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Abstract

Feature selection and hyper-parameters optimization (tuning) are two of the most important and challenging tasks in machine
learning. To achieve satisfying performance, every machine learning model has to be adjusted for a specific problem, as the
efficient universal approach does not exist. In addition, most of the data sets contain irrelevant and redundant features that can
even have a negative influence on the model’s performance. Machine learning can be applied almost everywhere; however,
due to the high risks involved with the growing number of malicious, phishing websites on the world wide web, feature
selection and tuning are in this research addressed for this particular problem. Notwithstanding that many metaheuristics have
been devised for both feature selection and machine learning tuning challenges, there is still much space for improvements.
Therefore, the research exhibited in this manuscript tries to improve phishing website detection by tuning extreme learning
model that utilizes the most relevant subset of phishing websites data sets features. To accomplish this goal, a novel diversity-
oriented social network search algorithm has been developed and incorporated into a two-level cooperative framework. The
proposed algorithm has been compared to six other cutting-edge metaheuristics algorithms, that were also implemented in
the framework and tested under the same experimental conditions. All metaheuristics have been employed in level 1 of the
devised framework to perform the feature selection task. The best-obtained subset of features has then been used as the
input to the framework level 2, where all algorithms perform tuning of extreme learning machine. Tuning is referring to the
number of neurons in the hidden layers and weights and biases initialization. For evaluation purposes, three phishing websites
data sets of different sizes and the number of classes, retrieved from UCI and Kaggle repositories, were employed and all
methods are compared in terms of classification error, separately for layers 1 and 2 over several independent runs, and detailed
metrics of the final outcomes (output of layer 2), including precision, recall, f1 score, receiver operating characteristics and
precision—recall area under the curves. Furthermore, an additional experiment is also conducted, where only layer 2 of the
proposed framework is used, to establish metaheuristics performance for extreme machine learning tuning with all features,
which represents a large-scale NP-hard global optimization challenge. Finally, according to the results of statistical tests, final
research findings suggest that the proposed diversity-oriented social network search metaheuristics on average obtains better
achievements than competitors for both challenges and all data sets. Finally, the SHapley Additive exPlanations analysis of
the best-performing model was applied to determine the most influential features.

Keywords Extreme learning machine - Feature selection - Metaheuristics optimization - Social network search - Hyper-
parameters optimization - Diversification

Introduction
X Nebojsa Bacanin The sphere of network research and engineering that has,
nbacanin@singidunum.ac.rs in previous decades, led to the development of the world
X Yunyoung Nam wide web (WWW) has seen a constant stream of innova-
ynam@sch.ac.kr tions, development, and improvements. The web has moved
Extended author information available on the last page of the article from a niche technology to a staple of everyday life. With
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these developments came user convenience and many ser-
vices migrated to hybrid and even entirely online models
[1-3]. Shopping, trading, baking, business meetings, and
many other operations that deal with sensitive data on an
everyday basis now take place online [4, 5]. With all this in
mind, it is worth noting that malicious actors exist, and they
prioritize their interests over the privacy and security of oth-
ers [0, 7]. Malicious actors make use of many techniques and
tools during their operations.

Depending on the current goal, the methods used can vary
from intrusion tools to scanning and probing tools used to
evaluate systems for vulnerabilities. For example, by posing
as a trustworthy entity, an attacker can use social engineer-
ing techniques which involve tricking users into disclosing
sensitive information, such as login credentials or personal
information. The wide range of publicly available phishing
kits makes the job fairly easy even for the less technically
proficient actors. Other well know and applied methods for
obtaining sensitive information include using spoofing tech-
niques to create fake websites or emails that mimic legitimate
ones, or sending malicious software (malware) that can infect
a user’s computer and give the attacker unlimited access
[8, 9]. It is also important to note that these techniques
evolve along with the development of new methods used for
detection and counteraction. Researchers need to constantly
remain several steps ahead of malicious actors to maintain a
platform secure enough to support the convinces that make
the Web essential to modern life.

The field of artificial intelligence (AI) has seen many
developments in recent years due to the wide adaption of
computation across multiple fields, for example, business
[10], finance [11], various medical [12], and many other
fields [13], rely on the Al in daily operations. Accordingly,
Al presents many approaches to addressing real-world prob-
lems. Various methods tackle tasks differently, and with
varying degrees of success. The ability of Al to learn and
adapt to a changing landscape makes it a promising candi-
date for addressing problems in the ever-developing field of
web and network security in general. While traditional meth-
ods, such as firewalls, security certificates, blacklists, and
others, exist [14—17], they require constant monitoring and
maintenance to maintain an acceptable level of efficacy. By
applying Al to these problems, researchers have attempted to
improve existing models and provide an overall improvement
in network security. Many such applications exist that tackle
intrusion detection [18-20], detect attempts on exploiting
users through phishing attacks [21-23], uncover embedded
botnets in IoT networks [24-26], as well as tackle vectors of
spread for malicious software such as spam [27-29].

The Al field in general can be roughly divided into two
categories: machine learning (ML) and metaheuristics opti-
mization algorithms. Machine learning and metaheuristics
differ in terms of their objective and methodology. The ML
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aims to recognize patterns and correlations in data to facili-
tate forecasting or decision-making, whereas metaheuristics
are employed to discover effective solutions for optimiza-
tion challenges. The ML algorithms are typically trained
on vast data sets to enhance their precision, whereas meta-
heuristics do not necessitate big data sets and are usually
more computationally economical. In general, ML and meta-
heuristics are both important tools in the field of Al, but they
serve different purposes and employ different approaches to
problem-solving.

A popular group of ML techniques, that models princi-
ples observed in human brains are artificial neural networks
(ANN) [30]. They present a simplified model of the internal
mechanisms observed in various nerve clusters. Neural net-
works remain popular due to their ability to tackle nonlinear
approximations by processing input data. In addition, their
versatility enables them to tackle a wide range of problems,
that are otherwise challenging to address using traditional
methods [31, 32]. However, despite many advantages, neu-
ral networks are computationally demanding, making them
slower to train and evaluate. This led to many researchers
developing various methods for improving their performance
while preserving the positive traits that make them appealing
[33-35].

One of the most efficient ANN types is the extreme learn-
ing machine (ELM) model, because it does not require tradi-
tional training, which is time and computationally consuming
[36]. The ELM was originally proposed as a method for train-
ing single-hidden layer feed-forward networks (SFFN) [36].
It makes use of the Moore—Penrose (MP) generalized inverse
to calculate output weights, while the input and hidden layer
biases are generated randomly. The approach attempts to
avoid problems present in traditional gradient-descent algo-
rithms, e.g., getting stuck in local minima, vanishing and
exploding gradients, and improve on the much slower con-
vergence rate, providing better general performance.

However, ML like every other field suffers from some
challenges and two of the most important ones are fea-
ture selection and tuning (hyper-parameters optimization).
To achieve satisfying performance, every machine learning
model has to be adjusted for a specific problem, as according
to the no free lunch (NFL) theorem [37], the efficient uni-
versal approach for all practical challenges does not exist. In
addition, most of the data sets contain irrelevant and redun-
dant features that can even have a negative influence on the
model’s performance. In most cases, both above-mentioned
ML challenges are NP-hard instances and since metaheuris-
tics have proven as successful NP-hard problem solvers [38,
39], this is where these two groups of Al methods can be
hybridized.

The ELMs can be tuned and adjusted for specific problems
in two ways. First, the number of hidden neurons needs to be
high enough to ensure good generalization, conversely, net-
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work structures with only a few neurons in the hidden layer
may exhibit degraded performance. Second, the model’s
performance, in terms of classification/regression metrics,
depends to a large extent on the values of randomly initial-
ized weights and biases. Every problem is specific and since
the ELMs do not undergo traditional training, e.g., using
stochastic gradient descent (SGD) based algorithms, the final
output depends on initial randomly generated weights and
biases values. Therefore, determining adequate hidden input
weights and biases for each specific practical application
presents an additional and important optimization challenge
in this area.

Population-based metaheuristic algorithms have even
been successfully utilized to address NP difficult problems,
considered impossible to solve with traditional computa-
tional methods [40]. By mathematically modeling behaviors
of individual agents, that obey simple rule sets, and with
the use of an objective evaluation function, metaheuristics
enable complex behaviors to manifest on a larger scale. A
promising novel population metaheuristics for addressing
optimization problems is the social network search (SNS)
metaheuristics [41]. It simulates user interactions on social
networks in a simplified manner by modeling user moods.
In turn, replicating the flow of information and propagation
of ideas and views. The way by which users generate popu-
larity on social networks forms the basis of the functionality
of this approach. These mechanisms make the novel algo-
rithm an attractive option for researchers tackling various
optimization problems as it shows promising results under
test conditions [41].

The motivation, as the goal, behind the research proposed
in this manuscript is to try to further improve phishing web-
site detection by tuning the ELM, which utilizes the most
relevant subset of features in the available phishing data sets.
Such motivation stems from two facts: notwithstanding that
many approaches have been devised for both, feature selec-
tion and ML tuning challenges, there is still much space for
improvements, because the method that obtains satisfying
accomplishments for every practical task cannot be created
[37]; one of the most important challenges on the web is
phishing and developing intelligent ML classifier for detect-
ing such malicious websites is among top priorities in this
domain [42-44].

A novel diversity-oriented SNS algorithm has been devel-
oped to accomplish above mentioned objective and integrated
into a two-level cooperative framework for feature selection
and ELM tuning. Layer 1 of devised framework performs fea-
ture selection, while the best-obtained subset of features has
then been used as the input to the framework’s level 2, where
metaheuristics perform tuning of ELM, respecting to the
number of neurons in the hidden layer and weights and biases
initialization. Notwithstanding that wrapper-based feature
selection can be computationally demanding [45], the level

1 of proposed framework implements wrapper feature selec-
tion approach, because compared to other approaches for this
challenge it obtains better performance in terms of classifica-
tion accuracy and smaller chosen subset of relevant features.

In addition, to establish metaheuristics performance for
a larger scale NP-hard challenge, a second experiment, that
uses only the layer 2 part of the framework, where the ELM
was tuned with all available features, is also conducted.
The proposed boosted SNS algorithm has been compared to
six other cutting-edge metaheuristics algorithms, that were
also implemented in the framework and tested under the
same experimental conditions. Finally, the SHapley Additive
exPlanations (SHAP) analysis was applied to the proposed
model, aiming to interpret the best performing model and to
discover the most influential features of two considered data
sets.

Based on everything stated so far, the main contributions
of this work may be summarized as the following:

1. proposal of a novel SNS algorithm based on the solution
diversity adapted for feature selection and ELM tuning

2. implementation of the cooperative two-layer framework
that performs feature selection (layer 1), and ELM opti-
mization (layer 2)

3. integration of developed enhanced SNS in the framework
to tackle a practical issue of phishing website detection.

The remainder of this work is structured as follows: Sect. 2
covers works related to the subject matter followed by a
summary of the concepts behind ELM. Section3 presents
methods proposed in this research, followed by an overview
of the experimental setup and discussion, as well as valida-
tion, of the attained results in Sect. 4. Finally, the conclusion
and possible future works in the field are given in Sect.S5.

Literature review and preliminaries

This section provides basic background information related
to proposed research. First, a concept of feature selection is
introduced, followed by ELM mathematical formulation and
details of metaherustics optimization methods, along with
relevant literature review.

Feature selection

The ML models frequently try to find useful patterns and
connections in large data sets, packed with redundant and
inessential data, that have a profound influence concerning
models’ accuracy and computational complexity. Frequently,
the said data sets are high-dimensional, which also impedes
ML model performance. This occurrence refers to the curse
of dimensionality [46].
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Hence, identifying essential information is crucial to
tackling this issue. For this reason, the technique of dimen-
sionality reduction [47], where the classification problem
is simplified, is a main pre-processing task for machine
learning. It is an action, where the data are transformed
from a high-dimensional domain to a lower dimension by
reducing the number of classification variables while still
keeping enough meaningful attributes of the original data
set. There are two approaches to dimensionality reduction:
feature extraction and feature selection. While feature extrac-
tion [48] generates new variables derived from the primary
set of data, feature selection chooses a subset of relevant
informative variables for the desired objective.

The purpose of feature selection is to determine the rele-
vant subset from high-dimensional data sets eliminating the
insignificant features, thus enhancing the classification accu-
racy for ML. There are three feature selection methods: filter,
wrapper, and embedded methods, as per [45].

Wrapper methods utilize learning algorithms, like ML
classifiers, to evaluate feature subsets to find relevant fea-
tures, i.e., the feature selection challenge is treated as search
problem. Wrapper methods use a specific ML algorithm as
a black-box model to evaluate the usefulness of each feature
subset. This method involves evaluating each feature sub-
set by training a machine learning model on the subset and
measuring its performance. The performance of the model is
then used as a criterion for selecting the best feature subset.
Wrapper methods tend to provide better results than filter
methods in terms of classification accuracy and smaller fea-
ture subsets, but they can be computationally expensive as
they involve training and evaluating a model for each subset
of chosen features [45].

Filter methods do not use a training process and instead
designate a score to feature subsets using statistical or math-
ematical metrics that evaluate the relationship between each
feature and the target variable. Filter methods consider the
relevance and redundancy of features, and those with the
highest scores are selected for further analysis. Due to this
property, this method is not as computationally demanding
as the wrapper and can be applied to a broad range of data
sets, making them a popular choice for feature selection in
many applications [45, 49].

Finally, the embedded method employs feature selection
as a segment of the model creation process, i.e., meth-
ods perform feature selection during the model training.
These methods are more accurate than filters, with the same
execution speed. With computational complexity in mind,
embedded methods are in between the methods mentioned
above.

@ Springer

Extreme learning machine (ELM)

A relatively novel learning algorithm, ELM is applied to
training single-layer feed-forward network (SLFN) [50]. In
the initial stage, the algorithm randomly initializes weights
and biases for hidden layer neurons. This is followed by com-
putational steps to determine output weights by applying
the MP generalized inverse. Hidden neuron layer random-
ization presents an interesting and demanding challenge
for researchers. This hidden layer transforms input values
into higher dimensional ELM feature space, using nonlin-
ear transforms. With this approach, the process of attaining
a solution is simplified, since the probability of linear sepa-
rability of inputs across feature space increases.

