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Abstract
Traditional federated learning algorithms suffer from considerable performance reduction with non-identically and indepen-
dently distributed datasets. This paper proposes a federated learning algorithm based on parallel-ensemble learning, which
improves performance for image classification on these datasets. The training process of this algorithm includes basic fed-
eration learning and meta federation learning. First, several basic models are trained through cross-validation of federated
learning, and then the meta-model is trained using the prediction results of the validation sets. In the training process, the
training of different basic models is parallel. In prediction, meta-model is used to aggregate the output of the basic models
to get the final prediction results. Our algorithm can achieve higher accuracy than traditional federated learning when using
non-independent identically distributed datasets for image classification. Our algorithm aggregates different models through
federated learning based on parallel-ensemble method, and improves the image classification performance of federated learn-
ing on non-independent identically distributed datasets.

Keywords Federated learning · Ensemble learning · Non-IID · Image classification

Introduction

With the proliferation of smartphones, sensors, and other
edge devices, the demand for distributed machine learn-
ing is increasing. As an important technology in distributed
machine learning, Federated learning is a setting for cen-

Haoran Yu and Chang Wu are co-first authors of this paper.

B Chang Wu
changwu@uestc.edu.cn

Haoran Yu
202022010314@std.uestc.edu.cn

Haixin Yu
974095304@qq.com

Xuelin Wei
202021010312@std.uestc.edu.cn

Siyan Liu
laurel64zhu@126.com

Ying Zhang
15847693106@163.com

1 School of Information and Communication Engineering,
University of Electronic Science and Technology of China,
Xiyuan Avenue, Chengdu 611731, Sichuan, People’s
Republic of China

tralized model training on data distributed to clients [1].
In federated learning, the client will not send the original
data directly to the server but will upload the intermedi-
ate results of the training, which the server will aggregate.
Combined with encryption technology, data privacy can
be well protected. Aggregation algorithms, device hetero-
geneity, privacy protection, communication optimization and
semi-supervised federated learning are all research directions
of federated learning.

However, the heterogeneity of edge devices brings chal-
lenges to federated learning. The challenges faced by feder-
ated learning are mainly divided into device heterogeneity,
data heterogeneity, and model heterogeneity [2]. Data het-
erogeneity means that the clients’ data are not independent
and identically distributed. In the traditional setting, data
are stored centrally, and the central model may access
all data information. However, in federated learning, data
are only stored locally, resulting in inconsistencies in data
distribution, including differences in feature distributions,
label distributions, and concepts [3]. The non-IID (non-
independent identically distributed) betweendatawill greatly
impact the performance of federated learning [4]. For exam-
ple, if the same experimental parameters are applied in an

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01110-7&domain=pdf
http://orcid.org/0000-0003-2349-2549


6892 Complex & Intelligent Systems (2023) 9:6891–6903

image classification task, the non-IID dataset may lower pre-
diction accuracy by 40% or more.

In addition, the relevant work in other fields is also of great
help to our research. The idea of joint iteration of distributed
devices such as federated learning is similar to iterative
learning control in linear systems. Zhuang et al. propose
an optimal ILC algorithm for linear time-invariant multiple-
input-multiple-output (MIMO) systems with nonuniform
trial lengths under input constraints [5]. Djordjevic et al. con-
sider control problem of the HSA with unknown dynamics,
basedon adaptive dynamic programmingvia output feedback
[6]. Zhou et al. propose a framework of point-to-point ILC
extended within discrete linear time-invariant (LTI) system
[7].

This paper proposes a new algorithm to improve the per-
formance of federated learning on the non-IID datasets.
Based on traditional federated learning, this algorithm intro-
duces Stacking [8] in ensemble learning and employs meta-
model to combine multiple basic deep learning models. It
shows thatmultiple basicmodels are trainedby cross-training
and then used to generate a new dataset for training the
meta-model. To ensure the generalization of the model, it
takes use of federated Learning’s properties, including cross-
validating datasets from various clients and trains numerous
models in parallel. When predicting, the data are first input
into the model generated by cross-training, and the outputs
are averaged to obtain the prediction results of each basic
model. Then, the prediction results of basic models are used
as the input of meta-model, which generates the final result.
This paper uses ResNet [9], VGG [10], and DenseNet [11] as
basic models and Linear Regression (LR) as the meta-model
in the experiment. After that, the training sets in the MNIST
[12] and CIFAR-10 [13] datasets are divided into five non-
IID federated learning datasets to be the training set for each
client. The test sets in these datasets are directly used as the
test set for the experiment. Finally, the classification accuracy
is significantly improved compared with using basic models
directly for federated learning.

