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Abstract
The rate of convergence is a vital factor in determining the outcome of the mission execution of unmanned aerial vehicle
(UAV) swarms. However, the difficulty of developing a rapid convergence strategy increases dramatically with the growth of
swarm scale. In the present work, a novel fractional-order flocking algorithm (FOFA) is proposed for large-scale UAV swarms.
First, based on the interaction rules of repulsion, attraction and alignment among swarm individuals, fractional calculus is
introduced to replace traditional integer-order velocity updating, which enables UAVs to utilize historical information during
flight. Subsequently, the convergence of the algorithm is theoretically analyzed. Some sufficient convergence conditions
for the FOFA are presented by exploiting graph theory. Finally, the simulation results validate that our proposed FOFA
performs much better than traditional flocking algorithms in terms of convergence rate. Meanwhile, the relationships between
the fractional order of the FOFA and the convergence time of the UAV swarm are discussed. We find that under certain
conditions, the fractional order is strongly correlated with the convergence rate of the UAV swarm; that is, a small fractional
order (more consideration of historical information) leads to better performance. Moreover, the fractional order can be used
as an important parameter to control the convergence rate of a large-scale UAV swarm.

Keywords Fractional calculus · Large-scale UAV swarms · Flocking · Convergence rate

Introduction

Unmanned aerial vehicles (UAVs) have been widely used in
industry, themilitary and agriculture due to their low cost and
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small size. To further develop the superiority of UAVs and
to improve the efficiency of missions, the concept of UAV
swarms was developed. In comparison with a single UAV,
UAV swarms are more flexible and robust and have much
broader application potential in unmanned combat, surveil-
lance, rescue and many other fields. Therefore, large-scale
UAV swarms are mainly considered in this paper.

For large-scale UAV swarms, rapid convergence is the
premise for the smooth execution of various tasks. Specifi-
cally, UAV swarms are disordered before performing mis-
sions. Once a mission is assigned, individuals need to
assemble and to synchronize their status so that UAV swarms
can reach the target areas as quickly as possible. Thus, the
faster the convergence rate is, the higher the efficiency of
UAV swarms. As a result, it is of great significance to develop
an effective and efficient control strategy to reduce the con-
vergence time for large-scale UAV swarms. However, due to
the complexity of interactions between UAVs and changing
environments, designing this kind of strategy remains chal-
lenging.

By studying biological groups with intelligence char-
acteristics, such as cells, insects, fish schools and birds
flocks [1–4], researchers proposed the concept of flocking
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control, which has the characteristics of adaptability, robust-
ness, dispersion and self-organization; flocking control is
quite compatible with the robustness and self-organization
required by UAV swarms. Hence, it is meaningful to study
the flocking control of UAV swarms at large scales.

Various flockingmodels and algorithms have been applied
in large-scale UAV swarms. Yan [5] proposed a curriculum-
based multiagent deep reinforcement learning (MADRL)
approach to address the flocking and collision avoidance
problem for a large-scale fixed-wing UAV swarm. Wang [6]
presented an oracle-guided two-stage training and execution
scheme for large-scale UAV swarms, which enables flock-
ing and navigation control under a limited communication
range. Jia [7] investigated the three-dimensional leaderless
flocking problem for large-scale small UAV swarms and
proposed a simplified distributed control algorithm on the
basis of existing flocking algorithms. Liu and He [8] stud-
ied the substructures in large-scale UAV swarms based on
the Olfati-Saber flocking model [9], providing a new idea
for the cooperative control model of UAV swarms. In 2019,
Jia and Vicsek [10] presented a hierarchical flocking model
(HVEM) by introducing a layered mechanism into the tradi-
tionalVicsekmodel [11].On the basis ofHVEM,Liu [12, 13]
proposed a hierarchical weighting Vicsek model (HWVEM)
and investigated the flocking navigation as well as obsta-
cle avoidance of UAV swarms. The existing flocking control
methods for large-scale UAV swarms mostly focus on spe-
cific task scenarios, such as collision avoidance, navigation
and obstacle avoidance. However, with respect to the con-
vergence rate, which is a key factor in ensuring that UAV
swarms perform tasks successfully, there are very few related
studies, and the results are primarily established under the
framework of integer-order dynamics. For instance, Zhao
[14] proposed a modified adaptive-velocity self-organizing
model to enhance the convergence of the Couzin model in
a high-speed environment. Lu [15] improved the neighbor
selection strategy of the Vicsek model by selecting individ-
uals with only a large degree as neighbors, which made the
directions of all particles’ motions reach consensus more
quickly. Zhao [16] introduced a local consistency parameter
into the Vicsek model to reduce the convergence time. These
methods are circumscribed for improving the convergence
rate of UAV swarms. On the one hand, these methods simply
change the interaction rules, potential functions and algo-
rithm parameters of the flocking models, while the dynamics
of UAVs, which are fundamental to controllers and have a
greater influence on the convergence rate, are not taken into
consideration. On the other hand, the individuals update their
states by considering the information only for the current
moment. Nevertheless, in actual collective motion, intelli-
gent agents often use historical information in the decision
process to achieve better performance [17, 18]. In addition,
strict mathematical proofs were not given in terms of the con-

vergence of swarms in thosemethods. All of these factors add
difficulty to the control of large-scale UAV swarms.