With a training set 8 = (xi,ti)lxi € Rt € R, i =
1, ...., N, the output with L hidden neurons, using g (x) as the
activation function, can be determined according to Eq. (1):

L
Zﬁig(wi-xj+bi):yj,j:1,...,N e))

i=1

where b bias and w; = [wigm, ..., w;qg]T are the weights
of a hidden neuron. Output weights are represented by f; =
[Bits .-, ,Bim]T, and w; - x; is the inner product of w; and
Xj.
Standard SLNF parameters g;,i = 1,...L can be
approximated to Eq. (2):

L
> Bigwi-xj+b)=t;.j=1,....N )
i=1

In addition, the parameter T can be computed according
to Eq. (3):

T = Hp 3)
where H is the hidden layer output matrix seen as in Eq. (4):

gwy -x1 +by) ... glwp -x1 +br)

h = : : 4)
gwi-xy +0b1) ... gtwr -xy+br) |y,
Furthermore, 8 and T are shown in Eq. (5):
IBiT tiT
B=1: and T = | . 5)
T T
'BL Lxm In N xm

Output weights, represented S are calculated using Eq. (6)
The pseudocode for the ELM method applied to SLFN
can be seen in Algorithm 1.
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Algorithm 1 Pseudocode for the ELM

With training data R = (x;, )l; € R/, t; € R™,i =1, ..., N, g(x)
as the activation function, and N the as the number of hidden nodes
Step 1: Assign w; and b; randomly

Step 2: Compute hidden layer output matrix H

Step 3: Compute output weight

where f is calcuated according to Eq. (6):
B=H'T (6)

with H representing the Moore—Penrose generalized inverse
of H.

It is worth noting that many ELM applications and
improved ELM approaches are presented in modern liter-
ature. Some of the more notable applications and variations
include: pattern recognition, where neurons deemed irrel-
evant are eliminated via pruning (pruned ELM-P-ELM)
[51]; a proposal of an improved method called the optimally
pruned ELM (OP-ELM) [52], which constructs larger net-
works by applying the standard ELM algorithm, has been
applied to regression and classification problems; implemen-
tation of evolutionary ELM (E-ELM) that takes advantage
of differential evolution (DE) algorithm to make adequate
adjustments to weights and biases within a network [53].

Metaheuristics optimization

When dealing with optimization problems, metaheuristic
algorithms are a popular choice among researchers due to
their ability to address complex problems as well as higher
dimensional data sets, within acceptable time periods and
realistic resources. A subgroup among these is population-
based algorithms, with the most prominent representative,
swarm intelligence [54], that mimics a group of organisms
from nature. Often nature-inspired, metaheuristics model the
actions of individuals with simple rules. By following these
rule sets, separate, independent agents act as a cooperative
group, working towards a common goal, often aided by exter-
nal objective (fitness) functions that are used to assess its
performance. This mechanism allows for complex behav-
iors to manifest on a global scale. The exact mechanisms by
which optimization is achieved depend on the details of the
selected algorithm.

However, most metaheuristics rely on exploration and
exploitation as primary internal mechanisms [55]. In the
exploration stage, the algorithms focus on broadly cover-
ing a large area of the search space, looking for promising
regions. When certain criteria are met, the algorithm transi-
tions toward exploitation. In this stage, the primary goal is to
increase the resolution of results around promising areas to
gain more favorable outcomes. Due to the stochastic nature of
these stages, an optimal solution is not guaranteed; however,

a satisfying solution can be generated within a reasonable
time span [56, 57].

Metaheuristic algorithms have been used to successfully
tackle problems considered NP-hard which are often impos-
sible to resolve using traditional methods [58—60]. As such,
they continue to be a popular choice for researchers owing
in part to their problem-solving abilities, relative simplicity,
and low computational demands. Many algorithms have been
developed to model various observed phenomena.

Some notable nature-inspired algorithms, that fall into
the category of swarm intelligence, include the artificial bee
colony (ABC) [61] algorithm, often used to improve perfor-
mance through many practical applications [62—-64]. Other
examples include the whale optimization algorithm (WOA)
[65], which models a hunting strategy unique to a species of
whale. This approach is popular among researchers for its
interesting search patterns and has successfully been applied
to many real-world problems [39, 66, 67]. In addition, the
gray wolf optimization (GWO) [68] also relies on model-
ing hunting techniques and has likewise proven effective
when applied to real-world challenges [69-71]. Firefly algo-
rithm (FA), introduced by [72], mimics the social behavior
of fireflies, and is considered to be a very powerful opti-
mizer, with a wide range of recent applications that include
credit card fraud detection [73], intrusion detection classifier
optimization [74], medical diagnostics [75], neural networks
optimization [35, 76, 77], plant classification [78], and many
others.

Other population-based metaheuristics have been inspired
by basic mathematical principles. For example, the sine
cosine algorithm (SCA) [79], relies on trigonometric formu-
las as its primary mechanisms for exploration and exploita-
tion. Researchers have successfully applied the SCA in
various fields with favorable results [80—82]. Another exam-
ple includes the arithmetic optimization algorithm (AOA)
[83], which makes use of arithmetic operations as an inspira-
tion. This method has also been applied to various tasks with
promising outcomes [84—86].

Metaheuristic algorithms inspired by social interactions
form the basis of social-based metaheuristics [87]. These
algorithms make use of social interaction models as the basis
for their function. They sometimes draw inspiration from
purely social adaptations or tactical approaches found in
sports and competitions. Some notable examples include the
teaching-learning-based optimization (TLBO) [88], which
simulates the effect teachers have on their pupils in a school
environment that is a representation of the algorithms popu-
lation. When a teacher shares information with a student the
quality of teaching affects the student’s grade represented in
the fitness value. This approach has given promising results
when applied to resolving complex problems [89-91]. One
more metaheuristics example that models social interactions
is league championship algorithm [92], and it also gives
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promising results when applied to real-world problems [93—
95].

One of the most popular research fields currently is
endeavors in hybridization between population-based meta-
heuristics and ML. Numerous recent publications show very
successful hybridization of the ANN with swarm intelligence
algorithms. Some of the most representative applications
include COVID-19 cases prediction [96], classification and
severity estimation [97-100], brain tumor classification [31,
101], cryptocurrencies trends estimation [102], intrusion
detection [103-105], and many others.

Itis also worth noting that ELM has also recently been sub-
jected to swarm intelligence optimization, as several recent
research suggests [106—108]. Moreover, in the modern litera-
ture, many population-based approaches that perform feature
selection using various machine learning models can be iden-
tified [109, 110].

Proposed method and simulation framework

This section first presents the original implementation of the
SNS algorithm, followed by the observed drawbacks of the
basic version. Finally, the novel improved version of the SNS
algorithm is provided along with details of two-level frame-
work used for simulation and solution’s encoding strategy.

Social network search

Social behaviors are part of human nature, and in the mod-
ern communication age, these behaviors have adapted to
informational technologies. Social media networks have
become a part of everyday life. Just as technology adapted to
human nature, humans adjusted social behaviors to emerging
technologies, developing methods for interaction on social
networks. The SNS algorithm models the methods users on
social networks implement to gain popularity. This is done
through the implementation of the user’s moods in the algo-
rithm. These moods guide the behavior of simulated users
and accordingly govern the behavior of the algorithm [41].
In the algorithms model, simulated user actions are
affected by the mood of those around them. These moods
form simplified representations of those seen in real life and
include imitation, conversation, disputation, and innovation.
Imitation models are one of the main characteristics
present in social media. Users follow friends and family as
well as people they like. When a user shares a new post,
users following them get informed of this and are given the
opportunity of perpetuating this information by sharing. If
the opinions expressed in this post pose challenging con-
cepts, users will strive to imitate their views and post similar
topics. The mathematics behind this model is expressed in

Eq. (7):
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Xinew = Xj +rand(—1,1) x R
R =rand(0,1) x r @)
r=X;—Xj,

with X ; being the jth users view vector selected at random
where i # j. Accordingly, X; represents the view vec-
tor of the ith user. Random value selection is denoted with
rand(—1, 1) and rand(0, 1), representing the section or a
random value with intervals of [—1, 1] and [0, 1] respect-
fully. While in the imitation mood, new solutions will be
created in the imitation space, using a mixture of radii of
shock and popularity. The radius of shock R is proportional
to the influence of the jth user, while its magnitude is based
on a multiple of r. Likewise, the value of r is dependent on
the popularity of the jth user and is computed according to
differences in opinions of these users. The final influence of
the shock is determined by multiplying the random vector
value [—1, 1], with positive component values if the shared
opinions match, and negative values if they do not.

Social networks encourage communication between indi-
vidual users about different issues. This is mirrored by the
algorithm in the conversation mood. In this mood, simu-
lated users learn from one another exchanging information
privately. Through conversations, users gain insight into dif-
ferences in their opinions. This allows them to draft a new
perspective on issues. This mechanism is modeled by Eq. (8):

Xinew = Xr + R
R =rand(0,1) x D 8)
D =sign(fi — fj) x (Xj — Xi),

in which X} is the randomly selected issues vector, R is the
chats effect based on the difference in opinions and represents
the opinion change towards Xy. The difference in opinions is
represented by D. A random value selection between [0, 1]
is represented by rand(0, 1). In addition, chat vectors of
randomly selected users i and j are represented by X; and
X j, respectively. It should be noted that when selecting users
Jj # i # k. The sign(f; — f;) determines the direction of
X via comparison. Should a user’s opinion change through
conversation it is considered a new view and is accordingly
shared.

While in the disputation mood users elaborate and defend
opinions among themselves. On social networks, this is usu-
ally done through a debate in comment or group chat sections,
where users with differing views may be influenced by the
reasoning of others. In addition, users may form friendly
relations between themselves, forming additional discussion
groups. The algorithms model this mood by considering a
random number of users as cementers or group members.
The way opinions are shaped during this process is depicted
in Eq. (9):
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Xinew = Xi +rand(0,1) x (M — AF x X;)

2 X ©)
Nr
AF =1+ round(rand),

M =

with X; representing the ith users view vector, rand (0, 1)
a random vector with the interval [0, 1], M being the mean
value of views. The admission factor AF is a random value
of 1 or 2 and represents the users having their own opinions
discussed among peers. The input is rounded to the nearest
integer using the round() function, while rand represents a
random value in the interval [0, 1]. The number of comments
or members of a discussion group is depicted in N, and is a
random value between 1 and N, where Ny, is the total
number of users of the social network.

When considering an issue, occasionally users share orig-
inal concepts when they can understand the nature of the
problem differently. This process is modeled through the
innovation mood. Sometimes a specific topic may pose dif-
ferent features, with each one affecting the issue as a whole.
By questioning ideas behind the established norm, the fun-
damental way of understanding might change, resulting in
a novel view. This approach is modeled by the algorithm in
the innovation mood and can be mathematically expressed
according to Eq. (10):

X{ oy =t x x4+ (1= 1) x 1y,
nd, =lbg +randy x (ubg — lbg) (10
t = randy,

where d stands for the dth randomly chosen variable withing
the [1, D] interval, and D representing the number of vari-
ables available for the current problem. Additional random
values in in the [0, 1] are represented by rand; and rand,.
Minimum and maximum values for the dth value of n¢,, are
represented by uby and [b,; respectfully. The current idea for
the dth idea is represented by X ;.1, with the j user selected
randomly, so that j # i. Should the ith user change their
opinion, a new idea is formed and becomes nZ,, . Finally,
a new view x¢,, is formed on the dth dimension as a new
interpolation of the current idea.

The dimension shift in x,ﬁ’ew introduces an overall switch
in concept and may be considered a new view to share. This
mechanism is modeled according to Eq. (11):

Xinew:[xleZ,XS»-u -xd .,XD], (11)

> Minew? t

where, as in previous equations, xl.dn o TEDTESENtS a new
insight on an issue for the dth point of view, replaced with
the current one xl.d.

To construct the initial network, parameters for the number

of users, maximum iterations as well as limits are set. Each

initial view is created according to Eq. (12):
Xo=1b+rand(0,1) x (ub — 1b) (12)

in which X stands for each users initial view vector, a ran-
dom value in the interval [0, 1] is represented by rand (0, 1),
and upper and lower bounds of each parameter are repre-
sented as ub and Ib, respectively.

When addressing maximization problems, Eq. (13), is
used by the algorithm to limit views:

X, = X;, fXi) < f(Xinew) (13)

i news f(Xl new = f(Xl))
Deficiencies and complexity of the social network search
Algorithm

The original implementation of SNS has been established as
an exceptional metaheuristics with respectable performance,
yet, certain drawbacks have been noticed. Due to the lack
of exploration power in the early rounds of the execution,
the basic SNS tends to linger in the sub-optimal areas of the
search domain, as a result of premature convergence. As a
consequence, the resulting solutions’ quality is not satisfac-
tory.

According to the previous research with the SNS algo-
rithm and additional simulations against large-scale opti-
mization challenges for the purpose of this research (bench-
mark CEC bound-constrained testing suite and practical
ELM tuning task), the most significant cons of the basic
SNS algorithm are weak exploration mechanism and the
inappropriate trade-off between exploration and exploitation
[73, 111, 112]. Conversely, the SNS local search process is
guided by relatively strong exploitation and population diver-
sity condenses rapidly throughout the algorithm run.

In runs, when the algorithm can not find a proper search
space part in early iterations, the whole population conver-
gences towards sub-optimum domains, rendering final results
which are too far from optimum. These scenarios are facili-
tated by above mentioned relatively strong SNS exploitation.
However, when the algorithm ’is lucky’ and the initial ran-
dom population is generated around the optimum region,
guided by strong exploitation, fine-tuned search around the
promising solutions is conducted even in early iterations and
final rendered results are of high quality.

