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Abstract
Surrogate-assisted evolutionary algorithms (SAEAs) have attracted considerable attention for reducing the computation time
required by an EA on computationally expensive optimization problems. In such algorithms, a surrogate model estimates the
solution evaluation with a low computing cost and is used to obtain promising solutions to which the accurate evaluation
with an expensive computation cost is then applied. This study proposes a novel pairwise ranking surrogate model called the
Extreme Learning-machine-based DirectRanker (ELDR). ELDR integrates two machine learning models: extreme learning
machine (ELM) and DirectRanker (DR). ELM is a single-layer neural network capable of fast learning, whereas DR uses
pairwise learning to rank using a neural network developed mainly for information retrieval. To investigate the effectiveness
of the proposed surrogate model, this study first examined the estimation accuracy of ELDR. Subsequently, ELDR was
incorporated into a state-of-the-art SAEA and compared with existing SAEAs on well-known real-valued optimization
benchmark problems. The experimental results revealed that ELDR has a high estimation accuracy even on high-dimensional
problems with a small amount of training data. In addition, the SAEA using ELDR exhibited a high search performance
compared with other existing SAEAs, especially on high-dimensional problems.

Keywords DirectRanker · Evolutionary algorithms · Extreme learning machine · Pairwise ranking · Surrogate model

Introduction

Evolutionary Algorithms (EAs) are population-based opti-
mization methods that are applied to many real-world prob-
lems. However, because an expensive fitness evaluation is
often required in real-world applications owing to simula-
tions or complex numerical calculations, the computational
cost of EAs is typically high. To reduce the computing cost
of EAs, surrogate-assisted EA (SAEA) has been studied [1,
2] and applied to real-world applications such as aerospace
engineering [3, 4], vehicle design [5], andmanufacturing pro-
cess optimization [6]. An SAEA utilizes a surrogate model
that estimates fitness instead of a computationally expen-
sive fitness function and finds promising solutions for actual
fitness evaluation. Because surrogate estimation is computa-
tionally cheaper than actual fitness evaluation, the execution
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time of the SAEA is reduced compared to that of conven-
tional EAs.

Three types of surrogate models are used in SAEAs
[7]asfollows: (1) a regression model that directly estimates
the fitness evaluation, (2) a classification model that esti-
mates the relative acceptability compared to a reference value
rather than a fitness evaluation, or (3) a ranking model that
estimates the relative superiority of solutions compared to
each other. This study proposes a novel ranking-based sur-
rogate model that exploits the fact that general EAs can
perform parent selection and survival selection based on the
superiority of solutions. Specifically, this paper proposes the
Extreme Learning-machine-based DirectRanker (ELDR),
which combines an extreme learning machine (ELM) [8,
9]—a type of single-layer neural network (NN) with fast
learning capability—with DirectRanker (DR) [10]—a pair-
wise ranking method based on a NN developed primarily for
information retrieval.

To investigate the effectiveness of ELDR, its prediction
accuracy was first analyzed by comparing it with other sur-
rogate models used in previous research. Then, to confirm its
capability on an SAEA, it was incorporated into a state-of-
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the-art SAEA—specifically, surrogate-assisted hybrid opti-
mization (SAHO) [11]—and the consequent ELDR-SAHO
was comparedwith recent SAEAmethods, including SAHO.

The remainder of this paper is organized as follows:
“Related Work” discusses related work on SAEAs. “Pro-
posedMethod” describes the proposed new pairwise ranking
surrogate model, ELDR, in detail. “Example Application of
ELDR to SAEA: ELDR Surrogate-Assisted Hybrid Opti-
mization” presents the details of ELDR-assisted SAEA.
In particular, this study employed SAHO—a state-of-the-
art SAEA. “Preliminary Experiment: Accuracy of ELDR
analyzes the parameter sensitivity of ELDR and compares
its estimation accuracy with other conventional surrogate
models used in existing SAEAs. Section“Numerical Exper-
iments” outlines the numerical experiments conducted to
investigate the effectiveness of ELDR-assisted SAHO and
analyzes the results obtained. Finally, “Conclusion and
FutureWork” presents concluding remarks and outlines pos-
sible future work.

Related work

This section reviews surrogate models used in SAEAs in
previous studies. This study focuses primarily on single-
objective real-valued optimization problems but also refers
to some studies on multi-objective optimization and discrete
optimization, including genetic programming.

In previous studies, the mainstream approach has been
SAEAs using regression models. In particular, most pre-
vious works [12–15] used the radial basis function (RBF)
[16] as a surrogate model. Other SAEAs that use the Krig-
ing model [17, 18], Gaussian process regression [19], and
the nearest neighbor method [20] have also been proposed.
Pavelski et al. proposed ELMOEA/D [21], a surrogate-
assisted multi-objective evolutionary algorithm that uses
ELM as a regression surrogate model.

Recent studies haveproposed classification-basedSAEAs.
Pan et al. [22] proposed a classification-based SAEA (CSEA)
that learns the dominance relationship between candidate
solutions and reference solutions using an artificial neural
network (ANN) [23]. Sonoda et al. [24] used a support vec-
tor machine (SVM) [25] to optimize a decomposition-based
MOEA (MOEA/D) to classify whether an offspring solution
is better than its parent solution for each aggregation func-
tion.Wei et al. [26] proposed a classifier-assisted level-based
learning swarm optimizer (CA-LLSO) that uses a multiclass
gradient boosting classifier (GBC) [27] to classify the swarm
(population) into different levels for applying LLSO [28].