Recently, fractional calculus (FC) has been successfully
applied in science and engineering, such as the control of
multiagent systems [19, 20] and the analysis of internal struc-
tures of fractal functions [21, 22]. FC is believed to be a good
way to address certain physical system modeling problems
[23, 24] and to improve the convergence rate of intelligent
systems [25, 26]. Yousri [27] improved the convergence of
the manta ray foraging optimizer by introducing FC into the
motion process of manta rays. To shorten the convergence
time of neural networks, Dong [28] proposed an FC-based
gradient descentmethod, and the simulations showed that the
convergence time can be reduced by nearly 10% compared
to that of the integer order approach. The most significant
characteristic of fractional-order systems is that the current
state depends on the whole history [29], and due to this prop-
erty, many phenomena that cannot be explained naturally by
integer-order dynamics can be explained by the coordinated
behavior of agents with fractional-order dynamics, such as
the spread of virus and themotion of telomeres in the nucleus
of mammalian cells [30, 31]. Therefore, to develop a control
strategywith rapid convergence for large-scale UAV swarms,
it is necessary to apply FC to the dynamic design of UAVs.

Inspired by the above research, a modified flocking
algorithm incorporating fractional calculus in the updat-
ing process of UAV swarms, namely, the fractional-order
flocking algorithm (FOFA), is proposed in this paper. This
algorithm allows UAVs to utilize historical information in
flight and can greatly shorten the convergence time. Themain
contributions of this paper are the following:

(1) A fractional-order flocking algorithm (FOFA) is pro-
posed by replacing the usual integer-order derivativewith
a fractional derivative, which enables UAVs to utilize
historical information during the decision process, thus
overcoming the shortage of traditional ordinary differen-
tial methods that consider only the current information.

(2) The convergence of the FOFA is theoretically analyzed.
By exploiting graph theory, a sufficient convergence con-
dition is given.

(3) To validate the effectiveness of the proposed algorithm,
simulations are conducted with various scales and types
of UAV swarms. The results indicate that in compari-
sonwith traditional integer-order flocking algorithms, the
FOFA can significantly improve the convergence rate of
large-scale UAV swarms.

(4) We find that the convergence rate is strongly correlated
with the fractional order of the FOFA under the condition
that the scale of the UAV swarm is large, that is, a small
fractional order (more consideration of historical infor-
mation) leads to better performance, and the fractional
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order can be used as an important parameter to control
the convergence rate of a large-scale UAV swarm.

The rest of this paper is organized as follows. In Preliminar-
ies, the definitions of fractional calculus and basic concepts
of graph theory are given. In Fractional-order flocking algo-
rithm, we first introduce the FOFA, and then, the stability of
FOFA is theoretically analyzed. In Simulations and results,
we provide simulations and corresponding result analysis to
verify our work. Finally, the paper is concluded.

Preliminaries

In this section, the definitions for fractional calculus are
given, and then some sufficient lemmas and elementary con-
cepts about graph theory are introduced.

Fractional calculus

The Grünwald–Letnikov (G-L) fractional derivative was
introduced in a general form by Liouville, considered by
some of the father of fractional calculus. This formula plays
an important role in solving numerical problems and gen-
eralizes ordinary differentiation. The definition of the G-L
fractional derivative is as follows [32]:

Let α ∈ (0, 1], h > 0, then

Dα(x(t)) = lim
h→0

(
1

hα

+∞∑
k=0

(−1)k�(α + 1)x(t − kh)

�(k + 1)�(α − k + 1)

)
(1)

is called the G-L fractional derivative of x(t) of order α.
Now, we consider a discrete-time commensurate frac-

tional order system with the following state space equations:

Dα(x(k + 1)) = Fx(k) + Gu(k), (2)

where x(k) ∈ R
n is the state vector and u(k) ∈ R

m is the
input signal. F ∈ R

n×n and G ∈ R
n×m are the space matri-

ces, and Dα(x(k)) is given by

Dα(x(k)) = 1

T α

m∑
t=0

(−1)k�(α + 1)x(k − tT )

�(t + 1)�(α − t + 1)
, (3)

where T is the sampling period,m is the truncation order and
�(·) is the Gamma function.

An important characteristic revealed by Eq. (3) is that
there are an infinite number of terms in the fractional-
order derivative, while the integer-order derivative implies
only a finite series. Consequently, integer-order derivatives
are “local” operators, whereas fractional-order derivatives
implicitly have a “memory” of all past events.