Concerning the complexity of the basic SNS algorithm,
the original publication [41] examines it on two levels, during
initialization and within the main loop of the algorithm. At
the start of the algorithm execution, during initialization, a
new pseudo-random population of individuals is produced,
followed by the evaluation of the solutions. The complexity
of producing the random individuals is O(NP - D), NP
denoting the count of users, while D represents the problem’s

@ Springer



7276

Complex & Intelligent Systems (2023) 9:7269-7304

dimensionality. The fitness function evaluation complexity
is obtained by O(NP) - O(F(x)), where F(x) marks the
objective function being optimized.

The level of popularity is obtained through the main loop
that iterates 7 times (7 denotes the maximum number of
iterations), producing a new solution for every user as the
new view and evaluating it in every iteration. Therefore, the
complexity of the main loop can be defined as O(T - N P- D),
and the complexity of fitness functions evaluations over the
rounds can be determined as O(T - NP) - O(F (x)).

According to the common practice of establishing com-
putational exhaustiveness of metaheuristics, complexity is
often calculated with respect to fitness function evaluations
(FFEs), as it is the most complex computing operation
[113]. Accordingly, in terms of FFEs, the complexity
of SNS metaheuristics can be observed as O(SNS) =
O(NP)+ O(T - NP).

It can be concluded that, despite observed drawbacks and
taking into account relatively low computational complexity,
the SNS is a promising algorithm for solving NP-hard opti-
mization tasks; however, there is space for its enhancements.

Improved SNS algorithm

As it was already pointed out, the fact that SNS exhibits
strong exploitation combined with weak exploration, leads
the to low population diversity and premature convergence.
In other words, the final results at large extent depend on the
solutions’ positions in the initial random population.
Improved SNS algorithm proposed in this research attempts

to tame the lack of exploration through the establishment
of the adequate population diversity during the initialization
procedure and through the entire algorithm’s run. With this in
mind, two modifications are introduced in the original SNS
metaheuristics: novel initialization scheme and an instrument
to maintain the satisfactory solutions diversity throughout the
whole run of the algorithm.

Novel initialization scheme

The algorithm suggested in this research utilizes a traditional
initialization equation for creating the solutions in the initial
population:
Xi’j=lbj~|—1ﬂ-(ubj—lbj), (14)
where X; ; denotes the jth component of ith individual, Ib;
and ub; define the lower and upper boundaries of parameter
J, while ¢ represents a pseudo-random value derived from
the normal distribution in range [0, 1].

Nevertheless, as demonstrated in [114], it is possible to
cover wider area of the search domain if the quasi-reflection-
based learning (QRL) procedure is added to the individuals
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created by Eq. (14). Consequently, for each individual’s
parameter j (X ;), a quasi-reflexive-opposite element (X;?’r)
is obtained by

Ibj + ubj
X;],r:md<1—u]9xj>’

2 (15)

where the function rnd is utilized to select the pseudo-

Ib; b
random value within [ —2 tud)

, xj] range.

According to the QRL, the proposed initialization scheme
is not introducing the additional overhead to the algorithm
in respect of FFEs, as it starts by initializing only N P /2
individuals. Utilized initialization scheme is presented in

Algorithm 2.

Algorithm 2 Initialization scheme based on QRL procedure
pseudo-code

Step 1: Generate population P! of N P /2 individuals by applying
Eq. (14)

Step 2: Generate QRL population P?" from the P/ using Eq. (15)
Step 3: Produce starting population P by merging P"* and P9"
(PUPT)

Step 4: Obtain fitness for each individual in P

Step 5: Sort all solutions in P in respect of fitness

According to the results presented in the experimental sec-
tion, the introduced initialization scheme contributions are
twofold. It enhances the diversification at the start of the
algorithm’s run, and it also provides an initial boost for the
search procedure, because with the same number of individ-
uals larger search space is covered.

Mechanism for maintaining population diversity

One way to monitor the converging/diverging extent of the
algorithm’s search procedure is diversification of the popula-
tion, as described by [115]. The approach taken in this paper
utilizes one recent definition of the population diversity met-
rics, the L1 norm [115], which includes diversities obtained
over two components—individuals in the population and the
dimensionality of the problem.

The research presented in [115] also indicates the impor-
tance of data obtained from the dimensionwise component of
the L1 norm, that can be used to evaluate the search process
of the tested algorithm.

Assuming that m represents the number of individuals
in the population, and n defines the dimensionality of the
problem, the L1 norm is formulated as shown in Eq. (16 -
18):

(16)

1 m
= 3wy

Xj =
i=1
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1 _
Dj":ZE]xij—xj (17)
1=
1 n
DP = — § DY, (18)
n .
i=1

where X denotes the vector with mean positions of the
solutions in each dimension, D;’ represents the solutions’
position diversity vector as L 1 norm, and D” marks the diver-
sity value, as a scalar value, for the entire populace.

During the early rounds of the algorithm’s execution,
where the individuals in the population are produced by uti-
lizing the common initialization equation (14), the diversity
of the entire population should have a high value. Still, in
later rounds, when the algorithm is converging to optimum
(sub-optimum), this value should be decreased dynamically.
Introduced improved SNS method uses the L1 norm to man-
age the population’s diversity during the execution of the
algorithm by applying the dynamic diversity threshold (D;)
parameter.

The mechanism for maintaining population diversity takes
into account an auxiliary control parameter, nrs that denotes
the number of replaced solutions. This mechanism is being
executed as follows: at the start of the algorithm’s run,
the initial value of D; (D;p) is obtained; in every itera-
tion, the condition Df < D, is examined, where DP
represents current population diversity; if the condition is
fulfilled (diversity of the population is not satisfactory), nrs
of the worst individuals are substituted by the random solu-
tions, produced analogously as in the population initialization
expression.

With respect to the empirical simulations and theoretical
analysis, the expression that is used to obtain Dyy can be
formulated in the following way:

NP

(ubj —1bj)
Po=2 "5 Np 19
j=I

Equation (19) follows the assumption that most of the
individuals’ components will be produced in the proximity of
the mean of the lower and upper boundaries of the parameters,
as given by Eq. (14) and Algorithm 2. Nevertheless, as the
algorithm progresses, assuming that the population will move
in the direction of the optimal domain of the search region,
the D; should decrease from the starting value D; = Dyg in
the following way:

Dyt =D —D; - —, (20)

t
T

where ¢ and ¢ 4+ 1 denote current and subsequent iterations,
respectively, while T represents the maximum number of

rounds in a single run. Consequently, as the algorithm pro-
gresses, the D; is dynamically decreasing, and at the end,
above described method will not be triggered, regardless of
the DP.

Inner workings and complexity of the proposed algorithm

With respect to the introduced modifications, novel proposed
SNS metaheuristic has been named diversity oriented SNS
(DOSNS). The computational complexity of the suggested
DOSNS is not greater than the basic SNS in terms of F FEs.
First of all, novel initialization scheme does not impose
additional F F Es overhead. Similarly, mechanism for main-
taining population diversity replaces nrs worst solutions
regardless newly generated random individuals have better or
worse fitness; therefore, its eligibility is not validated. Finally,
the complexity of the DOSNS in terms of the F'F'Es can be
expressed as: O(DOSNS) = O(NP)+ O(T - NP).,

The DOSNS inner-working procedures are provided in
Algorithm 3. As it can be seen from the proposed pseudo-
code introduced modification are additions to the original
SNS algorithm [41].

Feature selection and tuning framework

As described earlier, the proposed DOSNS algorithm was
adapted to address the feature selection and ELM’s hyper-
parameters tuning tasks, as part of the hybrid framework
between metaheuristics and ML, that has been developed.
Tuning of the ELM takes into account both, determining the
number of neurons in the hidden layer (nn), and weights and
biases values initialization, that link the input features with
the hidden layer.

Devised framework consists of two levels—Ilevel 1 (L1),
that deals with feature selection and level 2 (L2), that per-
forms ELM tuning. Levels in two-level framework can be
used independently, i.e., performing only feature selection
or ELM tuning. In addition, the L1 can execute in a cooper-
ative or individual mode. When set to cooperative mode, all
metaheuristics included in the framework perform feature
selection independently; however, at the end of execution
(after predetermined number of runs), selected feature sub-
set generated by best performing metaheuristics is used as the
input to L2 and then all metaheuristics perform ELM tuning
using the same set of selected features. Conversely, if the L1
is set to individual mode, than all metaheuristics use their
own best set of selected features from L1, as an input to L2,
regardless of the classifier performance with the chosen set
of features.

As already emphasized in Sects. 1 and 2.1, notwithstand-
ing that the wrapper-based feature selection can be compu-
tationally demanding [45], the L1 of proposed framework
implements wrapper feature selection approach, because
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Algorithm 3 Pseudocode for the DOSNS algorithm

Set number of solutions (users), T', [b, ub,t =0
Initialize starting population P of N P solutions according to Algo-
rithm 2
Determine values of D;y and D;
Evaluate each user (solution) according to objective function
i=0
do
if (i > N) then
t=t+1
i=0
end if
i=i+1
Mood = rand(1,4)
if (Mood == 1) then
Create new views based on Eq. (7)
else if (Mood == 2) then
Create new views based on Eq. (8)
else if (Mood == 3) then
Create new views based on Eq. (9)
else if (Mood == 4) then
Create new views based on Eq. (10)
end if
Limit new views According to Eq. (13)
Evaluate new view based on the objective function
if (New view better than current view) then
Replace old view with new view and share it
else
Keep old view, don’t share new view
end if
Calculate D
if (D* < D;) then
Replace worst nrs with solutions created as in (14)
end if
Asses the population
Find the current best
Update D; by expression (20)
while (r < T)
Return Optimal Solution
Return Overall and detailed optimization statistics and visualize

compared to other approaches for this challenge it obtains
better performance in terms of classification accuracy and
smaller chosen subset of relevant features [45]. In this par-
ticular case, the calculation of objective function for each
metaheuristics individual involves training and testing ML
classifier based on the selected features subset.

The framework is developed in Python using machine data
science and ML libraries: numpy, scipy, pandas, matplotlib,
seaborn and scikit-learn. The ELM was implemented from
the scratch as custom library, since it is not available in scikit-
learn.

Metaheuristics incorporated into the framework are encoded

using flat encoding scheme (vector), and the length of the
solution depends of the level of the framework. In L1 of the
framework every individual in the population is represented
as a vector with length L = nf, where nf represents the total
number of features in the data set.
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For framework L2, one individual represents the ELM’s
hyper-parameter nn and weights and biases values between
the input features and neurons in the hidden layer. The length
of the solutions depends on the tuned nn and number of
selected features (nsf) from L1. Therefore, the L2 solutions’
length is given as: L = 1 +4nn-nsf +nn. The first parameter
represents the number of neurons, which is simple scalar
integer value, nn -nsf are continuous parameters that encode
weights values, while the nn components, which are also of
a real data type, denote hidden layer biases. It is noted that
all metaheuristics solutions in the L2 are of variable lengths
(its length changes over iterations), because they dependent
on the determined nn.

In the L1, the search is performed in the binary search
space, while in the L2, the solutions’ vectors consist of inte-
ger (nn) and real parameters (weights and biases). Therefore,
as the result, binary and continuous variants of DOSNS and
other metaheuristics incorporated into the framework have
been utilized. For feature selection task, in L1 of the frame-
work, to map the continuous search region to binary, it is
necessary to use a transfer function, that has been selected
empirically, through numerous simulations with sigmoid,
threshold and hyperbolic tangent function transfer functions
that are common choice in recent literature [81, 116-119].
After executing experiments with a variety of transfer func-
tions, tanh yielded the best result, and it was chosen and used
in this research.

Discrete variable, that encode the nn, have been rounded
up to the nearest integer value, because of the large search
domain. The search equation has not been modified to match
the discrete domain, as the empirical simulations indicated
that there is no notable enhancement, and the simple rounding
up is preserving the most of the resources.

Therefore, in the L1 of the framework, a binary tanh-
based binary versions of metaheuristics are employed, e.g.,
bDOSNS, while in the L2 standard metaheuristics versions
for real-parameters optimization are used, e.g., DOSNS.

For the L1 part of the framework, k-nearest neighbor
(KNN) is chosen as the classifier with its default parame-
ters from scikit-learn library. According to previous research
[118, 120], KNN is the most common choice for feature
selection tasks, because it is computationally efficient. Like-
wise, the most commonly used objective function for feature
selection challenges [117, 118], that takes into account the
KNN’s classification error rate (err) and the number of cho-
sen features (nsf), is used in this research:

F=a~err+ﬁ~if, 21

n
nf

where o and B are weight coefficients for determining the
relative importance of err tonsf,and g = 1 — «.
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The objective function for the L2 framework is simply the
classification error rate. Since some of the data sets are only
slightly imbalanced, the error rate is viable fitness function.

Block diagram of proposed framework in cooperative
mode is shown in Fig. 1. Any number of metaheuristics can
be integrated into the framework; however, on the presented
figure flow-chart of proposed DOSNS is shown, where other
metaheuristics are represented with the general flow-chart.

Experimental setup and results

This section first describes the data sets utilized in the exper-
iments together with the overview of experimental setup.
Later on, the outcomes of the executed experiments along
with the immense comparative analysis, results discussion
and statistical tests validation, are delivered.

Data sets

The experiments were conducted over three different pub-
licly available benchmark phishing data sets. Phishing is a
type of cyber-attack where malicious user masquerades as
known and trusted entity, and tries to obtain sensitive data
typically through a false website that tricks the end user to
enter private information such as credit card number or sim-
ilar. After obtaining this data, the attacker can utilize it to
access the bank accounts, steal money, data or identity, and
place malware to the target’s computer.

First data set is named Phising websites Kaggle!' [121],
and it is publicly available from Kaggle repository. It is com-
prised of 48 features, derived from 5000 phishing and 5000
legit websites, collected in years 2015 and 2017. This data
set is balanced, and represents a binary classification task.
The class distribution and boxplot of this data set are shown
in Fig. 2, while the the heat map is provided in Fig. 3.

Second data set is named phishing websites UCI data set,’
proposed by [122—124], and it is publicly available on UCI
Machine Learning Repository [125]. Although it is stated on
the UCI repository that this data set is comprised of 2456
instances, it actually contains 11,056 instances, with 30 fea-
tures. This data set is slightly imbalanced, and represents a
binary classification task. The phishing websites UCI visual
representation in a form of bar charts and box and whiskers
diagrams are shown in Fig. 4, while the the heat map is pro-
vided in Fig. 5.

