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Abstract
Multifactorial optimization (MFO) is a kind of optimization problem that has attracted considerable attention in recent years.
Themultifactorial evolutionary algorithm utilizes the implicit genetic transfermechanism characterized by knowledge transfer
to conduct evolutionary multitasking simultaneously. Therefore, the effectiveness of knowledge transfer significantly affects
the performance of the algorithm. To achieve positive knowledge transfer, this paper proposed an evolutionary multitask-
ing optimization algorithm with adaptive transfer strategy based on the decision tree (EMT-ADT). To evaluate the useful
knowledge contained in the transferred individuals, this paper defines an evaluation indicator to quantify the transfer ability
of each individual. Furthermore, a decision tree is constructed to predict the transfer ability of transferred individuals. Based
on the prediction results, promising positive-transferred individuals are selected to transfer knowledge, which can effectively
improve the performance of the algorithm. Finally, CEC2017 MFO benchmark problems, WCCI20-MTSO and WCCI20-
MaTSO benchmark problems are used to verify the performance of the proposed algorithm EMT-ADT. Experimental results
demonstrate the competiveness of EMT-ADT compared with some state-of-the-art algorithms.

Keywords Multifactorial optimization · Evolutionary algorithm · Knowledge transfer · Decision tree

Introduction

In recent years, many researchers show great interest on a
new category of optimization problems, which is called mul-
tifactorial optimization (MFO). Different from well-known
optimization problems, such as single objective optimization
and multiobjective optimization, MFO aims to handle mul-
tiple distinct optimization tasks in one run. Such problems
widely exist in the fields of science, engineering and tech-
nology. For example, in a complex supply chain problem [1],
two optimization problems, i.e. shop scheduling (production
optimization) and vehicle routing (logistics optimization),
are involved simultaneously. Gupta et al. [1] was the first
to use evolutionary algorithm to deal with single objective
MOP problems, which is called multifactorial evolutionary
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algorithm (MFEA). Subsequently, a series of multifacto-
rial evolutionary algorithms are proposed and applied to
deal with different optimization problems, such as job shop
scheduling [2], shortest-path tree [3], ensemble classification
[4] and multiobjective optimization [5].

MFEA is characterized by integrating cultural effects
through assortative mating and vertical cultural transmis-
sion. InMFEA, a prescribed parameter called randommating
probability (rmp) is used to control knowledge transfer dur-
ing the optimization process. Due to lack of prior knowledge
about intertask similarity, for related multiple optimization
tasks, rmp can enhance the optimization performance, which
is called positive transfer; on the contrary, the optimiza-
tion performance may deteriorate for unrelated multiple
optimization tasks, which is called negative transfer. Since
knowledge transfer is very important to multifactorial evolu-
tionary algorithms, researchers havedevelopedmany transfer
strategies to alleviate negative knowledge transfer between
unrelated tasks. These strategies can be divided into four cat-
egories:

1. Domain adaptation techniques: Bali et al. [6] proposed
a linearized domain adaptation (LDA) strategy, which
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transforms the search space to improve the correlation
between representative space and its constitutive task.
Accordingly, an effective platform is provided for knowl-
edge transfer. Wang et al. [7] developed an explicit
autoencoding strategy to incorporate multiple search
mechanisms with different biases in the evolutionary
multitasking paradigm. The proposed autoencoder aims
to learn a mapping between problem domains. Xue et al.
[8] proposed an affine transformation-enhanced MFO
algorithm (AT-MFEA) to enhance the transferability
between distinct tasks. In AT-MFEA, a superior intertask
mapping is obtained by the rank loss function. More-
over, the evolutionary-path-based representation model
is established to bridge the gap between twodistinct prob-
lems from different domains.

2. Adaptive strategy of parameter rmp: Ong et al. [9]
proposed an online transfer parameter estimation strat-
egy (MFEA-II) to minimize damage caused by negative
transfer between tasks. In MFEA-II, the parameter rmp
takes the form of a symmetric matrix instead of a scalar
value. The constructed matrix can capture the non-
uniform inter-task synergies even if the complementarity
between tasks may not be uniform across different task-
pairs. Moreover, the RMPmatrix is continuously learned
and adapted during the search process, which is helpful to
obtain the global optimums of different tasks.Xu et al. [5]
proposed a cultural transmission based multi-objective
evolution strategy (CT-EMT-MOES), where an adaptive
information transfer strategy is developed to adaptively
adjust the parameter rmp. In detail, the proposed transfer
strategy utilizes the mutation success rate of the target
itself and the success rate of the information transfer
to reasonably allocate the evolution resources between
tasks. Li et al. [10] proposed an explicit multipopulation
evolutionary framework (MPEF) to improve information
transfer effects. In MPEF, the parameter rmp is adjusted
based on the evolution status of the population. Specif-
ically, if the ratio that offspring is superior to its parent
is larger than the given threshold, the rmp will not be
adjusted because the population evolves well with the
current rmp. On the contrary, the rmp will be updated
because the current rmp causes a negative transfer.

