
Complex & Intelligent Systems (2023) 9:7133–7153
https://doi.org/10.1007/s40747-023-01115-2

ORIG INAL ART ICLE

HPO-RRT*: a sampling-based algorithm for UAV real-time path
planning in a dynamic environment

Yicong Guo1 · Xiaoxiong Liu1,2 ·Qianlei Jia1 · Xuhang Liu1 ·Weiguo Zhang1,2

Received: 24 June 2022 / Accepted: 12 May 2023 / Published online: 20 June 2023
© The Author(s) 2023

Abstract
The real-time path planning of unmanned aerial vehicles (UAVs) in dynamic environments with moving threats is a difficult
problem. To solve this problem, this paper proposes a time-based rapidly exploring random tree (time-based RRT*) algorithm,
called the hierarchical rapidly exploring random tree algorithm based on potential function lazy planning and low-cost
optimization (HPO-RRT*). The HPO-RRT* algorithm can guarantee path homotopy optimality and high planning efficiency.
This algorithm uses a hierarchical architecture comprising a UAV perception system, path planner, and path optimizer. After
the UAV perception system predicts moving threats and updates world information, the path planner obtains the heuristic path.
First, the path planner uses the bias sampling method based on the artificial potential field function proposed in this paper
to guide sampling to improve the efficiency and quality of sampling. Then, the tree is efficiently extended by the improved
time-based lazy collision checking RRT* algorithm to obtain the heuristic path. Finally, a low-cost path optimizer quickly
optimizes the heuristic path directly to optimize the path while avoiding additional calculations. Simulation results show that
the proposed algorithm outperforms the three existing advanced algorithms in terms of addressing the real-time path-planning
problem of UAVs in a dynamic environment.

Keywords Sampling-based path planning · Dynamic path planning · Time-based rapidly exploring random tree (RRT) ·
Unmanned aerial vehicles (UAVs)

Introduction

Recently, unmanned aerial vehicles (UAVs) have gradually
played an increasingly critical role in civil fields (such as
earthquake relief and vegetation protection) and military
fields (such as urban penetration and attacking enemy targets)

B Xiaoxiong Liu
nwpulxx@outlook.com

Yicong Guo
guoyicong@mail.nwpu.edu.cn

Qianlei Jia
jiaql@mail.nwpu.edu.cn

Xuhang Liu
liuxuhang@mail.nwpu.edu.cn

Weiguo Zhang
zhangwg@nwpu.edu.cn

1 School of Automation, Northwestern Polytechnical
University, Xi’an 710129, China

2 Shaanxi Province Key Laboratory of Flight Control and
Simulation Technology, Xi’an 710129, China

[1]. Path planning, as one of themost fundamental and impor-
tant problems in autonomous UAV flight, has been widely
studied [2]. In recent decades, many path-planning algo-
rithmshavebeenproposed,which canbe roughlydivided into
nature-inspiredmethods, grid-basedmethods, and sampling-
based methods. Nature-inspired algorithms include artificial
potential field (APF)methods [3], the interfered fluid dynam-
ical system (IFDS) method [4] and intelligent algorithms.
Among them, the APF and IFDS have the advantages of
simple calculation and strong real-time performance, but the
planned path can easily fall into a local minimum. Intelli-
gent algorithms such as a genetic algorithm [5] can obtain
the global optimal solution by iteration, but the calculation
is more complicated in high-dimensional spaces. Heuristic
searchmethods include the A* algorithm [6], anytime repair-
ing A* (ARA) algorithm [7], sparse A* algorithm [8] and D*
algorithm [9]. Although such algorithms can ensure that the
optimal solution can be found if it exists, their search time
increases sharply with increasing problem scale and spatial
dimension. Sampling-based methods such as rapidly explor-
ing random trees (RRT) [10] and probabilistic roadmaps

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01115-2&domain=pdf

7134 Complex & Intelligent Systems (2023) 9:7133–7153

(PRM) [11] usually sacrifice the optimal solution at grid
search resolution for the ability to quickly find satisfactory
solutions in high-dimensional complex state space and large-
scale problems.

This paper focuses on solving the real-time path-planning
and optimization problem of UAVs in complex dynamic
environments with moving threats. Because of the influ-
ence of moving threats, planning needs to be constantly
revised following the update of environmental informa-
tion [12]. Therefore, the path-planning algorithm must have
high planning and optimization efficiency and low storage
requirements. Efficient planning and optimization calcula-
tions ensure that aUAVcan generate the optimal path suitable
for flight in real time, and low storage can effectively improve
the scale of the UAV planning space. Because RRT and its
derived algorithms [13, 14] build a tree structure through
random sampling to quickly expand the search space, these
algorithms still have very low computational complexity
and high planning efficiency in high-dimensional environ-
ments. Therefore, these algorithms have good prospects in
addressingUAVpath planning in complex environmentswith
moving threats. Note that most of the early works on RRT
algorithms mainly focus on finding the feasible solutions,
leaving a great possibility for improving the execution time
and path optimization [15].

To deal with the path-planning problem in dynamic
environments with moving threats, many improved RRT
algorithms have been proposed, which are based on two
different ideas. One idea is that algorithms will update the
environment information and replan the path immediately
after detecting changes in the environment, which requires
the algorithms to have faster response speed, higher planning
and optimization efficiency. Another idea is that algorithms
actively avoid threats by predicting the trajectory of dynamic
threats andplanning collision-free paths.The algorithmswith
this idea can reduce the update frequency so that more time
can be used to optimize the planning path to deal with the
dynamic environment. Recently, many scholars have studied
these two categories of RRT algorithms for dynamic envi-
ronment path planning. The DRRT [16] algorithm uses tree
pruning to update the plan. It takes the target position as the
root of the tree to extend the tree, which simplifies the exten-
sion process. Bryant proposed an online RRT* algorithm
[17] that ensures that new targets are always added to the
spanning tree through online replanning. RRTX [18] uses a
fast rewiring operation to repair damaged branches to rebuild
the tree structure after detecting changes in the environment.
These three algorithms mainly consider the information of
moving threats from the current time to the next step of
planning, meaning that path replanning is needed whenever
the environment changes. Although the above algorithms
optimize the replanning process to improve computing effi-
ciency and ensure real-time performance, they still need

a high replanning update frequency to address the move-
ment of threats. In contrast to the above three replanning
algorithms, the time constraint is considered by an algo-
rithm based on the partial path-planning method [19]. This
kind of algorithm adds the nodes without collision with the
known threat trajectory to the tree and parallels the path
planning by executing the UAV. Influenced by the partial
path-planning method, a time-based RRT algorithm named
Risk-RRT is proposed in [20]. Risk-RRT predicts the move-
ment of a threat through a Gaussian process. Then, RRT
is used to plan part of the path and control the robot to
advance a certain distance along the planned path. Note that
because Risk-RRT uses the traditional RRT as the underly-
ing planner, the algorithm can quickly obtain feasible paths
even though it cannot obtain optimized paths. Therefore, to
improve the quality of the planned path, Zhang proposed the
Risk-RRT* algorithm [21]. Risk-RRT* improves the under-
lying planner-based RRT to RRT*. The rewiring process of
RRT* can optimize the tree structure to improve the planning
path optimality. However, the rewiring process of RRT* will
change the tree structure. Since Risk-RRT* is a time-based
RRT* algorithm, the change in tree structure means that each
affected node in the tree needs to update the information,
including the parent and child node, timestamp and depth of
the node. This process often brings many additional calcu-
lations, which reduces the percentage of time devoted to the
path optimization process within the limited planning time
and then affects the quality of the planned path.

This analysis shows that the above algorithms still have
space and a possibility to be improved.

(1) The flight environment of UAVs is usually a large three-
dimensional (3D) space with many moving threats, and
the moving frequency of threats is also high. Adopt-
ing replanning algorithms requires maintaining a high
planning update frequency, which is difficult to achieve.

(2) In a large 3D space, if the random sampling method is
used to search the whole planning space, many useless
sampling nodes may be generated. This result will make
the planning inefficient and increase the planning time.

(3) The longer a UAV performs a mission in a battlefield
environment, the greater is the probability of being
detected and attacked by the enemy. This circumstance
necessitates improving the efficiency and quality of the
planned path so that the UAV can quickly complete
its task on the battlefield and reduce this probability.
Therefore, combined with the above motivations, this
paper will focus on further improving the partial plan-
ning algorithm based on time RRT. The algorithm can
improve the efficiency of feasible path planning and
quickly optimize the path based on avoiding additional
computational consumption to ensure rapid planning

123

Complex & Intelligent Systems (2023) 9:7133–7153 7135

efficiency and high path quality in the online dynamic
path planning of UAVs with moving threats.

Therefore, in this paper, we propose the HPO-RRT* algo-
rithm to solve the real-time path-planning problem of UAVs
in a 3D dynamic environment. Figure 1 shows the basic
framework of the algorithm, which adopts a hierarchical
architecture. The HPO-RRT* algorithm can quickly plan a
path suitable forUAVflight and ensure the optimizationof the
planned path. First, the HPO-RRT* algorithm uses the UAV
perception system to update the world information and pre-
dict the moving threats before each plan. Then, an improved
time-based RRT* algorithm is used in the path planner to
obtain the heuristic path: the sampling bias method based
on the APF function is used to guide the sampling towards
the target position and avoid threats, the process of select-
ing the optimal parent node for the new node in RRT* is
introduced, and lazy collision checking is adopted to reduce
the running time of the algorithm while satisfying the avoid-
ance of dynamic threats. Thus, a partial heuristic path can be
quickly obtained. Finally, a low-cost path optimizer is used
to quickly optimize the path generated by the path planner to
ensure the homotopy optimality of the final planned path.