In contrast to the regression and classificationmodels, few
studies have reported ranking-based SAEAs. Ranking mod-
els are usually applied for pre-selection [7], for example, to
estimate the population ranking inCMA-ES [29] in theworks

Fig. 1 A topology of ELM

of Runarsson [30] and Loshchilov et al. [31]. Lu et al. [32]
proposed Differential Evolution (DE) [33] with surrogate-
assisted self-adaptation (DESSA), which uses ranking SVM
(RankSVM) [34] to select the most promising trial vector. In
recent years, Hao et al. [35] proposed a rankingmodel using a
vector concatenating two solutions as input and demonstrated
that the rankingmodel showshigher estimation accuracy than
regression and classification models with a small number of
training samples. Another work by Hao et al. [36] proposed
a similar ranking model based on a neural network that esti-
mates the dominance relationship for solvingmulti-objective
optimization problems. However, there is limited research on
high-performance SAEAs using rank models compared with
SAEAs using regression and classification models.

Because the ranking model can estimate the dominance
relation between solutions rather than the objective function
value, it can be applied to a broader range of problemdomains
where regression and classification models are not applica-
ble. One example is constrained optimization problems for
the definition of parental or survival selection methods (e.g.,
feasibility rules [37] or the ε-constrained method [38]) with-
out estimating all the constraint values. Another example is
the subject human evaluation in interactive EAs [39], which
generally uses relative rather than quantitative assessment.
Therefore, developing a useful ranking surrogate model is
more effective for applying SAEA to a different problem
domain than regression and classification models.

Proposedmethod

This section first introduces ELM [8, 9] and DR [10], which
are the components of ELDR. Then, the operation of ELDR,
which integrates these two techniques, is explained.

Extreme learningmachine

ELM is a single-layer NN. The topology of ELM is illus-
trated in Fig. 1. ELM is formed with a fully connected NN.
Given a d-dimensional input x, ELMwith L hidden neurons
calculates the output y as

y =
L∑

i=1

βi h(x,wi , bi )

= h(x,W , b)Tβ, (1)
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h(x,W , b) = [
h(x,w1, b1) · · · h(x,wL , bL)

]T
,

W = {w1, · · · ,wL},
b = {b1, · · · , bL},
β = [

β1 · · · βL
]T

,

where h indicates an activation function and wi and bi indi-
cate the weight vector and bias value from the input to the
i-th hidden neuron (1 ≤ i ≤ L). The value of βi represents
the weight from the i-th hidden neuron to the output.

The most notable feature of ELM is that it randomly
assigns hidden layer weights W and biases b and does not
learn them, whereas the output weights β are the only param-
eters learned. For the training data of N input–output pairs
D = {(x1, t1), (x2, t2), · · · , (xN , tN )}, (1) can be expressed
as

Hβ = T,

where

H = [
h(x1,W , b) · · · h(xN ,W , b)

]T

T = [
t1 · · · tN

]T

For this purpose, the ELM output weights β are calculated
by the following equation using pseudo-inverse matrix oper-
ations with the regularization term [40]:

β = HT
(
I
C

+ HHT
)−1

T,

when the number of training samples was not large. Con-
versely, for the case where the number of training samples is
large (N � L), the following alternative formula is used:

β =
(
I
C

+ HTH
)−1

HTT. (2)

The output weights of ELM can be quickly calculated
using the pseudo-inverse matrix operation without any itera-
tive procedures. The user parameters are only the activation
function h, regularization coefficient C , and number of hid-
den neurons L , making parameter tuning easy. Furthermore,
the activation function is non-differentiable, which provides
flexibility. In ELM, the following activation functions are
generally employed:

Sigmoid (SIG):

h(x,w, b) = 1

1 + exp(−(wx + b))

Gaussian (GAU):

h(x,w, b) = exp(−b‖x − w‖2)

Multiquadric (MQ):

h(x,w, b) = (‖x − w‖2 + b2)
1
2

The advantages of ELM against conventional machine
learning models such as NNs and SVMs have been reported
in some previous works [41, 42] as follows:

• The training cost is low because ELM does not require
the iterative procedures of backpropagation.

• ELM tends to have better generalization performance
because it not only minimizes the mean squared error
but also looks for the much simpler model.

• Because ELMdoes not use gradient-based learning, non-
differentiable activation functions can be used.

Since these features are helpful as a surrogate model for
SAEAs, this study focuses on ELM.

DirectRanker

DR is a NN-based pairwise ranking method that implements
a quasi-order � in future space F such that the ranking is
unique. In particular, the quasi-order� satisfies the following
three conditions for all x, y, z ∈ F :

1. Reflexivity: x � x
2. Antisymmetry: x �� y ⇒ y � x
3. Transitivity: (x � y ∧ y � z) ⇒ x � z

This quasi-order can be defined by the ranking function r :
F × F → R as follows:

x � y ⇔ r(x, y) ≥ 0.

The ranking function r(x, y) in DR is constructed using
two subnetworks nn and the output layer. Subnetworks nn
have the same structure and shared weights. On the other
hand, the output layer calculates the output from the dif-
ference in the outputs of the two subnetworks, the output
weights w, and the activation function τ as follows:

o = r(x, y) = τ
(
wT (nn(x) − nn( y))

)
, (3)

where the activation function τ : R → R satisfies the follow-
ing conditions: τ(−x) = −τ(x), sgn(τ (x)) = sgn(x); the
original work [10] used the hyperbolic tangent (tanh). The
function expressed in (3) satisfies the three conditions that
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Fig. 2 A topology of ELDR

the quasi-order must satisfy: Please refer to the details in the
original work [10].

Extreme learningmachine-based DirectRanker
(ELDR)

Assuming that DR is applied to SAEA as a ranking-based
surrogate model, the problem of high computational cost for
the training ofDRmay arise, because it optimizes theweights
of NN through iterative procedures using backpropagation.
To address this issue, this study proposes a novel pairwise
ranking method, ELM-based DR (ELDR), which constructs
the subnetwork of DR with ELM, enabling quick training
by the pseudo-inverse matrix operation without the iterative
procedures of backpropagation.