3. Intertask learning strategy: Da et al. [11] proposed a
transfer evolutionary computation paradigm (AMTEA),
which can reduce the risks of negative transfer via online
source-target similarity learning. In AMTEA, a prob-
abilistic model is constructed with the distribution of
elite solutions from some source optimization task. Sub-
sequently, the probabilistic model is used to provide a
promising direction for the search on a related target task.
Gao et al. [12] utilized semi-supervised learning strat-
egy to enhance the effectiveness of knowledge transfer
(EMT-SSC). In EMT-SSC, the promising individuals are

identified with semi-supervised learning strategy. Then,
these individuals transfer valuable knowledge between
tasks. Zheng et al. [13] developed a self-regulated evo-
lutionary multitask optimization (SREMTO) algorithm
to dynamically adjust the intensity of knowledge trans-
fer between tasks. In SREMTO, a task group is created
based on the ability vectors of individuals. The degree of
overlap between the task groups depends on the degree
of tasks relatedness. The cross-task knowledge transfer
is conducted through the overlapping parts between task
groups.

4. Multi-knowledge transfer mechanism: Cai et al. [14]
proposed a hybrid knowledge transfer strategy to con-
duct information transfer between tasks (EMTO-HKT).
In EMTO-HKT, a multi-knowledge transfer mechanism
including an individual-level learning strategy and a
population-level learning strategy are used to transfer
knowledge according to the degree of the task related-
ness. Liang et al. [15] proposed a two-stage adaptive
knowledge transfer mechanism. At the first stage, the
search step of each individual is adjusted to alleviate the
negative transfer, while at the second stage, the search
range of each individual is adjusted to improve the explo-
ration ability of the population. Ding et al. [16] proposed
a generalized multitasking evolutionary optimization for
expensive problems (G-MFEA). In G-MFEA, two strate-
gies are proposed to conduct knowledge transfer between
optimization problems with different locations of the
optimums and different numbers of decision variables.

Although existing MFEAs endeavor to alleviate nega-
tive transfer during the optimization process, the solution
precision obtained by these algorithms is not satisfactory,
especially for those multitasking problems with low related-
ness. Further, individuals with useless knowledge for other
tasks are often transferred due to the lack of prior informa-
tion about the relatedness between tasks, which obviously
results in a waste of resources. To solve these problems,
this paper presents an evolutionary multitasking optimiza-
tion algorithm with adaptive transfer strategy based on the
decision tree (EMT-ADT). In EMT-ADT, the decision tree
based on Gini coefficient is constructed to predict the indi-
vidual transfer ability. To the best of our knowledge, this is
the first attempt in the literature to use the decision tree to
enhance positive knowledge transfer in the MFO paradigm.
The primary contributions of this paper can be summarized
as follows:

1. The transfer ability of individuals is defined to quantify
the amount of useful knowledge contained in the trans-
ferred individuals. Individuals with high transfer ability
are used to construct a decision tree.
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2. Combine with a knowledge of supervisedmachine learn-
ing, the proposed algorithm uses decision tree to predict
the positive-transferred individuals. By selecting promis-
ing positive-transferred individuals, the proposed algo-
rithm can improve the probability of a positive transfer.

3. The success-history based adaptive differential evolution
algorithm (SHADE) is used as the search engine, which
can demonstrate the generality of the MFO paradigm.
Three multifactorial optimization benchmark sets are
used to verify the competitiveness of the proposed
method.

The rest of this paper is organized as follows: the next
section introduces the details of MFO and decision tree
model. The next section describes the proposed EMT-ADT
algorithm. The following section presents the experimental
results on three multifactorial optimization (MFO) bench-
mark sets and two combinatorial optimization problems (TSP

and TRP). The conclusion and future work are summarized
in the last section.

MFO and decision tree

Multifactorial optimization

As mentioned before, multifactorial optimization (MFO) is
an evolutionary multitasking paradigm that aims to find a
groupof optimal solutions simultaneously, eachofwhich cor-
responds to an optimization problem. To compare individuals
in a multitasking environment conveniently, it is necessary to
encode and decode different individuals in a unified search
space. For an unconstrained multitasking problem with n
tasks, Tj denotes the jth task with a search space Xj and an
objective function f j. For the ith individual pi, its properties
are defined as follows [1]:

Definition 1 The factorial cost � i
j of individual pi on task

Tj is the objective value f ij of individual pi.