Our work mainly includes the following innovations:

(1) A hierarchical planning framework suitable for real-
time fast path planning in a UAV dynamic environment
is designed (Fig. 1), which comprises a UAV perception
system, a path planner based on the improved time-
based RRT* and a low-cost path optimizer, to improve
the planning efficiency and ensure path optimization.

(2) In the bottom planner, a bias sampling method based
on the APF function is used to guide the generation
of sampling nodes, which can improve the sampling
efficiency and reduce the planning time.

(3) In the path planner, the process of neighbourhood opti-
mal parent node selection and lazy collision checking is
applied to the tree expansion, which improves the plan-
ning efficiency and obtains a path optimized as much as
possible.

(4) A low-cost path optimizer is designed to quickly opti-
mize the path generated by the path planner without
changing the tree structure.

(5) The probability completeness and homotopy optimality
of the HPO-RRT* algorithm are discussed and proven.

This paper is organized as follows. The following section
describes the related work. “Problem formulation” describes
the problems related to path planning in a dynamic environ-
ment. “HPO-RRT* algorithm” introduces the HPO-RRT*
algorithm in detail in three aspects: the overall framework
of HPO-RRT* (“Overall framework”), tree structure opti-
mization and heuristic path planning (“Path planner”), and

the low-cost heuristic path optimization method (“Low-cost
path optimizer”). The analysis and proof of the probabil-
ity completeness and homotopy optimality of HPO-RRT*
are introduced in “Analysis”. In “The results of simulation
experiments”, the simulation experiments are reported. In
“Conclusions and future work”, we draw conclusions and
discuss future work.

Related works

In this section, we first introduce the sampling strategy and
related works to improve the RRT convergence speed. Then,
Risk-RRT is taken as a typical example to describe the rele-
vant basic knowledge of time-based RRT.

Sampling strategy

As a single-query path-planning method based on sampling,
the RRT algorithm has been widely studied in the past
three decades because of its high computational efficiency
and strong scalability. However, RRT has the problem of
slow convergence. Therefore, how to quickly converge has
become a research focus.

The results show that changing the sampling strategy can
effectively increase the convergence speed of the algorithm.
Most RRT-like algorithms use an unbiased and uniform sam-
pling strategy to explore the configuration space, which
is pointless and greatly increases computational consump-
tion, resulting in slower convergence speed. Therefore, an
importance sampling strategy is proposed, which can extract
samples from the preset distribution or configuration space.
This method effectively increases the convergence speed
[22]. Using prior information to guide local sampling is a
strategy based on importance sampling. This strategy uses
the planned path as a priori information to guide sampling
around it, such as informed RRT* [23] and its batch sample
iteration improved algorithmBIT* [24]. In addition, the ellip-
soid heuristic sampling strategy is also adopted in [25, 26]
to increase the convergence speed. Compared with the prior
information-guided sampling strategy, direct bias sampling
avoids the uniform sampling processwhen exploring feasible
paths and usually brings a higher convergence speed. This
strategy biases random samples to favorable areas through
specific methods, such as Theta*-RRT*, to explore the con-
figuration space. Using the APF method as a bias sampling
strategy is a good choice. The attractive potential field of
the APF is used to guide random sampling towards the tar-
get position bias in [27, 28]. Pharpatara [29] introduced a
rotating potential field to the traditional APF to guide offset
sampling with direction information. This paper also adopts
the offset sampling method based on the APF function to

123

7136 Complex & Intelligent Systems (2023) 9:7133–7153

Fig. 1 Basic framework of
HPO-RRT*

increase the convergence speed. In contrast to [28], we com-
bine attractive and repulsive potential fields to guide random
sampling to further improve the sampling efficiency.

Time-based RRT

The difference between time-based RRT and classical RRT
mainly lies in the representation of nodes in the tree. The tree
node of classical RRT only records the location information
of the node, while node x of time-based RRT can be defined
as a structure containing six kinds of information, i.e. x :(
xcoor , xparent , xsons , n, t , Pcollisioncheck(t)

)
.

(1) xcoor represents the position information of x and is
represented in O − xyz. (2) xparent represents the parent
node of x . Note that xparent is also represented by a struc-
ture like x . (3)xsons represents any child node of x , similar
to xparent . (4) n indicates the depth of x , that is, it needs
to pass through n nodes from the root node to the x . (5) t
represents the timestamp of x , which can be calculated by
depth, i.e. t = t0 + n�t , where t0 is the timestamp of the
root node and �t is the time increment required for the UAV
to pass through the adjacent nodes. (6) Pcollisioncheck(t) is the
collision risk probability between the node and the obstacles
in the environment at time t . In the Risk-RRT algorithm,
Pcollisioncheck(t) is defined as [20]:

⎧
⎪⎪⎨

⎪⎪⎩

Pcollisioncheck(t) = Pstatic + (1 − Pstatic)Pmoving(t)

Pmoving(t) = 1 −
K∏

k

(
1 − Pmoving(pk(t))

) ,

(1)

where Pstatic represents the collision risk probability of
the static threat, Pmoving(t) represents the collision risk
probability obtained for the moving threat at time t , and
Pmoving(pk(t)) represents the collision risk probability
between the k-th moving obstacle and the node at time t .

Time-based RRT is also an incremental algorithm simi-
lar to RRT, i.e. the tree structure continues to expand with
increasing sampling nodes. In contrast to RRT, in the tree

structure of time-based RRT, tree nodes with high collision
risk or timestamps smaller than the current root node will be
deleted.

Problem formulation

In this section, we define the path-planning problems in a
dynamic environment withmoving threats that will be solved
in this paper and the notation used to describe them.

The planning environment is abstracted as a configura-
tion space X ⊆ R

d . Let Xobs ⊆ X be the threat space
composed of static threat Xsta and moving threat Xmov , i.e.
Xsta , Xmov ∈ Xobs . The obstacle-free space is defined as
X f ree = X\Xobs . In a dynamic environment, the config-
uration space is time varying, so the above two spaces are
represented as Xobs(t) and X f ree(t). xinit , Xgoal are the ini-
tial position and the target area, respectively. In this paper,
Xgoal = {

x ∈ X f ree|ρ
(
x , xgoal

) ≤ rgoal
}
is defined in the

dynamic environment to detect whether the goal is reached,
where ρ(x1, x2) represents the Euclidean distance between
x1 and x2. A ball with centre x ∈ X and radius r ∈ R>0

is denoted as Bx , r . The APF function is U : R
d → R,

where the attractive and repulsive potential fields are Uatt

and Urep, respectively. The potential field forces generated
by these fields are Fatt and Frep.

The following paragraphs describe some problems in path
planning in a dynamic environment.

In contrast to the static environment, obstacles in a
dynamic environment change their positions over time.
Therefore, for the dynamic path-planning algorithm, time
measurement must be introduced into the nodes so that the
collision detector can use the time component to check the
feasibility of the planned path. The dynamic environment
proposed in this paper is described in Problem 1.

Problem 1 (Dynamic environment). If threats change loca-
tion over time, the environment is called dynamic, i.e.

�Xobs =
I⋃

i=0

fi (x , ti). (2)

123

Complex & Intelligent Systems (2023) 9:7133–7153 7137

The feasibility of the path is described in Problem 2.

Problem 2 (Feasible path planning). In the configura-
tion space X containing Xobs(t) and X f ree(t), given xinit
and Xgoal

(
xgoal , t

)
, a collision-free path σ : [0, T] →

X f ree can be planned, where σ(0) = xinit , σ(T) ∈
Xgoal

(
xgoal , T

)
.

Let
∑

be the set of all feasible paths in obstacle-free
space. The cost function c(σ) ∈ R>0 represents the gen-
eration value of each feasible path σ . Then, the optimal
path-planning problem is described by Problem 3.

Problem 3 (Optimal path planning). Assuming that there is
a solution set

∑
for Problem 2, the path in which the cost

function c(σ) is the smallest is the solution σ ∗ of the optimal
path planning, i.e.

σ ∗ = argmin
σ∈∑ c(σ). (3)

In UAV path planning, constraints are placed on the maxi-
mum steering angle φmax and the maximum climbing/diving
angle γmax [30]. Assume that the coordinates of any path
node are (xi , yi , zi). The constraints on φmax and γmax are
calculated as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φi = arccos

(
aTi ai+1

‖ai‖2‖ai+1‖2

)

≤ φmax

|γi | =
∣∣∣
∣arctan

(
zi − zi+1

‖ai‖2

)∣∣∣
∣ ≤ γmax

(4)

where the vector ai is
[
xi − xi−1, yi − yi−1

]T .
Therefore, in this paper, the cost function between two

points x1 and x2 in the configuration space is defined as fol-
lows:

fc(x1, x2) =
{

ρ(x1, x2) φ ≤ φmax, |γ | ≤ γmax

+∞ otherwise
, (5)

where φ and γ are the steering angle and climbing/diving
angle of the UAV flying along the planned path, respectively,
which can be calculated through the geometric relationship
between the two adjacent path segments. If these angles
exceed their limits, it is considered that the planned path
cannot meet the needs of the UAV, so the cost function is set
to infinity. Thus, the cost function of the planned path can be
expressed as:

c(σ) =
T−1∑

t=1

fc(σ (t), σ(t + 1)). (6)

HPO-RRT* algorithm

In this section, we introduce the HPO-RRT* algorithm pro-
posed in this paper in detail.