Figure 2 illustrates the topology of ELDR. ELDR takes
two d-dimensional inputs, x and y, and calculates the output
r from the subtraction of two hidden layers. ELDR employs
the random-weighted single-layer network in (1) for the DR
subnetwork and defines the ranking function rELDR as fol-
lows:

rELDR(x, y) = (h(x,W , b) − h( y,W , b))T β,

whereW and b are the weight parameters randomly assigned
to the same ELM and β is the only parameter to be trained.
Because ELDR uses two subnetworks with the same struc-
ture, weights, and activation functions as DR, the ranking
function rELDR also satisfies the three conditions of the
quasi-order.

Algorithm1 shows the training procedure forELDR.First,
all feature vectors xi are normalized in the range [−1, 1]
using the minimum and maximum values in the dataset D.
Then, the paired dataset Dpair is constructed with all com-
binations of the two solutions in dataset D as

Dpair = {(x(1)
1 , x(2)

1 , t1), · · · , (x(1)
Np

, x(2)
Np

, tNp )}

Algorithm 1 ELDR Training Procedure

Input: Dataset D = {(x1, f1), · · · , (xN , fN )}(x ∈ R
d , f ∈ R), acti-

vation function h, regularization coefficient C , number of hidden
neurons L

Output: Trained ELDR model
1: D′ =Sort original dataset D according to the objective function

value fi
2: Dpair = ∅ � Paired dataset generation
3: for i = {1, · · · N − 1} do
4: for j = {i + 1, · · · N } do
5: t = sgn( f j − fi ) � Minimization
6: Dpair = Dpair ∪ {(xi , x j , t)}
7: end for
8: end for
9: Randomly assign wi and bi (i = 1, · · · L)
10: Compute β by (5)
11: return W = {w1, · · · ,wL }, b = {b1, · · · , bL },β

t j = sgn
(
f (x(2)

j ) − f (x(1)
j )

)

j = 1, · · · , Np,

where sgn represents the sign function that returns 1,−1, 0
according to the sign of the input value. Here, it is assumed
that the minimization of fi and t j is +1 if x(1)

j is better than

x(2)
j ,−1 if worse, and 0 if equal. For the constructed training

dataset Dpair , ELDR is formulated as

(H(1) − H(2))β = H′β = T (4)

H′ = H(1) − H(2)

T = [
t1 · · · tNp

]T
,

where H(k) is calculated from the k-th feature vector x(k)
i

(k = 1, 2) in the i-th input pair as follows:

H(k) =
[
h(x(k)

1 ,W , b) · · · h(x(k)
Np

,W , b)
]T

.

In this study, the weights W and bias b are randomly sam-
pled from a uniform distribution in the ranges [−1, 1] and
[0, 1], respectively [43]. From (4), the output weights β can
be calculated as follows:

β =
(
I
C

+ H′TH′
)−1

H′TT (5)

with a pseudo-inverse matrix calculation, as in Eq. (2).
When the prediction gives two solutions x1 and x2, the

output of ELDR is calculated as

t̂ = rELDR(x1, x2)

= sgn
(
(h(x1,W , b) − h(x2,W , b))Tβ

)

by using the weightsW and biases b assigned in the training
phase and the output weights β obtained by Eq. (5). If t̂ =
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+1, ELDR predicts that x1 is better than x2; otherwise, it
predicts that x2 is better.

Computational complexity

This subsection discusses the computational complexity of
training ELDR. Let the size of the dataset D be N and the
size of the paired dataset Dpair be Np = N (N − 1)/2. The
number of hidden neurons is L . Thence, the size of thematrix
H of the hidden layer is Np × L , and the size of the matrix
T representing the training label is Np × L .

First, the time complexity of the hidden layer calculation
is O(NLd) for any activation function. Next, for the cal-
culation of the output weights β, assuming that Np � L
in general, and computing (2), the time complexity can
be calculated as follows: The time complexity of HTH
becomes O(NpL2), and that of

(
I/C + HTH

)−1
becomes

O(NpL2 + L3), whereas, the time complexity of HT is
O(NpL). Therefore, the time complexity of computing β =(
I/C + HTH

)−1
HTT becomes O(NpL2+L3+NpL+L2).

The most computationally expensive part is NpL2 and L3,
but because Np � L , the time complexity of ELDR finally
becomes O(NpL2) = O(N 2L2). Thus, the time complex-
ity of ELDR increases with the product of the square of the
dataset size N and the square of the number of hidden neu-
rons L .

Example application of ELDR to SAEA: ELDR
surrogate-assisted hybrid optimization

To investigate the applicability ofELDR toSAEAs, this study
incorporated ELDR into the state-of-the-art SAEA method
SAHO [11] to produce ELDR-SAHO. The original SAHO
utilizes RBF as its surrogate model and finds a promising
solution by simultaneously usingDifferential Evolution (DE)
[33] andTeaching-learning-basedOptimization (TLBO) [44,
45]. ELDR-SAHO estimates the dominance relationship
between solutions using ELDR instead of predicting the
fitness using RBF. This section briefly explains the search
algorithms, DE and TLBO, used in SAHO and describes in
detail the algorithm employed in ELDR-SAHO.

DE

SAHOuses theDE/1/best strategy because of its high conver-
gence capability. The DE/1/best strategy generates a mutant
vector vi for a solution xi as follows:

vi = xbest + F · (xr1 − xr2) , (6)

where xbest represents the best-fitted individual in the current
population, r1 and r2 (r1 �= r2 �= i) denote random indices,
and F is the scaling parameter. Using a mutant vector vi , a
trial vector ui for a solution xi is calculated as

ui, j =
{

vi, j ifrand(0, 1) ≤ Cr ∨ j = jrand
xi, j otherwise

, (7)

where rand(0, 1) produces a uniform random value in the
range [0, 1],Cr is the crossover rate, and jrand denotes a ran-
dom index in [1, D]. If the fitness value of the trial vector ui
is better than that of the current solution xi , then its position
is updated.

