
Complex & Intelligent Systems (2023) 9:6999–7013
https://doi.org/10.1007/s40747-023-01120-5

ORIG INAL ART ICLE

Efficient federated learning on resource-constrained edge devices
based onmodel pruning

Tingting Wu1,2,3,4 · Chunhe Song1,2,3 · Peng Zeng1,2,3

Received: 3 January 2023 / Accepted: 16 May 2023 / Published online: 9 June 2023
© The Author(s) 2023

Abstract
Federated learning is an effective solution for edge training, but the limited bandwidth and insufficient computing resources
of edge devices restrict its deployment. Different from existing methods that only consider communication efficiency such
as quantization and sparsification, this paper proposes an efficient federated training framework based on model pruning to
simultaneously address the problemof insufficient computing and communication resources. First, the framework dynamically
selects neurons or convolution kernels before the global model release, pruning a current optimal subnet and then issues the
compressed model to each client for training. Then, we develop a new parameter aggregation update scheme, which provides
training opportunities for global model parameters and maintains the complete model structure through model reconstruction
and parameter reuse, reducing the error caused by pruning. Finally, extensive experiments show that our proposed framework
achieves superior performance on both IID and non-IID datasets, which reduces upstream and downstream communication
whilemaintaining the accuracy of the globalmodel and reducing client computing costs. For example,with accuracy exceeding
the baseline, computation is reduced by 72.27% and memory usage is reduced by 72.17% for MNIST/FC; and computation
is reduced by 63.39% and memory usage is reduced by 59.78% for CIFAR10/VGG16.

Keywords Federated learning · Model pruning · Communication efficient · Edge intelligence

Introduction

With the rapid growth of the number of intelligent edge
devices and the scale of data generated by the Internet of
Things [1, 2], distributed training by uploading the data
generated by edge devices to a data center for centralized
learning will be limited by communication resources and
delays. At the same time, the privacy of edge device data and
the increased complexity of deep learningmodelsmake it dif-
ficult for traditional training to rationally use a large amount

B Chunhe Song
songchunhe@sia.cn

1 State Key Laboratory of Robotics, Shenyang Institute of
Automation, Chinese Academy of Sciences,
Shenyang 110016, China

2 Key Laboratory of Networked Control Systems, Chinese
Academy of Sciences, Shenyang 110016, China

3 Institutes for Robotics and Intelligent Manufacturing, Chinese
Academy of Sciences, Shenyang 110169, China

4 University of Chinese Academy of Sciences, Beijing 100049,
China

of edge data [3]. Edge training based on federated learning
[4] provides a feasible solution for overcoming centralized
learning. Federated learning cooperates with individual edge
devices, trains the same models using local data, and aggre-
gates the parameters of each device to update the global
model [5, 6].

A federated learning system typically assumes that clients
are equipped with fast processors and sufficient computation
capability to perform calculations locally and update model
parameters. However, most edge devices, such as mobile
phones, wearables, sensors, etc., have limited computing
and memory resources, which makes it difficult to support
deep learning model training. With the large-scale produc-
tion of image, video, voice and other data on edge devices,
the low-density model can no longer meet the data volume
requirements. The high performance and precision of deep
neural networks always come at the cost of a larger model
size and more computation. The transmission of CNN mod-
elswithmillions of parameters also brings great challenges to
network communication. How to ensure efficient federated
training of a model on edge devices with weak computa-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01120-5&domain=pdf
http://orcid.org/0000-0001-8392-1777

7000 Complex & Intelligent Systems (2023) 9:6999–7013

tion capability while communicating efficiently has become
a research difficulty.

Model pruning has been widely studied as an impor-
tant solution in edge inference deployment [7, 8], which
indicates that there exists a subnet that can represent the per-
formance of the entire model after training. While the above
research prunes pre-trained models in centralized training,
our goal is to design pruning strategies during federated
training to meet the computational requirements of resource-
constrained devices. There has been a lot of researches
on reducing communication cost by pruning client mod-
els before uploading. However, they only considered the
communication cost and did not change the model struc-
ture to reduce the computation on the clients. Recently,
some research attempts to reduce the computational require-
ments on the client by modifying the model in training
through model pruning. Liu et al. [9] and AdaptCL [10]
improve learning efficiency by changing the size of the
local training model on the client, but pruning on the client
increases additional calculations. PruneFL [11] proposes to
use unstructured pruning in training and support correspond-
ing sparsematrix computation by extending the deep learning
framework, which will be difficult to generalize. Federated
Pruning [12] performs structural pruning on the client model,
which is similar to our proposed work, but does not propose
corresponding parameter aggregation scheme for lossy prun-
ing.

This paper proposes an efficient federated training frame-
work based on model structure pruning to overcome the
above challenges. Different from pruning on the clients, we
prune the global model on the computatively powerful server
with negligible latency and reduced upstream and down-
stream communication. We perform structural pruning on
the model to change the structure size of the delivered model
without relyingondedicated acceleration.Most of the current
federated systems adopt synchronization scheme, in which
the global model will not converge if the pruned models are
directly aggregated. Therefore, we developed a new parame-
ter aggregation update scheme to reduce the error caused by
pruning through model reconstruction and parameter reuse.
Instead of changing the size of the final globalmodel, the goal
is to train the largermodel on the serverwith the smallermod-
els on the clients. Specifically, the framework dynamically
selects neurons or convolution kernels for the model, prunes
the current optimal sub-net before releasing the globalmodel,
and then distributes the compressed model to each client for
training.We change themodel structure by directly removing
redundant convolution kernels or neurons to form a compact
model. To summarize, the specific contributions of this arti-
cle are as follows:

• We propose an efficient federated training framework
based on model structure pruning, which greatly reduces
the demand for client computing and memory resources
by dynamically selecting the optimal sub-model of the
current global model for delivery.

• We develop a new parameter aggregation update scheme,
which provides training opportunities for global model
parameters and maintains the complete model struc-
ture through model reconstruction and parameter reuse,
reducing the error caused by pruning.

• We conduct a large number of experiments on different
data sets and data distributions to verify the effectiveness
of the proposed framework, which reduces upstream and
downstream communication while maintaining the accu-
racy of the global model and reducing client computing
costs.

Related work

Edge inference/training based onmodel pruning

For resource-limited edge devices, model pruning is pro-
posed to reduce the complexity of a neural network before
it is deployed. The earliest research on model pruning was
in 1988. Hanson and Pratt [13] proposed an amplitude-based
pruning method for shallow fully connected networks. In
recent years, [14] combined various methods such as prun-
ing, quantization, and Huffman coding to compress CNNs.
Li et al. [15] proposed summing the absolute value of the con-
volution kernel as a criteria to measure its importance. This
was the first time that the convolution kernel was used as the
pruning unit to achieve network compression by changing
the model structure. The research of [8, 15–22] and others
put forward various criteria to determine the importance of
convolution kernels on structured pruning, and the redun-
dant convolution kernels are deleted or set to zero. Regarding
pruningmethods, iterative pruning [23], soft pruning [24] and
dynamic pruning [25] were proposed to identify redundant
parameters during training. Thus far, how to judge the effec-
tiveness of the parameters in themodel andminimize the loss
of accuracy is still an unsolved problem.