Finally, third data set is named phishing websites UCI
small data set,?. introduced by [126], and it is also publicly

U https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-
for-machine-learning.

2 http://archive.ics.uci.edu/ml/datasets/phishing+websites.
3 https://archive.ics.uci.edu/ml/datasets/Website+Phishing.

available on UCI Machine Learning Repository [125]. It con-
tains total of 1,353 instances, and although it is stated that
it has 10 features, it actually contains 9 features with one
target variable. It represents a multi-class classification task,
as it contains three classes (O—normal, 1—suspicious, 2—
phishing). This data set is also slightly imbalanced. The class
distribution and boxplot of this data set are shown in Fig. 6,
while the the heat map is provided in Fig. 7.

Experimental setup

The performance of introduced DOSNS algorithm with
respect to the converging speed and overall capabilities has
been tested for feature selection and ELM optimization tasks
on the above mentioned data sets. The experimental out-
comes have been validated and compared to the performances
of several state-of-the-art reference metaheuristics, that have
been tested under the same experimental setup and simu-
lation conditions. All metaheuristics are integrated into the
devised two-level framework described in Sect. 3.3.

The set of cutting-edge metaheuristics included in com-
parative analysis encompasses: basic SNS [41], firefly algo-
rithm (FA) [72], bat algorithm (BA) [127], artificial bee
colony (ABC) [61], harris hawks optimization (HHO) [128]
and sine cosine algorithm (SCA) [79]. This particular set of
algorithms is used for comparison, because they all exhibit
different exploitation and exploration abilities and in this way
it was feasible to perform a robust performance validation of
proposed DOSNS approach. All reference algorithms have
been implemented independently in Python for the sake of
this research, with the proposed control parameters values
as described in their respective publications. In the sections
with the experimental results, for easier understanding, for
all metaheuristics the prefix FS was used for feature selec-
tion results, e.g., FS—-DOSNS, FS—-SNS, FS-BA, etc., while
prefix ELM was utilized for ELM tuning simulations, e.g.,
ELM-DOSNS, ELM-SNS, ELM-BA, etc.

Prior to execution, all data sets were divided into the train
and test subsets using 80-20% split rule, as it is shown in
Fig. 1. Since the ELM does not employ traditional training,
validation data is not used.

All experiments, for both L1 and L2 parts of the frame-
work, have been executed by utilizing the population size of
6 (NP = 6), maximum number of iterations was set to 10
(T = 10) in one run, with the total number of 30 independent
runs (runtime = 30).

The DOSNS specific control parameter nrs is set to 1
because of realtively small population size, while the D;g
and D, are set and updated according to Eqgs. (19) and (20),
respectively

The KNN used as the classifier in the L1 is set with five
neighbor solutions k = 5, while « in objective function
(Eq. 21) is set to 0.99. The lower and upper bounds for both
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Fig.1 Block diagram of
devised two-layer feature
selection and ELM tuning
framework in cooperative mode
with flow-chart of proposed
DOSNS metaheuristics
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Fig.4 Phishing websites UCI data set class distribution and boxplot

weight and bias variables in the L2 for ELM are defined by the

Experimental findings

interval [—1, 1]. The search space limits for the nn variable

are specified in the range [nsf - 3, nsf - 15]. All these values
are determined empirically. It is noted that prior to rendering
final decision regarding the L1 classifier, experiments with
support vector machine (SVM) were also executed and simi-
lar results are obtained. However, due to the faster execution,

the KNN is utilized instead of SVM.
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Two sets of experiments were executed in this research. First
experiment utilizes both L1 and L2 of the proposed optimiza-
tion framework. The L1 is set to cooperative mode and in this
way, the best obtained set of features for all metaheuristics is
used as the input to L2, i.e., in the L2 part of the framework,

all methods tune ELM with the same set of input features.

@ Springer
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Fig.6 Phishing websites UCI small data set class distribution and boxplot

Second simulation is focused only on tuning the ELM with
all employed features (without the feature selection), using
only L2 part of the framework. The goal of this simulation
is to test performance of suggested DOSNS for large-scale
global optimization tasks with many parameters (compo-
nents).

For both experiments, two different group of metrics were
presented. First, overall metrics, that summarize average
values obtained over 30 runs, include best, worst, mean,
median, standard deviation for objective in L1 and classi-
fication error in L2. In addition, number of selected features
for best obtained objective in L1, and the number of neurons
for the best performing ELM in L2 are also shown.

@ Springer

Detailed performance indicators were also provided for
simulations with L2 part of the framework and this set include
the following metrics for the best generated solution of each
metaheuristics: accuracy, precision, recall and f1 score per
each class and micro-averaged over all classes. Metrics for
receiver operating characteristic (ROC) and precision recall
(PR) area under the curve (AUC) are shown visually.

Findings for both experiments are shown in Sects. 4.3.1
and 4.3.2 and best obtained results for each category of met-
rics is marked with bold style in the tables with reported
results.
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Var 0.000014 0.000043  0.000028  0.000258  0.000042  0.000159  0.000008
Best error 0.052465 0.053370  0.052917  0.053822  0.051108  0.063320  0.059701
Bestno. feat 13 15 15 13 18 16 9
UCI small dataset
Best 0.099106 0.116261  0.099106  0.119914  0.117372  0.135638  0.114830
Worst 0.127220 0.192185 0.163752  0.287167  0.190754  0.212673  0.191866
Mean 0.112568 0.148941  0.137782  0.179993  0.154480  0.176994  0.147670
Median 0.116261 0.154063  0.146597  0.165023  0.164467  0.172329  0.144930
Std 0.011258 0.027836  0.021520  0.047198  0.027404  0.029065  0.029909
Var 0.000127 0.000778  0.000463  0.002228  0.000751  0.000845  0.000895
Best error 0.092251 0.110701  0.092251  0.114391  0.110701  0.129151  0.107011
Bestno. feat 7 6 7 6 7 7 8
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Simulation I—L1 and L2 (feature selection and ELM tuning)

This section shows the result of the first experiment, that uti-
lized both L1 and L2 of the proposed cooperative framework.
The best obtained subset of features at L1 that performs the
feature selection is used as the input to the L2 that conducts
the ELM tuning process.

Table 1 presents the overall metrics for L1 results (fea-
ture selection task) in terms of objective function, defined in
Eq. (21). In addition, best rendered classification error for
the best objective is also presented.

From Table 1, it is clear that the proposed FS—-DOSNS
method obtains superior results on Kaggle and UCI data sets,
in terms of best, worst, mean and median values. In the case
of UCI small data set, FS-DOSNS shares the first place with
FS—FA for the best result, while other metrics are clearly in
favor of the proposed FS-DOSNS.

As the conclusion for L1 simulations, the FS—-DOSNS
establishes the best balance between the number of features
(complexity) and classification performance (error).

Table 2 presents the overall metrics for ELM tuning (L2
of the framework), where the best obtained subset of fea-
tures (from all algorithms in L1) was used as the input. The
proposed FS—DOSNS achieved the best accuracy on the Kag-
gle data set, and shares the first place on UCI data set (with
FS-SCA) and UCI small data set (again with FS—SCA). Con-
cerning other metrics, the best worst and mean results on
Kaggle data set were obtained by FS—SCA, while FS-HHO
obtained the best median and standard deviation. In case of
UCI data set, the best worst and mean results were achieved
by the proposed FS—-DOSNS approach, FS-SCA obtained
the best median result, while FS—ABC obtained the best stan-
dard deviation. Finally, on the UCI small data set, the best
worst value was achieved with the proposed FS—-DOSNS and
FS—SCA approaches that shared the first place. The proposed
FS—-DOSNS also obtained the best mean and median values,
while the FS—ABC obtained the best standard deviation.

Table 3 shows the detailed metrics on the Kaggle, UCI,
and UCI small data sets, for the best solutions after the
execution of the complete framework (L1 + L2). In case
of Kaggle data set, the proposed ELM-DOSNS approach
obtained the best accuracy of 95.65%, while the ELM-FA
approach finished second with 95.50%. For the UCI data set,
the proposed ELM-DOSNS method obtained the best accu-
racy of 93.94%, together with the ELM-SCA approach that
obtained the same accuracy. Finally, the detailed metrics on
the UCI small data set, show that the proposed ELM-DOSNS
approach share the first place with ELM-SCA, where both
methods accomplished an accuracy of 90.78%. All other per-
formance metrics included in Table 3, precision, recall and
fl score, on average prove superiority of ELM—DOSNS.

Convergence graphs of the objective function for the L1,
and error for the L2 experiments, for all observed metaheuris-
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tics and all three utilized data sets, are shown in Fig. 8. Box
and whiskers diagrams, that display the dispersion of the
objective function for L1, and error for L2 framework sim-
ulations, over 30 independent runs for all observed methods
are depicted in Fig. 9.

Confusion matrices for output of framework L1 with fea-
ture selection, for all observed algorithms and all three data
sets, are shown in Fig. 10, while Fig. 11 shows the ROC AUC
curves with micro and macro averages for the best solutions
(output) of the framework L2, for all observed algorithms
over all three utilized data sets.

Simulation Il—L1 (ELM tuning)

In the second set of the experiments, all algorithms were
tested for the task of ELM tuning, without feature selection
(meaning that all features were used by the models), and
in this case only L2 of the framework was utilized. Table 4
shows the overall metrics for this scenario, and it can be
noticed that the proposed ELM-DOSNS obtained superior
results on all three used data sets, by achieving the first place
in terms of best, worst, mean and median results. It is also
noticed that the ELM-DOSNS managed to establish good
results’ quality with relatively simple ELM (small number
of neurons in the hidden layer).

Table 5 shows the detailed metrics on the Kaggle, UCI,
and UCI small data sets, for the best solutions without feature
selection. In case of Kaggle data set, the proposed ELM—
DOSNS approach obtained the best accuracy of 97.25%, in
front of the ELM-FA and ELM-BA approaches that obtained
the accuracy of 97.00%. Similarly, in case of UCI data set,
the proposed ELM-DOSNS approach again obtained the best
accuracy of 94.75%, in front of the ELM—SCA that obtained
the accuracy of 94.57%. Finally, also for the UCI small data
set, proposed ELM-DOSNS obtained the best accuracy of
90.04 %, followed by the ELM—-SCA and ELM-FA that man-
aged to establish an accuracy of 89.93%. Similarly as in the
previous experiment, all other metrics are on average in favor
to ELM-DOSNS.

Convergence graphs and box plots of the error (as this
experiment is executed with just L2 framework without fea-
ture selection), for all observed methods and all three data
sets are given in Fig. 12.

The PR AUC curves for the best generated solution of
all metaheuristics, where only ELM hyper-parameters tun-
ing was performed without feature selection, are shown in
Fig. 13. In addition, to visualize performance of the classi-
fier with more details, one vs rest (OvR) ROC curves are
visualized in Fig. 14, for all observed methods and all three
data sets, in case of ELM tuning with all features (no fea-
ture selection). The relation of each class to other classes,
together with their distribution, can be seen on histograms
that are also provided in Fig. 14.
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Fig.8 Experiment [——convergence graphs of objective function for L1 simulations, and error for L2 experiments, for all observed methods and all
three data sets
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Phishing websites Kaggle - objective box plot diagram Phishing websites Kaggle - error box plot diagram
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Fig. 10 Experiment
I—confusion matrices for L1
output for feature selection, for
all observed methods and all
three data sets
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Fig. 11 Experiment [—ROC AUC with micro and macro averages for the best solutions (output) of L2 for all observed methods and all three data
sets
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Table 2 Experiment [—overall metrics for L2 results (ELM tuning) with respect to classification error

Method FS-DOSNS FS-SNS FS-FA FS-BA FS-ABC FS-HHO FS-SCA
Kaggle

Best 0.043500 0.045500 0.045000 0.045500 0.047000 0.047500 0.046500
Worst 0.051500 0.053500 0.053500 0.056000 0.053000 0.050000 0.049500
Mean 0.048500 0.049375 0.049438 0.050938 0.049938 0.048438 0.048313
Median 0.048750 0.049750 0.049000 0.051000 0.050250 0.048500 0.048750
Std 0.002500 0.002701 0.002822 0.003340 0.001861 0.000845 0.001088
Var 0.000006 0.000007 0.000008 0.000011 0.000003 0.000001 0.000001
Best no. feat 21 21 21 21 21 21 21

Best no. neurons 313 315 315 291 298 313 315

uct

Best 0.060606 0.061058 0.063320 0.063320 0.062867 0.064677 0.060606
Worst 0.065581 0.066938 0.068295 0.070556 0.066938 0.071913 0.067843
Mean 0.063602 0.064224 0.065185 0.065751 0.065072 0.067673 0.063885
Median 0.063998 0.063998 0.064677 0.064903 0.064903 0.066712 0.063546
Std 0.001482 0.001766 0.001541 0.002349 0.001384 0.002588 0.002475
Var 0.000002 0.000003 0.000002 0.000006 0.000002 0.000007 0.000006
Best no. feat 13 13 13 13 13 13 13

Best no. neurons 195 188 118 181 181 189 195

UCI small

Best 0.092251 0.095941 0.099631 0.095941 0.107011 0.099631 0.092251
Worst 0.110701 0.121771 0.118081 0.125461 0.125461 0.129151 0.110701
Mean 0.102399 0.110701 0.110240 0.107472 0.116697 0.113930 0.104705
Median 0.101476 0.110701 0.110701 0.105166 0.116236 0.110701 0.107011
Std 0.005458 0.007380 0.006240 0.010508 0.005198 0.010508 0.005816
Var 0.000030 0.000054 0.000039 0.000110 0.000027 0.000110 0.000034
Best no. feat 7 7 7 7 7 7 7

Best no. neurons 105 105 94 105 105 104 105

The visualization of results clearly indicates the superior
performance of the proposed ELM-DOSNS method. How-
ever, it is required to execute additional statistical tests to
prove that the results are statistically significantly better than
the results obtained by other considered approaches.