TLBO

TLBO is a population-based search algorithm that simulates
teacher instruction andmutual learning in education and con-
sists of a teacher phase and a learner phase.

In the teacher phase, the best solution in the current pop-
ulation is selected as a teacher individual xteacher , and the
positions of other solutions (students) are updated using the
mean of the population xmean as follows:

xnew,i = xold,i + ri (xteacher − TF xmean) , (8)

where ri is a uniform random value in [0, 1], and TF is a vari-
able calculated as TF = 1 + round (rand(0, 1)) (round
rounds off the input value); that is, TF takes 1 or 2 with
equal probability. If the fitness value of an updated position
xnew,i is better than that of the original position xold,i , then
its position is updated.

By contrast, the learner phase updates each solution in
the population by interacting with a random solution. For a
solution xi , a random solution x j (i �= j) is selected, and
the following equation produces a new position:

xnew,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xold,i + ri
(
xold,i − xold, j

)

if f (xold,i ) < f (xold, j )

xold,i + ri
(
xold, j − xold,i

)

otherwise

, (9)

where ri denotes a uniform random value in [0, 1]. Similar to
the teaching phase, the position of a solution xold,i is updated
if the fitness value of the updated position xnew,i is better.
TLBO alternatively repeats the teacher and learner phases,
until the termination condition is satisfied.

The ELDR-SAHO Algorithm

The procedure used by the ELDR-SAHO algorithm, in
which the proposed ELDR is incorporated into SAHO, is
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Algorithm 2 ELDR-assisted SAHO (based on Algorithm 1
in [11])
Input: Population size ps, maximum number of fitness evaluations

MaxFE , search generations K
Output: Optimal solution
1: Generate initial ps samples using LHS, evaluate them

using the real fitness function, and store them to DB =
{(x1, f (x1)), · · · , (x ps , f (x ps))}

2: NFE = ps, RunDE = True
3: while NFE < MaxFE do
4: Initialize population with ps top-ranking best samples in D,

gen = 1
5: while gen ≤ K do
6: Select n nearest neighbors for each solution in the population

as the training dataset D ⊆ DB
7: Build ELDR surrogate model rELDR using Algorithm 1
8: if RunDE then � Run DE
9: Generate the trial population using (6) and (7)
10: Replace parent individual xi with trial vector ui if

rELDR(ui , xi ) = +1
11: gen = gen + 1
12: else � Run TLBO
13: Perform teacher phase using (8) and replace individuals if

rELDR(xnew,i , xold,i ) = +1
14: gen = gen + 1
15: Perform learner phase using (9) and replace individuals if

rELDR(xnew,i , xold,i ) = +1
16: gen = gen + 2
17: end if
18: end while
19: Use Algorithm 3 to select the individual xeval for the real fitness

evaluation, NFE = NFE + 1
20: Update the database DB = DB ∪ {(xeval , f (xeval ))}
21: if f (xeval ) is worse than the former best then
22: RunDE = ¬RunDE � Reverse RunDE
23: end if
24: end while
25: return Optimal solution

shown in Algorithm 2. ELDR-SAHO first produces ps well-
distributed initial samples using Latin hypercube sampling
(LHS) [46], and evaluates them using an actual (computa-
tionally expensive) fitness evaluation. All evaluated initial
samples are stored in the dataset DB. For each iteration, the
initial population is generated from the top ps solutions in
the dataset DB, and K generations are evolved using DE or
TLBO. The ELDR surrogate model is trained using a subset
D extracted from DB consisting of n nearest neighbors in
DB for each solution in the current population. Note that
the design variable is normalized within the minimum and
maximum variables in the extracted dataset D. A variable
RunDE determines the algorithm used for each search. DE
is performed if RunDE = True, whereas TLBO is per-
formed if RunDE = False;

After the K -generations search, a promising solution for
the actual fitness evaluation is selected according to Algo-
rithm 3. In Algorithm 3, the best solution in the population
at K generations is compared with the mean of the top r
subpopulation (r ∈ [1, ps]), and a solution that the ELDR

Algorithm 3 Selecting the individual for real fitness evalua-
tion (based on Algorithm 3 in [11])
1: Sort individuals in the current population according to the ELDR

surrogate model
2: Randomly generate an integer number r in the range [1, ps]
3: Compute the mean of the top subpopulation with the indexes [1, r ]

as xmean = 1
r

∑r xi
4: Select the best individual in the current population as xbest
5: if rELDR(xbest , xmean) = +1 then
6: return xbest
7: else
8: return xmean
9: end if

surrogate predicts better is selected as a promising solution.
The selected promising solution is actually evaluated using
the computationally expensive fitness function. If the promis-
ing solution is better than the best solution thus far, the current
search algorithm (DE or TLBO) is continuously used. Oth-
erwise, the search algorithm is switched.

The essential procedure is the same as that of the original
SAHO with the RBF surrogate model but differs in Steps 7,
10, 13, and 15 in Algorithm 2 and Steps 1 and 5 in Algo-
rithm 3. In these steps, the ELDR surrogate model is used to
predict the dominance relationship.

Preliminary experiment: accuracy of ELDR

This section analyzes the estimation accuracy of the pro-
posed ELDR surrogate model. The first experiment explored
the parameter sensitivity of ELDR regarding the activation
function h, number of hidden neurons L , and regularization
coefficientC . Then, “Comparison with other surrogate mod-
els” compared the estimation accuracy of ELDR with other
surrogate models, RBF and RankSVM, which are generally
used in previous SAEA research. Finally, the computational
time of these surrogate models were compared in “Compu-
tation time”.