Efficient federated learning

To address the bottleneck of communication delay in feder-
ated learning, much research has been carried out on gradient
compression, including gradient quantization and sparsifi-
cation. Quantization compresses parameters by changing
the number of bits of a floating-point [26]. Bernstein

123

Complex & Intelligent Systems (2023) 9:6999–7013 7001

etal. [27] proposed SIGNSGD, which only transmits the
symbols of each small batch of stochastic gradients, and
uses majority voting to aggregate the gradient symbols of
each client. Sattleret al. [28] and Xu et al. [29] proposed
sparse ternary compression (STC) and ternary quantization
(FTTQ), respectively, and expressed themodel parameters as
[− 1,0,1], which greatly reduced the communication over-
head. Other variants of the quantization gradient scheme
include three-value quantization [30], variance reduction
quantization [31], error compensation [32] and gradient dif-
ference quantization [33, 34].

Sparsification is equivalent to the client discarding part of
the parameters before communication. Strom [35] set a fixed
threshold, and the parameters were allowed to upload when
the gradient was greater than the threshold. Dryden et al.
[36] sparsed the gradient using a fixed ratio, while [37] sim-
plified the gradient update based on a single threshold of the
absolute value, with the minimum gradient by removing the
absolute value of the R% gradient. AdaComp [38] was based
on localized selection of gradient residues and automatically
tunes the compression rate depending on local activity. The
framework proposed in this paper is completely orthogonal
to the above research, greatly reducing edge-side compu-
tation while compressing both upstream and downstream
communication. In addition, the combination of knowledge
distillation and federated learning is gradually used to reduce
the amount of computation on the client side. Xing et al.
[39] proposed an efficient federated distillation learning sys-
tem for multitask time series classification. If there is a huge
capacity gap between the large teacher model and the small
student model, it may be difficult for the student model to
learnwell, so the optimal design of the server and client mod-
els must be determined, and the researches [40–42] designed
the model through an optimization problem.

Approach

As described in [6, 43], in a federated learning system, each
edge local model Wk according to local data, and sends the
trained model to the server:

Wk(t) = Wk(t − 1) − η∇ fk (Wk(t − 1)) . (1)

The server updates global model Wg by aggregating the
model parameters of each client,

Wg =
K∑

k=1

pkWk, (2)

where pk ≥ 0,
∑K

k=1 pk = 1. Therefore, there are two mod-
els in the FL system: one is local model, maintained by each

edge device, and the other is globalmodel updated by the cen-
tral server. If pruning is applied to federated learning system,
the first thing to consider is whether to prune the local model
on the client or the global model on the server. In addition,
how can the model be pruned and how can the parameters of
the pruned model be updated?

Where to prune?

Typicalmodel pruning includes three stages [44]: (1) training
a large, over-parameterized model (sometimes a pre-trained
model), (2) pruning the trained large model according to cer-
tain criteria, and (3) fine-tuning the pruned model to restore
the lost performance, as shown in Fig. 1a. The processing
object of edge inference based on network pruning is the
trained model. However, in federated learning, the object of
pruning is themodel in the training process.Whether to prune
the localmodel on the client or the globalmodel on the server,
and how to ensure the convergence of the final model while
ensuring the effectiveness of the pruning is the first consid-
eration.

Without changing the structure of the global model, two
models are maintained on the server, the global model and
the pruned model. Figure 1b shows pruning on the client,
(1) global model Wg is issued, and the client trains several
epochs based on local data, (2) prunedmodelWP

k is obtained
by pruning trained model Wk , and (3) each client uploads
prunedmodelWP

k and they are aggregated on the server side.
Fig. 1c shows pruning on the server, (1) the server prunes
global modelWg , and sends pruned modelWP

g , 2) the client
trains the pruned model for several epochs, and (3) the client
uploads the trainedmodel and the global model is aggregated
and updated on the server.

All previous sparsity-based studies have trained the full
model and then selected the larger or important parameters
of the gradient update to upload. Based on current research,
local pruning, in which parameters that do not need to be
uploaded are directly pruned instead of sparse coding, is the
most readily evaluated federated learning pruning scheme.
However, we mainly focus on the problem of insufficient
computing resources on edge devices, not just the commu-
nication problem. We discuss the pruning location from the
aspects of fine-tuningmethod, computation, communication,
and model structure:

1. Fine-tuning method: Fine-tuning is an essential step to
restore network performance after pruning. In federated
learning, the data are only on the client, and fine-tuning
can only be performed on the client. As seen in Fig. 1,
in local pruning, the client model is first aggregated after
pruning, and then the aggregatedmodel is trained (not the
pruned model). If fine-tuning is done locally, the amount
of computation is greatly increased, and if not, part of

123

7002 Complex & Intelligent Systems (2023) 9:6999–7013

Fig. 1 Comparison of model pruning on the server and client. a Is the
typical model pruning process. b Is local pruning, where the model
uploads the pruned model after the client finishes pruning, and aggre-
gates it on the server. c Is server pruning, in which pruning is performed

before the model is issued, only subnet training is performed locally,
all training parameters are uploaded, and the model is aggregated and
updated on the server

the training information is lost, causing an error in the
federated learning. However, in server pruning, pruning
is followed bymodel training. Local training on the client
is equivalent to the fine-tuning in model pruning, that is,
fine-tuning in the original pruning process is transferred
to the client.

2. Computation: Model pruning is to solves the problem of
insufficient local computation capability. Current prun-
ing methods are mostly data-driven and need to traverse
all the parameters of a model. Pruning on the client
increases local computation requirements instead.

3. Communication: Server pruning can reduce upstream
and downstream communication at the same time, while
local pruning can only reduce upstream communication
without changing the global model.

4. Model structure: Due to different local client data dis-
tributions, the trained models are different, and a model
after pruning on a client is also different (whether the
pruning rate is identical or not). For example, a convo-
lution kernel of client k is pruned, but the convolution
kernel of client j is not pruned. This leads to heteroge-
neous models during aggregation, which increases the
difficulty of updating the parameters of the global model
and leads to noise.

In summary,we choose to performpruning on the server to
reduce upstream and downstream communications without
changing the original pruning process, reduce local compu-
tation, and avoid the problem of model heterogeneity.