Overall framework

To address the path-planning problem of UAVs in dynamic
environments with moving threats, the algorithm must be
able to solve dynamic problems quickly. However, only
obtaining the feasible path is not an optimal choice: the
algorithm should also be able to quickly obtain the optimal
solution. Note that many time-based RRT* algorithms need
to prune the tree structure when optimizing the path, which
inevitably results in more wasted branches and additional
calculations of time-based nodes in the correction tree.

Therefore, the HPO-RRT* algorithm is proposed in this
paper to satisfy the efficiency of real-time path planning and
the superiority of paths in the dynamic environment ofUAVs.
The algorithm adopts a hierarchical framework for path plan-
ning and optimization. First, the UAV perception system is
used for threat prediction and world information updates.
Then, an improved time-based RRT* algorithm is used as
the path planner. Finally, a low-cost path optimizer is used to
optimize the path obtained by the planner. The pseudocode
of the algorithm is shown in Algorithm 1, including onemain
cycle and five main processes.

(1) Initialization (lines 1–3). This process initiates the
HPO-RRT* algorithm. σopt is treated as an empty set.
Similarly, the root node of tree T is set to xinit , and the
current positions xcur of the UAV and time are initial-
ized.

(2) Termination condition (line 4). After detecting that xcur
has reached the target area Xgoal , the program is imme-
diately terminated. Otherwise, continue running the
program until xcur arrives at Xgoal .

(3) UAV perception system (lines 8–15). During any exe-
cution, the UAV will fly a certain distance according to
the planned path, and then the planner will update the
final state xcur of the drone in this execution to the root
of the new tree T ∗

new
. Next, nodes with timestamps less

than xcur in the tree and their descendants need to be
deleted. Then, taking zero as the initial depth of xcur ,
the trajectory of the threat in the future time Nl�t is pre-
dicted through the navigation system, where Nl is the
maximum depth. Because of the movement of threats
and UAVs, all information of maps, trees, UAVs and
moving threats must be updated . This process is basi-

123

7138 Complex & Intelligent Systems (2023) 9:7133–7153

cally the same as that of Risk-RRT [20] except that the
perception system is expanded from 2 to 3D. This paper
mainly focuses on improving path planning and opti-
mization, so the description of the perception process
refers to [20].

(4) Path planner (lines 16–20). The existing time-based
RRT algorithm usually uses RRT as the bottom plan-
ner [15, 31]. Obviously, the planned path is not optimal,
and a feasible path may not be obtainable within the
time interval. In this paper, we use an improved time-
based RRT* as the path planner. First, the bias sampling
method based on the APF function is used to guide sam-
pling node xap f rand towards the target region and away
from the obstacle. Then, the time-based RRT* process
of selecting the optimal parent node in the neighbour-
hood of the new node is introduced to optimize the tree
structure, and the rewiring process in time-based RRT*
is removed to avoid damage to the tree structure. Mean-
while, the tree structure is extended in combination with
the lazy collision checking process. Finally, the heuristic
path is obtained through the tree structure.

(5) Path optimizer (line 21). Because all the nodes in the tree
have time parameters and the time is irreversible, using
the rewiring process in the tree structure to optimize
the path will lead to the disorder of node timestamps in
the tree, and repairing the tree structure will consume
considerable extra time. Therefore, this paper designs
a low-cost path optimizer that directly optimizes the
heuristic path without changing the tree structure to
obtain the optimal path σopt .

Path planner

Bias sampling based on the APF function

In the traditional RRT algorithm, the sampling nodes are ran-
domly selected in the collision-free configuration space, and
then the extended nodes generate a search tree to the target
area. Although this method can ensure the completeness of
probability, in the three-dimensional space of UAVflight, the
search efficiency is lowbecause of the large randomsampling
space. In addition, HPO-RRT* is a planning algorithm based
on time constraints. The path-planning time of the UAV will
be limited to a fixed time interval, so the time of path plan-
ning is relatively short. Random sampling is inefficient and
may be unable to plan a feasible path. Therefore, to plan the
path efficiently, this paper proposes a bias sampling method
based on APF functions, which makes the sampling nodes
expand towards the target region and away from the threat to
plan the path efficiently in a limited time.

The APF constructs the attractive potential field of the
target position and the repulsive potential field of the threat.
The resultant force Fap f generated by these two potential
fields guides theUAV tomove towards the target point. In this
paper, the following functions are used to define the attractive
Uatt and the repulsive Urep potential fields, as well as their
corresponding force vectors Fatt and Frep, respectively.Uatt

and Fatt are:

Uatt (x) = 1

2
kattρ

2(x , xg), (7)

Fatt (x) = −∇(Uatt) = −kattρ(x , xg)
∂ρ(x , xg)

∂x
, (8)

Urep and Frep are

Urep(x) =
⎧
⎨

⎩

1
2krep

(
1

ρ(x , xobs)
− 1

ρo

)2
ρ(x , xobs) ≤ ρo

0 ρ(x , xobs) > ρo

,

(9)

Frep(x) =
{
krep

(
1

ρ(x , xobs)
− 1

ρo

)
1

ρ(x , xobs)2
∂ρ(x , xobs)

∂x ρ(x , xobs) ≤ ρo

0 ρ(x , xobs) > ρo

,

(10)

where ρo is the maximum impact distance of the threat, and
xobs is the location of the threat.

According to Eqs. (7) and (9), the calculation of random
sampling through APF bias is described as follows:

Fatt_bias = −kattρ(xrand , xgoal), (11)

Frep_bias = krep

(
1

ρ(xrand , xobs)
− 1

ρo

)
1

ρ(xrand , xobs)2
,

(12)

123

Complex & Intelligent Systems (2023) 9:7133–7153 7139

Fap f _bias = Fatt_bias + Frep_bias . (13)

Then, the bias sampling node can be described as:

xap f rand = xrand + kbias
Fap f _bias∣
∣Fap f _bias

∣
∣ , (14)

where kbias ∈ R>0 is the bias step.
Note that path planning using the APF function has disad-

vantages, such as inaccessible targets and easily falling into
local minima. However, in this paper, the APF function is
only used to bias the random sampling, not to find the path.
At the same time, each sampling is an independent random
event. Therefore, the shortcomings of the APF function can
be effectively avoided.

In this paper, we further improve the approach described
in [28]. Qureshi and Ayaz [28] calculate the influence of
the attractive potential field on xrand and determine whether
to reserve bias sampling nodes by determining whether the
distance between xrand and xobs is within the range of ρo.
Through the strategy of [28], the random sampling nodes
outside the influence range of the repulsive potential field
can be biased towards the goal, thereby improving the sam-
pling efficiency. However, if the nodes are in the influence
range of the repulsive potential field, they will be discarded.
At this time, new nodes will be randomly sampled again to
bias. Note that if the random sampling node within the influ-
ence range of the repulsive potential field can also be biased,
repeated random sampling and collision check of this node
will be avoided, thus further improving the sampling effi-
ciency. Therefore, this paper introduces biased sampling of
the repulsive potential field to retain all random sampling
and expand the expansion space of the tree as much as pos-
sible. The pseudocode of the APF bias sampling is shown in
Algorithm 2.

First, the sample_random function is used for random
sampling in collision-free space X f ree. Second, the attractive
force Fatt of xgoal to xrand and the repulsive force Frep of
xobs to xrand are calculated. Third, the resultant force Fap f is

calculated and then used to bias xrand to xap f rand . The final
bias sample node xap f rand is obtained.

The expansion of the time-based tree

Similar to RRT*, time-based Risk-RRT* can also optimize
the tree structure through the rewiring process to obtain
asymptotically optimal partial planned paths when address-
ing path-planning problems with moving threats. However,
because of the irreversibility of time, the rewiring process
of Risk-RRT* will destroy the time-based tree structure. The
time spent repairing the tree structure increases exponentially
with the size of the tree, reducing the planning efficiency.
In addition, in the sampling-based path-planning algorithm,
collision checking is very time-consuming.Because the plan-
ning time using HPO-RRT* is a fixed short time interval,
the planning efficiency is particularly important. Therefore,
in this paper, the neighbouring parent selection process of
Risk-RRT* is retained in the process of expanding the tree to
optimize the tree structure,while the rewiring process is elim-
inated to ensure the efficiency of the path planner. Although
this approach will sacrifice the optimality of the path, the
path can be quickly optimized by a low-cost path optimizer
that is more efficient than the rewiring process. At the same
time, to expedite collision checking, a method of lazy colli-
sion checking is proposed in this paper, which improves the
computational efficiency by ensuring that the planned path
is collision free.

In the HPO-RRT* algorithm, the expansion of nodes is
closely related to time. Each forward expansion of a node in
the tree indicates that the execution time of theUAV increases
by the time step �t . Therefore, any node xi ∈ T .V in the
tree needs to record its timestamp, i.e. xi : (

x∗
i , t + Ni�t

)
,

where x∗
i is the position coordinate of xi , t is the start time

of this extension process, and Ni is the number of time steps
required to extend from the root node xroot of the current
spanning tree to xi .