Experimental sttings

This study used the eight single-objective continuous opti-
mization benchmarks shown in Table 1. This choice can be
justified because these functions have been widely used to
investigate the performance of SAEAs in recent research and
have different fitness landscape characteristics. The dimen-
sions of the design variables were set as d = 20 and 100
to compare surrogate model performance for small and large
problems. It is known that RBF has high estimation accuracy
for problems up to 20–30 dimensions, while 100 dimensions
are considered a large-scale problem in the SAEA domain.
The training datasets consisting of Ntrain = 2d, 5d (d is the
dimension) randomly sampled data units were used for train-
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Table 1 Benchmark problems

Problem Domain Global opt. Characteristics

Ellipsoid [ − 5.12, 5.12]d 0 Unimodal and separable

Rosenbrock [ − 2.048, 2.048]d 0 Multimodal with narrow valley and
non-separable

Ackley [ − 32.768, 32.768]d 0 Multimodal and separable

Griewank [ − 600, 600]d 0 Multimodal and non-separable

Rastrigin [ − 5.12, 5.12]d 0 Multimodal and separable

Shifted rotated rastrigin’s function (CEC
2005 F10 [47])

[ − 5, 5]d −330 Multimodal, shifted, rotated, non-separable

Rotated hybrid composition function (CEC
2005 F16 [47])

[ − 5, 5]d 120 Multimodal, rotated, non-separable

Rotated hybrid composition function with a
narrow basin for the global optimum (CEC
2005 F19) [47])

[ − 5, 5]d 10 Multimodal, non-separable, a narrow basin
for the global optimum

ing ELDR, RBF, and RandSVM. The trained models were
tested on 10d random test samples generated independently
from the training dataset. The training data size was chosen
to verify estimation accuracy in SAEAwhen data are limited
in the early stages of the search and when a certain number
of data samples are obtained in later stages.

The prediction accuracy was assessed using Kendall’s
rank correlation coefficient for 20 independent pairs of train-
ing and test data, and the average rank correlation was
compared. Kendall’s rank correlation coefficient (hereafter,
Kendall’s τ ) returns τ = +1 if the predicted and actual ranks
are entirely the same, whereas it returns τ = −1 if they
are entirely different. A higher rank correlation indicates a
better rank prediction. For the ranking method (ELDR and
RankSVM), the test data are sorted by the prediction, and
their rank is compared with the actual data. For the RBF
model, the test data are sorted based on the predicted fit-
ness values, and their rank is also compared with the actual
rank (not the comparison of the actual fitness values). The
experiments were executed on a computer with an Intel Xeon
W-2295 3.00 GHz CPU with 64 GB RAM using MATLAB
R2019a.

Comparison of hyperparameters

This subsection reports the experiment conducted to evaluate
the different hyperparameters of ELDR: activation func-
tion h, number of hidden neurons L , and regularization
coefficient C . For the activation function h, the experi-
ment used three functions: Sigmoid (SIG), Gaussian (GAU),
and Multiquadric (MQ), as shown in “Extreme Learning
Machine”. The number of hidden neurons was set to L =
{d+1, 2d+1, 3d+1, · · · , 10d+1} according to the dimen-
sion d of the design variable. The regularization coefficient
C = {2−5, 2−4, · · · , 25}.

Because the difficulty of estimation varies for each prob-
lem, the scale of the estimation accuracy (i.e., Kendall’s τ )
varies. To consider these differences and investigate the over-
all performance for all problems, this study uses the same
index as in the literature [7, 48]. Specifically, this study inves-
tigates the influence of the regularization coefficient C and
the number of hidden neurons L for each activation func-
tion. For ELDRs using each activation function, the problem
instance is denoted as F = { fk | k = 1, 2, · · · , n}, the
parameter setting (combination of C and L) is denoted as
S = {si | i = 1, 2, · · · ,m}, and ELDR with the parameter
setting si is denoted as Asi . The following equation calculates
the performance PM(si ) for each parameter setting si :

PM(si ) = 1

m − 1

m∑

j=1, j �=i

P
(
Asi � As j

)
, (10)

where P(Asi � As j ) represents the ratio that Asi outperforms
As j and is calculated as follows:

P
(
Asi � As j

) = 1

n

n∑

k=1

P
(
qi,k > q j,k | fk

)
,

where P
(
qi,k > q j,k | fk

)
represents the ratio that the esti-

mation accuracy of Asi is better than that of As j for a problem
instance fk . P

(
qi,k > q j,k | fk

)
is calculated using the fol-

lowing equation:

P
(
qi,k > q j,k | fk

)

= 1

Ni × N j

Ni∑

ti=1

N j∑

t j=1

1
(
τi,k,ti > τ j,k,t j

)
,

where τi,k,t represents Kendall’s τ for the t-th dataset of a
problem instance fk obtained by Asi . Ni and N j represent
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(a) Sigmoid

(b) Gaussian

(c) Multiquadric

Fig. 3 Performance metric PM(si ) calculated using Eq. (10) for each
activation function

the number of test data in a problem instance fk for Asi and
As j , respectively (in this experiment Ni = N j = 20). The
function 1(x) is the indicator function, which returns 1 if x
is true and 0 otherwise.

Figure 3 shows the performancemetric PM(si ) calculated
using Eq. (10) for each activation function. The horizontal
axis shows the regularization coefficient and the vertical axis
shows the number of hidden neurons. The value in each cell

indicates the PM(si ) value for the corresponding parameter
setting.

The result in Fig. 3a indicates that when using the Sigmoid
function, the number of hidden neurons significantly affects
its estimation accuracy, and a larger number of hidden neu-
rons results in better performance. Conversely, the effect of
the regularization coefficient is small. The results show that
the combination of L = 10d + 1 and C = 2−2 achieves the
highest estimation accuracy when using the Sigmoid func-
tion. However, the difference in the performance metric is
small among the different parameter settings. This charac-
teristic indicates that the optimal parameter setting varies
depending on the characteristic of target problems.