Model pruning andmask

The basic idea of model pruning is to remove the unim-
portant parts. Assuming a pretrained CNN model has a
set of L convolutional layers, then the parameters of the
lth layer can be represented as a set of 3D filters Wl ={
Wi

1,W
i
2, . . . ,W

i
Nl

}
∈ R

Nl×Nl−1×kl×kl , where Nl represents

the number of filters in the lth layer and kl denotes the ker-
nel size. In model pruning, Wl can be split into two groups,
i.e., a subset to be kept Sl and a subset, with less impor-
tance, to be pruned Pl , where ml and nl are the number of
important and unimportant filters, respectively. Determining
which filter needs to be pruned is a combinatorial optimiza-
tion problem, that can be expressed as follows:

min
Mi

L∑

l=1

Nl∑

i=1

MliL
(
Wl

i

)

s.t.
Nl∑

li

Mli = ml ,

(3)

whereMl i ∈ {0, 1} is the mask of the filter or neuron which
is 1 if Wl

i is grouped in Sl , or 0 if Wl
i is grouped in Pl . L(•)

is the criterion for judging the importance of a filter. For
the current large network structure, finding a subnet that can
be pruned without performance degradation is an NP-hard
problem, which is difficult to accurately solve by searching
all possible subsets. The current popular pruning method is

123

Complex & Intelligent Systems (2023) 9:6999–7013 7003

2.09

1.48

0.09

-0.91

1.92

0.02

0.12

-0.980.04

0.67

1.48

0.69

0.83

-1.15

0.19

1.90

2.171.09

1.32

1.48

0.09

-0.91

1.92

0.39

0.12

2.45-0.98

-0.78

1.48

-0.741.06

0.63

1.41

1.27

…

ℒ(0)

ℒ(1)

ℒ(2)

ℒ()

ℒ()

1.347

0.351

2.478

1.115

0.639

Importance

: =1

: =0

Kept

Pruned

Output channels
Input channels

−

Filters

Layer

Unpruned
model

Pruned
model

1.55

3.11

−

Layer 1

Layer 2

Layer

Layer

Input

Output

Layer 1

Layer 2

Layer

Layer

Input

Output

Fig. 2 A round of the model structure pruning process in federated learning. Convolutional kernels with small importance and their corresponding
feature maps are directly removed

to determine the importance of parameters based on criteria
and delete the parameters with low importance. For example,
using the sum of the absolute values of a filter as a criterion,
the importance of filter L (

Wl
i

)
is,

L(Wl
i) =

Nl−1∑

l=1

∑
|Kl |, Kl ∈ R

kl×kl . (4)

Then, L (
Wl

i

)
is sorted, where the Top(ml) is reserved for

high importance, and its corresponding Mli = 1, Wl
i ∈

Sl . The other filters Pl are pruned, and their corresponding
feature maps are also removed at the same time, as shown in
Fig. 2.

Model aggregation and updating

The process of parameter aggregation and updating in a fed-
erated learning edge training framework based on model
pruning is shown in Fig. 3. The circle in Fig. 3 represents
a convolution kernel in a convolutional neural network or a
neuron in fully connected neural network. The server main-
tains twomodels: the global modelWg and the prunedmodel
WP . The parameter aggregation and update of the τth round
is:

1. Before issuing the global model on the server, the impor-
tance of the model parameters is first judged, important
neurons are identified, and update the correspondingmask
Mτ is updated. For neurons whoseMτ is 0, the neuron is

deleted and the corresponding weight and bias to obtain
a compressed small model W τ

P .
2. Pruned model W τ

P is sent to each client, and the client
uploads all model parameters after training W τ

k .
3. The server first aggregates the parameters uploaded by

each client to obtain W τ
FL. W

τ
FL is fused with the model

W τ−1
g parameters before compression. InW τ

g , the original
pruned neuron parameters are consistentwith the previous
round of W τ−1

g , and the unpruned neuron parameters are
correspondingly replaced and updated with the parame-
ters in W τ

FL according to the index order of Mτ−1 = 1.
The specific process is shown in Fig. 3. The entire frame-
work of federated learning based on model pruning is
shown in Algorithm 1.

W τ
FL ←

K∑

k=1

pkW
τ
k , (5)

W τ
g (l, i) =

{
W τ

FL(l, j), if W τ−1
g (l, i) ∈ Sτ−1

l

W τ−1
g (l, i), if W τ−1

g (l, i) ∈ Pτ−1
l .

(6)

Convergence analysis

We assume that the pruned network parameters obtained
from some current importance criteria can represent the
performance of the original network, where the parameters
retained after pruning contribute greatly to the network. The
gradient of each neuron is denoted as P (g (W τ)), then the
probability of each neuron being retained in each round is

123

7004 Complex & Intelligent Systems (2023) 9:6999–7013

Fig. 3 The τ and τ + 1 rounds
of the client model and global
model aggregation update
process

Edge Server

Client 1 Client 2 Client N Client 1 Client 2 Client N

Round Round
+1

… …

… …

Download Upload Download Upload

Filter in CNN
Neuron in FC

:

pi . Therefore, the gradient variance can be reformulated as:

P(g) =
[
M1

g1
p1

,M2
g2
p2

, . . . ,Md
gd
pd

]
, (7)

then the variance of P (g (W τ)) can be reformulated as:

E

N∑

i=1

[
P(g)2i

]
=

N∑

i=1

[
g2i
p2i

× pi + 0 × (1 − pi)

]

=
N∑

i=1

g2i
pi

.

(8)

Therefore, the trade-off between pi and the gradient
variance can be formulated as the following optimization
problem:

min
p

N∑

i=1

pi s.t.
N∑

i=1

g2i
pi

≤ (1 + ε)

N∑

i=1

g2i , (9)

where 0 < pi ≤ 1 and ε can control the variance increase of
g.We can get the solution of Eq. (9) by introducing Lagrange
multipliers λ and μi , as the following objective:

min
p

max
λ

max
μ

L (pi , λ, μi)

=
N∑

i=1

pi + λ2

(
N∑

i=1

g2i
pi

− (1 + ε)

N∑

i=1

g2i

)

+
N∑

i=1

μi (pi − 1) .

(10)

Consider the KKT conditions of the above formulation, we
have:

1 − λ2
g2i
p2i

+ μi = 0. (11)

We can get the following connections combined with the
complementary relaxation condition of μi (pi − 1) = 0:

pi =
{
1, if μi �= 0

λ|gi |, if μi = 0
. (12)

As can be seen that if |gi | ≥ |g j | then |pi | ≥ |p j |. Therefore,
there is a set S with p j = 1,∀ j ∈ S, and its corresponding
|g j | has the largest absolute magnitude. Assuming that the
size of the set is k(0 ≤ k ≤ N) and the elements are ordered
by magnitudes, denoted as g(1), g(2), . . . , g(N), we have

p(i) =
{
1, if i ≤ k

λ|g(i)|, if i > k
, (13)

which further implies

λ =
∑N

i=k+1|gi |
ε
∑N

i=1 g
2
i + ∑N

i=k+1 g
2
i

. (14)

And the probability vector p is

pi =

⎧
⎪⎨

⎪⎩

1, if i ∈ S
|gi |

(∑N
i=k+1|g j |

)

ε
∑N

j=1 g
2
j+

∑N
j=k+1 g

2
j
, if i /∈ S

. (15)

We can get from (ρ, s)-approximately sparsity[3] that if there
exists a subset S such that |S| = s and

‖gSc‖1 ≤ ρ ‖gS‖1 , (16)

123

Complex & Intelligent Systems (2023) 9:6999–7013 7005

where Sc is the complement of S. Thus, the variance of P(g)
can be bounded by

E [‖P(g)‖0] =
N∑

i=1

pi =
∑

i∈S
pi +

∑

i /∈S
pi

= s +
∑

i /∈S

|gi |
(∑d

j=k+1|g j |
)

ε
∑k

j=1 g
2
j + (1 + ε)

∑N
j=k+1 g

2
j

= s + ‖gSc‖21
ρ ‖gS‖22 + (1 + ρ) ‖gSc‖22

≤ s + ρ2s ‖gS‖22
ρ ‖gS‖22 + (1 + ρ) ‖gSc‖22

≤ (1 + ρ)s.