The main contributions of this work are illustrated as fol-
lows:

• Our algorithm uses an ensemble learning method to
combine multiple deep learning models to improve the
performance of federated learning in non-IID datasets.

• Our algorithmuses parallel computing in the training pro-
cess, which can train multiple independent deep learning
models at the same time to reduce training time.

• The main contributions of this work are illustrated as
follows:we compare our algorithmwith FedAvg [14] and
FedProx [15] under a variety of datasets and experimental
parameters, and discuss the improvement and feasibility
of our algorithm.

The rest of this paper is organized as follows. InSect. “Back-
ground”, we introduced relevant background knowledge.
Section“Algorithm” proposes our algorithm in details. Fur-
thermore, Sect. “Experiment” analyzes the performance of
our algorithm in the case of different datasets and parame-
ters. Finally, Sect. “Summarize” gives a summary.

Background

This section first presents the development process and
research direction of federated learning, then describes the
characteristics of the non-IID dataset and its impact on feder-
ated learning. Finally, it briefly introduces ensemble learning
and its combination with federated learning.

Federated learning

The term ‘federated learning’ was first coined in 2016 by
Jakub et al. fromGoogle [1]. Federated learning is a machine
learning setting where the goal is to train a high-quality cen-
tralized model, while the training data exist in the client
in a distributed form. The original intention of federated
learning was to solve the problem of Android mobile phone
users updating the model locally. Later studies have also
designed federated learning algorithms for sensor-wearing
human activity recognition (HAR) [16]. In a broad sense, fed-
erated learning, as a distributed machine learning paradigm,
can effectively solve the problem of data silos. It enables par-
ticipants to model together without sharing data, breaking
the data silos, and realizing collaborative training. For exam-
ple, Zhang et al. proposed a federated learning method for
mechanical fault diagnosis to improve learning performance
while maintaining privacy [17]. The types of federated learn-
ing include horizontal, vertical, and hybrid federated learning
[18].

Federated learning consists of multiple rounds of train-
ing. In each round, each client independently calculates the
update of the current global model based on its local data
and sends it to the central server. The server will aggregate
the updates from the clients to generate a new global model.
The aggregation algorithm is one of the research focuses of
federated learning. FedAvg [14] is first proposed to obtain
the global model by taking the weighted average of all local
models engaged in learning. FedProx [15] tries to solve sys-
tems heterogeneity and statistical heterogeneity by adding
a proximal term to the local model’s objective function of
FedAvg. FedDC [19] introduces lightweight modifications
in the local training phase to utilize this learned local drift
variable to bridge the gap, i.e., conducting consistency in
parameter-level. In addition, algorithms such as FedPD [20]
and FedBN [21] attempt to solve various challenges of fed-
erated learning such as non-convex objective functions and
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feature shift. In the following experiments, we selected the
FedAvg and FedProx, which solve similar problems with our
algorithm, as comparison.

Non-IID

In traditional machine learning, the data are stored in the
same machine. It is assumed that the data are independently
sampled from the same distribution, i.e., Independently iden-
tical distribution. However, in distributed computing, data
distribution among devices typically varies greatly, imply-
ing that data are non-independent and identically distributed.
Non-independence refers to existing associations between
different data instead of independent sampling; different dis-
tribution means that the distribution of the sample space of
different data sampling is different.

In federated learning, we normally assume that different
edge devices collect data independently, so only different
distribution is considered. The distribution in the train-
ing data can be expressed as P(x, y) = P(y|x)P(x) =
P(x |y)P(y), so it can be divided into different feature dis-
tribution p(x), different label distribution p(y) and different
concepts p(y|x) and p(x |y). Zhao et al. examined the perfor-
mance of FedAvg on the non-IID dataset and pointed out that
Weight Divergence is the main reason for the performance
degradation of FedAvg on the non-IID dataset [4].

For non-IID dataset, many studies have improved model
updating and model aggregation [3] to enhance the robust-
ness of the global model. Other studies use personalized
federated learning to optimize the global model for differ-
ent users [22]. Ma et al. propose Layer-wised Personalized
Federated learning (pFedLA) to optimize the personalized
model aggregation for clients with heterogeneous data [23].
Of course, it is also an effective method to enhance the non-
IID data at the data layer [24]. The algorithm proposed in this
paper combines federated learning and ensemble learning to
improve the performance of FedAvg on the non-IID dataset.