Next, Fig. 3b shows that when using the Gaussian func-
tion, both the number of hidden neurons and the regulariza-
tion coefficient significantly affect the estimation accuracy of
ELDR. Specifically, a larger number of hidden neurons tends
to result in high estimation accuracy, whereas the maximum
performance is obtained around C = 2−3 to 20 especially
when the number of neurons is large for the regularization
coefficient. Consequently, the combination of L = 10d + 1
and C = 2−3 achieves the highest estimation accuracy
when using the Gaussian function. The performance metric
among the different parameter settings is large when using
the Gaussian function. This indicates that the optimal param-
eter setting is largely independent of the problem, and the best
parameter setting of L = 10d + 1 and C = 2−3 can obtain
stable performance when using the Gaussian activation func-
tion.

Finally, focusing on the Multiquadric function, Fig. 3c
indicates that small normalization coefficients tend to give
stable performance regardless of the number of hidden neu-
rons. In particular, the normalization coefficient of C = 2−5

provides the highest estimation accuracy with L ≥ 2d + 1.
Although the performance difference between different L
is slight, the combination of L = 2d + 1 and C = 2−5

achieves the highest estimation accuracy when using the
Multiquadric function. The large difference in performance
metrics between the parameter settings can be seen. In par-
ticular, the choice of C = 2−5 can be optimal. This indicates
that the best parameter setting of L = 2d + 1 and C = 2−5

can be recommended regardless of problems for the Multi-
quadric function.

Comparison with other surrogate models

This subsection compares ELDR with RBF and RankSVM.
ELDR employed the hyperparameters chosen from the
results in the previous subsection. In particular, this com-
parison used ELDR with:

• Sigmoid activation with L = 10d + 1, C = 2−2

• Gaussian activation with L = 10d + 1, C = 2−3
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Table 2 Comparison of
Kendall’s τ of ELDR, RBF, and
RankSVM

ELDR RBF RankSVM

Problem d Ntrain SIG GAU MQ

Ellipsoid 20 40 0.07 0.60 0.56 0.16 0.23

100 0.19 0.63 0.63 0.55 0.48

100 200 0.01 0.61 0.53 0.13 0.15

500 0.03 0.63 0.61 0.51 0.34

Rosenbrock 20 40 0.16 0.60 0.58 0.25 0.29

100 0.28 0.63 0.64 0.55 0.48

100 200 0.14 0.57 0.57 0.26 0.26

500 0.15 0.61 0.65 0.56 0.44

Ackley 20 40 0.03 0.44 0.39 0.10 0.15

100 0.13 0.46 0.46 0.36 0.32

100 200 0.01 0.48 0.37 0.09 0.11

500 0.03 0.50 0.46 0.36 0.25

Griewank 20 40 0.08 0.84 0.88 0.22 0.34

100 0.21 0.90 0.92 0.73 0.65

100 200 0.01 0.84 0.87 0.19 0.23

500 0.06 0.88 0.92 0.75 0.55

Rastrigin 20 40 0.03 0.43 0.38 0.10 0.15

100 0.11 0.44 0.44 0.29 0.24

100 200 0.00 0.44 0.33 0.07 0.09

500 0.02 0.47 0.43 0.33 0.20

CEC 2005 F10 20 40 0.51 0.60 0.68 0.60 0.60

100 0.59 0.73 0.77 0.76 0.71

100 200 0.54 0.44 0.72 0.64 0.58

500 0.55 0.54 0.79 0.78 0.74

CEC 2005 F16 20 40 0.38 0.39 0.40 0.41 0.41

100 0.43 0.51 0.51 0.56 0.52

100 200 0.57 0.35 0.64 0.62 0.58

500 0.56 0.48 0.71 0.72 0.67

CEC 2005 F19 20 40 0.09 0.18 0.15 0.13 0.15

100 0.16 0.26 0.24 0.38 0.30

100 200 0.19 0.24 0.25 0.22 0.20

500 0.17 0.29 0.33 0.36 0.25

Average rank 4.88 2.25 1.69 2.88 3.31

The best and second-best results are highlighted in boldface and underlined, respectively

• Multiquadric activation with L = 2d + 1, C = 2−5

RBF uses the cubic basis function (φ(x) = x3), which has
been mostly used in previous works that employed the RBF
surrogate. The parameters of RankSVM were chosen from
the literature [7].

Table 2 shows the estimation accuracies for ELDR, RBF,
andRankSVM.Thebottom rowsummarizes the average rank
of all problem instances and all dimensions.

First, it can be seen that ELDR using the Sigmoid function
has a significantly lower estimation accuracy than the other
methods in the first five benchmarks and is less accurate.

However, its accuracy improves on the CEC 2005 bench-
marks and is higher than that of the Gaussian activation
function for some problems, e.g., 100-dimensional cases of
F10 and F16. The average rank is the lowest among the five
surrogate models. This indicates that the Sigmoid function
has low estimation accuracy and low usefulness even when
the parameters are optimally configured, but it can be an
option for complex composition functions.

Second, ELDRswith theGaussian andMultiquadric func-
tions outperform RBF and RankSVM used in conventional
SAEAs and achieve the best or second-best performance on
most problems. In particular, ELDR with the Multiquadric
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(a) d = 20, Ntrain = 2d = 40 (b) d = 20, Ntrain = 5d = 100

(c) d = 100, Ntrain = 2d = 200 (d) d = 100, Ntrain = 5d = 500

Fig. 4 Computation time of three surrogate models

function has a consistently high estimation accuracy and
the highest average rank among the five surrogate models.
Additionally, ELDRs with the Gaussian and Multiquadric
functions exhibit a more stable estimation accuracy than
RBF and RankSVM, even when the training dataset is small
(Ntrain = 2d). This feature benefits SAEAs because the
amount of training data available for training surrogate mod-
els is generally limited.