(17)

Convolution kernels or neurons are dynamically selected
in each round, and the gradient of themodel is bounded by the
above formula, thereby ensuring convergence of the model.

In each round, we directly delete all the unimportant neu-
rons and their corresponding weights instead of setting them
to 0 by soft training. The client only trains a subnet com-
posed of important neurons, and only updates the selected
neuronal parameters during this round. In the model prun-
ing in edge inference, neurons will be permanently removed.
However, in federated learning, a fixed subnet structure is
determined before the model reaches the ideal performance,
which will seriously affect the convergence effect. The pro-
posed framework guarantees synergistic convergence in two
aspects: (1) The server maintains two models, and when
the global parameters are updated, the pruned neurons still
retain the original parameters of the previous round, instead
of directly discarding the previously trained parameters. (2)
During each round, the neurons that contribute the most to
the network performance are always selected for update. The
client uploads all training update parameters without losing
the learned information, maximizing the use of local training
updates, thus ensuring the convergence of training.

Experiments

Performance indicators

Training computation: In model compression, the computa-
tional power required for forward propagation of a model is
used to evaluate the complexity of the model. Model training
includes forward propagation and back-propagation, where
the forward propagation computation ismainly on the feature
graph andweightmatrixmultiplication and the backpropaga-
tion computation is on the reverse gradient computation. The

Algorithm 1 Efficient federated learning based on model
pruning
Require: global model: Wg ; client model:Ck , k = 1, · · · , K ,Wk ←

Wg ; M ← 0,M ∈ R
L×N , L is the number of network layers in

Wg , and N is the number of neurons in each layer; prune ratio:rate;
Ensure: WT

g
1: Global Server:

2: for l = 1, l ≤ L; i = 1, i ≤ Nl ; j = 1, j ≤
∥∥∥Sτ−1

l

∥∥∥
0
do

3: if W τ−1
g (l, j) ∈ Sτ−1 then

4: W τ
g (l, i) ← W τ

FL (l, j)
5: else
6: W τ

g (l, i) ← W τ−1
g (l, i)

7: end if
8: end for
9: for l = 1, l ≤ L; i = 1, i ≤ Nl ; do
10: L(l, i) ← L

(
W τ

g (l, i)
)

11: if L
(
W τ

g (l, i)
)
in Top{L(l, i) ∗ rate} then

12: W τ
g (l, i) ∈ Sτ

l
13: Mτ (l, j) = 1
14: else
15: W τ

P ← W τ
g − W τ

g (l, j)
16: W τ

g (l, i) ∈ Pτ
l

17: Mτ (l, i) = 0
18: end if
19: end for
20: return W τ

P
21: Edge Devices:

22: W τ−1
k ← W τ

P

23: W τ
k ← W τ−1

k − η∇ fk
(
W τ−1

k

)

24: return W τ
k

MACoperations required by the two are the same. Therefore,
the computation required for training the lth convolutional
layer in a convolutional neural network is expressed as:

FLOPsl = 2 × 2 × Nbmb × Cin × K 2 × H × W × Cout,

(18)

where mb is the minibatch size and Nb is the total minibatch
number. K , H ,W are the size of the convolution kernel and
the height and width of the feature map, respectively, and
Cin,Cout are the number of input and output channels of the
convolution layer, respectively. The computation required for
training the lth layer in a fully connected neural network is:

FLOPsfcl = 2 × Nbmb × (2 × I − 1) × O, (19)

where I is the input neuron number and O is the out-
put neuron number. Therefore, the computation of a single
training cycle of the network model can be expressed as:
FLOPs = ∑L

l=1 FLOPsl .
Trainingmemoryusage:Wesimplify thememory required

for training to calculate the weights, gradients and generated
feature maps of the network in a single batch (activation for
fully connected network). The gradientmatrix and theweight

123

7006 Complex & Intelligent Systems (2023) 9:6999–7013

matrix are the same size. Therefore, the memory required for
the lth convolutional layer is:

Meml = 2 ×
(
B f K

2 × Cout × Cin

)
+ BaH × W × Cout.

(20)

For the memory required for training the lth layer in fully
connected neural network:

Mem fC
l = 2 × B f (I × O + 1) + 2 × BaO, (21)

where B f and Ba are data bit values that are usually equal
to 32 in an edge device. Therefore, the memory usage of
a single training cycle of the model can be expressed as:
Mem = ∑L

l=1 Meml .
Model parameters: Since the communication time is

affectedby the bandwidth,we take the parameter of themodel
as an index to evaluate the communication efficiency. In a
convolutional neural network, the parameter quantity of the
lth convolutional layer is:

Paraml = K 2 × Cin × Cout. (22)

The parameter quantity of the lth layer in fully connected
neural network is:

Paramfc
l = I × (O + 1). (23)

Theparameters of the entiremodel are: Param = ∑L
l=1 Paraml .

Models and datasets

We evaluate the effectiveness of the proposed framework
on two classification tasks: (1) CIFAR10 on VGG16 and (2)
MNIST on a 5-layer fully connected networkwhere the num-
ber of neurons in each layer is [784,512,512,256, 100,10].
The two models represent the most widely used models at
present and are typical tasks in FL. Both models are verified
in IID and Non-IID data distribution scenarios. CIFAR-10
dataset contains 60,000 images (50,000 for training, 10,000
for testing) from 10 classes, and MNIST dataset contains
60,000 training and 10,000 test greyscale images of hand-
written digits of size 28 × 28. We assume that the datasets
for each client follow a distribution over N classes param-
eterized by a vector q (qi ≥ 0, i ∈ [1, N] and ‖q‖1 = 1).
To obtain a set of clients with different data distributions,
we generate q ∼ Dir(α) from Dirichlet distribution, where
α > 0 is a concentration parameter controlling the identical-
ness among clients. For every client, given an α, we sample
q and assign the client with the corresponding number of
images from 10 classes. Fig. 4 illustrates populations drawn
from the Dirichlet distribution with α = 1 and 0.001, corre-
sponding to the IID and Non-IID data distribution scenarios
in the experiments in this paper, respectively.

On the CIFAR10 dataset, we set the number of clients to
15, and all clients participate in training. The batch size is set
to 128, the learning rate is 0.1, SGD is used for training, and
the weight decay is 5e-4. On the MNIST dataset, the number

Fig. 4 Distribution among classes is represented with different colors. The populations in figure generated from Dirichlet distribution with α = 1
and 0.001, respectively, 30 random clients each

123

Complex & Intelligent Systems (2023) 9:6999–7013 7007

of clients is set to 30, the batch size is set to 64, and SGD
is used for training one epoch per round with learning rate
of 0.01. We use the global model test accuracy obtained by
FedAvg [6] and the average loss of each client as the baseline.