Fig. 1 The stability region for discrete-time fractional-order system (2)
[35]

Lemma 1 [33, 34] The fractional-order system (2) is said to
be asymptotically stable if and only if

ϕF
i ∈

[π

2
, 2π − π

2

]
∧ |λF

i | < |ωi |, (4)

where λF
i represents the i th eigenvalue of F, ϕF

i denotes the
argument of λF

i and |ωi | is given as

|ωi | =
(
2

T

∣∣∣∣∣sin ϕF
i − απ

2

2 − α

∣∣∣∣∣
)α

. (5)

The geometric interpretation is shown in Fig.1. It is obvious
that system (2) is stable if all λF

i lie inside the determined
region in Fig.1.

Graph theory

Graph theory is utilized to describe the interaction among
agents in UAV swarms. Some fundamental concepts about
graph theory and the Laplacian matrix are given in the fol-
lowing.

A graph G with N nodes is denoted by G = (S, E),
where S = {1, 2, . . . , N } is a nonempty finite set of nodes
and E ⊆ S × S is the set of edges, in which an edge is
represented by ei j = {i, j}. The set of neighbors of node i
is denoted by Ni = { j ∈ S : ( j, i) ∈ E}. A = [ai j ]N×N is
the adjacency matrix of graph G, where ai j is the weight of
edge { j, i}. If { j, i} ∈ E , then ai j = 1; otherwise, ai j = 0.
The Laplacian matrix of graph G is defined as L = [li j ]N×N

with lii = ∑
j �=i ai j and li j = −ai j for i �= j .

Lemma 2 The Laplacian matrix of undirected connected
graphs has one zero eigenvalue with eigenvector 1, and all
of its nonzero eigenvalues are real and positive [36].
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Fractional-order flocking algorithm

In this section, a flocking algorithm based on the G-L frac-
tional derivative is proposed to control the UAV swarm. First,
the dynamics based on the Vicsek model are given, and
then G-L fractional calculus is introduced into the decision-
making process such that historical information is considered
when individuals update their velocity. The algorithm is as
follows.

Dynamics of UAVs

Weassume that there are N UAVsworking in two-dimensional
Euclidean spaces with a common initial absolute value of
velocity. The dynamics of UAVs are determined by their dis-
tance, which are given as follows.

Repulsion force

The repulsion force is used to prevent collisions between
UAVs, and it exists only when the distance between any two
UAVs is smaller than the repulsive radius rrep. We denote
xi (t) ∈ R

2 as the position of UAVi at time t . The definition
of repulsion force is

f repi (t + 1) = crep
∑

j∈Ni (t)

ai j (t)

(
rrep − ‖xi j (t)‖

rrep
· xi j (t)

‖xi j (t)‖
)

,

(6)

where xi j (t) = x j (t) − xi (t), rrep and crep are the repulsion
radius and the coefficient of repulsion force, respectively.
Ni (t) = { j |‖xi (t) − x j (t)‖ ≤ r}. Here, r denotes the com-
munication radius of UAVs.

Attraction force

The attraction force is used to keep the swarm tight, and it is
considered only when the distance of two UAVs is between
communication radius r and repulsion radius rrep.

f atti (t + 1) = catt
∑

j∈Ni (t)

ai j (t)

(
rrep − ‖xi j (t)‖

r − rrep
· xi j (t)

‖xi j (t)‖
)

,

(7)

where catt is the coefficient of attraction force.

Alignment force

The alignment force is used to keep all the UAVs moving in
the same direction, which is based on the Vicsek model [11],
and the definition is [37]

f aligni (t + 1) = calign
1 + di

⎛
⎝vi (t) +

∑
j∈Ni (t)

ai j (t)v j (t)

⎞
⎠ , (8)

where calign is the coefficient of the alignment force and
vi (t) ∈ R

2 is the velocity of UAVi at time t .
Above all, the interaction forces between UAVi and other

swarm members at time t are

ui (t) = f atti (t) + f repi (t) + f aligni (t). (9)

Movement of UAVs

Without loss of generality, we suppose that the time interval
�t between two updates of the velocities and positions is 1.
The position of UAVi at time t + 1 is

xi (t + 1) = xi (t) + vi (t)�t . (10)

In the general flocking algorithms (for details, see [38–
40]), the velocity updating process is based on integer-order
dynamics:

vi (t + 1) = vi (t) + ui (t)�t . (11)

Knowing that �t = 1, Eq. (11) can be written as vi (t + 1)−
vi (t) = ui (t), that is,

D1(vi (t + 1)) = ui (t). (12)

To apply fractional calculus to improve the convergence
rate of the UAV swarm, the integer-order derivative is
replaced by the fractional-order derivative; thus, we have the
following relation:

Dα(vi (t + 1)) = ui (t), (13)

where α is the fractional order. By the definition of the G-L
fractional derivative in Fractional calculus, the expression of
Eq. (13) with T = 1 can be written as

Dα(vi (t + 1)) =
m∑

k=0

(−1)k�(α + 1)vi (t + 1 − k)

�(k + 1)�(α − k + 1)
= ui (t).

(14)

Using the first m = 4 terms from the historical data with
fractional order α, the fractional-order velocity updating of
UAVi at time t is

vi (t + 1) = αvi (t) + 1

2
α(1 − α)vi (t − 1)

+ 1

6
α(1 − α)(2 − α)vi (t − 2)
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+ 1

24
α(1 − α)(2 − α)(3 − α)vi (t − 3) + ui (t).