Definition 2 The factorial rank r ij of individual pi on task
Tj is the index of pi, provided that the population is sorted in
ascending order according to � j .

Definition 3 The scalar fitness of individual pi is defined as
’i � 1/ min

jε{1, ..., n}{r
i
j }.

Definition 4 The skill factor τi of individual pi is defined
as τi � argmin jε{1, ..., n}{r ij }. In other words, τi denotes the
index of the task that individual pi performs the best among
all other tasks.

MFEA is a pioneer evolutionary algorithm to realize the
MFO paradigm, which transfers genes and memes through
assortative mating and vertical cultural operation. Algorithm
1 presents the basic framework of MFEA.

Decision tree

The decision tree is one of the supervised machine learning
method tomultistage decisionmaking [17].A tree structure is
used to present the decision rules summarized froma series of
datawith characteristics and labels. Generally, a decision tree
consists of a root node, some internal nodes and leaf nodes.
Leaf nodes are nodes that have no appropriate descendants,
while other nodes (except the root) are called internal nodes.
Each internal node is associated with a test attribute, each
branch represents the outcome of the test, while each leaf
node assigns one or more class labels [18, 19]. A path from
the root node to each leaf node corresponds to a decision test
sequence.

The design of a decision tree mainly includes three tasks
[17].

Task 1: Select a node splitting rule.
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Table 1 An instance of playing training dataset

ID a1 a2 a3 a4 L

1 Sunny Hot High F N

2 Sunny Hot High T N

3 Overcast Hot High F Y

4 Rainy Mild High F Y

5 Rainy Cool Normal F Y

6 Rainy Cool Normal T N

7 Overcast Cool Normal T Y

8 Sunny Mild High F N

9 Sunny Cool Normal F Y

10 Rainy Mild Normal F Y

11 Sunny Mild Normal F Y

12 Overcast Mild High T Y

13 Overcast Hot Normal F Y

14 Rainy Mild High T N

a4= T a4= F a3= normal a3= high 

a1=rainy a1=overcast a1=sunny 

n0:a1 

n01:a3 n02: Y n03:a4 

n011:Y n012:N n031:Y n032:N 

Fig. 1 Decision tree trained by Table 1

Task 2: Decide which nodes are terminal.
Task 3: Assign each terminal node to a class label.
Taking the playing dataset as an example, Table 1 shows

an instance of playing training dataset, which has fourteen
samples. Each sample consists of ID, four attributes and one
category label. The attribute consists of weather (a1), tem-
perature (a2), humidity (a3) and whether there is wind (a4).
The category label (L) is whether to play today.

Figure 1 shows the decision tree trained by Table 1. ni
represents the ith node.

Proposedmethod

Motivations

Positive knowledge transfer has a significant effect on the per-
formanceofmultifactorial evolutionary algorithm. InMFEA,

the knowledge transfer among tasks is controlled by the
parameter rmp. In each task, since the solutions are ran-
domly selected to exchange information based on the same
probability, there is a possibility that the transfer turns out
to be negative, thereby leading to deterioration of algorithm
performance [20, 21]. Therefore, in the case of uncertain
correlation between tasks, how to accurately select valuable
solutions is core to improve the performance of the algorithm.
To solve these problems, this paper proposed an evaluation
rule to quantify the transfer ability of individuals involved in
knowledge transfer.

Furthermore, the research shows that the decision tree
model has the following advantages in the construction pro-
cess and data processing. First of all, the decision tree uses
the knowledge learned from training to directly form a hier-
archical structure, which is readable and easy to understand
and implement. Secondly, the decision tree is suitable for data
sets with small size, and the time complexity of the decision
tree algorithm is small. Finally, the decision tree is not sen-
sitive to missing values during data processing. In addition,
the decision tree can deal with irrelevant feature data, and
can accurately predict the results of analysis with large data
sources in a relatively short time. Therefore, in the proposed
EMT-ADTalgorithm, the decision tree is constructed accord-
ing to the information of transferred individuals. The number
of individuals for each knowledge transfer is set to 10, and
five consecutive generations of transferred individuals are
used as the training data to construct the decision tree model,
which conforms to the characteristics of the decision tree.
Based on the constructed decision tree, promising positive-
transferred individuals are selected to conduct knowledge
transfer between tasks, which can achieve a fast convergence
and improve the solution accuracy.