Different pruning rates

Wefirst evaluate the effectiveness of the proposed framework
at different pruning rates and the convergence impact on the
global model. We set the pruning ratio of the number of neu-
rons in each layer from30 to 80%, and the calculation amount
of the corresponding model decreases by 40–80%. For the
MNIST dataset, whether in the IID or Non-IID data distribu-
tion, when the pruning rate is within 70%, the increase of the
pruning rate has little effect on the convergence speed of the
global model, and the final accuracy is still comparable or
even higher than full model training, as shown in Fig. 5a–d.
However, when the pruning rate reaches 80%, the conver-
gence speed of pruning training is significantly slower, and
the shock is more significant. In addition, more rounds are
required to achieve the same accuracy as the full model train-
ing. When the pruning rate exceeds 80%, the global model
begins to diverge, which indicates that the compressedmodel
is too small to fit the data fully.

In VGG, the pruning granularity is a convolution kernel,
which is different from the fully connected neural network.
We set the pruning ratio of the number of convolution kernels
in each layer from 20 to 50%, and the calculation amount of
the corresponding model decreases by 35–75%, as shown in
Fig. 5e–h. It can be seen from the figure that the convergence
speed of the global model slows down with the increasing
pruning rate, but the final accuracy is still better than the full
model training. However, when the pruning rate increases
to 75%, the model convergence speed becomes very slow,
and the model performance degrades. In conclusion, our pro-
posed pruning training framework is effective, and the more
complex the network is more sensitive it is to pruning train-
ing.

Different parameter selection criteria

In model pruning, the criterion for parameter redundancy
is the key to determining the pruning performance. In the
proposed framework, the criterion is also an important factor
in determiningwhether the subnetworks represent the current
global model. We evaluate the effectiveness of the proposed
framework under different criteria. Thesemethods are briefly
summarized as follows.

• Random. Parameters are randomly discarded.
• L1 [15]. Using the sum of the absolute values of a filter
as a criterion: L (

Wl
i

) = ∑ |W(i, :, :, :)|.
• L2 [15]. L (

Wl
i

) = ∑ ‖W(i, :, :, :)‖2.

• BN mask [45]. The γ of ẑ = zin−μB√
σ 2
B+ε

; zout = γ ẑ + β

in a BN layer is calculated as the corresponding filter’s
importance score, where zin and zout be the input and
output, μB and σB are the mean and standard deviation
values of input activations over the current minibatch B.

• Similarity. Compare the similarity between filters and

remove one of them: D(l) = dist
(
Wl

j ,W
l
k

)
, 0 ≤ j ≤

Nl , j ≤ k ≤ Nl

For the MNIST dataset, Fig. 6a and e are the average loss
and test accuracy of different pruning criteria under a prun-
ing rate of 40% on the IID data distribution; Fig. 6b and f are
the average loss and test accuracy of different pruning crite-
ria on the Non-IID data distribution with a pruning rate of
62%. As we can see, different pruning criteria have signifi-
cant impacts on the convergence speed and the final obtained
global model’s performance. The pruning training converges
faster than the full model training, and the global model
obtained in the same number of rounds has higher accu-
racy. Among them, random pruning can quickly converge
in the proposed framework regardless of IID and Non-IID
data distributions, far exceeding other heuristic pruning cri-
teria. Since the above pruning algorithms are proposed based
on CNN, the small number of weights of a single neuron in
fully connected network can easily lead to partial neuron
inactivation (discussed in detail later).

For the CIFAR10 dataset, Fig. 6c and g are the average
loss and test accuracy of different pruning methods under
50% pruning of FLOPs and parameters on the IID data dis-
tribution; Fig. 6d and h are the average loss and test accuracy
of different pruning methods when the FLOPs and parameter
pruning rate are 50% on the Non-IID data distribution. The
pruning granularity in VGG is a convolution kernel. Except
for BNmask and random, different pruning criteria have little
effect on the convergence speed and performance, proving
that the proposed framework is effective for large network
structures. Unlike the fully connected neural network, the
global model performance obtained by randomly selected
convolutional kernels is not ideal and even diverges when
the pruning rate increases. To further explore the relation-
ship between convergence speed and subnet selection, we
use the above pruning methods to obtain different subnets at
the same time in each round and select the subnetwith the best
performance for delivery. It is experimentally demonstrated
that the adapted method further accelerates the convergence
speed, which provides a new idea for us to further accelerate
the convergence speed.

The efficiency of computation and communication

Our proposed framework reduces computational and mem-
ory requirements for edge devices while improving com-

123

7008 Complex & Intelligent Systems (2023) 9:6999–7013

Fig. 5 a and b Are the average
loss and test accuracy of
MNIST/IID under different
pruning rates, c and d are of
MNIST/Non-IID, e and f are of
CIFAR10/Non-IID

0 50 100 150 200

Round

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Lo
ss

 A
ve

pruned(40.55%)
pruned(52.07%)
pruned(62.75%)
pruned(72.19%)
pruned(80.65%)
pruned(88.07%)

(a) Average loss of different prun-
ing rate on MNIST/IID

0 50 100 150 200

Round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st

 A
cc

ur
ac

y

pruned(40.55%)
pruned(52.07%)
pruned(62.75%)
pruned(72.19%)
pruned(80.65%)
pruned(88.07%)

(b) Test accuracy of different prun-
ing rate on MNIST/IID

0 50 100 150 200

Round

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

 A
ve

pruned(40.55%)
pruned(52.07%)
pruned(62.75%)
pruned(72.19%)
pruned(80.65%)

(c) Average loss of different prun-
ing rate on MNIST/Non-IID

0 50 100 150 200

Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Te
st

 A
cc

ur
ac

y

pruned(40.55%)
pruned(52.07%)
pruned(62.75%)
pruned(72.19%)
pruned(80.65%)

(d) Test accuracy of different prun-
ing rate on MNIST/Non-IID

0 50 100 150 200
Round

0

0.5

1

1.5

2

2.5

Lo
ss

 A
ve

pruned(35%)
pruned(50%)
pruned(63%)

(e) Average loss of different prun-
ing rate on CIFAR10/IID

0 50 100 150 200
Round

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

pruned(35%)
pruned(50%)
pruned(63%)
unpruned

(f) Test accuracy of different prun-
ing rate on CIFAR10/IID

0 50 100 150 200

Round

0

0.5

1

1.5

2

2.5

Lo
ss

 A
ve

pruned(35%)
pruned(50%)
pruned(63%)
pruned(75%)

(g) Average loss of different prun-
ing rate on CIFAR10/Non-IID

0 50 100 150 200

Round

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

pruned(35%)
pruned(50%)
pruned(63%)
pruned(75%)
unpruned

(h) Test accuracy of different prun-
ing rate on CIFAR10/Non-IID

123

Complex & Intelligent Systems (2023) 9:6999–7013 7009

Fig. 6 a and e Are the average
loss and test accuracy of
different pruning criteria under a
pruning rate of 40% on
MNIST/IID, b and f are at a
pruning rate of 62% on
MNIST/Non-IID, c and g are at
a pruning rate of 50% on
CIFAR10/IID, d and h are at a
pruning rate of 50% on
CIFAR10/Non-IID