Ensemble learning

Ensemble learning executes learning tasks by building and
combining multiple learners. Generally speaking, ensemble
learning will first generate a set of individual learners and
then combine themwith a certain strategy, and the individual
learners are usually selected from existing learning algo-
rithms. Ensemble learning may take various forms. Boosting
is a family of algorithms that can advance weak learners to
strong learners, and one of the most famous representative
is AdaBoost [25]. In addition, Bagging is the prominent rep-
resentative of the parallel-ensemble learning, which extends
the Random Forest [26]. When the training dataset is large,
a effective strategy is to combine multiple learners by the

Learning Method. Stacking [8] is a typical representative of
the Learning Method.

Many studies have used ensemble learning to solve some
problems of federated learning. Lin et al. proposed a robust
federated meta-learning method [27] and verified its conver-
gence. FedBoost [28] combined with Boosting reduces the
communication cost of federated learning. Federated For-
est [29] proposes a federated forest framework based on the
CART tree and bagging in terms of longitudinal federated
learning. Li et al. studied how to train GBDT in the context
of federated learning with a focus on horizontal federated
learning [30]. The algorithm proposed in this paper combines
federated learning and stacking to improve the performance
of FedAvg in the scenario of non-IID image classification.

Algorithm

This algorithm combines ensemble learning with the tradi-
tional federated learning algorithm. The overall structure is
shown in Fig. 1. The algorithm consists of two major steps:
basic federated learning and meta federated learning. During
training, client-side cross-validation is used to train multi-
ple basic models in parallel and use the prediction results
of basic models to train the meta-model. When making the
prediction, the test data are first input into basic models, and
then the meta-model is used to aggregate the output of the
basic models to receive the final prediction result. This sec-
tion describes the algorithm in detail.

Federated learning

FedAvg is used as the aggregation algorithm in this work for
federated learning. Here is a brief introduction to the objec-
tive function and training process of the FedAvg algorithm.

Suppose m clients are participating in model training. Pi
represents the index collection of the dataset of client i . ni =
|Pi |, which is the size of the dataset. The objective function
of the entire federated learning training can be expressed as

min
ω∈R f (ω) where f (ω) =

m∑

i=1

ni
n
Fi (ω) (1)

Fi (ω) represents the objective function of client i , namely

Fi (ω) = 1

ni

∑

j∈Pi

f j (ω) (2)

The training process of federated learning is divided
into multiple rounds. Considering differences in computing
power and network conditions, not all m clients are required
to participate in each round of federated learning. The clients
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Fig. 1 Algorithm structure. Basic federated learning trains basic models, the predictions of which are used as the input of the meta-model.
Meta-federated learning trains meta-model to obtain the output

Algorithm 1 Client’s local update.
Require: Epochs, E ; Batchs, B; Learning rate, η; Old global state, ω;

Optimizer, Adam;
Ensure: new global state: ω;

function Update(E, B, η, ω)
2: for i = 1 → E do

for b ∈ B do
4: ω ← Adam(ω, b, η)

end for
6: end for

return ω

8: end function

need to negotiate the total number of communication rounds
R, the number of local training times E for each round, and
the size of the dataset B for each training in advance. Each
round, the clients participating in the training download the
current global model from the server and then use the local
data for training.After training, the clients upload the updated
local model to the server. The server gathers the models and
takes the weighted average according to the data magnitude
as the global model for the next round. Algorithm 1 shows
this process.

Basic federated Learning

The first step is basic federal learning. In this step, the basic
models is trained by cross-validation, and the prediction

results of the validation set are combined as the training data
for the next step. This step will be elaborated next.

Basic model training

First, select some models as basic models. Suppose that n
different basic models are adopted, and their network struc-
tures are different from each other. Each basic model can
complete the tasks of training and prediction independently.
For example, ResNet, VGG and other CNN networks are
all advanced models, and each of them can complete the
whole task of image classification. However, traditional deep
learning models often perform unsatisfactorily in federated
learning with non-IID datasets. Therefore, this algorithm
utilizes themas basicmodels and uses ameta-model to aggre-
gate them.

It is assumed that m clients are taking part in the train-
ing. The dataset owned by the client i is CDi . The dataset
CDi is contained in the training model means that the client
i participates in the training model. When the client i partic-
ipates in training a federated learning model, it uses its local
dataset CDi to train the local model and uploads the model
update to the server. The server uses the FedAvg algorithm
mentioned in the previous section for aggregation. The pro-
cess of updating the local model by the client in federated
learning is shown in Algorithm 1.

