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Abstract
Deep learning has recently been proven to deliver excellent performance in multi-view stereo (MVS). However, it is difficult
for deep learning-basedMVS approaches to balance their efficiency and effectiveness. Towards this end, we propose the DSC-
MVSNet, a novel coarse-to-fine and end-to-end framework for more efficient and more accurate depth estimation in MVS.
In particular, we propose an attention aware 3D UNet-shape network, which first uses the depthwise separable convolutions
for cost volume regularization. This mechanism enables effective aggregation of information and significantly reduces the
model parameters and computation by transforming the ordinary convolution on cost volume as depthwise convolution and
pointwise convolution. Besides, a 3D-Attention module is proposed to alleviate the feature mismatching problem in cost
volume regularization and aggregate the important information of cost volume in three dimensions (i.e. channel, space, and
depth). Moreover, we propose an efficient Feature Transfer Module to upsample the low-resolution (LR) depth map to a
high-resolution (HR) depth map to achieve higher accuracy. With extensive experiments on two benchmark datasets, i.e. DTU
and Tanks & Temples, we demonstrate that the parameters of our model are significantly reduced to 25% of the state-of-the-art
model MVSNet. Besides, our method outperforms or maintains on par accuracy with the state-of-the-art models. Our source
code is available at https://github.com/zs670980918/DSC-MVSNet.
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Introduction

Multi-view stereo (MVS) has been extensively studied and
widely applied in augmented reality and 3D reconstruction
[1–6]. The goal of MVS is to reconstruct 3D scenes using a
series of camera-calibrated 2D images by establishing dense
correspondences,which canbe formulated as anoptimization
problem. Thus, the optimization methods such as Markov
discrete optimization [7] and spatial patch diffusion [8] are
applied to solve this problem. However, the above methods
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may result in incomplete surfaces in scenes with weak tex-
tures or non-Lambertian surfaces [1, 9].

With the development of deep learning in recent years,Yao
et al. [10] show promising results by achieving MVS with a
cost volume regularization process and using deep learning
to solve the optimization problem. The cost volume is com-
posedof the confidence betweenmatched features at different
depths, and the regularization process optimizes the cost vol-
ume to obtain the depth probability distribution which is then
used to obtain the depth map. Attention that the regulariza-
tion here is not a widely used strategy to avoid overfitting in
machine learning, but a terminology denoting the optimiza-
tion process of cost volume in MVS domain. Because the
accuracy of regularized cost volume directly determines the
quality of the final depth map obtained from the regression,
the improvement of cost volume regularization network is
the major part of the later research studies, such as the P-
MVSNet [11] and Cascade-MVSNet [12]. These methods
can achieve better reconstruction results for fully exploiting
the information of the images in multiple dimensions. But
they still suffer from the problem of low efficiency. There-
fore, some efficient frameworks are then proposed to improve
the efficiency, such as the Fast-MVSNet [13], UCS-MVSNet
[14]. They propose some lightweight strategies to reduce
computation (e.g. Sparse High-Resolution Representation,
Adaptive Thin Volume). Nevertheless, all of the aforemen-
tioned methods will inevitably lead to higher computation
cost for their used 3D cost volume regularization structure.
Some other methods such as the R-MVSNet [15] and D2

HC-RMVSNet [16] are proposed by dividing the original
3D cost volume into smaller or lower dimension pieces, i.e.
channel sliced-based cost maps or depth sliced-based cost
maps. Additionally, RNN [17] and LSTM [18] are used to
establish the connections between these cost maps. These
methods can effectively reduce the computation cost by con-
verting the cost volume regularization into the regularization
of a group of cost maps. However, these methods can not
incorporate enough context information over the cost vol-
ume like 3D-UNet and their effectiveness might need further
improvement.

Therefore, how to significantly reduce the computation
with effectiveness maintenance is our main research prob-
lem. First, 2D depthwise separable convolution has been
a standard module in current mainstream vision tasks to
improve efficiency [19–21]. It converts the ordinary convo-
lution into depthwise convolution on channel-independent
featuremaps, and pointwise convolution to establish the rela-
tions between these featuremaps,which seems as aRNN-like
mechanism inMVS.Due to its full consideration of the infor-
mation and the relations of the feature maps, 2D depthwise
separable convolution can achieve a similar performance as
the ordinary convolution with a much lower computation
cost. However, for theMVS domain [8, 10, 22–25], the usage

of 3D depth separable convolution has not been explored and
needs to be explored in combination with specific applica-
tion scenarios. Inspired by the above thoughts, we try to use
the depthwise separable convolution working on the regu-
larization to construct our 3D UNet-shape network, which
extends the 2D depthwise separable convolution into a 3D
task. Second, features of the different positions may be eas-
ily mismatched in cost volume regularization because they
share a visual similarity, and it will cause similar confidence
in the same position at different depths. This feature mis-
matching problem will seriously affect the quality of the
depthmap by depth regression. Attention is a practical mech-
anism that can achieve the above-mentioned capabilities,
but conventional attention (can only perform convolution on
3D volumes, without a dimension-wise process) does not
effectively consider the mutuality of information between
different dimensions, e.g. depth, space. Thus, we propose a
3D-Attention module to aggregate the more important multi-
dimension matching information (channel, space, and depth)
of cost volume and alleviate the above problem of feature
mismatching. Third, the quality of the depth map directly
affects the final reconstruction. Therefore, to achieve bet-
ter performance, we propose a feature transfer module to
upsample the low-resolution (LR) depth map to a high-
resolution (HR) depthmap. In addition, the feature extraction
module can obtain multi-level feature information by simul-
taneously incorporating low-level and high-level information
learned from CNN, which can achieve accurate 3D points
localization. We term our effective and efficient coarse-to-
fine framework as DSC-MVSNet.

The remainder of this paper is organized as follows. In
Sect. “Related work”, we introduce related work, followed
by an overview of our method in Sect. “Methodology”. Sec-
tion “Experiments” presents our experimental results for
two challenging datasets. Section “Limitation analysis” dis-
cusses the limitation of our proposed method, followed by
some concluding remarks in Sect. “Conclusion”.

In summary, our main contributions are as follows:

• We propose a 3D UNet-shape network and firstly use
the depthwise separable convolution for 3D cost volume
regularization, which can effectively improve the model
efficiency with performance maintained.

• Wepropose a 3D-Attentionmodule to enhance the ability
in cost volume regularization to fully aggregate the valu-
able information of cost volume and alleviate the problem
of feature mismatching.

• We proposed an effective and efficient feature transfer
module to upsample the LR depth map to obtain the HR
depth map to achieve higher quality reconstruction.