Computation time

To evaluate the computation time of the proposed ELDR,
the training times of the three methods are compared. Note
that because the influence of differences in the regularization
coefficients and activation functions of ELDR on the com-
putation time is extremely small, only results using Gaussian
as the activation function and C = 2−3 as the regularization
coefficient are compared in this paper. It has been confirmed
that similar results can be obtained for other activation func-
tions and regularization coefficients. In addition, because the

training time does not depend on the characteristics of the
problem, this paper addresses the average of all problems.

Figure 4 shows the average training time for ELDR, RBF,
and RankSVM. The blue, orange, and green lines represent
the results for ELDR, RBF, and RankSVM, respectively. In
each figure, the horizontal axis represents the number of hid-
den neurons in ELDR, while the vertical axis represents the
training time [s].

These figures show that the training time for ELDR
increases with increasing the number of hidden neurons L in
a nearly linear trend. This trend is smaller than the increase
of L squared, derived from O(N 2L2) for the computational
complexity of ELDR discussed in “Computational complex-
ity”. This is because this paper uses MATLAB to implement
ELDR, and the computational complexity required to calcu-
late HT H , which is the most computationally expensive, is
less than that required for a simple matrix product. This indi-
cates that the computational complexity of ELDR is smaller
than the theoretical one, and the computation time linearly
increases with increasing L in practice.
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Next, the computation times of RBF and RankSVM is
compared. First, ELDR has the shortest training time when
the number of dimensions and training data are small (d =
20, Ntrain = 2d = 40). When the number of dimensions
and training data is large, the computation time of ELDR
for small L (L = d + 1) is similar to or slightly longer
than that of RBF and RankSVM. On the other hand, as the
number of hidden neurons L increases, the training time of
ELDR becomes longer than that of other surrogate models.
In particular, in the case of d = 100, Ntrain = 5d = 500,
which has the highest number of dimensions and training
data, the computation time of ELDR for L = 10d + 1 is
approximately 60 times longer.

These results indicate that ELDR can be trained with the
same training time as existing surrogate models such as RBF
andRankSVMfor low-dimension, small-sample training.On
the other hand, for high-dimension, many-sample training,
ELDR requires significantly longer training time than exist-
ingmodels, especially when the number of hidden neurons L
is increased. However, the training time for ELDR is accept-
able compared to the expensive solution evaluations, which
sometimes require several hours or days, targeted by SAEAs.

Numerical experiments

Numerical experiments were conducted using well-known
benchmark problems to investigate the effectiveness of the
proposed method. The experiments used the eight single-
objective continuous optimization benchmarks listed in
Table 1. The dimensions of the problems were set to d =
{10, 20, 30, 50, 100}.

Experimental settings

In the experiments, ELDR-SAHO—explained in “Example
application of ELDR to SAEA: ELDR surrogate-assisted
aybrid optimization”—was used as the ELDR-assisted EA. It
was compared with the conventional state-of-the-art SAEA
methods GORS-SSLPSO [13], FSAPSO [15], SLPSO [49],
CA-LLSO [26], and SAHO [11]. GORS-SSLPSO, FSAPSO,
SLPSO, and SAHO use the regression model based on
the RBF, while CA-LLSO uses the classification model
based on gradient boosting classifier (GBC) [50]. The imple-
mentations of GORS-SSLPSO,1 FSAPSO,2 SLPSO,3 and

1 https://github.com/yuhaibo2017/GORS-SSLPSO_code (accessed
April 12, 2022).
2 https://github.com/fanli525/-FSAPSO (accessed April 12, 2022).
3 https://github.com/yuhaibo2017/SHPSO_code (accessed January10,
2023).

Algorithm 4Model selection procedure in ELDR-SAHO
Input: Dataset D = {(x1, f1), · · · , (xN , fN )}
Output: Trained ELDR model
1: Randomly select 80% of D as Dtrain , and 20% as Dvalid
2: Train ELDRGAU with the Gaussian function, L = 10d + 1, C =

2−3 by using Dtrain
3: Train ELDRMQ with the Multiquadric function, L = 2d + 1, C =

2−5 by using Dtrain
4: Calculate theKendall’s τGAU of ELDRGAU and τMQ of ELDRMQ

using Dvalid
5: if τGAU > τMQ then
6: return ELDRGAU
7: else
8: return ELDRGAU
9: end if

CA-LLSO 4 available on the Internet were used. The imple-
mentation of SAHO was provided by Pan et al. [11], and
ELDR-SAHO was implemented based on it.

The experimental setup was established based on Pan et
al. [11]. The population size was set to ps = 5 × d when
d = {10, 20, 30} and to ps = 100 + �d/10� when d =
{50, 100}. The neighbor size n when training ELDR (Step 6
in Algorithm 2) was set to n = d. The parameter values for
DE were Cr = 0.9 and F = 0.5. The number of generations
K required for DE or TLBO on the surrogate model was set
to K = 30. Themaximumfitness evaluationwasMaxFE =
11 × d when d = {10, 20, 30} and MaxFE = 1000 when
d = {50, 100}. For the other algorithms, the parameter values
recommended in their respective studies were used.

From the preliminary experimental results in “Preliminary
experiment: accuracy of ELDR”, it was revealed that ELDR
using either the Gaussian or Multiquadric function has high
potential as a surrogate model. However, the optimal activa-
tion function varies depending on the problem. Based on this
analysis, themodel selection through validation is introduced
into ELDR-SAHO. Algorithm 4 shows the model selection
procedure of ELDR-SAHO. The model selection compares
the Gaussian function with L = 10d + 1,C = 2−3, and the
Multiquadric function with L = 2d + 1,C = 2−5 as candi-
dates. Subsequently, the model with the highest Kendall’s τ

on the validation set between these two models is used as a
surrogate in the search. The validation set formodel selection
comprises randomly selected 20% of the data from the train-
ing dataset. This procedure is used at line 7 in Algorithm 2.