0 30 60 90 120 150

Round

0

0.2

0.4

0.6

0.8

1

1.2

L
o

ss

A
ve

L1
Random
Similarity
BN Mask
L2
FedAvg

(a) Average loss of MNIST/IID

0 30 60 90 120 150

Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

st

A
cc

u
ra

cy

L1
Random
Similarity
BN Mask
L2
FedAvg

(b) Test acc of MNIST/IID

0 20 40 60 80 100 120 140 160

Round

0

0.2

0.4

0.6

0.8

1
L
o
ss

A

ve
L1
Random
Similarity
BN Mask
L2
FedAvg

(c) Average loss of MNIST/Non-
IID

0 20 40 60 80 100 120 140 160
Round

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e
st

A

cc
u
ra

cy

L1
Random
Similarity
BN Mask
L2
FedAvg

(d) Test acc of MNIST/Non-IID

0 20 40 60 80 100 120 140 160 180

Round

0

0.5

1

1.5

2

2.5

Lo
ss

 A
ve

L1
L2
Random
Similarity
BN Mask
Adapt

(e) Average loss of CIFAR10/IID

0 20 40 60 80 100 120 140 160 180

Round

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ay

L1
L2
Random
Similarity
BN Mask
Adapt
Unpruned

(f) Test acc of CIFAR10/IID

0 50 100 150 200

Round

0

0.5

1

1.5

2

2.5

Lo
ss

 A
ve

L1
L2
Random
Similarity
BN Mask
Adapt

(g) Average loss of CIFAR10/Non-
IID

0 50 100 150 200

Round

10

20

30

40

50

60

70

80

Te
st

 A
cc

ur
ac

y

L1
L2
Random
Similarity
BN Mask
Adapt
Unpruned

(h) Test acc of CIFAR10/Non-IID

123

7010 Complex & Intelligent Systems (2023) 9:6999–7013

40% 52% 62% 72% 80%

Pruned Rate

0

10

20

30

40

50

60

70

80

90

100
P

er
fo

rm
an

ce
 In

di
ca

to
rs

 fo
r

O
ne

 R
ou

nd

70

75

80

85

90

95

100

A
cc

ur
ac

y
un

de
r

D
iff

er
en

t R
at

e

FLOPs
Params/Communication
Memory usage
Accuracy

(a) MNIST/IID

35% 50% 63%

Pruned Rate

0

10

20

30

40

50

60

70

80

90

100

P
er

fo
rm

an
ce

 In
di

ca
to

rs
 fo

r
O

ne
 R

ou
nd

60

62

64

66

68

70

72

74

76

78

80

A
cc

ur
ac

y
un

de
r

D
iff

er
en

t R
at

e

FLOPs
Params/Communication
Memory usage
Accuracy

(b) CIFAR10/Non-IID

Fig. 7 The computation, memory usage and communication of the client in a single round under different pruning rates. The line is the accuracy
change of the global model. The baseline accuracy of VGG16 using FedAvg training on CIFAR10 is 72.83%, FC/MNIST is 93.39%

Table 1 Communication cost under different pruning rates

FC/MNIST (Acc = 0.90) VGG/CIFAR-10 (Acc = 0.70)

Rate Com Speed Rate Com Speed

Baseline 292.17M 1 Baseline 1562.6M 1

0.41 17.09M 17.10× 0.35 623.2M 2.51×
0.52 18.41M 15.87× 0.50 843.64M 1.85×
0.63 16.76M 17.43× 0.63 1369.45M 1.14×
0.72 31.48M 9.28×
0.81 170.60M 1.71×

munication efficiency. Finally, we compare the amount of
computation and memory on the client under different prun-
ing rates and the communication required to achieve a
specific target accuracy. Similarly, to be closer to the actual
scenario, we still choose to evaluate on the Non-IID data
distribution. The computation, memory usage and commu-
nication of the client in a single round are shown in Fig. 7.
The total communication amount required for different prun-
ing rates to achieve the same target accuracy is shown in
Table 1. Our proposed framework dramatically reduces the
amount of computation and memory usage on the client at an
accuracy exceeding that of full model training, and reduces
the total amount of communication simultaneously. The
larger network structure is more sensitive to pruning training,
and computational reduction requires more communication
rounds to compensate. The smaller network structure still
maintains efficient communication while reducing the com-
putation by 80%.

In addition, we compare with the current state-of-the-
art federated pruning algorithms such as Federated dropout
[46], PruneFL [11], Federated Pruning [12], AdaptCL [10].
Due to the different implementation methods and pruning
strategies of each algorithm, AdaptCL performs pruning on
the clients, while PruneFL uses an extended framework to
support sparse matrix acceleration, so the advantages and
disadvantages of the algorithm cannot be measured by the
single-round communication time and client model training
time. We compare the time taken by different algorithms
to achieve the same accuracy at the same pruning rate, and
the results are shown in the Table 2. It can be seen from
the table that although some methods reduce the resource
requirements of the client, they increase the overall training
time. Federated dropout has the slowest convergence speed
because it randomly prunes the network. PruneFL requires
extended library support for fine-grained pruning and has
limited acceleration effect. Federated Pruning is unable to
rapidly converge because no reasonable parameter aggrega-
tion scheme is proposed. AdaptCL performs pruning on the
clients, which has a great acceleration effect, but brings addi-
tional calculations to the client and increases the delay. The
proposed framework significantly reduces the training time
of the client and the up-down communication time, and the
proposed parameter aggregation scheme ensures the stable
convergence of the model and the optimal performance.

Ablation study

Since neurons are selected according to their importance, a
similar network structure will be selected for similar peri-

123

Complex & Intelligent Systems (2023) 9:6999–7013 7011

Table 2 Comparison of the time taken by different algorithms to achieve the same accuracy under the same pruning rate

Method VGG/CIFAR10 (Acc = 70%, Pruned = 50%) FC/MNIST (Acc = 90%, Pruned = 70%)

IID NonIID IID NonIID

FedAvg [6] 425 438 108 144

Fed Dropout [46] 569 432 280 267

PruneFL [11] 378 396 176 127

Fed Pruning [12] 386 419 138 156

AdaptCL [10] 325 317 84 76

Ours 242 210 46 51

Fig. 8 Visualization of the
convolution kernel in the pruned
model, where white indicates
pruned and blue indicates
reserved. The top shows the
pruning of the third layer on
FC/MNIST. The bottom shows
the pruning of the fifth layer on
VGG/CIFAR10

ods, resulting in the problem of inactivation of neurons that
have not been selected. In the fully connected network exper-
iment, the number of weights of each neuron is small, which
leads to errors in judging the importance of neurons based
on a data-driven pruning algorithm. Moreover, each round
of local training is one epoch, and the parameters vary very
little, which makes the pruned network structure similar over
several rounds.

To further explore the reasons for neuron inactivation, we
visualized the neuron index of each round of pruning when
the pruning rate was 50% on MNIST/FC, as shown in Fig. 8.
The experiment in Fig. 6 shows that the first 10 rounds con-
verge the fastest, so we analyze the pruning situation of the
third fully connected layer (256neurons) of thefirst 10 rounds
of the prunedmodel.White indicates the pruned neurons, and
blue indicates reserved neurons. It can be seen from the figure

that the model structure obtained by the pruning algorithm
of calculating the L1 norm for the weight matrix of each neu-
ron as its importance criterion is very similar. The error of
the pruning criterion makes the federated learning fall into
a local solution that trains only one subnet, resulting in the
inactivation of other neurons in the network. However, ran-
dom pruning jumps out of the local solution, so it showed
better performance in the end.