• With extensive experiments on two benchmarks, our
method demonstrates comparable or even better recon-
struction results than the state-of-the-art methods with
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much lower computation cost. For instance, compared to
state-of-the-art methodsMVSNet, our model reduces the
memory by 49% while improving the accuracy by 20%.

Related work

Traditional MVS reconstruction

The MVS is achieved by creating dense correspondences
from multiple images of calibrated camera poses, which
can be considered an optimization problem [24]. Many
optimization methods are then proposed. Due to the differ-
ent presentations of scenes in MVS, these methods can be
divided into three categories: voxel-based [7, 26–28], patch-
based [8, 24, 29, 30] or depth map-based [10, 13, 15, 22,
23, 25]. For example, the Markov discrete optimization is
applied [7] by updating the state of chain voxels with con-
straints including luminosity consistency, smoothness, and
visibility optimized; The spatial patch diffusion [8] considers
each pixel in space as a patch and optimally expands the num-
ber of patches. The non-linear optimization [24] optimizes
the depth and normal vector of given seed points by using
stochastic gradient descent and least squares to estimate the
depth map of the image. The depth map-based methods use
the depth map as an intermediate, which decouples complex
dense reconstruction problems intomultiple simple subprob-
lems and enables a more flexible scene reconstruction. Many
recent deep learning-based MVS methods [10, 15, 31] are
also performed based on the depth map.

Deep learning-basedMVS

Recently, to overcome the blemish of traditional MVSmeth-
ods, many deep learning-based methods [10–13, 15, 31, 32]
are also introduced. For example, MVSNet [10] proposes
an end-to-end MVS framework that extracts features from
multiple views by CNNs to construct the matching cost vol-
ume. Then it uses 3D CNNs to regularize the cost volume to
obtain a final depth map estimate. P-MVSNet [11] proposes
a hybrid 3D U-Net to infer a probability volume from the
cost volume and estimate the depth maps. These methods
can achieve good results for their full consideration of the
multi-dimensional information of images, but they are not
efficient enough. To improve the efficiency, Fast-MVSNet
[13] based on Point-MVSNet [32] is proposed to solve this
problem by a sparse high-resolution depth map representa-
tion and some efficientmodules. However, using 3DCNNs to
regularize the cost volume inevitably results in a high compu-
tation cost. Thus, some methods try to slice the cost volume
into cost maps, and higher efficiency can then be achieved for
they convert the cost volume regularization into the regular-
ization of the group of cost maps. For example, R-MVSNet

[15] uses convolutional GRUs instead of 3D CNNs to regu-
larize the 2D cost maps. D2HC-RMVSNet [16] slices cost
volume into cost maps along the direction of depth, and uses
a hybrid architecture DHU-LSTM which absorbs both the
merits of LSTM [18] and U-Net to reduce the consumption
cost. However, the structures such as RNN [17], or LSTM
[18] inherently suffer a forgetfulness problem. They can-
not fully consider the correlation of the cost maps and do
not aggregate the multi-dimensional information of cost vol-
ume well. Also intending to improve the quality of the final
reconstructed point cloud, DeepFusion [31] proposes a novel
fusion strategy that accurately fuses all depth maps to obtain
high quality point cloud results by balancing the geometric
consistency and the predicted confidence.

Depthwise separable convolutions

The depthwise separable convolution is a useful lightweight
strategy to build light and efficient networks. It is first pro-
posed and applied in an AlexNet for image classification
[19, 33] by Laurent Sifre and achieves similar performance
as ordinary convolution with lower computation cost. Then a
similar idea is widely applied in other frameworks for object
detection [34, 35] and semantic segmentation [36, 37], such
as the MobileNetV1 [20] and the MobileNetV2 [21]. Unlike
ordinary convolution, the depthwise separable convolution
transforms it into a depthwise convolution and a pointwise
convolution. It computes each feature map independently by
a channel-independent depthwise convolution and then uses
a pointwise convolution to correlate each channel of feature
maps to obtain the final feature map. This mechanism helps
reduce the computation cost with a similar performance as
the ordinary convolution. It is very similar to the strategies
used in the above lightMVSmethods [15, 16] which slice the
cost volume into cost maps and use networks such as RNN
[17] and LSTM [18] to correlate the maps.

Attentionmechanism

It is well known that the attention mechanism plays an
important role in deep learning. Except for natural language
processing [38], the attention mechanism has been widely
explored in many visual problems including scene seg-
mentation [39–41], panoptic segmentation [42], and image
classification [43].As the research progresses, someattention
mechanisms incorporating convolution operations have been
proposed. SE Block [44] adds a residual connection between
different convolutions that assigns weights to different chan-
nels. CBAM [45] adds a spatial attention block based on SE
Block [44] to achieve fine-grained allocation and processing
of spatial information. However, these attention mechanisms
only focus on the channel and spatial information. While
for 3D cost volume, it also contains depth information. And

123



6956 Complex & Intelligent Systems (2023) 9:6953–6969

the value of cost volume indicates the similarity between fea-
tures, so theremay be similarity confidence between different
depths in the same spatial location of the same channel due to
similar features. And just using the above attention mecha-
nisms can not paymore attention to themore important depth
information of cost volume. Therefore, we propose a depth
attention mechanism combined with the original attention
mechanisms, so that the regularization network can better
optimize the matching information of cost volume, which
allows us to obtain better depth maps and thus higher-quality
point cloud reconstruction results.

Methodology

Our proposed DSC-MVSNet framework is a coarse-to-fine
and end-to-end framework for estimating a goal depth map
D̃r of the reference image I0 from N+1 input images {Ii }Ni=0
of size H × W × 3. We achieve this task with four sub-
processes: Feature Extraction, Cost Volume Regularization,
Depth Map Upsampling and Depth Map Refinement. The
overall architecture of DSC-MVSNet is shown in Fig. 1.

In the cost volume regularization, we propose a DSC-
Attention 3D UNet network based on depthwise separable
convolution to significantly reduce the time andmemory con-
sumption while maintaining the performance. Moreover, to
obtain high quality depth map, we also propose a feature
transfer module to upsample the LR depth map.

Pipeline description

(1) Feature extraction (in Sect. “Informative feature extrac-
tion network”): we use an informative feature extraction
network to extract the corresponding feature Fi ∈
R
C× H

4 ×W
4 for each image Ii , where I0 and {Ii }Ni=1 denote

the reference image and source images, respectively.
(2) Cost volume regularization (in Sects. “3D depthwise sep-

arable convolution (3D-DSC)”, and “3D-attention mod-
ule (3DA)”): we propose a DSC-Attention 3D UNet to

regularize the coarse cost volume V ∈ R
C×D× 1

8 H× 1
8W ,

which is constructed by the reference feature F0 and other
source features {Fi }Ni=1.