Results

Table 3 shows themean and standard deviation of the best fit-
ness after themaximumfitness evaluations in 20 independent
runs. For each benchmark, the best (smallest) value is high-
lighted in boldface, whereas the second-best is underlined.

4 https://github.com/CarrieWei/CA-LLSO_Code (accessed January
10, 2023).
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The Mann–Whitney U test with a significance level of 5%
was performed, and the results were adjusted using the Bon-
ferroni correction [51] to confirm the statistical difference
between the proposed method and the other methods. Where
the proposedmethodobtained significantly better results than
the other methods, “+” marks are put, “−” marks denote sig-
nificantly worse, and “≈” denotes no significant difference
is found. Finally, the results are summarized at the bottom of
the table.

The experimental results show thatELDR-SAHOachieved
the best mean fitness in 21 out of 40 cases and was the
second-best in two cases. Moreover, the proposed method is
significantly better than the other algorithms onmany bench-
marks. However, on the F10 and F16 problems, the proposed
method was inferior to SAHO, which uses RBF as a surro-
gate. Moreover, on the low-dimensional problem (d ≤ 30)
of the Griewank, Rastrigin, and F19, ELDR-SAHO does
not achieve good results compared with the other methods.
On the other hand, ELDR-SAHO significantly outperformed
the other algorithms for the high-dimensional benchmarks
except for the Rosenbrock (d = 100), F10, and F19 bench-
marks.

Figure 5 shows the median objective function values tran-
sitions and the interquartile ranges [range between the third
quartile (Q3) and the first quartile (Q1)] when d = 100.
The horizontal axis indicates the number of actual fitness
evaluations, whereas the vertical axis shows the objective
function value on a logarithmic scale. Note that for the CEC
2005 benchmarks, the difference between the optimum and
obtained value is plotted.

First, focusing on the F10 and F16 problems,whereELDR-
SAHO was significantly inferior to the other methods on
the 100-dimensional problem, it can be seen that the results
are comparable to the other methods until the middle stage
of the search (about 400 fitness evaluations). On the other
hand, in the subsequent search, the proposed method stag-
nates, whereas the other methods decrease their objective
function values. This suggests that the proposed method is
stuck in a local solution fromwhich it cannot escape on these
benchmarks.

By contrast, the figures show ELDR-SAHO as hav-
ing a rapid improvement in the objective function value
from the early stage of optimization, and it continues the
searchwithout stagnation on theEllipsoid, Rosenbrock,Ack-
ley, Griewank, Rastrigin, and F19 problems. This can be
attributed to the ability of ELDR to estimate the dominance
relationship more accurately with a smaller amount of train-
ing data than RBF and GBC. In particular, although the final
objective function values of ELDR-SAHO were worse than
those of SAHOon the 100-dimensional Rosenbrock function
(Fig. 5b), ELDR-SAHO converges to the final result in fewer
evaluations than the other algorithms.
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(a) Ellipsoid (b) Rosenbrock (c) Ackley

(d) Griewank (e) Rastrigin (f) CEC 2005 F10

(g) CEC2005 F16 (h) CEC 2005 F19

Fig. 5 Transitions of median objective function values and the interquartile ranges [ranges between the third quartile (Q3) and the first quartile
(Q1)] when number of dimensions d = 100 (the vertical axis is logarithmic scale)

These results indicate that ELDR-SAHO has better search
performance than conventional SAEA using regression and
classification surrogate models for many problems (espe-
cially high-dimensional problems). However, the results
suggest that ELDR-SAHO may fall into the local optimum
on some problems. Note that although ELDR was applied to
SAHO in this study, the application of ELDR is not neces-
sarily suitable for SAHO because SAHO is designed as an
SAEAusingRBF. In particular, for the F10 and F16 problems,
itmay be possible to enhance the performance fromELDRby
proposing an SAEA with a mechanism to prevent (or escape
from) falling into local optimum. In addition, because ELDR
can be searched only by the superiority of the solutions in
all problems, it may be applicable for interactive EAs that

assume each function as a human evaluation model. There-
fore, ELDR has high potential as a new surrogate model for
SAEA.

Conclusion and future work

This paper proposed a novel ranking-based surrogate model,
called ELDR, for SAEA that combines ELM and Direc-
tRanker. Further, it was incorporated into SAHO, a state-
of-the-art SAEA. To investigate the estimation accuracy
of ELDR, this study compared the estimation accuracy of
ELDR with that of RBF and RankSVM, which are com-
monly used in SAEAs. The comparison results indicated

123



Complex & Intelligent Systems (2023) 9:6875–6890 6889

that ELDRwith an appropriate hyperparameter setting exhib-
ited the highest rank estimation accuracy compared to RBF
and RankSVM, especially when the amount of training data
was small. To investigate the compatibility of ELDR with
SAEA, ELDR-SAHO was compared with existing SAEAs.
The experimental results showed that ELDR-SAHO signif-
icantly outperforms existing SAEAs using regression and
classificationmodels, including RBF-based SAHO, onmany
problems, particularly on high-dimensional (d ≥ 50) prob-
lems. Based on these results, it is concluded that ELDR is
a promising surrogate model for SAEAs. However, because
the combination of SAHO and ELDR may fall into the local
optimum, future research should explore a different SAEA
that can fully utilize the power of ELDR.

BecauseELDRis aNN-basedmethod, it has the advantage
that, unlike RBF, it can be applied to both discrete and mixed
variable optimization problems and real-valued optimization
problems. In addition, a ranking-based surrogate model is
useful for constrained and aesthetic optimizations. Therefore,
future research should examine the application of ELDR to
these problem domains.
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