If all clients participate in the training simultaneously, the
generalization of the meta-model will be greatly reduced.
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Fig. 2 Basic model training. Each basic model needs to train m sub models, and m is the number of clients. For each sub model, m − 1 clients
participate in federated learning, and CDi represents the dataset of client i participates in training

Federated learning provides a natural dataset division. There-
fore, when training basic models, this algorithm adopts the
method of cross-validation. Each basicmodelmust be trained
to generate m sub models with the same structure but differ-
ent parameters. The only difference in training these models
is the datasets contained in training. Figure 2 shows the
trainingmethod of one of the basic models. To achieve cross-
validation, each basic model needs to train m sub models.
For example, the sub models of basic model 1 are model1,1,
model1,2, . . . model1,m , respectively. Each basic model is
trained by federated learning participated by m − 1 clients.
Modeli, j indicates that the structure of this model is the
same as the basic model i , and CDj does not be contained
in training. In the end, n×m basic models can be generated.

During the basic model training, each client needs to train
n×(m−1)models.When training a singlemodel, each client
needs to wait for other clients to upload local updates. The
client cannot download the new global model and start the
next round of training until the server completes the aggre-
gation. In order to reduce the waiting time, this algorithm
allows the client to sustain multiple models simultaneously
while training other models during the wait time. Among
these models, some have the same structure, and some have
overlapping training sets. However, they are independent of
each other. That is, these models are not interdependent or
ordered. Therefore, the client can train these models in par-
allel. After each round of updating all models, it will wait for
the aggregated results of the server. The details are shown in
Algorithm 2.

Basic model prediction

After training the sub models of each basic model, we need
to use these sub models to predict the verification set. These
predictions will be used as the training set of themeta-model.

Algorithm 2 Parallel training.
Require: Communication rounds, R; Basic models number, n; Client

number, m; Current client, k; Epochs, E ; Batchs, B; Learning rate,
η; Local data, X ;

Ensure: Basic model, Modeli, j , 1 ≤ i ≤ n, 1 ≤ j ≤ m; Meta model,
Modelmeta ;
function Training(R, n,m, k, E, B, η, X )

TrainBasicModel(R, n,m, k, E, B, η)
3: PredictBasicModel(X , k)

TrainMetaModel(R, E, B, η)
end function

6: function TrainBasicModel(R, n,m, k, E, B, η)
for r = 1 → R do

for i = 1 → n do
9: for j = 1 → m do

if j �= k then
Get ωi, j from server

12: ωi, j ← Update(E, B, η, ωi, j )
Upload ωi, j to server

end if
15: end for

end for
end for

18: end function
function PredictBasicModel(X , k)

for i = 1ton do
21: Get Modeli,k from server

Predictioni,k = Modeli,k(X)

Upload Predictioni,k to server
24: end for

end function
function TrainMetaModel(R, E, B, η)

27: for r = 1 → R do
Get ωmeta from server
ωmeta ← Update(E, B, η, ωmeta)

30: Upload ωmeta to server
end for

end function

Figure 3 shows the prediction of the basic model and the
combination of results.
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Fig. 3 Basic model prediction. Each client inputs data into trained sub
models. The data CDj of client j are input into Modeli, j to obtain the
prediction T Pi, j for training. Each client combines its own predictions
as the training data for meta federated learning (refer Sect. “Meta-fed-
erated learning”)

A total of n ×m basic models was generated in the previ-
ous training process, and each model has one client that does
not participate in the training. Therefore, the algorithm uses
the client’s dataset not contained in training to make predic-
tions. Assuming that the current basic model is Modeli, j ,
then the dataset CDj of client j does not participate in train-
ing. Therefore, useCDj for prediction and get the prediction
T Pi, j for training. This process is executed locally on the
client j , and T Pi, j is also stored locally.

At this stage, each client usesnmodels tomakepredictions
on its own dataset. The client j inputs its dataset CDj to
Model1, j , Model2, j , . . . , Modeln, j to predict, which will
get the prediction result T P1, j , T P2, j , . . . , T Pn, j . The client
j combines these predictions locally to form a new dataset
T Pj , where each prediction is used as a feature. Finally, m
clients have their ownnew training sets, T P1, T P2, . . . , T Pm .