(3) Depth map upsampling (in Sect. “Feature transfer mod-
ule”): we propose a feature transfer module to upsample

the LR depth map D̃s ∈ R
1× 1

8 H× 1
8W to a HR depth map

D̃d ∈ R
1× 1

4 H× 1
4W .

(4) Depth map refinement (in Sect. “Depth map refine-
ment”): a Gauss–Netwon Layer is utilized to obtain the

refined depth map D̃r ∈ R
1× 1

4 H× 1
4W by using input

images {Ii }Ni=0 and HR depth map D̃d . Finally, we fuse
the refined depthmaps to obtain point clouds as the result.

3D depthwise separable convolution (3D-DSC)

Inspired by themechanismof 2Ddepthwise separable convo-
lution, we try to decrease the computation of 3D cost volume
regularization by proposing 3D-DSC to replace ordinary 3D
CNNs. We may have different dividing strategies for the
applied 3D convolution due to it is a 3D task. But the cost
volume regularization is constructed bymatching similarities
between feature points at different spatial positions in differ-
ent views at different depths. Thus, we divide 3D CNN into
3D depthwise convolution (depthwise is depth-dimension
and can perform cost aggregation for cost volume infor-
mation in depth dimension) and 3D pointwise convolution
(pointwise is space-dimension and perform cost aggregation
for cost volume information in spatial dimension), which is
consistent with the form of cost volume. The schematic of
3D-DSC is shown in the lower left part of Fig. 1.

(1) 3D depthwise convolution The 3D depthwise convolu-
tion is performed over the cost volume in each channel
independently to obtain the channel-independent inter-
mediate feature maps, as defined in Eq.(1):

ConvDepth(V )(i, j,u)=
K ,L,M∑

k,l,m

W1(k,l,m) � V(i+k, j+l,u+m)

(1)

whereW1 represent the weight of 3D depthwise convolu-
tion, V ∈ R

C×D×H×W represent the cost volume, i, j, u
represent the position index, K , L , M denote the ker-
nel size of convolution, and � denotes the element-wise
product.

(2) 3D pointwise convolution The 3D pointwise convolution
acts on these channel-independent featuremaps to aggre-
gate the channel-wise information, as defined in Eq.(2):

ConvPoint(V̂ )(i, j,u) =
N∑

n

W2(n) · V̂(i, j,u,n) (2)

whereW2 represent the weight of 3D pointwise convolu-
tion, V̂ ∈ R

C×D×H×W represent the intermediate feature
maps, N denotes the kernel size of convolution.

The two convolutions are performed sequentially to form
a complete convolution. And the mathematical formulations
are defined as Eq. (3):

ConvSepConv (V ) = ConvPoint
(
ConvDepth (V )

)
(3)

Herewe compare our 3D-DSC regularization schemewith
other mainstream regularization schemes theoretically, to
demonstrate the effectiveness of our scheme. We display the
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Fig. 1 The architecture of the DSC-MVSNet. In the first part, we use
an informative feature extraction network to extract features to build the
coarse cost volume. In the second part, we use our DSC-Attention 3D
UNet to regularize the cost volume. In the third part, we use the FTM to
upsample the LR depthmap. In the forth part, we use the Gauss-Newton

layer [13] to further refine the depth map. The two bottom parts are used
for cost volume regularization. The lower left part is the schematic of
our 3D depthwise separable convolution. The lower right part is the
schematic of our 3D-Attention module

Fig. 2 Illustration of different regularization schemes. We denote the receptive field of voxels in cyan during the regularization. Horizontal is the
depth dimension and vertical is the channel dimension. H and W denote the height and width respectively. In this figure, we set H and W as one
dimension

four regularization schemes in Fig. 2: (a) spatial Regulariza-
tion (SR) [46] is a cost aggregation method, it filters cost
volume at different depths. However, due to the small recep-
tive field, the regularization results of SR are highly affected;
(b) 3D CNN Regularization (3D-CNN) [10] is a CNN-based
method, it uses 3DCNNs to obtain a larger receptive field for
cost volume regularization. But it causes much more compu-
tation cost; (c) recurrentRegularization [15] is anRNN-based

method, it proposes sequential processing to divide the cost
volume into depth-independent cost maps to reduce compu-
tation cost; (d) our 3D-DSC Regularization is a DSC-based
method, we split the cost volume into intermediate feature
maps, then apply a point-wise convolution to establish the
relations between these intermediate feature maps to main-
tain the performance of the model. Our method can obtain a
larger receptive field when compared to SR. While 3D CNN
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Table 1 Comparison of the ordinary 3D convolution (3D-
CNN), depthwise convolution (Depthwise-Conv), pointwise convolu-
tion (Pointwise-Conv) and 3D depthwise separable convolution (3D-
DSC)

Convolution Computation

3D-CNN M × K 3 × C × Ĉ

Depthwise-Conv M × K 3 × C

Pointwise-Conv M × C × Ĉ

3D-DSC M × K 3 × C + M × C × Ĉ

Set H × W × D = M

regularization can obtain better performance, it also incurs
higher computational cost. On the other hand, our scheme
can achieve similar performance with lower cost. Moreover,
the recurrent regularization scheme and our regularization
scheme are two different but similar ideas, both of us split
cost volume into intermediate feature maps to reduce the
computation cost. Therefore, we conclude that adopting the
3D-DSC as our regularization scheme is both feasible and
effective.

Then we compare the efficiency of our 3D-DSC and 3D-
CNN. Assuming the cost volume is V ∈ R

C×D×H×W and

the goal cost volume is V̂ ∈ R
Ĉ×D×H×W , and the convolu-

tion kernel size is K , the computation cost of the ordinary 3D
convolution and our proposed 3D depthwise separable con-
volution is shown in Table 1. We can see from the results
that the computation cost of ordinary 3D convolution is
(K 3 × Ĉ)/(K 3 + Ĉ) times that of 3D depthwise separa-
ble convolution. For instance, when K = 3 and Ĉ = 32, the
computation cost of our 3D-DSC convolution is around 1

14
of 3D-CNN. Thus, our regularization scheme 3D-DSC will
be more efficient than 3D-CNN based models. In summary,
we have analyzed the effectiveness and efficiency separately,
which demonstrates the feasibility of our 3D-DSC as a reg-
ularization scheme.

3D-attentionmodule (3DA)

Although the cost volume information can be effectively
aggregated after the 3D-DSC, there is still a feature mis-
matching problem affecting the cost volume quality. The
feature mismatching problem happens when features from
different keypoints aremistakenlymatched,whichwill cause
similarity confidence at different depths of the cost volume,
and finally results in inaccurate depth estimation. Specifi-
cally, as shown in Fig. 3, a reference feature matches two
similar source features at different depths (the two hands
from the Buddha statue), and the confidences of different
depths are similar in the cost volume. These similar confi-
dences will affect the quality of the depth map regressed by
Eq.8.