It is also interesting to compare results from Table 3, that
shows detailed findings with feature selection employed, to
the results from Table 5, where all features have been uti-
lized. From this side-by-side comparison, it can be seen that
in majority of cases the obtained accuracy is better when all
features are used (no feature selection), however, with dras-
tically higher computational costs. Therefore, it is justified
to perform the feature selection and reduce the computa-
tional complexity. For example, the proposed ELM-DOSNS
achieves the best accuracy of 95.65% on the Kaggle data
set, 93.94% on UCI data set, and finally, 90.78% on UCI
small data set when the feature selection is utilized. The same
approach achieves accuracy of 97.25%, 94.75%, and 90.04%,
respectively, with all features used (no feature selection).

Therefore, the same approach delivers better accuracy on the
Kaggle and UCI data sets without feature selection (second
experiment), while on the UCI small data set the accuracy is
better when feature selection is used (first experiment). The
same conclusion applies for all utilized approaches on these
three particular data sets. From these findings, a conclusion
that the UCI small data set contains noisy features, which
disrupt classification, can be derived.

Findings validation and best models interpretation

Reported findings from experiments I and II, showed in
Sects. 4.3.1 and 4.3.2, respectively, prove that in average
proposed DOSNS showed better results’ quality and conver-
gence speed than other opponent cutting-edge metaheuris-
tics. However, the experimental results are not sufficient to
determine if one algorithm has significantly better perfor-
mance compared to the others and there is an urge to conduct
statistical tests.
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Table 3 Experiment [—detailed metrics for the best solutions with feature selection and ELM tuning (L1+L2)

ELM-DOSNS ELM-SNS ELM-FA ELM-BA ELM-ABC ELM-HHO ELM-SCA
Kaggle dataset
Accuracy (%) 95.65 95.45 95.50 95.45 95.30 95.25 95.35
Precision 0 0.957874 0.959555 0.959596 0.961421 0.953000 0.953862 0.952144
Precision 1 0.955135 0.949555 0.950495 0.947783 0.953000 0.951147 0.954865
M.Avg. Precision 0.956504 0.954555 0.955046 0.954602 0.953000 0.952504 0.953504
Recall 0 0.955000 0.949000 0.950000 0.947000 0.953000 0.951000 0.955000
Recall 1 0.958000 0.960000 0.960000 0.962000 0.953000 0.954000 0.952000
M.Avg. Recall 0.956500 0.954500 0.955000 0.954500 0.953000 0.952500 0.953500
F1 Score 0 0.956435 0.954248 0.954774 0.954156 0.953000 0.952429 0.953570
F1 Score 1 0.956565 0.954749 0.955224 0.954839 0.953000 0.952571 0.953430
M.Avg. F1 Score 0.956500 0.954499 0.954999 0.954497 0.953000 0.952500 0.953500
UCI dataset
Accuracy (%) 93.94 93.89 93.67 93.67 93.71 93.53 93.94
Precision 0 0.936017 0.928862 0.940189 0.944857 0.934783 0.938155 0.939646
Precision 1 0.942029 0.947025 0.934022 0.930599 0.938956 0.933174 0.939200
M.Avg. Precision 0.939367 0.938983 0.936753 0.936912 0.937108 0.935380 0.939398
Recall 0 0.926456 0.933606 0.915220 0.910112 0.922370 0.914198 0.922370
Recall 1 0.949675 0.943182 0.953734 0.957792 0.948864 0.952110 0.952922
M.Avg. Recall 0.939394 0.938942 0.936680 0.936680 0.937133 0.935323 0.939394
F1 Score 0 0.931211 0.931228 0.927536 0.927159 0.928535 0.926022 0.930928
F1 Score 1 0.945837 0.945100 0.943775 0.944000 0.943884 0.942547 0.946011
M.Avg. F1 Score 0.939361 0.938957 0.936585 0.936543 0.937087 0.935230 0.939333
UCI small dataset
Accuracy (%) 90.77 90.41 90.04 90.41 89.3 90.04 90.77
Precision 0 0.877193 0.883929 0.877193 0.883929 0.873874 0.869565 0.885965
Precision 1 0.928571 0.875000 0.823529 0.833333 0.812500 0.866667 0.812500
Precision 2 0.930070 0.923077 0.928571 0.929078 0.916667 0.929078 0.936170
M.Avg. Precision 0.908496 0.903638 0.899965 0.903686 0.891609 0.900316 0.906665
Recall 0 0.909091 0.900000 0.909091 0.900000 0.881818 0.909091 0.918182
Recall 1 0.650000 0.700000 0.700000 0.750000 0.650000 0.650000 0.650000
Recall 2 0.943262 0.936170 0.921986 0.929078 0.936170 0.929078 0.936170
M.Avg. Recall 0.907749 0.904059 0.900369 0.904059 0.892989 0.900369 0.907749
F1 Score 0 0.892857 0.891892 0.892857 0.891892 0.877828 0.888889 0.901786
F1 Score 1 0.764706 0.777778 0.756757 0.789474 0.722222 0.742857 0.722222
F1 Score 2 0.936620 0.929577 0.925267 0.929078 0.926316 0.929078 0.936170
M.Avg. F1 Score 0.906169 0.903078 0.899675 0.903681 0.891572 0.899022 0.906424

Various statistical tests are available to establish whether
or not rendered improvements by referenced approach are
statistically significant. In this paper, 7 methods (including
proposed DOSNS) were compared with respect to measure
taken as fitness (objective function and error in case of L1
and L2 tests, respectively), which falls into the domain of
multiple-approaches multi-problem analysis [129].

Following related literature recommendations [129-131],
to conduct statistical tests, a results sample for each approach
is constructed by taking average values of measured objec-
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tives over multiple independent runs for each problem. The
downside of this approach can be observed in cases when
the measured variable has outliers, not following a normal
distribution and in such scenarios, misleading results can
be generated. Whether the average objective function value
should be taken for the purpose of statistical tests when com-
paring stochastic methods still remains an open question
[129].

Therefore, to check whether or not it is safe to use the
mean objective value as the base for statistical tests, Shapiro—
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Table 4 Experiment II—overall metrics for L2 results (ELM tuning) without feature selection

Method ELM-DOSNS ELM-SNS ELM-FA ELM-BA ELM-ABC ELM-HHO ELM-SCA
Kaggle dataset

Best 0.027500 0.030000 0.030000 0.030000 0.037500 0.040000 0.037500
Worst 0.037500 0.047500 0.042500 0.042500 0.045000 0.045000 0.045000
Mean 0.033125 0.038750 0.037500 0.039375 0.041563 0.042188 0.041250
Median 0.033750 0.037500 0.037500 0.041250 0.042500 0.042500 0.041250
Std 0.002997 0.005449 0.004146 0.004098 0.002142 0.001952 0.002165
Var 0.000009 0.000030 0.000017 0.000017 0.000005 0.000004 0.000005
Best no. feat 48 48 48 48 48 48 48

Best no. neurons 225 552 317 259 452 292 216

UCI dataset

Best 0.052465 0.055631 0.054726 0.054726 0.056536 0.059249 0.054274
Worst 0.054274 0.059249 0.057440 0.058345 0.059249 0.062415 0.057440
Mean 0.053068 0.057440 0.056008 0.056234 0.057892 0.060681 0.056008
Median 0.052917 0.057214 0.056083 0.056083 0.057892 0.060380 0.056083
Std 0.000622 0.001454 0.000920 0.001422 0.000977 0.001025 0.000991
Var 0.000000 0.000002 0.000001 0.000002 0.000001 0.000001 0.000001
Best no. feat 30 30 30 30 30 30 30

Best no. neurons 418 411 450 450 391 395 446
UCI small dataset

Best 0.099631 0.114391 0.110701 0.110701 0.114391 0.118081 0.110701
Worst 0.114391 0.132841 0.132841 0.125461 0.129151 0.177122 0.136531
Mean 0.107011 0.122386 0.121771 0.118696 0.121771 0.143296 0.123001
Median 0.107011 0.121771 0.121771 0.119926 0.119926 0.142066 0.121771
Std 0.004764 0.006876 0.009286 0.004958 0.005637 0.019341 0.008159
Var 0.000023 0.000047 0.000086 0.000025 0.000032 0.000374 0.000067
Best feature size 9 9 9 9 9 9 9

Params 135 135 116 135 127 133 135

Wilk [132] test for single-problem analysis [129] was first
performed in the following way: for each algorithm and every
problem, a data sample is constructed by taking the results
obtained in each run, and respective p values are calculated
for every method—problem pair. Such generated p values
are shown in Table 6.

As can be see from the test results, all p values are higher
than the threshold significance level @« = 0.05; therefore,
the null hypothesis, which states that the data samples come
from normal distribution, cannot be rejected. Therefore, data
samples for all method—problem pairs are originating from
a normal distribution, and it is safe to use average objective
in the statistical tests.

Afterwards, multi-problems multiple-methods statistical
analysis was conducted and the data sample for each method
was constructed by taking the average objective function
value over 30 independent runs for each problem instance.
First, requirements for safe use of the parametric tests condi-
tions, including independence, normality, and homoscedas-

ticity of the variances of the data, were checked [133].
Each run was executed independently starting with unique
pseudo-random number, confirming that the condition of
independence was satisfied. By again using the Shapiro—
Wilk test [132], the normality condition was checked and
the results for compared methods are shown in Table 7.

To check homoscedasticity based on means, Levene’s test
[134] is applied, and the p value of 0.64 is obtained, which
leads to a conclusion that the homoscedasticity is satisfied.

On the other hand, the calculated p values from the
Shapiro—Wilk test for all methods are smaller than o« = 0.05
(Table 7), providing the conclusion that the safe use of para-
metric tests is not satisfied; therefore, it was proceeded with
non-parametric tests, where the proposed DOSNS was des-
ignated as the control method.

To determine the significance of the proposed algorithm
performance over other algorithms, the Friedman test [135,
136] and a two-way variance analysis by ranks were con-
ducted, as suggested in [130]. The Friedman test results are
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Table 5 Experiment II—detailed metrics for the best solutions of ELM tuning without feature selection (L2)

ELM-DOSNS ELM-SNS ELM-FA ELM-BA ELM-ABC ELM-HHO ELM-SCA
Kaggle dataset
Accuracy (%) 97.25 97.00 97.00 97.00 96.25 96.00 96.25
Precision 0 0.984615 0.937824 0.965347 0.974747 0.955665 0.964646 0.960199
Precision 1 0.960976 0.908213 0.974747 0.965347 0.969543 0.955446 0.964824
M.Avg. Precision 0.972795 0.923018 0.970047 0.970047 0.962604 0.960046 0.962512
Recall 0 0.960000 0.905000 0.975000 0.965000 0.970000 0.955000 0.965000
Recall 1 0.985000 0.940000 0.965000 0.975000 0.955000 0.965000 0.960000
M.Avg. Recall 0.972500 0.922500 0.970000 0.970000 0.962500 0.960000 0.962500
F1 Score 0 0.972152 0.921120 0.970149 0.969849 0.962779 0.959799 0.962594
F1 Score 1 0.972840 0.923833 0.969849 0.970149 0.962217 0.960199 0.962406
M.Avg. F1 Score 0.972496 0.922476 0.969999 0.969999 0.962498 0.959999 0.962500
UCI dataset
Accuracy (%) 94.75 94.44 94.53 94.53 94.35 93.94 94.57
Precision 0 0.954689 0.951477 0.947808 0.952532 0.944792 0.939646 0.951630
Precision 1 0.942155 0.939034 0.943336 0.939826 0.942446 0.939200 0.941270
M.Avg. Precision 0.947705 0.944544 0.945316 0.945452 0.943485 0.939398 0.945857
Recall 0 0.925434 0.921348 0.927477 0.922370 0.926456 0.922370 0.924413
Recall 1 0.965097 0.962662 0.959416 0.963474 0.956981 0.952922 0.962662
M.Avg. Recall 0.947535 0.944369 0.945274 0.945274 0.943464 0.939394 0.945726
F1 Score 0 0.939834 0.936170 0.937532 0.937208 0.935534 0.930928 0.937824
F1 Score 1 0.953488 0.950701 0.951308 0.951503 0.949658 0.946011 0.951846
M.Avg. F1 Score 0.947442 0.944267 0.945208 0.945173 0.943404 0.939333 0.945637
UCI small dataset
Accuracy (%) 90.04 88.56 88.93 88.93 88.56 88.19 88.93
Precision 0 0.883929 0.868421 0.900000 0.857143 0.852174 0.866071 0.867257
Precision 1 1.00000 0.800000 0.727273 1.00000 0.846154 0.733333 0.833333
Precision 2 0.90411 0.908451 0.893333 0.910345 0.916084 0.909722 0.910959
M.Avg. Precision 0.902995 0.884199 0.883784 0.895367 0.884982 0.878987 0.887491
Recall 0 0.900000 0.900000 0.9 0.927273 0.890909 0.881818 0.890909
Recall 1 0.650000 0.600000 0.400000 0.350000 0.550000 0.550000 0.50000
Recall 2 0.93617 0.914894 0.950355 0.93617 0.929078 0.929078 0.943262
M.Avg. Recall 0.900369 0.885609 0.889299 0.889299 0.885609 0.881919 0.889299
F1 Score 0 0.891892 0.883929 0.900000 0.89083 0.871111 0.873874 0.878924
F1 Score 1 0.787879 0.685714 0.516129 0.518519 0.666667 0.628571 0.625000
F1 Score 2 0.919861 0.911661 0.920962 0.923077 0.922535 0.919298 0.926829
M.Avg. F1 Score 0.898768 0.883729 0.882577 0.880131 0.882779 0.879404 0.885109
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Table 6 Shapiro—Wilk test

reslts for staglo-prablem Problem DOSNS  SNS FA BA ABC HHO SCA

analysis PW Kaggle FS 0.6753 03256 02743 04561 03234 04562  0.5283
PW UCI FS 04511 03335 02152 04052  0.1236 02567 05183
PW UCI small FS 0.0975 00825  0.1743 03561  0.1221 03252  0.0945
PW Kaggle FS+HT 0.1742 02237  0.1805 02465  0.0974 03462  0.1285
PW UCI FS+HT 0.1251 02357 03210 05592  0.1245 02574  0.2456
PW UCI small FS+HT ~ 0.5552 00821  0.1844 02564  0.1253 02764 04253
PW Kaggle HT 0.2751 02254  0.1642 03564 04256  0.1925  0.5281
PW UCI HT 0.3551 02275  0.1845 02569  0.1936 02590  0.1251
PW UCI small HT 0.4752 0.0988  0.1725  0.1554 02251  0.1599  0.4241

Table 7 Shapiro-Wilk test results for multi-problems multiple-
methods analysis

DOSNS  SNS FA BA

ABC HHO SCA

0.0129 0.0162 0.0127 0.0213 0.0318 0.0133  0.0325

reported in Table 8. Moreover, the Friedman aligned test was
also utilized, and these findings are shown in Table 9.