We also visually analyze the pruning of the fifth layer
of the convolution kernel (256 convolution kernels) in
each round of pruning in the 30th through 40th rounds of
VGG16/CIFAR10. From the experiment in Fig. 6, the L1-
based pruning algorithm has the fastest convergence rate and
higher accuracy, achieving the expected effect of pruning,
which constantly seeks the optimal subnet in the adjustment
and distribution of the subnet structure. However, random

123

7012 Complex & Intelligent Systems (2023) 9:6999–7013

pruning can eventually reach convergence after more rounds
of training, but the convergence speed is significantly slower.
From the visual comparative analysis of the pruning, we can
see that the pruning algorithm has a greater impact on the
performance of federated learning, and it easily falls into the
local solution of a single structure when the pruning stan-
dard is not effective. Therefore, identifying the effectiveness
of neurons in the training process will be the focus of future
research.

Conclusion

According to the problems of insufficient edge client com-
puting resources and limited communication resources in the
actual deployment of federated learning, this paper proposes
an efficient federated training framework based on model
pruning. We first discuss the problem of pruning position,
then analyze the convergence of pruning-based federated
learning, and finally explain the detailed process of the aggre-
gation and update of the parameters of the entire framework.
This paper appliesmodel pruning to federated learning for the
first time, and proposes the corresponding parameter update
scheme to ensure the complete training of the model while
maintaining the integrity of the learning information of each
client. This framework greatly reduces the computational and
memory requirements for local training while compressing
uplink and downlink communication. Extensive experiments
have verified the effectiveness of the framework.

Federated learning is currently in its infancy and many
challenges remain. Although we greatly reduce the com-
puting and memory requirements for resource-constrained
devices in the federated system, in practical applications,
the resource heterogeneity of devices, the withdrawal of par-
ticipating devices at any time, and the dynamic unknown
network environment will still bring about other delays and
non-convergence of training. In the future work, we will con-
tinue to deeply combine model pruning with reinforcement
learning to select reliable participating training devices in
dynamic unknown network environment, and customize per-
sonalized models for devices with heterogeneous resources.

Funding This work were funded by National Key Research and Devel-
opment Program of China (Grant no. 2017YFA0700300), National Nat-
ural Science Foundation of China (Grant no. 61903356) Liaoning Natu-
ral ScienceFoundation (Grant nos. 2021-MS-030, 2022JH6/100100013)
and Independent project of State Key Laboratory of Robotics (Grant no.
2022-Z03).

Declarations

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Diedrichs AL, Bromberg F, Dujovne D, Brun-Laguna K,Watteyne
T (2018) Prediction of frost events using machine learning and iot
sensing devices. IEEE Internet Things J 5(6):4589–4597

2. Sezer OB, Dogdu E, Ozbayoglu AM (2017) Context-aware com-
puting, learning, and big data in internet of things: a survey. IEEE
Internet Things J 5(1):1–27

3. Xiao Z, XuX, XingH, Song F,WangX, Zhao B (2021) A federated
learning system with enhanced feature extraction for human activ-
ity recognition. Knowl-Based Syst 229:107338. https://doi.org/10.
1016/j.knosys.2021.107338

4. ZhuH, ZhangH, Jin Y (2021) From federated learning to federated
neural architecture search: a survey. Compl Intell Syst 7(2):639–
657

5. Lin R, Xiao Y, Yang T-J, Zhao D, Xiong L, Motta G, Beaufays
F (2022) Federated pruning: improving neural network efficiency
with federated learning, vol 2022. Incheon, Korea, Republic of, pp
1701–1705. In: Automatic speech recognition; client devices; deep
learning; federated learning; federated pruning; large amounts; net-
work efficiency; neural-networks; recognitionmodels; speech data.
https://doi.org/10.21437/Interspeech.2022-10787

6. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA (2017)
Communication-efficient learning of deep networks from decen-
tralized data. In: Artificial intelligence and statistics, PMLR, pp
1273–1282

7. You Z, Yan K, Ye J, Ma M, Wang P (2019) Gate decorator: Global
filter pruning method for accelerating deep convolutional neural
networks, vol 32. Vancouver, BC, Canada, p. Baseline models;
iterative pruning; pruning algorithms; pruning methods; scaling
factors; special operations; state of the art; Taylor expansions

8. Lin M, Ji R, Wang Y, Zhang Y, Zhang B, Tian Y, Shao L (2020)
Hrank: filter pruning using high-rank feature map. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 1529–1538

9. Liu S, Yu G, Yin R, Yuan J, Shen L, Liu C (2022) Joint model
pruning and device selection for communication-efficient federated
edge learning. IEEE Trans Commun 70(1):231–244. https://doi.
org/10.1109/TCOMM.2021.3124961

10. Zhou, G., Xu, K., Li, Q., Liu, Y., & Zhao, Y. (2021) AdaptCL: Effi-
cient Collaborative Learning with Dynamic and Adaptive Pruning.
arXiv preprint arXiv:2106.14126

11. Jiang Y, Wang S, Valls V, Ko BJ, LeeW-H, Leung KK, Tassiulas L
(2022) Model pruning enables efficient federated learning on edge
devices. IEEE Trans Neural Netw Learn Syst 2022:1–13. https://
doi.org/10.1109/TNNLS.2022.3166101

12. Lin R, Xiao Y, Yang T-J, Zhao D, Xiong L, Motta G, Beaufays
F (2022) Federated pruning: improving neural network efficiency
with federated learning. arXiv:2209.06359

13. Hanson S, Pratt L (1988) Comparing biases for minimal network
construction with back-propagation. Adv Neural Inf Process Syst
1:177–185

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.knosys.2021.107338
https://doi.org/10.1016/j.knosys.2021.107338
https://doi.org/10.21437/Interspeech.2022-10787
https://doi.org/10.1109/TCOMM.2021.3124961
https://doi.org/10.1109/TCOMM.2021.3124961
http://arxiv.org/abs/2106.14126
https://doi.org/10.1109/TNNLS.2022.3166101
https://doi.org/10.1109/TNNLS.2022.3166101
http://arxiv.org/abs/2209.06359

Complex & Intelligent Systems (2023) 9:6999–7013 7013

14. Han S, Mao H, Dally WJ (2016) Deep compression: compress-
ing deep neural networks with pruning, trained quantization and
huffman coding, San Juan, Puerto rico. In: Complex neural net-
works; compression methods; dram memory; hardware resources;
Huffman coding; loss of accuracy; mobile applications; storage
requirements

15. Li H, Samet H, Kadav A, Durdanovic I, Graf HP (2017) Pruning
filters for efficient convnets. Toulon, France

16. Liu B, Wang M, Foroosh H, Tappen M, Pensky M (2015) Sparse
convolutional neural networks. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp 806–814

17. Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learn-
ing efficient convolutional networks through network slimming.
In: Proceedings of the IEEE international conference on computer
vision, pp 2736–2744

18. HeY, ZhangX, Sun J (2017) Channel pruning for accelerating very
deep neural networks. In: Proceedings of the IEEE international
conference on computer vision, pp 1389–1397

19. Molchanov P, Tyree S, Karras T, Aila T, Kautz J (2017) Prun-
ing convolutional neural networks for resource efficient inference,
Toulon, France. In: Classification tasks; computationally efficient;
convolutional kernel; gradient informations; Kernel weight; net-
work parameters; resource-efficient; Taylor expansions