Since attentionmechanisms can highlight important infor-
mation by calculating different weights, we here use an
attention mechanism to address the feature mismatching
problem. We propose a 3D-Attention module, which allevi-
ates this problem by computing an attention weight using the
information of the whole cost volume to enhance or weaken
similar confidence in different depths. The schematic of the
module is depicted in the lower right part of Fig. 1, and it
consists of two blocks.

(1) Channel attention block. A channel attention block
performs attention for channel wise information. It is
constructed by a multi-layer perceptron (MLP) which
acts on the channel of cost volume V ∈ R

C×D×H×W

to obtain the channel attention enhancement weights
Ŵ . We multiply the channel weights W ′ with the cost
volume V to obtain the channel-refined cost volume
V ′ ∈ R

C×D×H×W . The formula of channel attention
block is defined as Eq.4:

Ŵ = σ(MLP(Max Pool(V )) + MLP(AvgPool(V )))

(4)

where Max Pool is max pooling, AvgPool is avg pool-
ing. Ŵ ∈ R

C denotes the channel attention enhancement
weights, and both of two parts share weights of MLP.

(2) Spatial depth attention block. A spatial depth attention
block is proposed to alleviate the problem of similarity
confidence. Different from the ordinary attention, which
uses full perception (without distinguishing between
space and depth), the spatial depth attention block per-
ceives cost information according to the composition
of the cost volume in two different dimensions, e.g.
space and depth, respectively. First, we use a spatial-
oriented anisotropic [11] convolutions with kernel sizes
of 1×7×7 (different positions at same depth) to filter cost
volume along the spatial direction to reduce noise while
maintaining useful matching information at the same
depth. It provides more accurate spatial information for
next depth-oriented convolution. Then a depth-oriented
anisotropic convolutionwith kernel sizes of 7×1×1 (dif-
ferent depths at same position) acts on depth dimension,
it effectively enhances or weakens matching information
at different depths at the same spatial location (illustra-
tion shown in Fig. 3). Finally, we use an isotropic [11]
convolution with kernel sizes of 7× 7× 7 acts on multi-
dimension (space, depth) to fully aggregate information
from above processes. The formula of spatial depth
attention block is defined as Eq. (5):
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Fig. 3 Illustration of the problem of similarity confidence at different depth and use 3DA to alleviate it. Red voxels represent the similarity
confidence; For representation of cost volume, we have excluded the channel dimension; The light red indicates that the confidence is weakened

W̃ = σ
(
f 7×7×7

([
f 1×7×7 ([

Max Pool(V ′),

×AvgPool(V ′)
])

, f 7×1×1 ([
Max Pool(V ′),

×AvgPool(V ′)
]) ]))

(5)

where σ is the activation function; W̃ ∈ R
1×D×H×W is the

spatial depth weight; f 1×7×7 is the spatial oriented convolu-
tion, f 7×1×1 is the depth oriented convolution and f 7×7×7

is the overall convolution.
We form a 3D-Attention module by cascading these two

blocks. As shown in Fig. 3, the confidence of right depth is
enhanced by using our module. The formula of 3D-Attention
module is defined as Eq.6:

V ′ = V × Ŵ

V ′′ = V ′ × W̃
(6)

where V ′′ ∈ RC×D×H×W is the attention-weighted cost
volume.

After regularization, we use a softmax operation (Eq.7) in
the depth direction to regress all the values between [0, 1] to
form our probability volume P for depth estimation. Finally,
we multiply different depth hypothesis plane values with the
probability volume P to obtain the LR depth map D̃s . The
formula is defined as Eq.8:

P = softmax(V ′′) (7)

D̃s =
dmax∑

d=dmin

d × P(d) (8)

Feature transfer module

The high-resolution (HR) depth map obtained by upsam-
pling directly affects the quality of the point cloud results. To
obtain a high resolution and precise depth map, we propose a
Feature Transfer Module (FTM) for the low-resolution (LR)

depth map upsampling. The third part of Fig. 1 shows the
framework of our FTM module.

The inputs of FTM are a three-channel reference image
I0 ∈ R

3×H×W and a single-channel LR depth map D̃s ∈
R
1× 1

8 H× 1
8W . Tounify the scale of inputs,wefirst use the bicu-

bic interpolation algorithm [47] to upsample the LR depth

map D̃s to obtain a larger scale depthmap D̃′
s ∈ R

1× 1
4 H× 1

4W .
And we downsample the reference image into a 16-channel

image I ′
0 ∈ R

16× 1
4 H× 1

4W by a downsample layer. After
unification, we propose a common offset and weight extrac-

tion backbone to obtain the offset �pI ′
0

∈ R
k2× 1

16 H× 1
16W

and weight �wI ′
0

∈ R
k× 1

16 H× 1
16W of reference image and

the offset �pD̃′
s

∈ R
k2× 1

16 H× 1
16W and weight �wD̃′

s
∈

R
k× 1

16 H× 1
16W of LR depth map, respectively. This backbone

contains a seven convolutional feature extraction network,
a offset convolution, a weight convolution, and a sigmoid
layer. The equation of this backbone is defined as Eq. (9):

�qinput = foc( fFE (input)), input ∈ [I ′
0, D̃

′
s]

�winput = sigmoid( fwc( fFE (input)))
(9)

where fFE represents the extraction network, foc represents
the offset convolution, fwc represents weight convolution,
and the sigmoid represent the sigmoid layer.

Then we use the OWC Block to compute the weight

�w ∈ R
k2
16 × 1

4 H× 1
4W and offset�q ∈ R

k2
8 × 1

4 H× 1
4W for guid-

ing depth map upsampling, where k is a hyperparameter and
we set k = 12. In detail, we multiply the corresponding off-
sets �pI ′

0
,�pD̃′

s
and weights �wI ′

0
,�wD̃′

s
, and then pass

the result through PixelShuffle to get the goal offset �q and
weight�w. Then we use the offset to guide feature sampling
and multiply the sampled features with the weight to obtain
the final result. Finally, we obtain the HR depth map by a
residual addition block. The equation of above process is
defined as Eq. (10):
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�q = f ps(�pI ′
0
� �pD̃′

s
)

�w = f ps(�wI ′
0
� �wD̃′

s
)

Dres = �w � fgs(�q, D̃′
s)

D̃d = Dres + D̃′
s

(10)

where f ps represents the PixelShuffle [48] operation of
PyTorch, fgs represents the grid_sample functionofPyTorch,
Dres represents the depth residual, � denotes the element-
wise product.