It is worth noting that to preserve the information of the
prediction results output by basic models to a greater gen-

Fig. 4 Meta model training. Predictions T P1, T P2, . . . , T Pm for train-
ing (refer Sect. “Basic model prediction”) and corresponding labels
CL1, CL2, . . . , CLm are combined as the training set of meta-model
training

eralization, the probability of each category is used as the
prediction result of basic models in this algorithm, instead
of the final classification result. For example, the target of
a basic model is ten classifications, and then its prediction
result is a 10-dimensional vector. Therefore, the outputs of
the n basic models are combined into a 10 × n-dimensional
vector as a row in the dataset.

Meta-federated learning

Meta-federated learning is to train a meta-model using the
training set prepared before. Figure 4 shows the process of
meta-training. In the previous section, each client generated
a new dataset T Pj , which was integrated by the outputs of
basic model Model1, j , Model2, j . . . Modeln, j . The client
only needs to label the new dataset with the original label
CL j in CDj , and it can be used as a complete dataset for
training the meta-model.

The meta-model usually adopts a simple linear regression
model. The input of the meta-model is a 10× n-dimensional
vector, that is, the output of n basic models. The output
is the final classification category. The training process is
still defined as federated learning. Each client trains inde-
pendently with the locally generated dataset to update the
local model and then uploads it to the server for aggregation.
Finally, a trained meta-model is obtained.

Prediction

When new data are available, it is necessary to use the n ×
m basic models and meta-models obtained during training
to predict the classification results. The prediction process

123



Complex & Intelligent Systems (2023) 9:6891–6903 6897

Fig. 5 Prediction includes two steps: pre-prediction and meta-prediction. Predict Pre-Pi, j obtained from Modeli, j . The predict of the same basic
model are combined as a dimension of the meta-prediction input

is shown in Fig. 5, which is divided into two steps: pre-
prediction and meta-prediction.

For pre-prediction, first, input the data into the basic
model separately to get the pre-prediction result. For exam-
ple, Modeli, j gets prediction result Pre-Pi, j . It can be seen
from the settings during training that Modeli,1, Modeli,2,
. . . , Modeli,m all have the same structure, but the training
data are different, so pre-prediction average their predic-
tion results to get Pre-Pi . Finally, combine these averages
Pre-P1, Pre-P2, . . . , Pre-Pn , each of which as a one-
dimensional feature, to generate Pre-P .

For meta-prediction, input the Pre-P generated by the
pre-prediction into the meta-model to get the final prediction
result.

Experiment

This sectionwill first introduce the preparations for the exper-
iment, including datasets, partitioning methods, and models.

The experimental results will then be presented and analyzed
in detail.

Preparation

In the experiment, different datasets are selected, and dif-
ferent datasets are divided in different ways. At the same
time, several different models are selected for aggregation
and comparison. Table 1 shows the algorithm, datasets,
parameters and evaluation indicators in relevant papers. This
section details the preparation of the experiment according
to the datasets, parameters and evaluation indicators in these
papers.

Datasets

The algorithm in this paper is more suitable for more com-
plex classification models, so this paper selects two image
classification datasets, including MNIST [12] and CIFAR-
10 [13]. TheMNIST is a large database of handwritten digits
that is commonly used for training various image processing
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Table 1 The algorithm,
datasets, parameters and
evaluation indicators in relevant
papers

Algorithm Datasets Parameters Evaluation indicators

FedAvg [14] MNIST, CIFAR-
10 Shakespeare

Adjustable:
epoch, batch size,
learning rate,
client fraction

Accuracy, loss

FedProx [15] MNIST,
FEMNIST,
Shakespeare,
Sent140

Adjustable: μ,
stragglers Fixed:
epoch, batch size,
learning rate

Loss

FedPD [20] FEMNIST Adjustable: R,
p Fixed: epoch,
batch size, learn-
ing rate

Gradient

FedBN [21] SVHN, USPS,
SynthDigits,
MNIST-M,
MNIST

Adjustable:
epoch Fixed:
batch size, learn-
ing rate

Accuracy, loss

systems., which contains 60000 training images and 10000
test images. All images in MNIST are 28 * 28 gray images.
The CIFAR-10 dataset is a collection of images that are com-
monly used to train machine learning and computer vision
algorithms. CIFAR-10 contains 10 different categories of 32
* 32 RGB images, each of which has 6000 for training and
1000 for testing.

Division methods

Federated learning needs to divide datasets into different
clients. This paper mainly consider the division method of
label shift, that is, the label distribution of different clients
is different. In order to realize the dependent identically
distributed dataset of different clients, this paper selects
the traditional image classification dataset, and controls the
degree of non-IID dataset through different dataset division
methods. In the experiment, two different methods were
selected, one is based on category and the other is based
on Dirichlet distribution.