Note that the Extend process is improved by using time-
based RRT* as the basic planner. It only includes the process
of selecting the optimal parent node in the neighbourhood
of the new node xnew and omits the rewiring process. This
approach is used because only after selecting the optimal par-
ent node of xnew, xnew will be added to the time-based tree
structure to obtain the timestamp. However, the time-based
tree needs to update the timestamp of the node and all its
descendantswhen rewiring the node and conducting collision
checking again, which greatly increases the calculation time.
A simple but typical example is shown in Fig. 2. In Fig. 2a,
after adding xnew to the time-based tree, the rewiring process
will be executed in the neighbourhood of xnew. Obviously,
the cost from x0 through xnew to x8 is less than the cost from
x0 to x8 in the original tree. If rewiring is performed, i.e. the
newparent nodeof x8 is xnew (called x

′
2 in (b)), the time-based

123

7140 Complex & Intelligent Systems (2023) 9:7133–7153

Fig. 2 Rewiring process of the time-based tree

tree will be updated to the structure shown in Fig. 2b. At this
time, the timestamps of x8, x9, x10 and x11 are affected by
rewiring and need to be updated to the timestamps of x

′
3, x

′
4,

x
′
5 and x

′
6, respectively. In addition, because of the change in

the timestamp, the collision checking of these update nodes
must be reperformed to ensure that the nodes will not collide
with the moving threats under the new timestamp. If colli-
sion checking cannot be passed, all branches formed by this
node and all its child nodes need to be deleted. This process
brings many additional computing costs. Therefore, in the
HPO-RRT* algorithm, we delete the rewiring process of the
time-based RRT* to reduce the computational consumption
and meet the requirements of efficient and fast tree structure
expansion within a fixed time interval. In addition, we keep
the process of xnew reselecting the newparent node. This pro-
cess is retained because it is a forwards expansion process,
which will only affect the relevant parameters of the new
nodexnew. Therefore, it will not bring additional computing
consumption. Moreover, it can optimize the tree structure to
a certain extent.

The planning space in this paper contains static and mov-
ing threats. For static threats, the position remains fixed at
each time step. However, the coordinates of moving obsta-
cles change with time. During the planning of the current
time interval, the UAV can only refer to the threat prediction
trajectory before the current planning to expand the tree by
Nl time steps �t (Algorithm 1, line 12). However, as the
predicted threat trajectory may not be accurate enough, the
path obtained in this partial planning may become infeasi-
ble because of the new prediction of the threat trajectory
in the next planning. An intuitive idea is to set Nl very
small to improve the accuracy of obstacle prediction and
reduce the number of potentially invalid and repeated col-
lision checking calls to improve the calculation efficiency.
However, this approach makes the expansion range of the
tree in each cycle very small, which is not suitable for the

Fig. 3 Illustration of lazy collision checking

large-scale 3D planning space of UAVs. Therefore, to ensure
a certain extension range of the forwards tree and reduce
the computational loss, this paper proposes a method of lazy
collision checking, which delays the collision checking pro-
cess until it must be called. Figure 3 illustrates lazy collision
checking. This method defines a new extended time depth
Nc < Nl . In Nc�t , all extended branches perform collision
checking. The step length of each UAV execution is also set
in Nc�t . However, collision checking will not be performed
in the time depth from Nc�t to Nl�t . Because of the parallel
planning and execution, the planning of the next time interval
will start with a new root node, and the time depth for colli-
sion checking will continue to expand backwards. Therefore,
all nodes on the final expansion tree will complete collision
detection. Note that Nc greatly influences the performance
of HPO-RRT*, so the calculation complexity and planning
depth should be fully weighed.

The pseudocode of the Extend process is shown in Algo-
rithm 3. After the SampleAPF process returns the biased
sample xap f rand , the forward expansion process begins. Sim-
ilar to the time-based RRT*, the process of expanding the
new node x∗

new is realized by the Nearest, Steer and Near
functions. In the expansion process of xnew, only its position
is considered temporarily (i.e. let xnew be x∗

new). First, the

123

Complex & Intelligent Systems (2023) 9:7133–7153 7141

Nearest function returns the closest node x∗
nearest between

xap f rand and the tree node set T .V , and then Steer generates
a new node on x∗

new. Next, the algorithm searches the neigh-
bourhood formed by the sphereBx∗

new , r whose centre is x
∗
new

and radius is r (where r = γ
(
log n
n

)1/d
[32]) to obtain the

node set Xnear whose distance from x∗
new in Bx∗

new , r is less
than r . After connecting x∗

new to Xnear , the timestamp tnew of
xnew is arranged from small to large to form a potential parent
node set X parent . First, the algorithm judges whether tnew is
within the time depth Nc�t . If this criterion is met, the algo-
rithmperforms collision detection to select the optimal parent
node of xnew; if tnew ∈ (Nc�t , Nl�t], it directly selects
without collision detection. If tnew > Nl�t , xnew exceeds
the maximum time depth limit of this planning. Finally, xnew
and its edge formed with the optimal parent node xparent are
added to the tree T .

Planning path finding

Because the growth of the tree can only occur in the fixed
planning time of a single cycle, and the maximum time depth
of the node is limited to Nl�t , for the 3D large-scale space
Xgoal in which the UAV flies, it is almost impossible to
generate an expansion tree in which the node falls in the tar-
get area SD after only one or several cycles. Therefore, this
paper introduces a cost function composed of the true dis-
tance cost and the estimated distance cost to find the heuristic
partial path in the single planning spanning tree, namely, the
HeuristicPathFinding process.

In a planning interval, tree expansion is limited by the
maximum expansion depth Nl . That is, in the nodes of tree
Tnew, the maximum extension time depth is Nl�t . Based on
this limitation, the node set of the true path cost can be defined
as Xl , including nl nodes xl with a time depth of Nl�t , i.e.

Xl :=
{
(x∗

l, 1, Nl�t), ...(x∗
l, i , Nl�t), ...,

(
x∗
l, nl

, Nl�t
)}

.

The set of true costs of all paths that can reach xl, i in the
current tree is defined as g(Xl). The set of estimated costs
from any node in Xl to the target region Xgoal is defined as
h(Xl). Then, the cost f (Xl) of the path is:

f (Xl) = g(Xl) + h(Xl). (15)

We aim to find the node xl, i that can minimize f (Xl), i.e.

xl, min = argmin
xl, min∈Xl

f (Xl). (16)

For the time-based tree, the exact value of g(Xl) can be
obtained by calculating the path length, while h(Xl) can only
be estimated. Therefore, an acceptable estimation cost cal-
culation method should be selected so that the real cost of

reaching xgoal is not overestimated. The following formula
is used for calculating the estimated cost h

(
xl, i

)
of any node

xl, i :

h
(
xl, i

)
xl, i∈Xl

= klρ
(
xl, i , xgoal

)
, (17)

where kl is the heuristic parameter.

On the basis of the above calculation, we ensure that in
each partial planning, we can find a heuristic partial path
towards the target from the current time-based tree. Algo-
rithm 4 gives the pseudocode of the HeuristicPathFinding
process. First, the algorithm finds all nodes with time depth
tl in tree Tnew and forms a set Xl . Then, the node xi , min that
minimizes the estimation cost is found by f (Xl). Finally,
the heuristic path σheu generated by the planner is found by
xi , min.

Low-cost path optimizer

The path planner using the HPO-RRT* algorithm efficiently
generates heuristic paths without guaranteeing the optimality
of the paths. Although the time-based Risk-RRT* algorithm
can obtain the optimal path, as an online path-planning algo-
rithm used to address moving threats, it takes a long time in
the optimization process and sometimes cannot optimize the
path well in a short planning time. Qi et al. [33] uses RRT* to
find the initial path and then uses the ant colony (ACO) algo-
rithm to reoptimize the path. This hierarchical optimization
is interesting, but the ACO algorithm brings high computa-
tional complexity. TheBellman–Ford (BF) algorithm [34], as
an algorithm for solving the shortest path, provides a method
for searching the shortest path in a weighted graph. There-
fore, inspired by [33, 34], combined with the requirements of
online dynamic path planning, this paper proposes a low-cost
fast path optimization method. This method directly opti-
mizes the heuristic path σheu generated by the path planner
without changing the tree structure. Therefore, additional
complex calculations are not needed to optimize the path
more quickly and effectively.

123

7142 Complex & Intelligent Systems (2023) 9:7133–7153

Fig. 4 Bias optimization

The BF algorithm estimates the distance from any node
to a specified node by relaxing the trigonometric inequality
constraint of the connection between nodes in the weighted
graph. In the path optimization process of HPO-RRT*, we
use this algorithm to offset the path points to optimize the
heuristic path. As shown in Fig. 4, the blue path is the heuris-
tic path σheu that has not been optimized, and the green
translucent path is the path σ ∗ that has been optimized once.
In the cycle, bias optimization is performed on the nodes
in σheu (excluding the initial point and the target point) in
turn. After all the path nodes are optimized once, path B is
obtained. Obviously, cost(σ ∗) < cost(σheu).