Other modules

Informative feature extraction network

In the feature extraction process, many previous methods
[10, 11, 13, 15, 49] only use sequential convolution opera-
tions to extract the feature map from input images {Ii }Ni=0,
which only contain the high level semantic information.
And the loss of low level spatial information will affect the
quality of reconstruction results. Thus, we propose an infor-
mative feature extraction network using the skip connection
to propagate low level spatial information to aggregate the
multi-level feature information. This network has three com-
ponents (Encoder, Decoder, Adjuster), and the architecture
details is provided in Table 2.

Cost volume construction

Following the previous methods [12, 13, 15, 32, 50], to build
the cost volume V , we use the same differentiable homog-
raphy to warp all feature maps into different fronto-parallel
planes of the reference camera to construct N feature vol-
umes {V f

i }Ni=1. Then we adopt the same cost metric [15] to
aggregate them into the cost volume V . The equation of cost
metric is defined as Eq. (11):

V =
∑N

i=1

(
Vi − Vi

)2

N
(11)

Vi is the average volume of all feature volumes.

Depth map refinement

The quality of the HR depth map D̃d and obtain the refined

depthmap D̃r ∈ R
1
4 H× 1

4W obtained in previous step is insuf-
ficient and needs to be refined. And theGauss–Netwon Layer
is an effective and efficient module for depth map refinement
in Fast-MVSNet [13]. Therefore, we use a Gauss–Netwon
Layer to refine the HR depth map D̃d and obtain the refined

depth map D̃r ∈ R
1× 1

4 H× 1
4W for MVS reconstruction.

Training loss

Following the previous methods [10, 32], we compute the
average absolute value error between the predicted depthmap
and ground truth depth map as our training loss as Eq. (12):

Loss =
∑

p∈pvalid
‖D̃d(p)−D̂(p)‖2+λ ·

∥∥∥D̃r (p) − D̂(p)
∥∥∥
2

(12)

where D̃d denotes the HR depth map, D̃r denotes the refined
depth map, D̂ denotes the Ground Truth Depth Map, pvalid
denotes the valid point set of the Ground Truth Depth Map,
λ is used to balance loss1(p) and loss2(p). In the training
process, we usually set λ to 1.0.

Experiments

In this section, we first introduce the experimental settings
in this paper, then quantitatively and qualitatively demon-
strate the performance on the DTU dataset, and finally verify
the generalization ability of the proposed work on the TnT
dataset.

Experimental settings

Dataset

The DTU dataset [51] is a large-scale dataset that is cap-
tured with precise camera pose and lighting conditions using
robot arm control in the laboratory. The dataset consists of the
images, real point clouds, and their obtained camera param-
eters of 128 scenes with 7 different lighting conditions. Each
scene has 49 or 64 images with a resolution of 1600 × 1200
and corresponding internal and external camera parameters
for training. The dataset provides calibrated images and real
point clouds, and Yao et al. [10] divide it into training set,
validation set and test set.

The Tanks & Temples (TnT) [9] is captured from real
outdoor sensors, which is different from DTU [51]. These
outdoor scenes contain a variety of different lighting con-
ditions, reflection conditions, and other outdoor factors that
make the TnT dataset more complex than obtaining a DTU
dataset under specific conditions. The intermediate set used
for evaluation contains eight different scenes, namely Fam-
ily, Francis, Horse, Lighthouse, M60, Panther, Playground,
and Train.
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Table 2 Summary of the
informative feature extraction
network

Input images size: 3 × H × W

Name Layer description Output size

Encoder

conv0 3 × 3 conv, stride 1 8 × H × W

conv1 3 × 3 conv, stride 1 8 × H × W

conv2 5 × 5 conv, stride 2 16 × 1
2 H × 1

2W

conv3 3 × 3 conv, stride 1 16 × 1
2 H × 1

2W

conv4 3 × 3 conv, stride 1 16 × 1
2 H × 1

2W

conv5 5 × 5 conv, stride 2 32 × 1
4 H × 1

4W

conv6 3 × 3 conv, stride 1 32 × 1
4 H × 1

4W

conv7 3 × 3 conv, stride 1 32 × 1
4 H × 1

4W

Decoder

conv8 3 × 3 transposed conv, stride 2 16 × 1
2 H × 1

2W

conv9 3 × 3 conv, stride 1 16 × 1
2 H × 1

2W

conv10 3 × 3 conv, stride 1 16 × 1
2 H × 1

2W

sp Add conv4 & conv10 features 16 × 1
2 H × 1

2W

conv11 3 × 3 transposed conv, stride 2 8 × H × W

conv12 3 × 3 conv, stride 1 8 × H × W

conv13 3 × 3 conv, stride 1 8 × H × W

sp Add conv7 & conv13 features 8 × H × W

Adjuster

conv14 5 × 5 conv, stride 2 16 × 1
2 H × 1

2W

conv15 3 × 3 conv, stride 1 16 × 1
2 H × 1

2W

conv16 5 × 5 conv, stride 2 32 × 1
4 H × 1

4W

conv17 3 × 3 conv, stride 1 (no BN&ReLU) 32 × 1
4 H × 1

4W

Each convolutional layer represents a block of convolution, batch normalization (BN) and ReLU. ‘sp’ means
skip connection

Implement details

Training The proposedDSC-MVSNet is implemented using
PyTorch and trained on the DTU training set. The ground
truths for evaluation in DTU are represented as real point
clouds. The depth maps for training our framework are
obtained using the screened Poisson surface reconstruction
algorithm (SPSR) [52]. In the training process, the input
image resolution is set as 640×512, and the number of train-
ing views is set as N = 3. The selection of reference images
and source images is the same as MVSNet [10]. The virtual
hypothetical depth plane value is set asD = 48 and D = 96
for training, and the depth values are sampled within the
range [425mm, 921mm]. The learning rate is set using the
RMSProp optimizer and the initial learning rate is set to
0.0008, and the decayweight is set as 0.002 every epoch. The
batch size is set as 16 and trained on 6×NVIDIAGTX2080ti
GPU devices. Our best model is trained with two stages: (1)
We use a virtual hypothetical depth plane of 48 for training,
set 6 epochs for end-to-end training with the DSC-Attention
3D UNet and Feature Transfer Module, and use 12 epochs
for overall training. (2) We retrain our network based on the

best model obtained in the first stage with 10 epochs in the
hypothetical depth plane of 96. The bestmodel for the second
stage is selected as our evaluation model.