(15)

The general flocking algorithmwith integer-order dynam-
ics is a particular case of FOFA with fractional order α =
1; that is, historical information is not considered. As α

decreases, the proportion of the current state information
declines, while that with historical information increases.

Convergence Analysis of FOFA

In this part, the convergence of our proposed FOFA is ana-
lyzed, and the sufficient conditions to ensure the convergence
of the FOFA are given. The method used in this section fol-
lows [35, 41].

By Eqs. (6)–(10) and (13), the dynamics of UAVs can be
described as{

xi (t + 1) = vi (t),

Dα(vi (t + 1)) = ui (t),
i = 1, 2, . . . , N , (16)

where

ui (t) =
∑
j∈Ni

ki j (t)ai j (t)xi j (t)

+ m

1 + di (t)

⎛
⎝vi (t) +

∑
j∈Ni

ai j (t)v j (t)

⎞
⎠ . (17)

di (t) is the number of neighbors ofUAVi at time t ,m = calign
is a constant, ki j (t) is the feedback control gain, and the
definition of ki j (t) is

⎧⎨
⎩
ki j (t) = catt (rrep−‖xi j (t)‖)

(r−rrep)‖xi j (t)‖ , rrep < ‖xi j (t)‖ < r ,

ki j (t) = crep(rrep−‖xi j (t)‖)
rrep‖xi j (t)‖ , 0 ≤ ‖xi j (t)‖ < rrep

.

(18)

Let x(t) = [x1(t), x2(t), . . . , xN (t)]T , v(t) = [v1(t),
v2(t), . . . , vN (t)]T . We suppose that K = [ki j (t)]N×N and
B = diag[b1(t), b2(t), . . . , bN (t)]withbi (t) = ∑

j �=i ki j (t),
then Eq. (16) can be written as

[
x(t + 1)

Dα(v(t + 1))

]
= C

[
x(t)
v(t)

]
, C =

[
0 IN

−L̄ mP

]
(19)

where IN is an N × N identity matrix and L̄ = B − K . P =
(IN + D)−1(A+ IN ), where D = diag[d1(t), d2(t), . . . , dN
(t)]. It is obvious that the convergence of the FOFAdescribed
by Eq. (16) is realized if system (19) is asymptotically stable.

Corollary 1 All the eigenvalues of P are positive real num-
bers.

Proof According to the definition of P , we can obtain P =
diag[ 1

1+d1(t)
, 1
1+d2(t)

, . . . , 1
1+dN (t) ], where di (t) is the num-

ber of neighbors of UAVi ; therefore,μ2i = 1
1+di (t)

> 0. This
completes the proof. 
�
Corollary 2 Let μ1i , i = 1, 2, . . . , N be the eigenvalues of
L̄. If catt < 0, it holds that

0 = μ11 ≤ μ12 ≤ · · · ≤ μ1N . (20)

Proof Since L̄ = B − K , according to the definition of
B and K , we can obtain that the elements of L̄ are l̄i j =
−ki j (t)ai j (t) for i �= j and l̄i i = ∑

j �=i ki j (t)ai j (t). Then,

x(t)T L̄x(t) =
∑

ai j(t)=1

ki j (t)(xi (t) − x j (t))
2 ≥ 0. (21)

Hence, L̄ is a semipositive definite matrix, which means that
Corollary 2 holds. 
�

Now,we considerEq. (19).We suppose that the eigenvalue
of C is λ; then, we have

det(λI2N − C) = det

[
λIN −IN
L̄ λIN − mP

]
= det(λIN ) det(λ2 IN − mλP + L̄)

=
N∏
i=1

(λ2 − mλμ2i + μ1i ), (22)

whereμ1i andμ2i are the i th eigenvalues of L̄ and P , respec-
tively. Solving Eq. (22), we obtain

⎧⎪⎪⎨
⎪⎪⎩

λi1 = mμ2i+
√
m2μ2

2i−4μ1i

2 ,

λi2 = mμ2i−
√
m2μ2

2i−4μ1i

2 ,

i = 1, 2, . . . , N . (23)

It can be seen that λi1 and λi2 can be complex numbers, so
condition (4) may give complicated relations in terms of m.
To produce explicit inequalities in terms ofm, the parameters
are chosen so that all the eigenvalues are real numbers. This
means

m2μ2
2i − 4μ1i ≥ 0 i = 1, 2, . . . , N , (24)

relation (24) leads to

m ≥ 2
√

μ1max

μ2min
or m < −2

√
μ1min

μ2max
. (25)
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Considering thatμ1min = 0, then relation (25) can bewritten
as

m ≥ 2
√

μ1max

μ2min
or m < 0. (26)

According to Corollary 1 and Corollary 2, all μ1i ≥ 0 and
μ2i > 0. If m ≥ 0, both λi1 and λi2 are nonnegative, that is,

ϕi = arg(λi1) = arg(λi2) = 0, i = 1, 2, . . . , N . (27)