This paper uses category-based classification for MNIST
dataset. This division allows different clients to have all data
of different categories. For example, there are 10 imageswith
different numbers in the MNIST dataset. In the experiment,
five clients were asked to select all images with two different
numbers, so that the local data of each client are different.
Such division brings great challenges to federal learning.

The other way is based on Dirichlet distribution. In the
experiment, random sampling is conducted in the Dirich-
let distribution to determine the proportion of each category
divided into different clients. In the case of five clients,
the proportion of a category divided into different clients
is X = (x1, x2, x3, x4, x5). Let X obey the Dirichlet distri-
bution, that is X ∼ Dir(α). The parameter α determines the
degree of non-IID. The larger the α, the closer to uniform dis-

tribution. In the experiment, CIFAR-10 is divided based on
Dirichlet distribution. Different α is selected for CIFAR-10
for experiment.

Models

In fact, themethod proposed in this paper can be used for vari-
ous depth learningmodels, but several commonCNNmodels
are selected as the basic models in the experiment to verify
the effectiveness of our method. In the experiment, ResNet
and VGG are mainly used as the basic models. By adjusting
different datasets, partition methods and super parameters, it
is compared with federated learning that only uses a single
model. In addition, DenseNet was added to the experiment
to test the selection of three basic models in detail.

Parameters and evaluation indicators

In the federal learning involved in the next experiment, adam
is used as the optimizer and cross entropy as the loss function.
In the comparative experiment, the learning rate is optimized,
respectively. Refer to the parameters used in other papers in
Table 1, and remove the parameters specific to othermethods,
this experiment discuss several situations where the batch
size is 128 or 256 and the local training epoch is 1 or 3. In
the experiment of adding DenseNet, the batch size is set to
128, and the local training epoch is set to 20.

The evaluation indicators of federated learning algorithm
include learning performance, communication efficiency,
and incentive mechanism. Our algorithm improves the per-
formance of federated learning in non-IID datasets, so we
mainly consider the indicators related to learning perfor-
mance. Table 1 shows the indicators about learning perfor-
mance commonly used in federated learning algorithms.
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On the basis of these indicators, this paper adds some
indicators to show the characteristics of our algorithm. The
accuracy is the main indicator for us to measure the perfor-
mance of the model, including the accuracy in the training
set and the test set. For classification problems, F1-Score
combined with accuracy and recall is also an important cri-
terion. In order to explain how our algorithm makes up for
the defects of different models and combines their advan-
tages, we also use the confusion matrix to clearly show the
classification results of different models.

Results

This section shows the experimental results based on the
above settings. The experiment includes two parts: basic fed-
eral learning and meta federal learning. This section first
analyzes the detailed result of training based on the use of
three basic models, and then uses different training parame-
ters in different datasets to comparewith traditional federated
learning.

Detailed explanation

This section explored the performance of the method pro-
posed in this paper when selecting three basic models in
detail. ResNet, VGG, andDenseNet are chosen as basicmod-
els in the experiment. In basic model training, each model
is trained by four clients, and finally, 15 basic models are
generated. The basic models trained by ResNet, VGG and
DenseNet are Model1, j , Model2, j and Model3, j , respec-
tively.

The global test set is used for each trained model for
testing. The results are shown in Table 2. Fold-j indicates
that client j did not participate in the training model in
this table. It can be seen that the non-IID division method
makes the datasets between different clients vary greatly.
Therefore, different models that different clients do not par-
ticipate in training, have completely different performance.
For example, ResNet’s Fold-1 model has an accuracy of
76.86%, which is even higher than 75.13% of all clients.
This shows that the data of client 1 have a negative impact on
the ResNet-based federated learning. Therefore, our method
adopts cross-validation to reduce this negative impact.

Fig. 6 The Comparison of training loss. ResNet, VGG and DenseNet
use the loss of the global model in federated learning, and our method
uses the loss of the global model in meta federated learning

Each client uses its local data to make predictions for the
models that have not participated in the training and then uses
the prediction results as the input of the meta-model training
set. Finally, it combines the training set with original data
labels to train the meta-model. Figure 6 shows the training
loss comparison curves of different methods. It can be seen
that our method can eventually converge to a smaller loss.