To clearly illustrate the optimization process, the offset to
a is taken as an example. For the three nodes x1, x2 and x3
in the tree, the path cost from x1 directly to x3 is minimal.
However, if x1 and x3 are directly connected (that is, con-
nected by the orange dotted line), the timestamps of x3 and
all its descendants need to be updated, resulting inmany extra
computations. In addition, if Xobs exists nearby, such as the
handling of node x4, the directly connected edge (x3, x5)will
collide with the threat, causing the optimization path to fail.
Therefore, we try to optimize the path by biasing the posi-
tion of node x2 towards edge (x1, x3). The specific method
is to find the midnode xmid

2 of edge (x1, x3). Then, move x2

along the vector
−−−−→
x2xmid

2 by a step λopt to obtain the optimized
node. For any node xi in the path, the optimization step λopt
is calculated as follows:

λopt = kopt

(
(xi−1 + xi+1)/2 − xi

ρ((xi−1 + xi+1)/2, xi)

)
, (18)

where kopt ∈ R>0 a is the bias factor. Then, the optimized
node xi of any node xnew in the path can be expressed as:

xnew = xi + λopt . (19)

Algorithm 5 gives the pseudocode of the
Low-costOptimizer process. Define a function to determine
whether the optimization process is completed and assign
it as false at the beginning of the algorithm. The function

123

Complex & Intelligent Systems (2023) 9:7133–7153 7143

CollisionCheck(xi−1, xnew, xi+1) means collision check-
ing for the path segment from xi−1 through xnew to xi+1. If the
result is true, then (xi−1, xnew, xi+1) is a collision-free path
segment. The function MaxAngleCheck(xi−1, xnew, xi+1)

indicates the UAV maximum angle constraint detection
for the path segment (xi−1, xnew, xi+1). Note that line 18
compares the cost between the path before the current cycle
and the optimized path to complete the current cycle. If
the cost difference between the two paths before and after
optimization is less than the threshold ε, where ε ∈ R,
then the path is hardly changed in the optimization process.
When this result is obtained, the improvement of path
quality in the optimization process is no longer obvious, i.e.
the optimal path is essentially determined. Therefore, assign
FinishOptimization to true.

In any optimization cycle, first, the initial position is added
to the optimization path σopt . Next, the nodes in heuristic
path σheu are biased optimized. If the optimized path meets
the constraints of collision detection and UAV maximum
angle, then the optimized path of this cycle planning is fea-
sible. Finally, if the generated path can improve the path
quality, start the next cycle with this path as the path to be
optimized. The termination conditions of the optimization
process shown in Algorithm 5 include the following criteria:
(1) the process is terminated when collision detection or the
maximum angle constraint of the UAV cannot be met; (2) in
the same cycle, if the costs of the optimized path σopt and
the nonoptimized path σ ∗ differ by less than ε, the process
terminates.

Obviously, throughout the optimization process, the orig-
inal tree structure is unchanged, and the timestamps of all
nodes are unmodified. We can obtain a better path σopt than
heuristic path σheu by performing bias optimization on the
nodes of the heuristic path. Despite additional computations,
the computational cost of our method is negligible relative
to methods that optimize tree structures to optimize paths.

Analysis

In this section, we analyse the probability completeness and
homotopy optimality of HPO-RRT*.

Probabilistic completeness

Probabilistic completeness ismainly used to analyse the abil-
ity of algorithms to find feasible solutions. The HPO-RRT*
algorithm finds the path in a single plan through the path
planner and then optimizes the path directly generated by
the path planner. Therefore, the probabilistic completeness
analysis of HPO-RRT* only needs to consider some paths
obtained through the path planner in a single plan.

Let V ALG
n represent the set of tree nodes generated by

algorithm ALG after iteration n. Definition 1 gives the defi-
nition of probabilistic completeness.

Definition 1 (Probabilistic completeness). Given the initial
node xinit and the goal region Xgoal , if algorithm ALG can
find the feasible path from xinit to xgoal ∈ Xgoal for any
path-planning problem with a feasible solution, i.e.

lim inf
n→∞ ‖

(
V ALG
n ∩ Pgoal �= ∅

)
= 1, (20)

then the algorithm is considered probability complete.

TheRRTalgorithmhas beenproven to be probability com-
plete. HPO-RRT* covers all the key processes of RRT in the
bottom planner. Similar to RRT, HPO-RRT* has probabilis-
tic completeness, which is described in Theorem 1.

Theorem 1 (Probabilistic completeness of HPO-RRT*).
Given a path-planning problem, if there is a feasible solution,
then,

lim
n→∞ ‖

(
V PT L−RRT∗
n ∩ Pgoal �= ∅

)
= 1. (21)

Proof of Theorem 1. The proof of Theorem 1 is based on the
following three arguments.

(1) As shown in Algorithm 1, the vertex set V PT L−RRT∗
of the random tree T generated by HPO-RRT* includes
node xinit , and V PT L−RRT∗

0 = xinit , which is the same
as RRT.

(2) Similar to RRT, the tree generated by HPO-RRT* is
connected. In other words, any random sampling node
can be connected to the tree.

(3) HPO-RRT* only plans the pathwithin a fixed time inter-
val of each cycle, and the time depth limits its expansion
range. However, for any cycle i , HPO-RRT* is the same
as the RRT algorithm and has probability completeness.
That is, in cycle i , when sample ni tends to infinity, the
probability of HPO-RRT* finding a path from the cur-
rent planning starting point (also the subtarget point of
the last cycle planning, i.e. xsubgoal, i−1) to the subgoal
node xsubgoal, i is one, i.e.

lim
ni→∞ ‖i

(
V PT L−RRT∗
ni ∩ xsubgoal, i �= ∅

)
= 1. (22)

When the number of cycles is infinite, the subgoal node
xsubgoal, i can surely fall into the goal region Xgoal , and all
partial paths are connected. Therefore, the probability that
HPO-RRT* finds a path from xinit to Xgoal can be expressed
as:

123

7144 Complex & Intelligent Systems (2023) 9:7133–7153

lim
ni→∞, i=1, ...N

‖
(
V PT L−RRT∗
n ∩ Xgoal �= ∅

)
=

N∏

i=0

lim
ni→∞ ‖i = 1.

(23)

Thus, Theorem 1 is proved.

Homotopy optimality

The asymptotic optimality ofRRT*andmanyof its derivative
algorithms has been proven. This section proves that HPO-
RRT* has similar properties to these algorithms, which is
called homotopy optimality.

Note that HPO-RRT* performs partial path planning
within a fixed time interval of each planning. Therefore, the
path that ensures the homotopy optimality of HPO-RRT*
is obtained by optimizing the heuristic path in a fixed time
interval planning, rather than the entire path from the ini-
tial position to the goal region. The relevant definitions of
homotopy optimality and the proof process are as follows.

Definition 2 (Homotopy class of feasible paths [35]). For
two arbitrary paths σ1 and σ2 with a fixed initial node and
goal node, if one path can be continuously deformed into
the other without intersecting any threat, then σ1 and σ2 are
considered to belong to the same homotopy class [σ].

When multiple paths belong to the same homotopy class
[σ], theremust be a homotopy optimal path σ ∗

opt , which is the
least costly path in [σ]. Thus, Lemma 1 is given as follows.

Lemma 1 (Homotopy optimality of σopt). Given that
the homotopy class containing heuristic path σheu is{
[σ]PTL−RRT∗

∣
∣σheu ∈ [σ]PTL−RRT∗

}
, the optimization path

σopt returned by the path optimizer of HPO-RRT* is the
homotopy optimal path of the homotopy class, which is the
path with the lowest cost.

Proof of Lemma 1. In process re-optimization, we use
a low-cost path optimization algorithm to quickly optimize
heuristic path σheu . When the path meets the termination
conditions of the process, an optimizedpathσopt is generated.
Therefore, the proof of Lemma 1 can be divided into three
arguments according to the conditions of path termination
optimization.

(1) After the optimization process, the path cost is almost
unchanged, i.e. �cost < ε. As we analysed in “Low-
cost path optimizer”, if �cost < ε, then the path has
reached optimality, so the generated path σopt is the
homotopy optimal path in the homotopy class.

(2) When the return value of CollisionCheck is false,
path σopt is obtained. First, we assume that the ter-
mination condition is triggered because edge cannot

Fig. 5 Bias optimization

pass CollisionCheck. As shown in Fig. 5a, there are
two kinds of optimized path (i.e. σopt is the blue path
and σ

′
opt is the green path). Suppose the σ

′
opt whose

cost is cost
(
σ

′
opt

)
< cost

(
σopt

)
and cost

(
σopt

) −
cost

(
σ

′
opt

)
> ε, that is, σ

′
opt must be closer to edge

(x1, x4) than σopt . However, σ
′
opt cannot pass the colli-

sion checking, and σ
′
opt will collide with obstacles. This

causes the CollisionCheck procedure returns a false
value. Then, process re-optimization stops and returns
the optimized path σopt before the start of the current
cycle as the optimal path. Therefore, no path costs less
than σopt . Then, σopt can be claimed to be homotopy
optimal in the homotopy class.