It is obvious that all λi are on the right side of the Re-axis
of Fig. 1, which cannot satisfy the argument condition in Eq.
(4). However, if m < 0 is considered, both λi1 and λi2 are
negative, which means

ϕi = arg(λi1) = arg(λi2) = π, i = 1, 2, . . . , N . (28)

We consider that π ∈ [απ
2 , 2π − απ

2 ]; thus, the argument
condition in Eq. (4) is satisfied. Therefore,

m < −2
√

μ1min

μ2max
. (29)

Now, we consider the absolute value condition in Eq. (4). By
Eq. (5) and Eq. (28), we have

|ωi | =
(
2

T

∣∣∣∣sin π − απ
2

2 − α

∣∣∣∣
)α

= 2α

T α
i = 1, 2, . . . , N . (30)

It is easy to check that |λi1| < |λi2|, then by Eq. (4), we
obtain

|λi2| =
−mμi2 +

√
m2

2μ
2
2i − 4μ1i

2
<

2α

T α
. (31)

The above relation leads to

√
m2μ2

2i − 4μ1i <
2α+1

T α
+ mμ2i . (32)

The right side of relation (32) should be positive; thus,

m > − 2α+1

T αμ2max
. (33)

According to (32),

m > −
(
T αμ1min

2αμ2max
+ 2α

T αμ2max

)
(34)

We consider that μ1min = 0; then, we have

m > −
(
T αμ1min

2αμ2max
+ 2α

T αμ2max

)
= − 2α

T αμ2max

> − 2α+1

T αμ2max
(35)

Now, we can obtain the following theorem.

Theorem 1 The sufficient condition to achieve convergence
of the FOFA given in Eqs. (16)–(18) is

− 2α+1

T αμ2max
< m < 0, (36)

where μ2max is the maximum eigenvalue of P.

Remark 1 Condition (36) is conservative because condition
(4) may also be fulfilled when the eigenvalues of C are com-
plex numbers. That is why only the sufficient convergence
condition for FOFA is obtained.

Flow chart of FOFA

Based on the above design, the flow chart of FOFA is shown
in Fig. 2. After initializing the parameters of the FOFA, the
interaction forces are adopted to achieve flocking, namely,
the alignment force, the repulsion force and the attraction
force in Eqs. (6)–(9). Then, the fractional-order dynamics
are introduced into the velocity updating process of UAVs
by Eq. (15), which improves the convergence rate of UAV
swarms, and the order parameters are calculated, given by
Eq. (37) and Eq. (38) in Order parameters.

Simulations and results

To verify the superiority of the FOFA proposed in this paper
in improving the convergence rate of UAV swarms, simula-
tion results and performance analysis based onMATLAB are
given in this section. First, the parameter settings are given.
Next, we give the order parameters to describe the state of
UAVs during flight, and then, specific experiments and anal-
yses are conducted for UAV swarms at various scales and
types. Finally, the influence of the FOFA on the convergence
rate of the UAV swarm is analyzed in detail, and the relation-
ship between the fractional order and performance is given.

Experimental configuration and parameter settings

The UAV swarm in this paper is composed of N agents, the
communication radius r = 2, the repulsion radius rrep = 1,
and the coefficient values of the attraction force, the repulsion
force and the alignment force are catt = 0.01, crep = 0.2 and
calign = 0.3, respectively. TheUAVs are generated randomly
in a square with length L = 7 and can move without any
boundary limitations. All the UAVs have the same initial
and maximum absolute value of velocities, which are v0 =

123



Complex & Intelligent Systems (2023) 9:6831–6844 6837

Fig. 2 Flow chart of FOFA

0.03 and vmax = 0.1. The maximum number of iterations
of FOFA is 200, and the results are the average value of
100 simulations. Unless otherwise specified, all simulations
follow the above settings.

Order parameters

The motion state of UAV swarms can be quantitatively
expressed by two order parameters, namely:

(1) Overall velocity direction order parameter

	1 = 1

N

∥∥∥∥∥
N∑
i=1

vi (t)

‖vi (t)‖

∥∥∥∥∥ . (37)

(2) Local velocity direction order parameter

	2 = 1

N

∥∥∥∥∥∥
N∑
i=1

∑
j∈Ni (t)

1

di (t)
· vi (t)v j (t)

‖vi (t)‖‖v j (t)‖

∥∥∥∥∥∥ , (38)

where di (t) is the number of neighbors of UAVi at time t .
	1 describes the degree of order of all UAV movements.

As shown in Fig. 3. When 	1 = 0, all UAVs in the swarm
move in complete disorder. When	1 = 1, all UAVsmove in
the samedirection, and the swarm is ultimately ordered. It has

been found that the ordering is very strong when	1 = 0.9 in
a swarm [42]. 	2 indicates the degree of order of local UAV
movement under various conditions. Compared with	1,	2

can provide a stricter stability description when the swarm is
divided into several coherently moving subgroups.