The results from Tables 8 and 9 statistically indicate that
the proposed DOSNS method obtained superior performance
in comparison with other algorithms by achieving an average
rank value of 1. The second-best result was achieved by FA,
with an average rank of 3. The original SNS accomplished
an average ranking of 3.94; therefore, the superiority of the
proposed DOSNS over original method is also proven. Fur-
thermore, the Friedman statistics, sz = 21.27, is greater than
the X2 critical value, with 6 degrees of freedom (12.59), at
significance level « = 0.05, and the Friedman p value is
2.22 x 10716, inferring that significant differences in results
between different methods exist. Consequently, it is possible
to reject the null hypothesis (Hy) and state that the proposed
DOSNS obtained performance were significantly different
from other competitors. Similar conclusions can be derived
from the Friedman aligned test results.

As indicated in [137], the Iman and Davenport’s test [138]
could give results with more precision than the 2. The Iman
and Davenport’s test result is 3.25 x 10°, which is signif-
icantly larger than the critical value of the F-distribution
(2.09 x 10°). In addition, the Iman and Devenport p value is
6.73 x 1072, which is smaller than the level of significance.
Finally, it is concluded that this test also rejects Hp.

Finally, the non-parametric post-hoc Holm’s step-down
procedure was applied based on the fact that both conducted
tests rejected the null hypothesis. These finding are reported
in Table 10. In this test, the observed algorithms are sorted in
respect of their p values and evaluated to o/ (k — i), where k
and i represent the degree of freedom (k = 6 for thisresearch)
and the algorithm number, respectively, after sorting accord-

@ Springer

ing to the p value in ascending order (corresponding to rank).
In this research « values of 0.05 and 0.1 are used in this exper-
iment. The outcomes from Table 10 clearly indicate that the
suggested DOSNS significantly outperformed all competing
algorithms at both significance levels.

To comprehend the modeling process and identify the
most effective model, the explainable artificial intelligence
method called SHAP was employed. This approach over-
comes the usual trade-off between accuracy and interpretabil-
ity by offering a precise and significant explanation of the
model’s choices. By utilizing a game-theory approach that
evaluates the influence of individual features on predictions,
the SHAP technique determines feature importance through
Shapley values [139]. These values distribute the disparity
between predictions and the mean predictions among the
features and represent a just allocation of payouts to collabo-
rating features with respect to their individual contributions
to the combined payout.

SHAP can interpret the impact of a feature in relation to a
model’s prediction by assigning each feature an importance
measure that indicates its contribution to a particular predic-
tion, compared to the prediction in case that feature was set
to the baseline value. By generalizing Shapley values and
preserving local faithfulness, this technique offers insights
into the model’s behavior and solves the significant issue of
inconsistency while reducing the likelihood of undervaluing
a feature with a specific attribution value. It also accounts for
interactions between features and enables the interpretation
of the model’s overall behavior [140].

Aiming to interpret the model and determine the influence
features have on the outcome, SHAP diagrams were gener-
ated for Kaggle and UCI small data sets. The results from
the experiment 1—overall metrics for L2 results (described
in Sect.4.3.1) were used, where the features were chosen
by L1 framework, and the best performing ELM-DOSNS
model was subjected to the SHAP analysis.

In case of Phishing websites Kaggle data set, 21 features
were chosen and this data set was used in SHAP analysis.
Details about this data set and description of each feature
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Table8 Friedman statistica Functions DOSNS  SNS  FA  BA ABC  HHO  SCA
PW Kaggle FS 1 2 4 7 5 6 3
PW UCI FS 1 5 2 6 4 7 3
PW UCI small FS 1 4 2 7 5 6 3
PW Kaggle FS+HT 1 3.5 2 3.5 6 7 5
PW UCI FS+HT 1 3 5 6 4 7 2
PW UCI small FS+HT 1 5 4 3 7 6 2
PW Kaggle HT 1 3 2 4 6 7 5
PW UCIHT 1 5 2.5 4 6 7 2.5
PW UCI small HT 1 5 35 2 35 7 6
Average ranking 1 3.94 3 4.72 5.17 6.67 35
Rank 1 4 2 5 6 7 3
Ztaa';'seugc | Hedman dligned Functions DOSNS  SNS FA BA  ABC  HHO  SCA
PW Kaggle FS 4 14 16 59 47 57 15
PW UCI FS 43 10 56 19 60 13
PW UCI small FS 18 3 63 53 62 12
PW Kaggle FS+HT 17 325 27 325 45 48 41
PW UCI FS+HT 22 24 36 40 35 51 23
PW UCI small FS+HT 6 46 42 20 58 55 8
PW Kaggle HT 7 31 21 37 50 52 49
PW UCI HT 11 39 28.5 30 44 54 28.5
PW UCI small HT 2 34 25.5 9 25.5 61 38
Average ranking 8.33 31.28 23.22 38.5 41.83 55.56 25.28
Rank 1 4 2 5 6 7 3
;?::Zc:l?re iﬁiﬁ;&:ﬁiﬁ?&ilm Comparison p_values Ranking Alpha =0.05 Alpha=0.1 H1 H2
DOSNS vs HHO 0.000000 0 0.0083 0.0167 True True
DOSNS vs ABC 0.000021 1 0.01 0.02 True True
DOSNS vs BA 0.000129 2 0.0125 0.025 True True
DOSNS vs SNS 0.001918 3 0.0167 0.0333 True True
DOSNS vs SCA 0.007045 4 0.025 0.05 True True
DOSNS vs FA 0.024767 5 0.05 0.1 True True

are available on official Kaggle repository* [121]. SHAP
diagrams by default show 20 features that are the most influ-
ential, and as such are provided in this section. Figure 15
brings forward the summary plot of all classes and water-
fall chart for class 1 (phishing), while Fig. 16 presents the
summary plots for class 0 and class 1 (phishing).

Looking at the SHAP waterfall chart for class 1 (phish-
ing) from Fig. 15, it can be noted that the PctExtHyperlinks
attribute is the most influential, followed by the features
NumNumericChars and NumQueryComponents. Analyzing

4 https://www.kaggle.com/datasets/shashwatwork/phishing-dataset-
for-machine-learning.

the summary plot for class 1, shown in Fig. 16, it is possible
to note that PctExtHyperlinks attribute is in direct correla-
tion with class 1, as the increased amount of the external
hyperlinks will highly likely indicate that the particular web-
site is phishing. In addition, probability of classification as
class 1 increases with the increase of properties PctNullSel-
fRedirectHyperlinks, FrequentDomainNameMismatch and
InsecureForms, as well as NumNumericChars feature. All
these observations are in line with the practice, where the
phishing websites typically have large number of external
links, insecure forms, and large numbers of numeric charac-
ters.

@ Springer
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Fig. 15 SHAP summary plot (left side) and waterfall chart for Kaggle data set (right side)
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Fig. 16 SHAP summary plots for class 0 (left side) and class 1 of Kaggle data set (right side)

In case of UCI small data set, 7 features were chosen and
this data set was used in SHAP analysis. Details about this
data set and description of each feature are available on UCI
Machine Learning Repository > [125, 126]. Figure 17 brings
forward the summary plot of all classes and waterfall chart
for class 1 (phishing), while Fig. 18 presents the summary
plots for class 0 (normal), class 1 (suspicious) and class 2
(phishing) for the UCI small data set.

> https://archive.ics.uci.edu/ml/datasets/Website+Phishing.

@ Springer

According to the waterfall diagram shown in Fig. 17, it is
possible to observe that the most important features regard-
ing the UCI small data set are SFH (server form handler),
URL_of_Anchor and Request_URL, followed by popUp-
Window, URL_Length and SSL final state. All these features
are in direct correlation with the classification as class 2
(phishing), as the increase of these features will also increase
the probability of the web site being classified as phishing.
Once again, these observations are confirmed in the practical
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Fig.17 SHAP summary plot (left side) and waterfall chart for UCI small data set (right side)
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Fig. 18 SHAP summary plots for class 0, class 1 and class 2 of UCI small data set

applications, as data phishing sites commonly have indica- Conclusion

tors as URL length, request a URL, the URL of anchor, SFH,

submitting to email, SSL final state and abnormal URL, as  The research proposed in this manuscript addresses two of
observed by [141]. the most important ML challenges, feature selection, and
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hyper-parameters optimization. The presented study tried to
improve phishing website detection by tuning ELM that uti-
lizes the most relevant subset of phishing website data sets
features.

To accomplish this goal, a novel DOSNS has been devel-
oped and incorporated into devised two-level cooperative
framework. The framework consists of two levels—L1,
which deals with feature selection, and L2, which performs
ELM tuning. Levels in the two-level framework can be
used independently, i.e., performing only feature selection
or ELM tuning. In addition, the L1 can execute in a cooper-
ative or individual mode. When set to cooperative mode, all
metaheuristics included in the framework perform feature
selection independently; however, at the end of execution
(after the predetermined number of runs), the selected feature
subset generated by best-performing metaheuristics is used
as the input to L2 and then all metaheuristics perform ELM
tuning using the same set of selected features. Conversely, if
the L1 is set to individual mode, then all metaheuristics use
their own best set of selected features from L1, as an input to
L2, regardless of the classifier performance with the chosen
set of features.

The proposed DOSNS has been validated against 6
cutting-edge metaheuristics, that were also incorporated into
the devised framework, over two experiments. The first
experiment utilized both L1 and L2 of the proposed optimiza-
tion framework, where the L1 was adjusted in cooperative
mode. The second simulation is focused only on tuning the
ELM with all employed features (without the feature selec-
tion), using only the L2 part of the framework. The goal
of this simulation was to test the performance of the sug-
gested DOSNS for large-scale global optimization with many
parameters (components).

All methods were validated against three challenging
phishing websites data sets, which represent one of the most
important challenges in the web security domain. Data sets
are available publicly and they were retrieved from UCI
and Kaggle repositories. All methods were compared with
respect to objective and error, separately for layers 1 and
2 over several independent runs, and detailed metrics of the
final outcomes (output of layer 2), including precision, recall,
fl score, receiver operating characteristics, and precision
recall area under the curves.

The rigid statistical tests that were conducted for reported
experimental findings suggest that the proposed DOSNS is
an efficient and robust optimizer, achieving on average better
results than other state-of-the-art metaheuristics.

Some limitations of the proposed research refer to the fact
that the DOSNS still hasn’t been validated against tuning
other ML models and that further investigation is required
with different transformation functions for feature selection
challenge. In addition, for handling moderately and highly
imbalanced data sets, investigation with more promising fit-

@ Springer

ness functions is required. Therefore, these domains will be
included as part of the future work in this promising area.

Acknowledgements This work was supported by the Korea Tech-
nology and Information Promotion Agency (TIPA) for SMEs grant
funded by the Korea government (Ministry of SMEs and Startups)
(N0.S3271954) and This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the korea government
(MSIT) (No. 2022H1D8A3038040), and the Soonchunhyang Univer-
sity Research Fund.

Author Contributions N.B. and M.Z. implemented methods and per-
formed simulations. M.M. and M. A. performed results’ visualization.
K.V.and J.L. analysed the results. Y.N. wrote original draft. M.A. revise
and editing. All authors reviewed the manuscript.