(3) When the return value of Max AngleCheck is false,
path σopt is obtained. First, we assume that the termi-
nation condition is triggered because edge cannot pass
Max AngleCheck. Similar to Proof 2), Fig. 5b shows
two kinds of optimized path (i.e.σopt is the blue path
and σ

′
opt is the green path). The edge (x0, x1) is the

last segment of the optimized path obtained from the
previous cycle planning It is assumed that there is a

path σ
′
opt , and cost

(
σ

′
opt

)
< cost

(
σopt

)
. Then, σ

′
opt

must be closer to edge (x1, x4) than σopt . However, the
steering angle of σ

′
opt is φ

′
, which is larger than the

steering angle φmax(i.e. the maximum steering of UAV)
of σopt . If the angle φ

′
does not meet the UAV angle

constraint, Max AngleCheck returns false. Obviously,
φ

′
does not meet the constraint. Then,σ

′
opt is infeasible,

and re-optimization returns to path σopt . Therefore, no
path costs less than σopt . It can be proven that σopt is
homotopy optimal. Based on the above three arguments,
σopt is proven to be the homotopy optimal path in the
homotopy class containing σheu .

The results of simulation experiments

In this section, we give the simulation experiments of the pro-
posed algorithm. Themain purpose is to verify the feasibility

123

Complex & Intelligent Systems (2023) 9:7133–7153 7145

Table 1 Parameters of the
moving threats in Scenario 1 Starting moving time Speed Ending moving time

Radar 1 tr_start = 0s vr = [2.6, 1.5, 0] m/s2 tr_end = 3 s

Missile 1 tm_start = 0s vm = [5, 0, 0] m/s2 tm_end = 5 s

Anti-air gun 1 ta_start = 11s va = [4.5, 0.2, 0] m/s2 ta_end = 15 s

and advantages of the algorithm in aUAVflight environment.
Therefore, “Simulation setup” shows various threats in the
considered UAVflight dynamic environment and the settings
of some basic parameters to make the results as close to the
real battlefield environment as possible to increase the relia-
bility.

Simulation setup

Dynamic environment design

Constructing a battlefield environment is a prerequisite for
path planning. The closer the construction of the battlefield
environment is to reality, the better the verified path-planning
algorithm will be implemented on UAVs. Therefore, to
verify the feasibility and advantages of the HPO-RRT* algo-
rithm in a battlefield environment, this paper simulates the
real dynamic environment, including real terrain, radar, air
defence missiles, anti-aircraft guns and a tower, as the con-
figuration space for UAV path planning. We have already
introduced the modelling and calculation of these threats in
our previous work [36]. Since this paper mainly focuses on
the planning of the HPO-RRT* algorithm, the modelling of
threats will not be further described.

Based on the five threats in the above-mentioned real bat-
tlefield, this paper designs two 3D dynamic environments,
including a threat with known moving trajectories and a ran-
dom moving threat, to test the performance of the proposed
algorithm and compare HPO-RRT* with related algorithms.
The terrain threat in the two scenarios uses a unified eleva-
tion map. The two scenarios contain static or moving radar,
missiles and anti-aircraft artillery threats.

Experiment Scenario 1 Dynamic flight scenario with known
moving trajectory threats.

The environment size is 400*400*60m3. Radar 1,Missile
1 and Anti-aircraft gun 1 are moving threats, which start
to move from their initial positions. The speed and moving
time period are shown in Table 1. The remaining threats are
static. When the moving threats touch the boundary of the
configuration environment, they will rebound and then move
in the opposite direction. There is no interaction between
different moving threats.

Experiment Scenario 2 Dynamic flight scenario containing
multiple random moving threats

The size of the environment is 400*400*60m3. The initial
position of the terrain threat and the other three threats is
the same as that of experimental Scenario 1. In Scenario 2,
moving threats are randomly selected from all radars, air
defence missiles and anti-aircraft guns in the environment.
{1, 3, 5, 6} threats can be selected to move at the same time.
The movement speed is randomly selected from {1, 3, 5, 7}
m/s2.The start time of the movement is any time during the
planning period, and the time period of each movement is
3 s. All threats except those moving remain stationary. When
the moving threats touch the boundary of the configuration
environment, they rebound in the opposite direction and then
continue to move. There is no interaction between different
moving threats.

Basic parameter design

During the preparation of simulation experiments, the perfor-
mance of the UAV, the location of threats in the environment,
and the relevant basic parameters of the HPO-RRT* algo-
rithmmust be set. Table 2 shows the specific parameter names
and values.

Simulation experiments

In this section, theHPO-RRT* algorithm is applied to the two
dynamic scenarios with moving threats designed in “Simu-
lation setup” to verify its feasibility, optimization, efficiency
and success rate of the HPO-RRT* algorithm in the dynamic
environment of UAV flight. Additionally, to further verify
the performance of the HPO-RRT* algorithm, we compared
it with three dynamic planning or replanning algorithms
derived from RRT, including RRTX, Risk-RRT and Risk-
RRT*. In the two sets of scenarios, these algorithms are
run many times to reduce the randomness of sampling-based
algorithms. We evaluate the performance of each algorithm
by taking the navigation time, planning path length and plan-
ning success rate as metrics.

Experiment Scenario 1 Figure 6 shows the UAV paths
planned by the four algorithms in Scenario 1, and Table 3
shows some performance data in the experiment in Fig. 6. In
general, compared with the other three algorithms, the path
planned byHPO-RRT* is shorter and smoother.Moreover, in
each partial planning, HPO-RRT* can quickly plan a longer
path, so the planning efficiency and expansion range of this
algorithm are also the best. In addition, HPO-RRT* has the

123

7146 Complex & Intelligent Systems (2023) 9:7133–7153

Table 2 Simulation experiment
parameters Parameter Value

katt 20

krep 30

ρo 3 m

kbias 5

Growing time �t 0.5 s

Nc 10

Nl 15

Maximum expansion step of a
single node δ

15 m

kl 1

φmax 60°

γmax 45°

kopt 1

ε 0.1 m

Start (40, 40, 30) m

Target (350, 350, 50) m

Experiment Scenario 1 Radar Centre Radius

1: (100, 80, 0) m 35 m

2: (100, 350, 5) m 35 m

3: (170, 230, 20) m 35 m

4: (280, 200, 20) m 35 m

Missile Centre Radius Height

1: (70, 170, 0) m 30 m 40 m

2: (170, 140, 0) m 30 m 40 m

Artillery Centre Radius Height

1: (300, 100, 0) m 30 m 40 m

2: (260, 280, 0) m 25 m 40 m

No-fly tower Centre Radius Height

1: (200, 290, 10) m 15 m 50 m

2: (100, 275, 10) m 20 m 40 m

Experiment Scenario 2 Radar Centre Radius

1: (100, 90, 5) m 35 m

2: (170, 230, 20) m 35 m

Missile Centre Radius Height

1: (70, 170, 0) m 30 m 40 m

2: (180, 140, 0) m 30 m 40 m

Artillery Centre Radius Height

1: (300, 150, 0) m 30 m 40 m

2: (270, 280, 0) m 25 m 40 m

No-fly tower Centre Radius Height

1: (200, 290, 10) m 15 m 50 m

2: (100, 275, 10) m 20 m 40 m

123

Complex & Intelligent Systems (2023) 9:7133–7153 7147

Fig. 6 Experiment Scenario 1. Planned path diagram of different algo-
rithms at different times, in which the blue line represents RRTX; the
green line represents Risk-RRT; the yellow line represents Risk-RRT *;
and HPO-RRT* is indicated by a red line. The grey translucent threat

is the initial position of the three moving threats. a, c and e show path
3D diagrams at t = 10s, 20s, 27.8s, respectively; b, d and f show the
contour top views of the above time path

123

7148 Complex & Intelligent Systems (2023) 9:7133–7153

Table 3 Length and navigation
time of planned paths with the
algorithms in Fig. 6

Algorithm RRTX Risk-RRT Risk-RRT* HPO-RRT*

Length (m) 488.9 580.2 519.6 477.9

Time (s) 23.3 27.8 23.9 21.2

477.9 represents the shortest path length. 21.2 indicates the shortest running time

shortest planning and execution time, stable performance,
and a high success rate.

RRTX is a replanning algorithm. Compared with simi-
lar algorithms, RRTX has faster information transmission
speed and response speed and has better performance in the
problem of path replanning in addressing moving threats.
Although the tree structure needs to be pruned in RRTX path
planning, which greatly reduces the corresponding speed and
planning efficiency of the algorithm, Fig. 6 shows that RRTX

can still maintain a good response speed and planning effi-
ciency. In addition, when the tree structure is small at the
initial stage of planning, the planned path quality is basi-
cally the same as that of the HPO-RRT* algorithm. However,
when the sampling increases and the tree structure becomes
larger, RRTX takes a long time to prune the tree structure,
thus reducing the time to optimize the path. Thus, the qual-
ity of the paths planned by RRTX begins to lag behind that
of HPO-RRT*. The path planned by RRTX becomes less
smooth, and the angle loss increases when the UAV flies
along this path. Risk-RRT, Risk-RRT* and HPO-RRT* are
time-based RRT algorithms. In other words, little time needs
to be spent in tree structure pruning during planning, so
they have a fast response speed. However, Risk-RRT is an
algorithm whose path planner is time-based RRT, thus using
Risk-RRT for planning will generally only obtain one feasi-
ble path. Furthermore, the optimality and planning efficiency
of the planned path cannot be guaranteed. Therefore, we can
see that the paths and navigation times obtained by Risk-
RRT and HPO-RRT* are considerably different. Compared
with Risk-RRT, the quality of the planned path of Risk-RRT*
has been improved to some extent. Risk-RRT* is an algo-
rithm that needs to rewire the tree structure to optimize the
path, but Fig. 6 shows that the improvement of the path qual-
ity is not large. This result is obtained because part of the
planning time is short, and the time allocated to the recon-
nection process is limited. However, Risk-RRT* requires a
large number of rewiring calculations to optimize the path,
so it cannot optimize the path better in a limited time. Simi-
lar to RRTX, Risk-RRT* has good algorithm performance in
the early stage due to its small tree structure. However, with
increasing sampling, its performance gradually lags behind
that of HPO-RRT*. It can be seen that HPO-RRT* always
performs well in planning. HPO-RRT* uses APF bias sam-
pling in the path planner to improve the quality and efficiency
of sampling. At the same time, in the expansion of the tree,

Fig. 7 Planned path length of 50 experiments of four algorithms

the lazy collision checkingmethod is used to reduce the com-
putational cost and expand the expansion range of the tree.
After obtaining the heuristic path, HPO-RRT* uses the low-
cost path optimizer to directly optimize the heuristic path to
quickly obtain the optimized path. This optimization method
does not change the structure of the time tree; that is, no
additional calculation loss occurs in the optimization pro-
cess. Therefore, compared with the other three algorithms,
HPO-RRT* has the smallest navigation time, the shortest
planned path and the highest smoothness.