Performance of FOFA

The scale of the UAV swarm is an important factor to be
considered in practical applications. On the one hand, if the
scale is too large, the cost increases considerably; on the other
hand, the expected performance may not be achieved when
the scale is small. To this end, the number of UAVs in swarms
is set to N = 50, 100, 200, 300, and 400, corresponding to
different swarm levels. We define tc = min	1≥0.9 and ts =
min	2≥0.99 as the times to achieve overall convergence and
local convergence, respectively,whichdescribe theminimum
times to reach	1 = 0.9 and	2 = 0.99.A series simulations
are conducted to comprehensively analyze the effectiveness
of our proposed FOFA.

FOFA in a single-layer UAV swarm

For a single-layer UAV swarm, all UAVs have equal status,
there are no leaders or followers, communications between
each pair of UAVs are bidirectional, and all UAVs have the
same contribution value. Figure4 shows the overall and local
convergence times for the FOFA-based single-layer UAV
swarm under the various scales and fractional orders. When
α = 1, the FOFA is equivalent to integer-order flocking. It
can be seen that:

(1) When the fractional order is constant, the convergence
time of the UAV swarm increases with increasing scale,
which conforms to intuition; that is, the larger the swarm
scale is, the longer the convergence time.

(2) Compared with integer-order flocking, under the con-
dition that scales are small (N = 50, 100), FOFA
cannot significantly improve the performance of theUAV
swarm, or even worse. This is because when the scale
is small, the convergence rate of the cluster is fast. For
example, when the cluster size is 50, convergence can
be realized within 20 iterations. In this case, the com-
monly used integer-order dynamics can achieve rapid
convergence, while the characteristics of fractional-order
dynamics memory cannot be well utilized.

However, as the scale increases, the time for the FOFA-
based UAV swarm to achieve overall and local convergence
is greatly reduced, which indicates that under the condition
that the scales of UAV swarms is large (N ≥ 200), the FOFA
has a better performance than traditional methods.
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Fig. 3 The status of UAV swarm

(a) (b)

Fig. 4 Convergence time of
FOFA-based single-layer UAV
swarm at different scales and
fractional orders

(a) (b)

Taking N = 300 as an example, the four graphs in Fig. 5
show the positions and motions at different times. Figure6a,
b show the variation in 	1 and 	2 over time for an FOFA-
based swarmwith 300UAVs.We can see that at the beginning
of flocking, thewhole swarm is disordered, which is reflected
by the values of	1 and	2.With an increase in iterations, the
degree of order of the swarm is improved through interactions
between UAVs and finally reaches a convergent state. Dur-
ing this process, the performance of the UAV swarm based
on FOFA is always better than that of integer-order flocking
(α = 1). Moreover, α = 0.1 corresponds to the best perfor-
mance,with the value ofα increasing, the rates of both overall
and local convergence are reduced, and when α = 1, the
performance is the worst. The specific convergence time cor-
responding to the various fractional orders of FOFA is shown
in Table 1, where bolded font indicates optimal convergence
time.

To further illustrate the advantages of the proposed FOFA,
we compare it with three kinds of commonly used flocking
model VEM [11], HVEM [10] and WHVEM [12]. VEM
is the most basic integer-order flocking model, where there
are only alignment, attraction and repulsion between par-
ticles. HVEM is a contribution-driven hierarchical system,
where particles are divided into leader and follower types by
their contribution weight. WHVEM consists of a hierarchi-

cal weighting mechanism and a layer regulation mechanism,
and this approach improved the HVEM. The selected sys-
tem is composed of 300 UAVs. To avoid randomness and
to obtain general results, 100 simulations are conducted, and
the maximum number of iterations of each simulation is 200.
The results are shown in Fig. 7. We can see that our proposed
FOFAhas themost rapid convergence rate among thesemeth-
ods, which verifies the superiority of this algorithm. Above
all, we can conclude that for a single-layer UAV swarm
with a large scale, compared with the integer-order flocking
algorithm, the FOFA can greatly enhance its convergence
rate.

FOFA in wind environment

In order to verify the effectiveness of the FOFA in an envi-
ronment with physical constraints, simulations of FOFA of
UAV swarms under wind environment are carried out. Set a
multi-direction sequential air flow as [40]{

vx = cw sin(t + π t
4 )

vy = cw cos(t + π t
4 )

, (39)

where cw is a positive real number. Because there is air flow
in environment, then according to Eq. (9), the interaction
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Fig. 5 The positions and
directions of 300 UAVs at
different times

(a) (b)

(c) (d)

Fig. 6 Performance of
FOFA-based single-layer UAV
swarm with 300 UAVs

(a) (b)

forces of UAVi and other swarm members at time t can be
written as

ui (t) = f atti (t) + f repi (t) + f aligni (t) + f wind(t), (40)

where f wind(t) denotes air flow at time t . Let cw = 0.1,
the status of UAV swarms with different scales in a multi-
directional time sequence air flow environment are shown
in Fig. 8. In Fig. 8a, there are 100 UAVs, and it can be seen
that after 50 iterations, all the UAVs move in the same direc-
tion. When the UAV swarm converges, the wind direction

is towards the upper right corner. Figure8b–d show UAV’s
positions and directions under changing air flow when the
scales of UAV swarms are 200, 300 and 400, respectively.
All the UAV swarms can achieve convergence under wind
environment, which indicates that FOFA also has a good
performance under physical constraints.