Testing The model obtained in the training process is tested
on DTU test dataset [51]. We use 5 adjacent images of
1280 × 960 as the input. The hypothetical depth plane for
testing is set as D = 128. The evaluation of the DTU dataset
[51] is performed by converting the output depth map into
a predicted point cloud using the method according to Yao
[10], and then comparing it with the ground truth point cloud
by official Matlab code.

Evaluation metrics

To obtain comprehensive conclusions, we use three metrics
for evaluating performance and three metrics for evaluating
efficiency of our model. The performance evaluation metrics
(Acc,Comp, andOverall) are allmentioned inDTU[51].Acc
is measured as the distance from the MVS reconstruction to
the structured light reference, encapsulating the quality of the
reconstructedMVSpoints. A lowerAcc value indicatesmore
accurate positioning of the points in the point clouds. Com-
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Table 3 Quantitative results of
different methods on DTU’s
evaluation set [51](lower is
better)

Methods Acc. (mm) ↓ Comp. (mm) ↓ Overall (mm) ↓
Camp [55] 0.835 0.554 0.695

Furu [8] 0.613 0.941 0.777

Tola [25] 0.342 1.19 0.766

Gipuma [23] 0.283 0.873 0.578

MVSNet [10] 0.396 0.527 0.462

R-MVSNet [15] 0.383 0.452 0.417

P-MVSNet [11] 0.406 0.434 0.420

MVSCRF [56] 0.371 0.426 0.398

PointMVSNet [32] 0.342 0.411 0.376

Fast-MVSNet [13] 0.336 0.403 0.370

Cascade-MVSNet [12] 0.325 0.385 0.355

CVP-MVSNet [49] 0.296 0.406 0.351

PVA-MVSNet [53] 0.372 0.350 0.361

Vis-Net [57] 0.369 0.361 0.365

MVSNet++ [54] 0.407 0.345 0.376

UCS-Net [14] 0.338 0.349 0.344

D2HC-RMVSNet [16] 0.395 0.378 0.386

DeepFusion [31] 0.357 0.502 0.429

AA-RMVSNet [58] 0.376 0.339 0.357

PatchmatchNet [59] 0.427 0.277 0.352

Our 0.316 0.372 0.344

Bold values means the best values compared to all list values of each colume
Underline value means the second lowest values compared to all listed Acc values
Our method DSC-MVSNet outperforms all deep learning-based MVS methods in terms of reconstruction
accuracy, and has a better result in terms of overall. The top group of methods are traditional MVS methods,
and the bottom group exhibits the deep learning based-methods

pleteness is measured as the distance from the reference to
theMVS reconstruction, encapsulating howmuch of the sur-
face is captured by the MVS reconstruction. A lower Comp
value means that we reconstruct more point cloud surfaces.
Acc and Comp are calculated using the official Matlab code
provided by DTU [51]. Overall is calculated as the average
of Acc and Comp to evaluate overall reconstruction qual-
ity. The metrics used to evaluate efficiency are Parameters,
Memory, and Time, which are widely adopted in previous
methods [13, 53, 54].

Evaluation on DTU dataset

Comparison of the models performance

We compare our DSC-MVSNet with two groups of state-of-
the-art methods: traditional MVS methods e.g. Camp [55],
Furu [8], Toal [25], Gipuma [23]; and deep learning-based
MVS methods e.g. MVSNet [10], R-MVSNet [15], Fast-
MVSNet [13], CVP-MVSNet [53], UCS-Net [14], DeepFu-
sion [31], PatchmatchNet [59]. Table 3 shows the results of
the DTU [51] dataset. We have the following observations:
our method establishes the state-of-the-art overall perfor-
mance by comparing two groups of methods. For instance,

DSC-MVSNet achieves significant improvement in Overall
performance: 50.5% (Camp), 55.7% (Furu), 55.1% (Tola),
40.4% (Gipuma), 25.5% (MVSNet), 17.5% (R-MVSNet),
7.0% (Fast-MVSNet), 2.1% (CVP-MVSNet), 19.8% (Deep-
Fusion) and 2.3% (PatchmatchNet). It indicates that our
model can reconstruct a sufficient number of surfaces and the
spatial locations of the points on these surfaces are accurate
enough. In the generalized Acc metric that is more challeng-
ing, our method achieves notably gains over state-of-the-art
methods: we achieve 0.316 on Acc. Although the Gipuma
[23] method has the highest Acc, its Comp is much higher
than our proposed method (0.873 vs 0.372). And compared
to deep learning-based methods, our method achieves com-
parable results to CVP-MVSNet [53] (0.316 vs 0.296). This
shows that our network is accurate in estimating the position
of each point obtained from the reconstruction. Our DSC-
MVSNet is comparable to or better than SOTA methods in
terms of Comp. However, the PatchmatchNet [59] has the
lowest Comp, its Acc and Overall are higher than our pro-
posed method (0.427 vs 0.316; 0.352 vs 0.344). It indicates
that our method can reconstruct more of the target surfaces
to meet the low Comp. Thus, these results demonstrate that
our proposedmethod has a better or comparable performance
compared to the majority of state-of-the-art methods.
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Fig. 4 Visualization of the reconstructed point cloudmodels for scan77
in DTU dataset by different methods. The results are directly cited from
the paper P-MVSNet [11]. Three important parts: cover (yellow), han-
dle (red) and base (green) are highlighted. Although the reference image

sequences contain many reflective regions which is hard for 3D model
reconstruction, our DSC-MVSNet reconstructs a more complete and
more accuracy point clouds compared to the most of exist methods

Figure4 shows the qualitative comparison results (Scan
77 in DTU [51]) between DSC-MVSNet and most of state-
of-the-arts methods (Tola [25], Gipuma [23], Furu [8], Camp
[55], MVSNet [10], R-MVSNet [15], P-MVSNet [11]). The
colored boxes (red, yellow, green) shown in the figure, our
method DSC-MVSNet reconstructs a more complete point
cloud, which corresponds to the Comp value in Table 3. We
think the improvement of completeness benefits from the
introduction of the 3DA, which can alleviate the feature mis-
match problem to improve the quality of depth map.

We further compare our DSC-MVSNet with R-MVSNet
[15] on some scenes (Scan 1, Scan 75, Scan 110, Scan
114) of DTU [51]. Because R-MVSNet can handle large-
scale scenarios for 3D model reconstruction [54]. Figure5
shows the visualization of various reconstructed point cloud
models of DTU dataset. The comparisons reveal that our
DSC-MVSNet reduces a considerable number of outliers
compared to R-MVSNet. That shows our DSC-MVSNet
estimates the position of each point to be reconstructed accu-
rately, and the conclusion corresponds to the ACC value in
Table 3. Furthermore, it is worthmentioning that our network

occupies less memory and runs faster than R-MVSNet. We
think the above improvements benefit from the introduction
of the 3D-DSC.