Data availability The data sets used and/or analysed during the current
study available from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Piercy N (2014) Online service quality: Content and process of
analysis. ] Marketing Manag 30(7-8):747-785

2. Lee S, Lee S, Park Y (2007) A prediction model for success of
services in e-commerce using decision tree: E-customer’s attitude
towards online service. Expert Syst Appl 33(3):572-581

3. RitaP, Oliveira T, Farisa A (2019) The impact of e-service quality
and customer satisfaction on customer behavior in online shop-
ping. Heliyon 5(10):02690

4. Westerlund M (2020) Digitalization, internationalization and scal-
ing of online smes. Technology Innovation Management Review
10(4)

5. Bressan A, Duarte Alonso A, Kok SK (2021) Confronting the
unprecedented: micro and small businesses in the age of covid-
19. Int J Entrepreneurial Behav Res 27(3):799-820

6. Patel A, Shah N, Ramoliya D, Nayak A (2020) A detailed review
of cloud security: issues, threats & attacks. In: 2020 4th Interna-
tional Conference on Electronics, Communication and Aerospace
Technology (ICECA). IEEE, pp 758-764

7. Khan NA, Brohi SN, Zaman N (2020) Ten deadly cyber security
threats amid covid-19 pandemic

8. Salahdine F, Kaabouch N (2019) Social engineering attacks: A
survey. Future Internet 11(4). https://doi.org/10.3390/£i11040089


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fi11040089

Complex & Intelligent Systems (2023) 9:7269-7304

7301

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Safi A, Singh S (2023) A systematic literature review on phishing
website detection techniques. J King Saud Univ—Comput Inform
Sci 35(2):590-611. https://doi.org/10.1016/j.jksuci.2023.01.004
Akerkar R (2019) Artificial intelligence for business. Springer,
Cham, Switzerland

Buchanan B (2019) Artificial intelligence in finance. The Alan
Turing Institute, London, UK

Hamet P, Tremblay J (2017) Artificial intelligence in medicine.
Metabolism 69:36—40

Dias R, Torkamani A (2019) Artificial intelligence in clinical and
genomic diagnostics. Genome Med 11(1):1-12

Vijayalakshmi M, Mercy Shalinie S, Yang MH, U RM (2020)
Web phishing detection techniques: a survey on the state-of-the-
art, taxonomy and future directions. let Netw 9(5):235-246

Jain AK, Gupta B (2022) A survey of phishing attack techniques,
defence mechanisms and open research challenges. Enterprise
Inform Syst 16(4):527-565

Fredj OB, Cheikhrouhou O, Krichen M, Hamam H, Derhab A
(2021) An owasp top ten driven survey on web application protec-
tion methods. In: Risks and Security of Internet and Systems: 15th
International Conference, CRiSIS 2020, Paris, France, November
4-6, 2020, Revised Selected Papers 15. Springer, pp 235-252
Tanaskovié¢ TM, Zivkovi¢ MZ (2011) Security principles for
web applications. In: 2011 19th Telecommunications Forum
(TELFOR) Proceedings of Papers. IEEE, pp 1507-1510
Dhaliwal SS, Nahid A-A, Abbas R (2018) Effective intrusion
detection system using xgboost. Information 9(7):149
Kanimozhi V, Jacob TP (2019) Artificial intelligence based
network intrusion detection with hyper-parameter optimization
tuning on the realistic cyber dataset cse-cic-ids2018 using cloud
computing. In: 2019 International Conference on Communication
and Signal Processing (ICCSP). IEEE, pp 0033-0036

Algahtani H, Sarker IH, Kalim A, Hossain M, Md S, Ikhlaq
S, Hossain S (2020) Cyber intrusion detection using machine
learning classification techniques. In: International Conference
on Computing Science, Communication and Security. Springer,
pp 121-131

Alsariera YA, Adeyemo VE, Balogun AO, Alazzawi AK (2020)
Ai meta-learners and extra-trees algorithm for the detection of
phishing websites. IEEE Access 8:142532-142542

Alam MN, Sarma D, Lima FF, Saha I, Hossain S, et al (2020)
Phishing attacks detection using machine learning approach. In:
2020 Third International Conference on Smart Systems and Inven-
tive Technology (ICSSIT). IEEE, pp 1173-1179

Gangavarapu T, Jaidhar C, Chanduka B (2020) Applicability of
machine learning in spam and phishing email filtering: review and
approaches. Artificial Intell Rev 53(7):5019-5081

Doshi R, Apthorpe N, Feamster N (2018) Machine learning ddos
detection for consumer internet of things devices. In: 2018 IEEE
Security and Privacy Workshops (SPW). IEEE, pp 29-35
Injadat M, Moubayed A, Shami A (2020) Detecting botnet attacks
in iot environments: An optimized machine learning approach. In:
2020 32nd International Conference on Microelectronics (ICM).
IEEE, pp 14

Soe YN, Feng Y, Santosa PI, Hartanto R, Sakurai K (2020)
Machine learning-based iot-botnet attack detection with sequen-
tial architecture. Sensors 20(16):4372

Makkar A, Garg S, Kumar N, Hossain MS, Ghoneim A, Alrashoud
M (2020) An efficient spam detection technique for iot devices
using machine learning. IEEE Trans Ind Inform 17(2):903-912
Zainab A, Refaat S, Bouhali O (2020) Ensemble-based spam
detection in smart home iot devices time series data using machine
learning techniques. Information 11(7):344

Kumar N, Sonowal S, et al (2020) Email spam detection using
machine learning algorithms. In: 2020 Second International

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Conference on Inventive Research in Computing Applications
(ICIRCA). IEEE, pp 108-113

Bishop CM (1994) Neural networks and their applications. Rev
Sci Instruments 65(6):1803—-1832

Bezdan T, Zivkovic M, Tuba E, Strumberger I, Bacanin N, Tuba
M (2020) Glioma brain tumor grade classification from mri using
convolutional neural networks designed by modified fa. In: inter-
national conference on intelligent and fuzzy systems. Springer,
pp 955-963

Bacanin N, Zivkovic M, Jovanovic L, Ivanovic M, Rashid TA
(2022) Training a multilayer perception for modeling stock price
index predictions using modified whale optimization algorithm.
In: Computational Vision and Bio-Inspired Computing. Springer,
pp 415-430

Strumberger I, Tuba E, Bacanin N, Jovanovic R, Tuba M (2019)
Convolutional neural network architecture design by the tree
growth algorithm framework. In: 2019 international joint con-
ference on neural networks (IJCNN). IEEE, pp 1-8

Bacanin N, Bezdan T, Tuba E, Strumberger I, Tuba M
(2020) Optimizing convolutional neural network hyperparame-
ters by enhanced swarm intelligence metaheuristics. Algorithms
13(3):67

Strumberger I, Tuba E, Bacanin N, Zivkovic M, Beko M, Tuba
M (2019) Designing convolutional neural network architecture
by the firefly algorithm. In: 2019 International Young Engineers
Forum (YEF-ECE). IEEE, pp 59-65

Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning
machine: theory and applications. Neurocomputing 70(1-3):489—
501

Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67-82

Zhang Q,Lul,JinY (2021) Artificial intelligence in recommender
systems. Complex Intell Syst 7(1):439-457

Bacanin N, Tuba E, Zivkovic M, Strumberger I, Tuba M (2019)
Whale optimization algorithm with exploratory move for wire-
less sensor networks localization. In: International conference on
hybrid intelligent systems. Springer, pp 328-338

Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Meta-
heuristic algorithms: A comprehensive review. Computational
intelligence for multimedia big data on the cloud with engineering
applications 185-231

Talatahari S, Bayzidi H, Saraee M (2021) Social network search
for global optimization. IEEE Access 9:92815-92863

Do NQ, Selamat A, Krejcar O, Herrera-Viedma E, Fujita H (2022)
Deep learning for phishing detection: Taxonomy, current chal-
lenges and future directions. IEEE Access

Ahmed N, Amin R, Aldabbas H, Koundal D, Alouffi B, Shah T
(2022) Machine learning techniques for spam detection in email
and iot platforms: analysis and research challenges. Secur Com-
mun Netw 2022:1-19

Rao S, Verma AK, Bhatia T (2021) A review on social spam
detection: challenges, open issues, and future directions. Expert
Syst Appl 186:115742

Chandrashekar G, Sahin F (2014) A survey on feature selection
methods. Comput Electr Eng 40(1):16-28

Trunk GV (1979) A problem of dimensionality: a simple example.
IEEE Trans Pattern Anal Mach Intell 3:306-307

Van Der Maaten L, Postma E, Van den Herik J et al (2009)
Dimensionality reduction: a comparative. J Mach Learn Res
10(66-71):13

Levine MD (1969) Feature extraction: a survey. Proc IEEE
57(8):1391-1407

Bommert A, Welchowski T, Schmid M, Rahnenfiihrer J (2022)
Benchmark of filter methods for feature selection in high-
dimensional gene expression survival data. Briefings Bioinform
23(1):354

@ Springer


https://doi.org/10.1016/j.jksuci.2023.01.004

7302

Complex & Intelligent Systems (2023) 9:7269-7304

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Huang G-B, Zhu Q-Y, Siew C-K (2004) Extreme learning
machine: a new learning scheme of feedforward neural networks.
In: 2004 IEEE international joint conference on neural networks
(IEEE Cat. No. 04CH37541), vol 2. Ieee, pp 985-990

Alencar AS, Neto ARR, Gomes JPP (2016) A new pruning method
for extreme learning machines via genetic algorithms. Appl Soft
Comput 44:101-107

Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse
A (2009) Op-elm: optimally pruned extreme learning machine.
IEEE Trans Neural Netw 21(1):158-162

Zhu Q-Y, Qin AK, Suganthan PN, Huang G-B (2005) Evolu-
tionary extreme learning machine. Pattern Recognit 38(10):1759—
1763

Blum C, Li X (2008) Swarm intelligence in optimization. In:
Swarm Intelligence. Springer, Berlin, Heidelberg, pp 43-85
Yang X-S (2014) Swarm intelligence based algorithms: a critical
analysis. Evol Intell 7:17-28

Bansal JC, Singh PK, Pal NR et al (2019) Evolutionary and swarm
intelligence algorithms, vol 779. Springer, Cham, Switzerland
Yang X-S, Deb S, Zhao Y-X, Fong S, He X (2018) Swarm intel-
ligence: past, present and future. Soft Comput 22:5923-5933
Abdulrahman SM (2017) Using swarm intelligence for solving
np-hard problems. Acad J Nawroz Univ 6(3):46-50

Tkatek S, Bahti O, Lmzouari Y, Abouchabaka J (2020) Artificial
intelligence for improving the optimization of np-hard problems:
areview. Int J Adv Trends Comput Sci Appl 9(5)

Pang W, Wang K-p, Zhou C-g, Dong L-j (2004) Fuzzy discrete
particle swarm optimization for solving traveling salesman prob-
lem. In: The fourth international conference on computer and
information technology, 2004. CIT’04. IEEE pp 796-800
Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia
5(3):6915

Bacanin N, Bezdan T, Venkatachalam K, Zivkovic M, Strum-
berger I, Abouhawwash M, Ahmed AB (2021) Artificial neural
networks hidden unit and weight connection optimization by
quasi-refection-based learning artificial bee colony algorithm.
IEEE Access 9:169135-169155

Cuk A, Bezdan T, Bacanin N, Zivkovic M, Venkatachalam K,
Rashid TA, Devi VK (2021) Feedforward multi-layer perceptron
training by hybridized method between genetic algorithm and arti-
ficial bee colony. Data Sci Data Anal 279

Tuba M, Bacanin N (2014) Artificial bee colony algorithm
hybridized with firefly algorithm for cardinality constrained
mean-variance portfolio selection problem. Appl Math Inform
Sci 8(6):2831

Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51-67

Strumberger I, Bacanin N, Tuba M, Tuba E (2019) Resource
scheduling in cloud computing based on a hybridized whale opti-
mization algorithm. Appl Sci 9(22):4893

Strumberger I, Bezdan T, Ivanovic M, Jovanovic L (2021) Improv-
ing energy usage in wireless sensor networks by whale opti-
mization algorithm. In: 2021 29th Telecommunications Forum
(TELFOR). IEEE, pp 1-4

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46-61

Bacanin N, Bezdan T, Tuba E, Strumberger I, Tuba M, Zivkovic
M (2019) Task scheduling in cloud computing environment by
grey wolf optimizer. In: 2019 27th telecommunications forum
(TELFOR). IEEE, pp 1-4

Zivkovic M, Bacanin N, Zivkovic T, Strumberger I, Tuba E, Tuba
M (2020) Enhanced grey wolf algorithm for energy efficient wire-
less sensor networks. In: 2020 Zooming Innovation in Consumer
Technologies Conference (ZINC). IEEE, pp 87-92

@ Springer

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Mohammed HM, Abdul ZK, Rashid TA, Alsadoon A, Bacanin
N (2021) A new k-means gray wolf algorithm for engineering
problems. World J Eng

Yang X-S (2009) Firefly algorithms for multimodal optimization.
In: International Symposium on Stochastic Algorithms. Springer,
pp 169-178

Jovanovic D, Antonijevic M, Stankovic M, Zivkovic M,
Tanaskovic M, Bacanin N (2022) Tuning machine learning mod-
els using a group search firefly algorithm for credit card fraud
detection. Mathematics 10(13):2272

Zivkovic M, Tair M, Venkatachalam K, Bacanin N, Hubalovsky S,
Trojovsky P (2022) Novel hybrid firefly algorithm: an application
to enhance xgboost tuning for intrusion detection classification.
Peer] Comput Sci 8:956

Tair M, Bacanin N, Zivkovic M, Venkatachalam K (2022) A
chaotic oppositional whale optimisation algorithm with firefly
search for medical diagnostics. Comput. Mater. Contin 72:959—
982

Bacanin N, Stoean R, Zivkovic M, Petrovic A, Rashid TA, Bezdan
T (2021) Performance of a novel chaotic firefly algorithm with
enhanced exploration for tackling global optimization problems:
Application for dropout regularization. Mathematics 9(21):2705
Bezdan T, Cvetnic D, Gajic L, Zivkovic M, Strumberger I, Bacanin
N (2021) Feature selection by firefly algorithm with improved
initialization strategy. In: 7th Conference on the Engineering of
Computer Based Systems, pp 1-8

Bacanin N, Zivkovic M, Sarac M, Petrovic A, Strumberger I,
Antonijevic M, Petrovic A, Venkatachalam K (2022) A novel mul-
tiswarm firefly algorithm: An application for plant classification.
In: International Conference on Intelligent and Fuzzy Systems.
Springer, pp 1007-1016

Mirjalili S (2016) Sca: a sine cosine algorithm for solving opti-
mization problems. Knowledge-Based Syst 96:120-133
AlHosni N, Jovanovic L, Antonijevic M, Bukumira M, Zivkovic
M, Strumberger [, Mani JP, Bacanin N (2022) The XGBoost model
for network intrusion detection boosted by enhanced sine cosine
algorithm. In: Third International conference on image processing
and capsule networks. Springer, pp 213-228. https://doi.org/10.
1007/978-3-031-12413-6_17

Zivkovic M, Jovanovic L, Ivanovic M, Krdzic A, Bacanin N,
Strumberger I (2022) Feature selection using modified sine cosine
algorithm with covid-19 dataset. In: Evolutionary computing and
mobile sustainable networks. Springer, pp 15-31

Bacanin N, Zivkovic M, Salb M, Strumberger I, Chhabra A
(2022) Convolutional neural networks hyperparameters optimiza-
tion using sine cosine algorithm. In: Sentimental Analysis and
Deep Learning. Springer, pp 863—-878

Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH
(2021) The arithmetic optimization algorithm. Comput Methods
Appl Mech Eng 376:113609

Zivkovic M, Stoean C, Petrovic A, Bacanin N, Strumberger I,
Zivkovic T (2021) A novel method for covid-19 pandemic infor-
mation fake news detection based on the arithmetic optimization
algorithm. In: 2021 23rd international symposium on symbolic
and numeric algorithms for scientific computing (SYNASC).
IEEE, pp 259-266