FOFA in a multilayer UAV swarm

To better perform missions, UAV swarms are often divided
into several layers, and the most widely used are leader-
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Table 1 Average tc and ts of
single-layer UAV swarms based
on FOFA

Number of UAVs Order of FOFA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

tc 50 13.6 14.3 13.6 13.4 14.3 13.7 13.7 13.3 13.8 13.1

100 16.8 16.6 15.6 17.1 14.8 16.4 15.5 16.3 15.7 16.0

200 22.2 20.2 19.8 20.9 19.3 20.0 20.9 21.8 21.0 22.5

300 37.2 38.9 37.8 43.6 46.4 49.6 54.2 56.7 56.1 56.1

400 60.7 59.1 68.8 88.0 103.9 111.8 116.8 118.3 118.7 118.3

ts 50 22.9 22.8 22.1 21.6 21.2 21.1 20.5 20.7 20.4 20.1

100 24.4 23.5 22.8 22.6 22.3 21.9 21.5 21.3 21.2 21.1

200 28.3 28.7 28.1 28.3 28.2 28.3 29.0 29.0 28.2 29.1

300 35.4 35.6 34.5 38.5 38.7 45.1 46.9 50.07 51.1 53.0

400 46.3 46.2 48.6 57.6 74.6 89.1 102.1 106.6 113.1 116.0

follower swarms. Here, we use the hierarchical strategy in
Ref. [10], where particles are divided into leaders and fol-
lowers by their contribution weight. The parameters are set
as follows: the contributions of leaders and followers are
10 and 1, respectively, and all UAVs can communicate with
their neighbors. The numbers of leaders and followers are
M = 5 and N − M , and the other parameters are the same
as those of the single-layer UAV swarm given in Sect. 4.2.2.
The results are shown in Fig. 9 and. Similar to the single-layer
UAV swarms, when the number of UAVs is small, there is
almost no improvement, and as the scale increases, the time
to achieve convergence is greatly reduced.

The specific convergence time corresponding to the var-
ious fractional orders of FOFA is shown in Table 2, where
bolded font indicates optimal convergence time. We can see
that both the overall and local convergence times are greatly
decreased by the FOFA with an increase in the number of
UAVs, and a larger scale corresponds to better performance.

The above results lead to the conclusion that when the
scale of theUAVswarm is large (N > 300), theFOFAgreatly
improves the convergence rate regardless ofwhether it is hier-
archical or not. Interestingly, we find that in both Table 1 and
Table 2, the optimal order for convergence time is generally
reduced with the increase of scale of UAV swarm, and we
notice that smaller fractional order indicates more consider-
ation of historical information. Does that indicate that there
exists a certain relationship between the historical informa-
tion (fractional order of FOFA) and the convergence rate of
UAV swarm? In the next section, this problem is analyzed in
detail.

Correlation analysis between˛ and the performance of the
UAV swarm

To detect correlations between different performance indica-
tors, we can observe their measurements on the same UAV
swarm. Different performance indicators result in different

sorting sequences. Here, Kendall”s tau sequence correlation
[43] is used to measure the correlation between fractional
orders and the performance of the UAV swarm, which is
defined as follows.

Let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) be
two randomsequences and (x1, y1), (x2, y2), . . . , (xn, yn)be
a set of observations from X and Y , so that all the values of
xi and yi are unique. Each pair of (xi , yi ) and (x j , y j ), where
i < j , has three kinds of relationships, namely, concordant,
discordant and neither concordant nor discordant. They are
said to be concordant if the ranks for both elements (more
precisely, the sort order by x and by y) agree: if both xi > x j
and yi > y j ; or if both xi < x j and yi < y j . They are
said to be discordant if xi > x j and yi < y j or if xi < x j
and yi > y j . If xi = x j and yi = y j , the pair is neither
concordant nor discordant. Then, Kendall’s tau coefficient is
defined as

τ = c − d

n(n − 1)/2
, (41)

where c is the number of concordant pairs and d is the number
of discordant pairs.

The time to achieve overall convergence tc and local con-
vergence ts of the single-layer and leader-follower UAV
swarm at different scales (N = 50, 100, 200, 300, 400) based
on FOFA is shown in Tables 3 and 4, respectively.