Furthermore, in Scenario 1, each algorithm is repeated
50 times. We use the planned path length, navigation time
and success rate to evaluate the performance of each algo-
rithm. Figures 7, 8 and 9 compare the results. We find that
the HPO-RRT* algorithm has good stability and algorithm
performance. In the length comparison of 50 experiments,
HPO-RRT* can use the low-cost path optimizer to fully and
quicklyoptimize thepathduringplanning so that the lengthof
the planned path is always the shortest and the length variance
is very small. Additionally, because HPO-RRT* maintains
high planning efficiency, the navigation time can be quickly
stabilized. Moreover, for the above reasons, the success rate
of the algorithm is high. In otherwords, HPO-RRT* has good
performance and stability when addressing UAV path plan-
ning in a dynamic environment with known moving threat
trajectories.

Experiment Scenario 2Experiment Scenario 2 focuses on the
success rate and optimization of path-planning algorithms
in a more complex dynamic environment. The algorithm

123

Complex & Intelligent Systems (2023) 9:7133–7153 7149

Fig. 8 Navigation time of 50 experiments of four algorithms

Fig. 9 Success rate

Table 4 Length and navigation time of planned paths with the algo-
rithms in Fig. 9

Algorithm RRTX Risk-RRT Risk-RRT* HPO-RRT*

Length (m) 526.7 616.0 546.3 485.8

Time (s) 35.1 38.4 36.2 32.2

485.8 represents the shortest path length. 32.2 indicates the shortest
running time

performance is tested by setting the number and speed of
moving threats in the UAV flight environment to a random
generation state. Figure 10 and Table 4 show the perfor-
mance of the four algorithms in one case with threats of
random movement. Furthermore, for each combination of
random threat number and speed in Scenario 2, each algo-
rithm is tested in 6 trials. Therefore, for each algorithm, we
conducted a total of 96 experiments on 16 combinations of
random threats. We use the planned path length, naviga-
tion time and success rate to evaluate the performance of
each algorithm. The performance of the algorithms is shown
in Figs. 11 and 12. In general, compared with Scenario 1,
the performance of the four algorithms declines in Scenario
2. This decline occurs because the four algorithms need to
address more complex moving threats. However, compared

with the other three algorithms, HPO-RRT* has the short-
est and smoothest planned path length. The navigation time
is also the shortest, and the success rate is also guaranteed.
Therefore, the efficiency, effectiveness and stability of HPO-
RRT* are demonstrated.

Figure 10 and Table 4 clearly show that the planning
path quality of the HPO-RRT* algorithm remains superlative
among the four algorithms. Because Risk-RRT has relatively
low planning efficiency and no path optimization process,
its planning path and navigation time are relatively poor.
In more complex dynamic environments, Risk-RRT* does
not have sufficient reconnection time, resulting in less obvi-
ous improvement of path quality. Under its ability of rapid
replanning and optimization, RRTX can obtain a faster nav-
igation time and higher-quality paths than Risk-RRT and
Risk-RRT*. With its efficient planner and optimizer, HPO-
RRT* also maintains a high-quality planning path and has
the shortest response time in a dynamic environment with
random moving threats.

Furthermore, to verify the performance quality of HPO-
RRT* more comprehensively, 96 simulations were con-
ducted on 16 combined random moving threats. Figures 11
and 12 show the results. In the combination of a few moving
threats and slow moving speed, the four algorithms easily
plan the path, and all find the path with basically the same
success rate, with the path length of HPO-RRT* being the
shortest. However, with an increase in the number and speed
of threats, the success rate of the algorithms declines. In
addition, it can be seen that HPO-RRT* guarantees almost
the same success rate as RRTX, while the success rates of
Risk-RRT and Risk-RRT * decrease significantly. Although
HPO-RRT* as a time-based RRT algorithm has been proven
to be inferior to the replanning algorithm (RRTX) in address-
ing path-planning problems in highly dynamic environments
(i.e. environments with fast-moving threats and more mov-
ing threats), HPO-RRT* can maintain good adaptability to
dynamic environments with its high-quality sampling and
efficient expansion, and the performance loss of this algo-
rithm is low. In terms of path quality, HPO-RRT* maintains
certain advantages in various combinations of random mov-
ing threats, which depend on the low-cost path optimizer of
HPO-RRT* to quickly and fully complete path optimization
at any time. Meanwhile, HPO-RRT* has the shortest and
most stable navigation time with the good performance of
the efficient path planner and the low-cost path optimizer in
its hierarchical planning architecture. In other words, HPO-
RRT* can adapt tomore complex dynamic environments and
has good performance and stability.

Conclusions and future work

In this paper, a time-based RRT named HPO-RRT* is pro-
posed to solve the real-time path-planning problem of UAVs

123

7150 Complex & Intelligent Systems (2023) 9:7133–7153

Fig. 10 Experiment Scenario 2. Planned path diagram of different algo-
rithms at different times, in which the blue line represents RRTX; the
green line represents Risk-RRT; the yellow line represents Risk-RRT*;
and HPO-RRT* is indicated by a red line. The grey translucent threat

is the initial position of the three moving threats. a, c and e show the
path 3D diagrams when t= 15 s, 30 s, 38.4 s, respectively; and b, d and
f show the contour top views of the above time path

123

Complex & Intelligent Systems (2023) 9:7133–7153 7151

Fig. 11 Relationship between the success rate, average path length and obstacle speed and number

Fig. 12 Comparison of the mean and variance of the navigation time

in a dynamic environment. This algorithm adopts a hier-
archical framework including the UAV perception system,
path planner and path optimizer, which can optimize the path

while improving efficiency. In the path planner, an improved
time-based RRT* algorithm is used to obtain heuristic paths.
The algorithmof the path planner improves the sampling pro-
cess, tree expansion process and collision checking process
to avoid additional calculation loss and improve planning
efficiency. In the low-cost path optimizer, to avoid numer-
ous calculations caused by the optimization tree structure,
the heuristic path is directly optimized to quickly and effi-
ciently obtain a homotopy optimal path. Simulations and
comparisons show that the proposed algorithmhas better per-
formance.

In future work, we will conduct outdoor experimental ver-
ification on the independently developed quad-rotor platform
to confirm the application value of the algorithm. In addition,
we expect to extend HPO-RRT* to the formation and coop-
eration of UAVs in future work. An intuitive prospect is to
use a formation framework to complete the cooperative path

123

7152 Complex & Intelligent Systems (2023) 9:7133–7153

planning of UAVs. Of course, a better prospect is to bring
HPO-RRT* into the full autonomous cooperative architec-
ture.

Acknowledgements Gratitude is extended to the Shaanxi ProvinceKey
Laboratory of Flight Control and Simulation Technology.

Funding This research work was funded by the National Natural
Science Foundation of China, Grant no. 62073266, the Aeronautical
Science Foundation of China, Grant no. 201905053003.

Data availability Most of the data has been thoroughly described in the
paper. The other data that support the findings of this study are available
from the corresponding author on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Ethics approval Not applicable.

Consent to participate Yicong Guo, Xiaoxiong Liu, Qianlei Jia,
Xuhang Liu and Weiguo Zhang.