20. Lee N, Ajanthan T, Torr PHS (2019) Snip: Single-shot network
pruning based on connection sensitivity, New Orleans, LA, United
states. In: Classification tasks; hyperparameters; iterative opti-
mization; network pruning; new approaches; recurrent networks;
reference network; sparse network

21. He Y, Liu P, Wang Z, Hu Z, Yang Y (2019) Filter pruning via
geometric median for deep convolutional neural networks acceler-
ation. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 4340–4349

22. Guo S, Wang Y, Li Q, Yan J (2020) Dmcp: differentiable markov
channel pruning for neural networks. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pp 1539–1547

23. Han S, Pool J, Tran J, Dally W (2015) Learning both weights and
connections for efficient neural network. Adv Neural Inf Process
Syst 28:25

24. He Y, Dong X, Kang G, Fu Y, Yan C, Yang Y (2019) Asymptotic
soft filter pruning for deep convolutional neural networks. IEEE
Trans Cybern 50(8):3594–3604

25. Shen S, Li R, Zhao Z, Zhang H, Zhou Y (2021) Learning to prune
in training via dynamic channel propagation. In: 2020 25th inter-
national conference on pattern recognition (ICPR), pp 939–945,
IEEE

26. Tonellotto N, Gotta A, Nardini FM, Gadler D, Silvestri F (2021)
Neural network quantization in federated learning at the edge. Inf
Sci 575:417–436

27. Bernstein J,WangY-X, Azizzadenesheli K, Anandkumar A (2018)
signsgd: compressed optimisation for non-convex problems. In:
International conference on machine learning, pp 560–569, PMLR

28. Sattler F, Wiedemann S, Müller K-R, Samek W (2019) Robust
and communication-efficient federated learning from non-iid data.
IEEE Trans Neural Netw Learn Syst 31(9):3400–3413

29. Xu J, Du W, Jin Y, He W, Cheng R (2020) Ternary compression
for communication-efficient federated learning. IEEETransNeural
Netw Learn Syst 2020:2598

30. Wen W, Xu C, Yan F, Wu C, Wang Y, Chen Y, Li H (2017) Tern-
grad: ternary gradients to reduce communication in distributed deep
learning, vol 2017. Long Beach, CA, United states, pp 1510–1520.
In: Accuracy loss; communication time; data parallelism; layer-
wise; network communications; performance model; source codes

31. Zhang H, Li J, Kara K, Alistarh D, Liu J, Zhang C (2017) Zipml:
training linearmodels with end-to-end low precision, and a little bit

of deep learning. In: International conference on machine learning,
pp 4035–4043, PMLR

32. Wu J, Huang W, Huang J, Zhang T (2018) Error compensated
quantized sgd and its applications to large-scale distributed opti-
mization. In: International conference on machine learning, pp
5325–5333, PMLR

33. Magnússon S, Shokri-Ghadikolaei H, Li N (2020) On maintaining
linear convergence of distributed learning and optimization under
limited communication. IEEE Trans Signal Process 68:6101–6116

34. Mishchenko K, Gorbunov E, Takáč M, Richtárik P (2019)
Distributed learning with compressed gradient differences.
arXiv:1901.09269

35. Strom N (2015) Scalable distributed dnn training using commod-
ity gpu cloud computing. In: Sixteenth annual conference of the
international speech communication association

36. Dryden N, Moon T, Jacobs SA, Van Essen B (2016) Communica-
tion quantization for data-parallel training of deep neural networks.
In: 2016 2nd workshop on machine learning in HPC environments
(MLHPC), pp 1–8, IEEE

37. Aji AF, Heafield K (2017) Sparse communication for distributed
gradient descent, Copenhagen,Denmark, pp 440–445. In:Absolute
values; convergence rates; gradient descent; machine translations;
positively skewed; sparse matrices; speed up; stochastic gradient
descent. http://dx.doi.org/10.18653/v1/d17-1045

38. Chen C-Y, Choi J, Brand D, Agrawal A, Zhang W, Gopalakrish-
nan K (2018) Adacomp: adaptive residual gradient compression
for data-parallel distributed training. In: Proceedings of the AAAI
conference on artificial intelligence, vol 32

39. XingH, Xiao Z, QuR, Zhu Z, Zhao B (2022) An efficient federated
distillation learning system for multitask time series classification.
IEEE Trans Instrum Meas 71:1–12. https://doi.org/10.1109/TIM.
2022.3201203

40. Zhuang Z, Tao H, Chen Y, Stojanovic V, Paszke W (2022) An
optimal iterative learning control approach for linear systems with
nonuniform trial lengths under input constraints. IEEE Trans Syst
Man Cybern Syst 2022:25

41. Zhou C, Tao H, Chen Y, Stojanovic V, Paszke W (2022) Robust
point-to-point iterative learning control for constrained systems:
a minimum energy approach. Int J Robust Nonlinear Control
32(18):10139–10161. https://doi.org/10.1002/rnc.6354

42. Stojanovic V, Nedic N (2016) Joint state and parameter robust esti-
mation of stochastic nonlinear systems. Int J Robust Nonlinear
Control 26(14):3058–3074. https://doi.org/10.1002/rnc.3490

43. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A,
Ivanov V, Kiddon C, Konečnỳ J, Mazzocchi S, McMahan HB,
et al (2019) Towards federated learning at scale: system design.
arXiv:1902.01046

44. Liu Z, Sun M, Zhou T, Huang G, Darrell T (2019) Rethinking
the value of network pruning, New Orleans, LA, United states. In:
Large models; learning rates; low-resource settings; network prun-
ing; parameterized model; pruning algorithms; pruning methods;
state of the art

45. Wen W, Wu C, Wang Y, Chen Y, Li H (2016) Learning structured
sparsity in deep neural networks, Barcelona, Spain, pp 2082–
2090. In: Classification accuracy; compact structures; computation
costs; computation resources; high demand; resource constrained
devices; structured sparsities

46. Wen D, Jeon K-J, Huang K (2022) Federated dropout a simple
approach for enabling federated learning on resource constrained
devices. IEEEWirel Commun Lett 11(5):923–927. https://doi.org/
10.1109/LWC.2022.3149783

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1901.09269
http://dx.doi.org/10.18653/v1/d17-1045
https://doi.org/10.1109/TIM.2022.3201203
https://doi.org/10.1109/TIM.2022.3201203
https://doi.org/10.1002/rnc.6354
https://doi.org/10.1002/rnc.3490
http://arxiv.org/abs/1902.01046
https://doi.org/10.1109/LWC.2022.3149783
https://doi.org/10.1109/LWC.2022.3149783

	Efficient federated learning on resource-constrained edge devices based on model pruning
	Abstract
	Introduction
	Related work
	Edge inference/training based on model pruning
	Efficient federated learning

	Approach
	Where to prune?
	Model pruning and mask
	Model aggregation and updating
	Convergence analysis

	Experiments
	Performance indicators
	Models and datasets
	Different pruning rates
	Different parameter selection criteria
	The efficiency of computation and communication
	Ablation study

	Conclusion
	References