Now, we calculate Kendall’s tau coefficient between frac-
tional order α and overall convergence time tc as well as local
convergence time ts in single-layer and leader-follower UAV
swarms. First, let X = (α1, α2, . . . , α10) be the sequence
of α, where α1 = 0.1, α2 = 0.2, . . . , α10 = 1, and
Tc = (tc1, tc2, . . . , tc10) and Ts = (ts1, ts2, . . . , ts10) be the
sequence of overall convergence time tc and local conver-
gence time ts corresponding to α, where the elements of Tc
and Ts can be seen in Tables 1 and 2. For instance, for a
single-layer UAV swarm with 300 UAVs, its sequences of
X , Tc and Ts are shown in Table 3, and the indicators are
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Fig. 7 Comparison between
FOFA, WHVEM, VEM and
HVEM

(a) (b)

Fig. 8 FOFA of UAV swarms in
wind environment

(a) (b)

(c) (d)

Fig. 9 Convergence time of
FOFA-based leader-follower
UAV swarms at different scales
and fractional orders

(a) (b)
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Table 2 Average tc and ts of
leader-follower UAV swarms
based on FOFA

Number of UAVs Order of FOFA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

tc 50 14.7 14.8 14.8 16.1 15.5 15.7 14.9 14.9 14.3 14.7

100 13.9 13.9 15.0 14.6 14.7 14.3 14.4 14.5 13.5 14.3

200 20.1 18.3 20.2 22.5 20.9 22.2 23.1 23.2 23.1 24.2

300 30.9 30.5 34.3 35.9 37.1 39.1 42.7 44.0 44.7 43.0

400 50.8 54.3 69.8 77.0 87.7 92.7 96.7 97.8 97.8 98.1

ts 50.0 24.7 23.5 23.5 23.4 23.3 23.0 22.6 22.4 22.3 22.7

100 25.8 25.4 25.0 24.6 23.7 23.9 23.8 23.6 24.1 23.4

200 28.1 27.1 26.0 26.1 25.7 26.5 26.4 27.1 26.7 26.9

300 32.6 33.4 32.8 35.5 36.3 37.2 38.7 39.9 41.2 42.6

400 40.1 44.3 52.9 63.3 71.4 79.5 84.5 91.5 93.9 94.0

Table 3 Sequence of
single-layer UAV swarm with
300 UAVs

X 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Tc 37.22 38.91 37.76 43.59 46.37 49.61 54.16 56.73 56.05 56.14

Ts 35.40 35.56 34.48 38.52 38.68 45.06 46.90 50.07 51.09 52.99

Table 4 Vulnerability order of
single-layer UAV swarm with
300 UAVs

X α1 < α2 < α3 < α4 < α5 < α6 < α7 < α8 < α9 < α10

Tc Tc1 < Tc2 < Tc3 < Tc4 < Tc5 < Tc6 < Tc7 < Tc10 < Tc9 < Tc8

Ts Ts3 < Ts1 < Ts2 < Ts4 < Ts5 < Ts6 < Ts7 < Ts8 < Ts9 < Ts10

Table 5 Kendall’s tau sequence
coefficient of UAV swarm based
on FOFA

Type Number of UAVs Between α and Tc Between α and Ts

Single-layer 50 0 0

100 0 0

200 0.33 0.38

300 0.87 0.91

400 0.91 0.96

Leader-follower 50 0 0

100 0 0

200 0 0.1

300 0.87 0.96

400 1 1

ranked in Table 4. Then, we calculate Kendall’s tau sequence
correlation between these sequences. The sequence corre-
lation coefficient results of the fractional order and overall
convergence time are 0.87 and that with local convergence
time is 0.91. Therefore, when the scale is 300, the correla-
tion between the historical information and the performance
of the UAV swarm is strong. Similar to the above method,
all the sequence correlation coefficient results are shown in
Table 5.

From Table 5, we can see that when the scale of the UAV
swarm is less than 300, the coefficient value is very small;
thus, it appears that there is no correlation between the frac-

tional order and performance of the UAV swarm. However,
when the scale reaches N ≥ 300, the coefficient value is close
to 1, which indicates that there exists a strong correlation
between the fractional order of FOFA and the convergence
rate of both single-layer and multilayer UAV swarms with
large scales. It should be noted that a smaller fractional
order of FOFA corresponds to more consideration of his-
torical information in the updating process. Therefore, we
conclude that historical information significantly influences
the convergence rate of large-scale UAV swarms; moreover,
the more historical information is taken into consideration,
the faster convergence is obtained.
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Conclusion

The fractional-order flocking algorithm (FOFA) of UAV
swarms is proposed in this paper, which greatly improves the
convergence rate of UAV swarms, especially for large-scale
UAV swarms. The main feature of the proposed FOFA is
that historical information is considered in the updating pro-
cess of the UAV swarm by the inherent “memory” property
of fractional calculus. Then we analyzed the convergence of
the FOFA in theory. By exploiting graph theory, a sufficient
convergence condition is given. To verify the effectiveness
of FOFA in reducing convergence time of UAV swarms, sim-
ulations are carried out at different swarm scales and types.
Furthermore, we find that the correlation between the frac-
tional order of the FOFA and the convergence rate of the
large-scale UAV swarm is quite strong; in other words, the
more historical information is considered in the updating pro-
cess, the faster the convergence rate of the large-scale UAV
swarm. Thus, the fractional order can be used as an important
parameter to control the convergence rate of the large-scale
UAV swarm. In future work, more practical situations for
UAV swarms, such as navigation and obstacle avoidance,
can be studied based on this paper.
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