Comparison of the models efficiency

Wecompared the efficiency of differentmethods by reporting
their model parameters, memory consumption, and runtime
(some results are obtained from official reports). Table 3
and Table 4 show that our framework has lower model
parameters, memory consumption, and runtime than most
state-of-the-art deep learning methods, with very compet-
itive performance. Although our method runs with slower
runtime, it uses smaller memory consumption and param-
eters (5.5 GB, 253,585). We also compared our network
with various state-of-the-art methods, such as Fast-MVSNet
[13], Cascade-MVSNet [12], PVA-MVSNet [53], UCS-Net
[14], and D2HC-RMVSNet [16]. Table 4 shows that DSC-
MVSNet achieves lower or comparable efficiency results
compared to SOTA methods. Memory consumption directly
affects the environment setting formodel training. In terms of
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Fig. 5 Visualization of several scenes on DTU dataset between R-MVSNet [15] (left) and our DSC-MVSNet (right). The point cloud results clearly
show that our method DSC-MVSNet achieve better reconstruction results even with much lower parameters

Table 4 Comparison on the
parameters, memory and time
consumption on the evaluation
DTU [51] dataset

Methods H, W Parameters Memory (GB) Time (s)

MVSNet [10] 1152, 864 1084304 10.8 1.21

R-MVSNet [15] 1600, 1184 799365 6.7 2.35

PointMVSNet [32] 1600, 1152 698936 8.7 5.44

Fast-MVSNet [13] 1280, 960 455472 5.3 0.6

Cascade-MVSNet [12] 1152, 864 934304 5.3 0.49

CVP-MVSNet [49] 1600, 1152 551585 8.7 1.72

PVA-MVSNet [53] 1600, 1184 338129 17.3 0.95

UCS-Net [14] 1152, 864 938496 5.4 0.76

D2HC-RMVSNet [16] 1600, 1200 338257 6.6 29.15

Our 1600, 1152 253585 5.5 0.74

Some results are obtained from PVA-MVSNet [53]

Table 5 VRAM and time
consumption of the inference on
DTU [51] dataset

#Source 2 3 4 5 6 7 8 9

VRAM (MB) 3810 4302 4966 5539 6289 7044 7732 8546

TIME (s) 0.45 0.55 0.64 0.74 0.87 0.99 1.11 1.23

memory consumption, Fast-MVSNet and Cascade-MVSNet
achieve the lowest memory among SOTA methods. Our
method also has similar memory consumption to the above
methods (5.3 GB vs 5.5 GB), and reduces parameters by
72% over Cascade-MVSNet and 44% over Fast-MVSNet.
Although PVA-MVSNet and D2HC-RMVSNet are similar
to DSC-MVSNet in terms of model parameters, we reduce
memory consumption by 68% over PVA-MVSNet [53] and
achieve faster runtime than D2HC-RMVSNet [16] (5.5 GB
vs 17.3 GB; 0.74 s vs 29.15 s). Similarly, UCS-Net [14] is
comparable to our method in terms of memory and time, but
we reduce parameters by 73% compared to UCS-Net [14] on
the DTU [51] dataset. In conclusion, our proposed method
has better or comparable efficiency thanmost state-of-the-art
methods.

Then we discuss the memory and the time consumption
of the inference phase. The size of the inputs is H × W =
1600× 1152, and the hypothetical depth plane is set as D =
96. Table 5 shows the results of the inference on the DTU
[51] dataset w.r.t. the number of sources. It demonstrates that
the memory occupied by inference and the inference time is
linearly increasing with the number of sources.

Ablation experiments

The ablation experiments are also conducted on the DTU
dataset to illustrate our method’s efficiency and effective-
ness. The network only with the 3D UNet-shape network for
cost volume regularization is taken as a baseline for ablation
experiments. The results are shown in Table 6.
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Table 6 Ablation study on the DTU evaluation dataset [51], which demonstrates the effectiveness of different modules of our method, where model
parameters, memory, and time are recorded during training

Method Acc. (mm) ↓ Comp. (mm) ↓ Overall (mm) ↓ Parameters ↓ Memory (MB) ↓ Time (s) ↓
Baseline (+ 3D CNNs) 0.391 0.482 0.437 169024 9034 0.523

Baseline + DSC 0.398 0.470 0.434 892713 3408 0.274

Baseline + DSC + 3DA 0.358 0.453 0.406 170785 3422 0.324

Baseline + DSC + IFEN 0.376 0.467 0.422 208432 3488 0.338

Baseline + DSC + FTM 0.364 0.441 0.403 214177 3572 0.335

Baseline + DSC + 3DA + IFEN + FTM 0.316 0.372 0.344 253585 3766 0.354

Bold values means the best values compared to all list values of each colume
We use standard 3D UNet as a baseline and add different modules to the baseline separately to compare the improvement of each module to the
network. i.e. 3D-Attention (3DA), Informative Feature Extraction Network (IFEN), Feature Transfer Module (FTM)

Effectiveness of DSC: Our novelty contribution is to
explore the feasibility of 3D depth separable convolution as
a cost volume regularization scheme in the MVS domain. As
shown in Table 6, compared to Row 2 (Baseline + 3D CNNs)
and Row 3 (Baseline + DSC), we can observe that replac-
ing 3D CNN with 3D DSC in 3D UNet, which not cause a
sharp decline in model performance, e.g. Acc from 0.391 to
0.398. Meanwhile, our model can greatly reduce the number
of parameters, memory consumption and time. Therefore, it
is feasible to use 3D DSC in the MVS domain. Based on the
above phenomenon, we think that the regularization scheme
we designed for cost volume plays a key role in the model.
We divide 3D DSC into 3D pointwise convolution and 3D
depthwise convolution, which perceives multi-dimensional
cost information and aggregates in depth dimension and spa-
tial dimension. This mechanism is similar to 3D CNN-based
mechanism (as shown in Fig. 2b and d), so our model can
still maintain an impressive performance, which proves the
feasibility of using 3D DSC in the MVS domain.

Effectiveness of DSC 3D UNet: As shown in Table 6,
compared to the baseline (+3DCNNs), the baseline using the
DSC 3D UNet can effectively reduce the model parameters,
memory consumption, training time, and theAcc, Comp, and
Overall can also bemaintained to some extent. It means a sig-
nificant reduction in parameters without much accuracy loss
can be achieved using the 3D depthwise separable convolu-
tion.

Effectiveness of 3D-Attention module: As shown in Table
6, the Acc, Comp, and Overall metrics can all be improved
with only a slight increase in computation and memory con-
sumption by adding the 3D-Attention module to the baseline
+ DSC. This means that adding the attention layer is effec-
tive and it helps to improve the information extraction of our
proposed separable convolution.