Finally, basic models and the meta-model obtained by
training are integrated as a whole model. The training set
and test set in CIFAR-10 are used to test the model’s clas-
sification accuracy, and the weighted F1-Score is calculated
in the test set. The final result is shown in Table 3. ResNet,
VGG, and DenseNet are the three basic models used in this
experiment. The classification accuracy of the algorithm in
this paper on the training and test set reaches 86.12% and
78.06%, respectively. Compared with the traditional feder-
ated learning using the three basic models of ResNet, VGG,
and DenseNet alone, the classification accuracy of this algo-
rithm on the training set is increased by 5.37%, 3.05%, and
4.93%, respectively, and is improved to 10.99%, 8.39% and
9.45% on the test set. In terms of F1-Score, this algorithm
achieves 85.96%, which is 11.79%, 11.17%, and 11.23%
higher than the three basic models, respectively. It can be
seen that after using this algorithm, the performance of the
model is significantly improved compared to the traditional
federated learning using the three basic models alone, and it
also has better generalization.

Table 2 Accuracy of 5-fold
cross-validation

Model Fold-1a (%) Fold-2 (%) Fold-3 (%) Fold-4 (%) Fold-5 (%) Non-Foldb (%)

ResNet 76.86 71.20 70.48 73.00 69.96 75.13

VGG 81.48 76.06 80.05 75.89 73.00 77.73

DenseNet 70.00 61.73 67.91 65.39 69.61 76.67

aFold-j indicates that client j did not participate in the training model
bNon-Fold indicates that all clients participate in federated learning
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Table 3 Performance comparison of different methods

Model Train/acc (%) Test/acc (%) Test/F1-score (%)

Ours 78.06 86.12 85.96

ResNet 72.69 75.13 74.17

VGG 75.01 77.73 74.79

DenseNet 73.13 76.67 75.73

The items to be compared include the classification accuracy of the test
set and training set, and the F1-score of the test set
Bold values emphasize the performance achieved by our algorithm

Figure 7 shows the confusion matrices of the prediction
results of the three basic models and the algorithm in this
paper on the test set, respectively. It can be seen that this
algorithm uses the meta-model to integrate the advantages
of the three basic models and achieves better prediction
performance. For example, although VGG has high overall
accuracy, most cats are classified as dogs, and the other two
models make up for this shortcoming. Therefore, our algo-
rithm can achieve better performance in cat classification.
The same applies to other categories.

Experiment of different training parameters

Tables 4 and 5 show the accuracy of our algorithm on
different datasets when five clients participate in training,
compared with FedAvg and FedProx. FedAvg and FedProx
uses ResNet and VGG models for testing, and the method
proposed in this paper uses both models as the basic models.
In the experiment, different batch sizes and epochs of local
trainingwere selected. ForMNIST, the experiment adopts the
classification based method. For CIFAR-10, the experiment
adopts the division method based on Dirichlet distribution,
and adjusts different parameters.

It can be seen from Tables 4 and 5 that for differ-
ent datasets and different division methods, the accuracy of
the method proposed in this paper is improved compared
with FedAvg and FedProx. Different training parameters
were selected in the experiment. It is worth noting that the
batch and epoch in the parameters refer to the batch size and
epoch when the client is training locally. When datasets and
partitions are different, the training parameters for obtain-
ing the highest accuracy will also be different. When using
MNIST dataset, the model with batch = 256 and epoch = 1
has the highest accuracy. When using the CIFAR-10 dataset,
the model with the highest accuracy depends on the partition
parameter α. When α = 0.5, the model with batch=256 and
epoch=3 performs better, and When α = 1.0 or α = 5.0, the
modelwith batch=128 and epoch=3has better performance.

The above experiments verify that the federated learn-
ing algorithm based on parallel-ensemble learning described
in this paper outperforms the traditional federated learning

Table 4 The accuracy of our algorithm and other methods on MNIST

Batcha Epochb Method Model Accuracy (%)

128 1 FedAvg ResNet 85.56

VGG 83.41

FedProx ResNet 85.92

VGG 89.51

Ours ResNet&VGG 97.46

3 FedAvg ResNet 81.96

VGG 68.99

FedProx ResNet 83.62

VGG 88.42

Ours ResNet&VGG 96.88

256 1 FedAvg ResNet 83.92

VGG 83.06

FedProx ResNet 86.18

VGG 95.06

Ours ResNet&VGG 97.51

3 FedAvg ResNet 83.35

VGG 62.18

FedProx ResNet 89.17

VGG 89.05

Ours ResNet&VGG 95.85

Bold values emphasize the performance achieved by our algorithm
aBatch refers to the batch size of the client during local training
bEpoch refers to the epoch of the client during local training

algorithm without parallel-ensemble learning on the image
classification task.