Consent for publication Yicong Guo, Xiaoxiong Liu, Qianlei Jia,
Xuhang Liu and Weiguo Zhang.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Fu B, Chen L, Zhou Y et al (2018) An improved A* algorithm
for the industrial robot path planning with high success rate and
short length. Rob Auton Syst 106:26–37. https://doi.org/10.1016/
j.robot.2018.04.007

2. Patle BK, Babu LG, Pandey A et al (2019) A review: on path
planning strategies for navigation of mobile robot. Def Technol
15:582–606

3. Rasekhipour Y, Khajepour A, Chen SK, Litkouhi B (2017) A
potential field-based model predictive path-planning controller
for autonomous road vehicles. IEEE Trans Intell Transp Syst
18:1255–1267. https://doi.org/10.1109/TITS.2016.2604240

4. Yao P, Wang H, Su Z (2015) Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in com-
plex dynamic environment. Aerosp Sci Technol. https://doi.org/10.
1016/j.ast.2015.09.037

5. Katoch S, Chauhan SS, Kumar V (2021) A review on genetic algo-
rithm: past, present, and future. Multimed Tools Appl. https://doi.
org/10.1007/s11042-020-10139-6

6. Thoresen M, Nielsen NH, Mathiassen K, Pettersen KY (2021)
Path planning for UGVs based on traversability hybrid A*. IEEE
Robot Autom Lett 6:1216–1223. https://doi.org/10.1109/LRA.
2021.3056028

7. DjukanovicM, Raidl GR, BlumC (2020) Finding longest common
subsequences: new anytime A∗ search results. Appl Soft Comput
J. https://doi.org/10.1016/j.asoc.2020.106499

8. Meng Z, Huang P, Yan J (2008) Trajectory planning for hyper-
sonic vehicle using improved sparseA*algorithm. In: IEEE/ASME
international conference on advanced intelligent mechatronics,
AIM

9. Majumder S, Prasad MS (2016) Three dimensional D∗ algorithm
for incremental path planning in uncooperative environment. In:
3rd international conference on signal processing and integrated
networks, SPIN 2016. pp 431–435

10. LaValle SM, Kuffner JJ, Donald B et al (2000) Rapidly-exploring
random trees: progress and prospects. Algorithmic Comput
Robot New Dir 5:293–308. https://www.taylorfrancis.com/books/
9781439864135/chapters/10.1201/9781439864135-43

11. Kavraki LE, Švestka P, Latombe JC, Overmars MH (1996) Prob-
abilistic roadmaps for path planning in high-dimensional configu-
ration spaces. IEEE Trans Robot Autom 12:566–580. https://doi.
org/10.1109/70.508439

12. Chen Y, He Z, Li S (2019) Horizon-based lazy optimal RRT for
fast, efficient replanning in dynamic environment. Auton Robots
43:2271–2292. https://doi.org/10.1007/s10514-019-09879-8

13. Ryu H, Park Y (2019) Improved informed RRT* using gridmap
skeletonization for mobile robot path planning. Int J Precis
Eng Manuf 20:2033–2039. https://doi.org/10.1007/s12541-019-
00224-8

14. Webb DJ, Van Den Berg J (2013) Kinodynamic RRT*: asymptot-
ically optimal motion planning for robots with linear dynamics.
In: Proceedings—IEEE international conference on robotics and
automation. pp 5054–5061

15. Wang J, Meng MQH, Khatib O (2020) EB-RRT: optimal
motion planning for mobile robots. IEEE Trans Autom Sci Eng
17:2063–2073. https://doi.org/10.1109/TASE.2020.2987397

16. Shome R, Solovey K, Dobson A et al (2020) dRRT*: scalable
and informed asymptotically-optimalmulti-robotmotion planning.
Auton Robots 44:443–467. https://doi.org/10.1007/s10514-019-
09832-9

17. Chandler B, GoodrichMA (2017) Online RRT∗ and online FMT∗:
rapid replanning with dynamic cost. In: IEEE international confer-
ence on intelligent robots and systems. pp 6313–6318

18. Otte M, Frazzoli E (2016) RRTX: asymptotically optimal single-
query sampling-basedmotion planningwith quick replanning. Int J
Rob Res 35:797–822. https://doi.org/10.1177/0278364915594679

19. Petti S, Fraichard T (2005) Safe motion planning in dynamic
environments. In: 2005 IEEE/RSJ international conference on
intelligent robots and systems, IROS. pp 2210–2215

20. FulgenziC, SpalanzaniA,LaugierC,TayC (2010)Riskbased1225
motion planning and navigation in uncertain dynamic environment.
Res Rep 1–14. https://hal.inria.fr/inria-00526601

21. Chi W, Meng MQH (2017) Risk-RRT∗: a robot motion planning
algorithm for the human robot coexisting environment. In: 2017
18th international conference on advanced robotics, ICAR 2017.
pp 583–588

22. Thomas S, Morales M, Tang X, Amato NM (2007) Biasing
samplers to improve motion planning performance. In: Proceed-
ings—IEEE international conference on robotics and automation.
pp 1625–1630

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.robot.2018.04.007
https://doi.org/10.1109/TITS.2016.2604240
https://doi.org/10.1016/j.ast.2015.09.037
https://doi.org/10.1007/s11042-020-10139-6
https://doi.org/10.1109/LRA.2021.3056028
https://doi.org/10.1016/j.asoc.2020.106499
https://www.taylorfrancis.com/books/9781439864135/chapters/10.1201/9781439864135-43
https://doi.org/10.1109/70.508439
https://doi.org/10.1007/s10514-019-09879-8
https://doi.org/10.1007/s12541-019-00224-8
https://doi.org/10.1109/TASE.2020.2987397
https://doi.org/10.1007/s10514-019-09832-9
https://doi.org/10.1177/0278364915594679
https://hal.inria.fr/inria-00526601

Complex & Intelligent Systems (2023) 9:7133–7153 7153

23. Gammell JD, Barfoot TD, Srinivasa SS (2018) Informed sam-
pling for asymptotically optimal path planning. IEEE Trans Robot
34:966–984. https://doi.org/10.1109/TRO.2018.2830331

24. Gammell JD, Srinivasa SS, Barfoot TD (2015) Batch Informed
Trees (BIT∗): sampling-based optimal planning via the heuris-
tically guided search of implicit random geometric graphs. In:
Proceedings—IEEE international conference on robotics and
automation. pp 3067–3074

25. Gasilov N, DoǧanM, Arici V (2011) Two-stage shortest path algo-
rithm for solving optimal obstacle avoidance problem. IETE J Res
57:278–285. https://doi.org/10.4103/0377-2063.83650

26. Otte M, Correll N (2013) C-FOREST: parallel shortest path plan-
ning with superlinear speedup. IEEE Trans Robot 29:798–806.
https://doi.org/10.1109/TRO.2013.2240176

27. Yi J, Yuan Q, Sun R, Bai H (2022) Path planning of a manipulator
based on an improved P_RRT* algorithm. Complex Intell Syst.
https://doi.org/10.1007/s40747-021-00628-y

28. Qureshi AH, Ayaz Y (2016) Potential functions based sampling
heuristic for optimal path planning. Auton Robots 40:1079–1093.
https://doi.org/10.1007/s10514-015-9518-0

29. Pharpatara P, Herisse B, Bestaoui Y (2017) 3-D trajectory planning
of aerial vehicles using RRT∗. IEEE Trans Control Syst Technol
25:1116–1123. https://doi.org/10.1109/TCST.2016.2582144

30. Zhang X, Duan H (2015) An improved constrained differential
evolution algorithm for unmanned aerial vehicle global route plan-
ning. Appl Soft Comput J 26:270–284. https://doi.org/10.1016/j.
asoc.2014.09.046

31. Sintov A, Shapiro A (2014) Time-based RRT algorithm for
rendezvous planning of two dynamic systems. In: Proceed-
ings—IEEE international conference on robotics and automation.
pp 6745–6750

32. Karaman S, Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. Int J Robot Res 30(7):846–894. http://
journals.sagepub.com/doi/10.1177/0278364911406761

33. Qi J, Yang H, Sun H (2021) MOD-RRT*: a sampling-based algo-
rithm for robot path planning in dynamic environment. IEEE
Trans Ind Electron 68:7244–7251. https://doi.org/10.1109/TIE.
2020.2998740

34. Mo Y, Dasgupta S, Beal J (2019) Robustness of the adaptive
bellman-ford algorithm: global stability and ultimate bounds. IEEE
Trans Automat Control 64:4121–4136. https://doi.org/10.1109/
TAC.2019.2904239

35. Liu Y, Zheng Z, Qin F (2021) Homotopy based optimal configura-
tion space reduction for anytime robotic motion planning. Chinese
J Aeronaut 34:364–379. https://doi.org/10.1016/j.cja.2020.09.036

36. Jiang W, Lyu Y, Li Y et al (2022) UAV path planning and collision
avoidance in 3D environments based on POMPD and improved
grey wolf optimizer. Aerosp Sci Technol. https://doi.org/10.1016/
j.ast.2021.107314

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TRO.2018.2830331
https://doi.org/10.4103/0377-2063.83650
https://doi.org/10.1109/TRO.2013.2240176
https://doi.org/10.1007/s40747-021-00628-y
https://doi.org/10.1007/s10514-015-9518-0
https://doi.org/10.1109/TCST.2016.2582144
https://doi.org/10.1016/j.asoc.2014.09.046
http://journals.sagepub.com/doi/10.1177/0278364911406761
https://doi.org/10.1109/TIE.2020.2998740
https://doi.org/10.1109/TAC.2019.2904239
https://doi.org/10.1016/j.cja.2020.09.036
https://doi.org/10.1016/j.ast.2021.107314

	HPO-RRT*: a sampling-based algorithm for UAV real-time path planning in a dynamic environment
	Abstract
	Introduction
	Related works
	Sampling strategy
	Time-based RRT

	Problem formulation
	HPO-RRT* algorithm
	Overall framework
	Path planner
	Bias sampling based on the APF function
	The expansion of the time-based tree
	Planning path finding

	Low-cost path optimizer

	Analysis
	Probabilistic completeness
	Homotopy optimality

	The results of simulation experiments
	Simulation setup
	Dynamic environment design
	Basic parameter design

	Simulation experiments

	Conclusions and future work
	Acknowledgements
	References

