocks. However, our work re-designs the block
search spaces, i.e., we try to incorporate the attention mech-
anism into tiny blocks.We not only provide 22 block choices,
including pure tiny blocks, pure robust blocks, and tiny robust
blocks, but also design the new channel search space for each

block. We aim to find the optimum blocks and channels for
each layer of tiny neural network. Our work pays more atten-
tion to balancing the clean error, adversarial error, and the
neural network size when we design our search space and the
supernet. Second, although the authors [30] claim that their
NAS algorithm is one-shot, they use different computational
budgets: small, medium, and large to search different sizes of
neural networks. In other words, they at least searched three
times to get different sizes of neural networks. Our work is
a real one-shot NAS algorithm, as the multi-objective opti-
mization employed in our method is able to generate diverse
modelswith different structures in the one-shot.Wehave con-
sidered the balance between the clean error, the adversarial
error, and the neural network size in our search process.

From Table 15, we can clearly see that the clean accuracy
of LEGO2S18/255 increases by 3.1% and the size of the neural
network drops by 104.7%. Although our LegoNet cannot
compete with RobNet-small for adversarial performance, we
surmise that increasing the size of neural networks would
improve the robustness. Furthermore, we hypothesize that
the epsilon size (the pixel perturbation range) in reality is
not as high as 8 pixels, and the most common attack should
be light-weight perturbation. Therefore, we try to reduce the
epsilon size from 8/255 to 2/255, and we find that the gap
between the adversarial performance and clean performance
for our LegoNet is only 14%.Therefore, we conclude that our
LegoNet can keep the balance between adversarial accuracy,
clean accuracy, and neural network size.

Conclusion

We propose a tiny adversarial multi-objective one-shot neu-
ral network search framework, which aims to find the best
trade-off networks in terms of the adversarial error, the clean
error, and the size of the neural network.Our study reveal sev-
eral observations on how the adversarial training method of
the supernet will affect the subnets’ adversarial performance.
We also hint at how to design tiny robust neural networks
based on our block and channel statistics. Furthermore, we
conduct experiments to empirically verify our hypothesis on
improving the robustness of neural networks without signif-
icantly reducing the clean accuracy and enlarging the neural
network size. However, the proposed TAM-NAS framework
still has a clear limitation„ i.e., the performance of the subnets
heavily relies on the network architecture of the supernets.
Therefore, in the future, we will develop a co-evolutionary
multi-objective NAS framework, where the architecture of
the supernet will also evolve during the search process.
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