Feasibility analysis

Practically, the data between different devices shows dif-
ferent distribution. When using these non-IID datasets for
federated learning of a single model, it often fails to achieve
good performance. However, our algorithm usesmeta-model
to fuse multiple basic models, combining the advantages of
different models, and can perform better in non-IID datasets.

Generally, models that can achieve the same abilities but
have different structures are selected as the basic models.
These models can be used independently, but in our algo-
rithm, they can be trained at the same time to make up for the
defects between different structures. Themeta-model usually
uses a simple linear regression model to reduce over-fitting.

In addition, our algorithm uses parallel training to reduce
the time cost of training multiple models. At the same time,
when training each specific model, our algorithm adopts the
federated learning structure, which can protect privacy and
data security in a limited communication time.
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Fig. 7 The confusion matrix of Resnet, VGG, DenseNet and our methods on test set

Summarize

This section will summarize the whole article, state the con-
clusions and look forward to the future.

Conclusion

As a distributed machine learning technology, Federated
learning can perform federated learning while protecting pri-
vacy. However, different edge devices have different datasets
and often follow different distributions. Compared with tra-
ditional machine learning, the performance of the federated
learning aggregation algorithm under the non-IID dataset is
not ideal. In the experiments of this paper, the three deep
learning models of ResNet, VGG, and DenseNet perform far
worse than the performance in the IID dataset.

The algorithm proposed in this paper combines federated
learning and ensemble learning and uses a meta-model to
combine the prediction results of several basic models to
achieve the effect of learning from each other’s strengths.

At the same time, this algorithm utilizes the characteristics
of federated learning to implement a parallel cross-validation
algorithm. Each client maintainsmultiple cross-trainedmod-
els simultaneously, reducing the waiting time for each round
in federated learning. In the experiments of this paper, the
algorithm proposed in this paper has a significant improve-
ment in classification accuracy and F1-Score compared to
using the deep learning model alone for federated learning.
At the same time, it can be seen from the confusion matrix
that this algorithm overcomes the defect that the datasets of
different clients are not independent and identical to a cer-
tain extent and makes up for the weakness of a single deep
learning model in the classification on the non-IID dataset.

Future work

In addition to image classification, federated learning is used
in a wide range of fields. The problem of dataset non-IID
appears in several federated learning settings. In the future,
it is hoped that the algorithm proposed in this paper can be
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Table 5 The accuracy of our algorithm and other methods on CIFAR-10

Batcha Epochb Method Model Accuracy (0.5)c (%) Accuracy (1.0) (%) Accuracy (5.0) (%)

128 1 FedAvg ResNet 74.75 63.91 66.28

VGG 81.38 67.96 73.09

FedProx ResNet 75.45 73.75 74.29

VGG 84.46 74.32 77.62

Ours ResNet&VGG 85.36 74.74 79.17

3 FedAvg ResNet 72.96 61.81 65.51

VGG 80.91 67.13 75.18

FedProx ResNet 76.24 73.41 75.36

VGG 83.13 73.93 79.94

Ours ResNet&VGG 86.25 75.39 80.59

256 1 FedAvg ResNet 72.97 60.11 65.67

VGG 81.44 64.44 73.51

FedProx ResNet 73.91 74.36 74.23

VGG 84.37 72.11 75.17

Ours ResNet&VGG 84.59 71.74 78.71

3 FedAvg ResNet 72.23 59.12 65.78

VGG 81.55 67.55 75.93

FedProx ResNet 75.67 71.86 76.35

VGG 76.17 73.25 75.01

Ours ResNet&VGG 86.55 75.87 78.43

Bold values emphasize the performance achieved by our algorithm
aBatch refers to the batch size of the client during local training
bEpoch refers to the epoch of the client during local training
cThe number in parentheses after ”Accuracy” indicates the α used when using the division method based on Dirichlet distribution

applied tomore federated learning scenarios other than image
classification to solve more practical problems and reduce
the impact of imbalanced data distribution. Furthermore, it
is envisaged that this algorithm is suitable for deep learning
models and can be applied to traditional machine learning
models to improve their performance.

Compared with the traditional federated learning algo-
rithm, the algorithm proposed in this paper needs to train
moremodels.Although theparallel-ensemble learningmethod
is used in the algorithm, the training efficiency is still lower
than the traditional federated learning. Therefore, it is hoped
that the efficiency of training can be further improved while
ensuring the performance.

Data Availability The data that support the findings of this study are
available from the corresponding author, Chang Wu, upon reasonable
request.
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