Khatir S, Tiachacht S, Le Thanh C, Ghandourah E, Mirjalili S,
Wahab MA (2021) An improved artificial neural network using
arithmetic optimization algorithm for damage assessment in fgm
composite plates. Composite Struct 273:114287

Kaveh A, Hamedani KB (2022) Improved arithmetic optimization
algorithm and its application to discrete structural optimization.
In: Structures, vol 35. Elsevier, pp 748-764

Bacanin N, Petrovic A, Antonijevic M, Zivkovic M, Sarac M,
Tuba E, Strumberger I (2023) Intrusion detection by XGBoost
model tuned by improved social network search algorithm. In:


https://doi.org/10.1007/978-3-031-12413-6_17
https://doi.org/10.1007/978-3-031-12413-6_17

Complex & Intelligent Systems (2023) 9:7269-7304

7303

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Modelling and Development of Intelligent Systems. Springer, pp
104-121. https://doi.org/10.1007/978-3-031-27034-5_7

Rao RV, Savsani VJ, Vakharia D (2011) Teaching-learning-based
optimization: a novel method for constrained mechanical design
optimization problems. Comput-aided Design 43(3):303-315
Srinivasan V, Palani P, Balamurugan S (2021) Experimental inves-
tigation on edm of si3n4-tin using grey relational analysis coupled
with teaching-learning-based optimization algorithm. Ceramics
Int 47(13):19153-19168

Alanazi MS (2021) A modified teaching-learning-based optimiza-
tion for dynamic economic load dispatch considering both wind
power and load demand uncertainties with operational constraints.
IEEE Access 9:101665-101680

Dokeroglu T, Sevinc E (2021) Memetic teaching-learning-based
optimization algorithms for large graph coloring problems. Eng
Appl Artificial Intell 102:104282

Kashan AH (2009) League championship algorithm: a new algo-
rithm for numerical function optimization. In: 2009 International
conference of soft computing and pattern recognition. IEEE, pp
43-48

Xu W, Wang R, Yang J (2018) An improved league championship
algorithm with free search and its application on production
scheduling. J Intell Manuf 29(1):165-174

Abdulhamid SM, Latiff MSA, Idris I (2015) Tasks scheduling
technique using league championship algorithm for makespan
minimization in iaas cloud. arXiv preprint arXiv:1510.03173
Alimoradi MR, Kashan AH (2018) A league championship algo-
rithm equipped with network structure and backward g-learning
for extracting stock trading rules. Appl Soft Comput 68:478-493
Zivkovic M, Bacanin N, Venkatachalam K, Nayyar A, Djordjevic
A, Strumberger I, Al-Turjman F (2021) Covid-19 cases predic-
tion by using hybrid machine learning and beetle antennae search
approach. Sustain Cities Soc 66:102669

Bezdan T, Zivkovic M, Bacanin N, Chhabra A, Suresh M (2022)
Feature selection by hybrid brain storm optimization algorithm
for covid-19 classification. Journal of Computational Biology
Budimirovic N, Prabhu E, Antonijevic M, Zivkovic M, Bacanin N,
Strumberger I, Venkatachalam K (2022) Covid-19 severity predic-
tion using enhanced whale with salp swarm feature classification.
Computers, Materials and Continua 1685-1698

Strumberger I, Rakic A, Stanojlovic S, Arandjelovic J, Bezdan
T, Zivkovic M, Bacanin N (2021) Feature selection by hybrid
binary ant lion optimizer with covid-19 dataset. In: 2021 29th
telecommunications forum (TELFOR). IEEE, pp 14

Zivkovic M, Petrovic A, Bacanin N, Milosevic S, Veljic V, Vesic
A (2022) The covid-19 images classification by mobilenetv3 and
enhanced sine cosine metaheuristics. In: Mobile computing and
sustainable informatics. Springer, pp 937-950

Bezdan T, Milosevic S, Venkatachalam K, Zivkovic M, Bacanin
N, Strumberger I (2021) Optimizing convolutional neural net-
work by hybridized elephant herding optimization algorithm for
magnetic resonance image classification of glioma brain tumor
grade. In: 2021 Zooming Innovation in Consumer Technologies
Conference (ZINC). IEEE, pp 171-176

Salb M, Zivkovic M, Bacanin N, Chhabra A, Suresh M (2022)
Support vector machine performance improvements for cryp-
tocurrency value forecasting by enhanced sine cosine algorithm.
In: Computer vision and robotics. Springer, pp 527-536
AlHosni N, Jovanovic L, Antonijevic M, Bukumira M, Zivkovic
M, Strumberger I, Mani JP, Bacanin N (2022) The xgboost model
for network intrusion detection boosted by enhanced sine cosine
algorithm. In: International Conference on Image Processing and
Capsule Networks. Springer, pp 213-228

Tair M, Bacanin N, Zivkovic M, Venkatachalam K, Strumberger
1 (2022) Xgboost design by multi-verse optimiser: An applica-

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

tion for network intrusion detection. In: Mobile Computing and
Sustainable Informatics. Springer, pp 1-16

Zivkovic M, Bacanin N, Arandjelovic J, Rakic A, Strumberger
I, Venkatachalam K, Joseph PM (2022) Novel harris hawks
optimization and deep neural network approach for intrusion
detection. In: Proceedings of International Joint Conference on
Advances in Computational Intelligence. Springer, pp 239-250
Bacanin N, Stoean C, Zivkovic M, Jovanovic D, Antonijevic M,
Mladenovic D (2022) Multi-swarm algorithm for extreme learn-
ing machine optimization. Sensors 22(11):4204

Zivkovic M, Vesic A, Bacanin N, Strumberger I, Antonijevic M,
Jovanovic L, Marjanovic M (2022) An improved animal migra-
tion optimization approach for extreme learning machine tuning.
In: International Conference on Intelligent and Fuzzy Systems.
Springer, pp 3-13

Alshamiri AK, Singh A, Surampudi BR (2018) Two swarm intel-
ligence approaches for tuning extreme learning machine. Int J
Mach Learn Cybernet 9(8):1271-1283

Guha R, Ghosh M, Singh PK, Sarkar R, Nasipuri M (2021) A
hybrid swarm and gravitation-based feature selection algorithm
for handwritten indic script classification problem. Complex Intell
Syst 7(2):823-839

JainR, Joseph T, Saxena A, Gupta D, Khanna A, Sagar K, Ahlawat
AK (2021) Feature selection algorithm for usability engineering:
a nature inspired approach. Complex & Intelligent Systems 1-11
Alkan B, Kaniappan Chinnathai M (2021) Performance com-
parison of recent population-based metaheuristic optimisation
algorithms in mechanical design problems of machinery com-
ponents. Machines 9(12):341

Gnetchejo PJ, Essiane SN, Dadjé A, Wapet DM, Ele P (2022)
Optimal design of the modelling parameters of photovoltaic mod-
ules and array through metaheuristic with secant method. Energy
Conv Manag 10(15):100273

Yang X-S, Xingshi H (2013) Firefly algorithm: Recent advances
and applications. Int J Swarm Intell 1(1):36-50

Rahnamayan S, Tizhoosh HR, Salama MMA (2007) Quasi-
oppositional differential evolution. In: 2007 IEEE Congress on
Evolutionary Computation, pp 2229-2236. https://doi.org/10.
1109/CEC.2007.4424748

Cheng S, Shi Y (2011) Diversity control in particle swarm opti-
mization. In: 2011 IEEE Symposium on Swarm Intelligence.
IEEE, pp 1-9

Miche Y, Sorjamaa A, Lendasse A (2008) Op-elm: theory, exper-
iments and a toolbox. In: International Conference on Artificial
Neural Networks. Springer, pp 145-154

Mohd Yusof N, Muda AK, Pratama SF, Abraham A (2022) A
novel nonlinear time-varying sigmoid transfer function in binary
whale optimization algorithm for descriptors selection in drug
classification. Molecular Diversity 1-10

Wang J, Khishe M, Kaveh M, Mohammadi H (2021) Binary chimp
optimization algorithm (bchoa): A new binary meta-heuristic for
solving optimization problems. Cognit Comput 13(5):1297-1316
Hassouneh Y, Turabieh H, Thaher T, Tumar I, Chantar H, Too
J (2021) Boosted whale optimization algorithm with natural
selection operators for software fault prediction. IEEE Access
9:14239-14258

Abdollahzadeh B, Gharehchopogh FS (2021) A multi-objective
optimization algorithm for feature selection problems. Engineer-
ing with Computers 1-19

Tan CL (2018) Phishing dataset for machine learning: Feature
evaluation. Mendeley Data 1:2018

Mohammad RM, Thabtah F, McCluskey L (2015) Phishing web-
sites features. University of Huddersfield, School of Computing
and Engineering

@ Springer


https://doi.org/10.1007/978-3-031-27034-5_7
http://arxiv.org/abs/1510.03173
https://doi.org/10.1109/CEC.2007.4424748
https://doi.org/10.1109/CEC.2007.4424748

7304

Complex & Intelligent Systems (2023) 9:7269-7304

123

124.

125.

126.

127.

128.

129.

130.

131.

132.

. Mohammad RM, Thabtah F, McCluskey L (2014) Intelligent

rule-based phishing websites classification. IET Inform Secur
8(3):153-160

Mohammad RM, Thabtah F, McCluskey L (2014) Predicting
phishing websites based on self-structuring neural network. Neu-
ral Comput Appl 25(2):443-458

Dua D, Graft C (2017) UCI Machine Learning Repository. http://
archive.ics.uci.edu/ml

Abdelhamid N, Ayesh A, Thabtah F (2014) Phishing detection
based associative classification data mining. Expert Syst Appl
41(13):5948-5959

Yang X-S (2011) Bat algorithm for multi-objective optimisation.
Int J io-Inspired Comput 3(5):267-274

Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H
(2019) Harris hawks optimization: Algorithm and applications.
Future Generation Comput Syst 97:849-872

Eftimov T, Korosec P, Seljak BK (2016) Disadvantages of
statistical comparison of stochastic optimization algorithms. Pro-
ceedings of the Bioinspired Optimizaiton Methods and their
Applications, BIOMA, 105-118

Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial
on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms.
Swarm Evol Comput 1(1):3-18

Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the
use of non-parametric tests for analyzing the evolutionary algo-
rithms’ behaviour: a case study on the cec’2005 special session
on real parameter optimization. J Heuristics 15(6):617-644
Shapiro SS, Francia R (1972) An approximate analysis of variance
test for normality. ] Am Stat Assoc 67(337):215-216

Authors and Affiliations

Nebojsa Bacanin

1 Miodrag Zivkovic'

133.

134.

135.

136.

137.

138.

139.

140.

141.

LaTorre A, Molina D, Osaba E, Poyatos J, Del Ser J, Herrera F
(2021) A prescription of methodological guidelines for compar-
ing bio-inspired optimization algorithms. Swarm Evol Comput
67:100973

Glass GV (1966) Testing homogeneity of variances. Am Educ
Res J 3(3):187-190

Friedman M (1937) The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. J] Am Stat Assoc
32(200):675-701

Friedman M (1940) A comparison of alternative tests of signifi-
cance for the problem of m rankings. Ann Math Stat 11(1):86-92
Sheskin DJ (2020) Handbook of parametric and nonparamet-
ric statistical procedures. Chapman and Hall/CRC, Boca Raton,
Florida

Iman RL, Davenport JM (1980) Approximations of the critical
region of the fbietkan statistic. Commun Satistics-Theory Meth-
ods 9(6):571-595

Lundberg SM, Lee S-1(2017) A unified approach to interpreting
model predictions. Advances in neural information processing
systems 30

Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair
B, Katz R, Himmelfarb J, Bansal N, Lee S-I (2020) From local
explanations to global understanding with explainable ai for trees.
Nat Mach Intell 2(1):56-67

Pratiwi M, Lorosae T, Wibowo F (2018) Phishing site detection
analysis using artificial neural network. In: Journal of Physics:
Conference Series, vol 1140. IOP Publishing, p 012048

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Milos Antonijevic’

K. Venkatachalam? Jinseok Lee?

Yunyoung Nam* . Marina Marjanovic' - lvana Strumberger! . Mohamed Abouhawwash>®

Miodrag Zivkovic
mzivkovic@singidunum.ac.rs

Milos Antonijevic
mantonijevic @singidunum.ac.rs

K. Venkatachalam
venkatachalam .k @ieee.org

Jinseok Lee
gonasago@khu.ac.kr

Marina Marjanovic
mmarijanovic @singidunum.ac.rs

Ivana Strumberger
istrumberger @singidunum.ac.rs

Mohamed Abouhawwash
abouhaww @msu.edu

@ Springer

Department of Informatics and Computing, Singidunum
University, Danijelova 32, Belgrade 11000, Serbia

Department of Applied Cybernetics, University of Hradec
Kralové, Hradec Kralové 50003, Czech Republic

Department of Biomedical Engineering, Kyung Hee
University, Yongin, South Korea

Department of Computer Science and Engineering,
Soonchunhyang University, Asan, South Korea

Department of Mathematics, Faculty of Science, Mansoura
University, Mansoura 35516, Egypt

Department of Computational Mathematics, Science, and
Engineering (CMSE), College of Engineering, Michigan
State University, East Lansing 48824, USA


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://orcid.org/0000-0002-2062-924X

	Addressing feature selection and extreme learning machine tuning by diversity-oriented social network search: an application for phishing websites detection
	Abstract
	Introduction
	Literature review and preliminaries
	Feature selection
	Extreme learning machine (ELM) 
	Metaheuristics optimization

	Proposed method and simulation framework
	Social network search
	Deficiencies and complexity of the social network search Algorithm

	Improved SNS algorithm
	Novel initialization scheme
	Mechanism for maintaining population diversity
	Inner workings and complexity of the proposed algorithm

	Feature selection and tuning framework

	Experimental setup and results
	Data sets
	Experimental setup
	Experimental findings
	Simulation I—L1 and L2 (feature selection and ELM tuning)
	Simulation II—L1 (ELM tuning)

	Findings validation and best models interpretation

	Conclusion
	Acknowledgements
	References