As the problem of similarity confidence mentioned in
Sect. “3D-Attention module (3DA)”, we discuss the effec-
tiveness of the 3DA module in solving the above problems.
We illustrate separately the confidence line charts for differ-
ent depths at a spatial location with 3DA (red line chart) and

without 3DA (blue line chart) in Fig. 7. We can see from the
charts that the confidence of the GT depth in the blue dash is
very similar to the confidence of the error depth, which can
lead to incorrect depth estimates when the predicted depth
value (the blue dashed line) is calculated via Eq. (8), to obtain
depth values that are far from the GT depth. After adding the
3DA module, we can see from the red line chart that the
confidence of the GT depth has been enhanced and the con-
fidence of the error depth has been weakened, so that we
obtain a value similar to the GT depth value when calculat-
ing the predicted depth value (the red dashed line). This is
also reflected in the higher Accuracy of ablation experiments
with baseline + DSC + 3DA in Table 6.

Effectiveness of Informative Feature Extraction Network:
As shown in Table 6, our baseline + DSC combines Infor-
mative Feature Extraction Network can achieve better per-
formance with a small increase in the number of model
parameters, memory, and time.

Effectiveness of Feature Transfer Module: We use a Fea-
ture Transfer Module in the baseline + DSC to upsample
the LR depth map. Table 6 shows that the FTM can fur-
ther improve the performance of our network with a small
increase in model parameters, memory, and time.

The ablation reconstruction results of scan 118 of theDTU
[51] when adding different modules of ourmethod are shown
in Fig. 6. As the areas identified by rectangles in Fig. 6, our
baseline has higher completeness and richer detail informa-
tion by combining different modules.

Generalization on TnT dataset

The Tanks&Temples (TnT) dataset [9] is widely used in pre-
viousmethods [10, 12, 13, 15, 31, 32] as a benchmark. There-
fore, to evaluate the generalization of our DSC-MVSNet, we
perform a test on TnT and evaluate the results by uploading
the point cloud to the official website. We use the best model
of training on DTU without fine-tuning to evaluate the TnT
dataset [9], and we set 5 adjacent images with a resolution
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Fig. 6 Ablation reconstruction results of scan118 of the DTU dataset [51]. Two important parts: top (red) and bottom (red) are highlighted. The
point cloud results show the effectiveness of each modules

Table 7 Generalization results on the Tanks & Temples benchmark [9]

Methods Family ↑ Francis ↑ Horse ↑ Lighthouse ↑ M60 ↑ Panther ↑ Playground ↑ Train ↑ Intermediate mean ↑
Colmap [22] 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 42.14

Pix4D [60] 64.45 31.91 26.43 54.41 50.58 35.37 47.78 34.96 43.24

OpenMVG [61] + OpenMVS [62] 58.86 32.59 26.25 43.12 44.73 46.85 45.97 35.27 41.71

MVSNet [10] 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 43.48

R-MVSNet [15] 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38 48.40

MVSCRF [56] 59.83 30.60 29.93 51.15 50.61 51.45 52.60 39.68 45.73

PointMVSNet [32] 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06 48.27

CIDER [63] 56.79 32.39 29.89 54.67 53.46 53.51 50.48 42.85 46.76

Fast-MVSNet [13] 65.18 39.59 34.98 47.81 49.16 46.20 53.27 42.91 47.39

PatchmatchNet [59] 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 53.15

DSC-MVSNet 68.06 47.43 41.60 54.96 56.73 53.86 53.46 51.71 53.48

Bold values means the best values compared to all list values of each colume
We achieve comparable F-score results with many state-of-the-art methods. The top part of the table shows the comparison results with traditional
MVS methods, and the bottom part exhibits the comparison results with deep learning based-methods

1920 × 1080 as the input. Meanwhile, the depth hypothesis
plane is set as D = 128.

As shown in Table 7, our model exhibits compara-
ble results with lower consumption. Compare to tradi-
tional multi-view stereo methods (Colmap, Pix4D, Open-
MVG+OpenMVS), our DSC-MVSNet obtains better recon-
struction scores on all scenes. Besides, our DSC-MVSNet
outperforms all listed learning-based MVS methods with
a 53.48 mean F-score on Tanks and Temples intermediate
[9]. And we achieve a comparable generalization perfor-
mance with the state-of-the-art methods e.g. DSC-MVSNet
achieves the highest accuracy on several scenes, i.e., Fam-
ily, Lighthouse, M60, Panther, and Train. Figure8 shows the
error visualization calculated according to the corresponding
ground truth point clouds. Our DSC-MVSNet significantly
improves the precision of reconstructions compared to the
recent work PatchmatchNet [59]. For example, as shown in
the red boxes in Fig. 8, PatchmatchNet has more incorrect

points and noise. Our method is able to obtain more accurate
point positions while reducing noise, which is benefited from
our proposed 3DA and FTM methods.

Limitation analysis

Although our model exhibits better or comparable perfor-
mance than most of the state-of-the-art methods on the
two benchmarks [9, 51], we still have some limitations.
(1) For complex environmental factors (i.e. lighting condi-
tions, reflection conditions, etc) that havenever beenobtained
before, there are still some limitations in the accuracy of the
reconstruction. Therefore, we consider improving the gen-
eralization ability of the model in future works. (2) As we
use several images as input, our model is still higher than
the best method in memory consumption as shown in Table
4. This motivates us to explore high-quality reconstruction
with limited input images.
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Fig. 7 We illustrate the similar confidences of an example of scan 77.
On the top, we show an RGB reference image, and an RGB source
image. The red point of right image is the matching point, and the green
point is themismatching point. On the bottom, we show the correspond-

ing confidence line charts for the two exampleswith 3DA (red line chart)
and without 3DA (blue line chart). The red dashed line represents the
predicted depth value of red line chart, and the blue dashed line is the
predicted depth value of blue line chart

Fig. 8 Error Visualization of Francis, Horse and Playground in the Tanks and Temples intermediate dataset [9], compared with PatchmatchNet
[59]
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Conclusion

Our proposed DSC-MVSNet is a novel coarse-to-fine and
end-to-end framework for efficient and accurate depth esti-
mation in MVS. Firstly, we use depthwise separable convo-
lution to construct our attention-aware 3D UNet-shaped net-
work for cost volume regularization with lower parameters
andmemory cost. Additionally, we introduce a 3D-Attention
module to focus on more critical information and alleviate
the feature-mismatching problem. Furthermore, we propose
an efficient and effective Feature Transfer Module to upsam-
ple the LR depth map. The experimental results verify the
effectiveness and efficiency of our method.
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