Definition of transfer ability

For a population P � {x1, x2, . . . , xN }, an archive A � {t1,
t2, . . . , tN } is used to store individuals involved in knowledge
transfer; the historical transferred population TP � {ti |1 ≤
i ≤ n ∧ ω(ti ) > ω(tn+1)} is used to store n individuals with
the highest knowledge transfer ability in the archive A. Each
ti has an associated subset �i .

For each ti ∈ T P , if ti participates in the generation of
offspring y j (recorded as ti → y j ), the associated subset �i

is defined as follows.

�i � {y j |ti → y j , j � 1, 2, . . . , N } (1)

Accordingly, the transfer amount λi , j of the jth individual
in �i is defined as follows:

λi , j �
{
1 i f f

(
y j

)
< f (x j )

0 otherwise
(2)
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Fig. 2 An instance of the calculation of the transfer ability

where xj is the parent of the offspring yj.
The transfer ability ω(ti ) of transferred individual ti is

defined as follows, where u represents the size of subset �i .

ω(ti ) �
u∑
j�1

λi , j (3)

Figure 2 shows an example of the calculation of the trans-
fer ability, where all individuals are in a 2-D decision space.

In Fig. 2, the historical transferred population TP �
{t1,t2,t3,t4,t5} is composed of five transferred individuals.
The performance of the offspring y1 and y4 is better than
that of the parent, while the performance of the offspring y2
and y3 is worse than that of the parent. t1 and t3 partici-
pate in the generation of offspring y1.t2 and t4 participate
in the generation of offspring y2. t4 and t5 participate in
the generation of offspring y3. t2 and t3 participate in the
generation of offspring y4. Since t1 only participates in the
generation of offspring y1, and y1 is superior to the par-
ent, according to Eqs. (1) and (2), the associated subset of
t1 is recorded as �1 � {y1}; the transfer amount of t1 is
λ1, 1 � 1. According to Eq. (3), the transfer ability of t1 is
recorded as ω(t1) � λ1, 1 � 1. Similarly, t2 participates in
the generation of the offspring y2 and y4. y2 is inferior to
the parent, while y4 is superior to the parent, then the asso-
ciated subset of t2 is recorded as �2 � {y2, y4}, λ2, 1 � 0,
λ2, 2 � 1. According to Eq. (3), the transfer ability of t2
is ω(t2) � λ2, 1 + λ2, 2 � 1. t3 participates in the genera-
tion of the offspring y1 and y4. The associated subset of t3
is recorded as �3 � {y1, y4}. Since the offspring y1 and y4
outperform their parents, then λ3, 1 � 1, λ3, 2 � 1. The trans-
fer ability of t2 is ω(t3) � λ3, 1 + λ3, 2 � 2. ω(t4) and ω(t5)
are calculated in the same way. Table 2 shows the result of
transfer ability of the historical transferred population TP.

Table 2 Transfer ability of the population TP

Transferred
individual

Associated
subset

Transfer amount Transfer
ability

ti �i λi , 1 λi , 2 ω(ti )

t1 {y1} 1 / 1

t2 {y2, y4} 0 1 1

t3 {y1, y4} 1 1 2

t4 {y2, y3} 0 0 0

t5 {y3} 0 / 0

Construction of decision tree

In the proposed EMT-ADT algorithm, the archive A is used
to store individuals involved in knowledge transfer. At each
generation, n individuals selected from the auxiliary popula-
tion are used to update the archive. For a multitask problem
with two tasks,when optimizing taskT1, the population asso-
ciated with task T2 is regarded as an auxiliary population and
vice versa. Since it is possible to select individuals with neg-
ative transfer by using random selection strategy, a decision
tree model classifier is constructed to predict the transfer
ability of each individual in the auxiliary population. Sub-
sequently, transferred individuals are sorted in descending
order according to transfer ability. The top n transferred indi-
viduals with high transfer ability are chosen to be placed into
the archive A. Furthermore, the decision tree model classi-
fier is used to predict the transfer ability of individuals in the
archive A. The top n transferred individuals with high trans-
fer ability are selected as the historical transferred population
TP to conduct knowledge transfer for the next generation.

At each generation, the historical transferred population
TP with LP generations is used as the training data, that is
TP_DT � ⋃G−1

g�G−LPT Pg . The process of the decision tree
model classifier construction is described as follows.

1. According to individual transfer ability, the individual
with the highest transfer ability in TP_DT is recorded as tbest .

tbest � argmax
i∈{1, 2, ...,m}

ω(ti ) (4)

where m is the size of TP_DT.
2. For ∀ti ∈ T P_DT , it has two feature attributes,

Euclidean distance attribute (a1) and factorial cost attribute
(a2). The Euclidean distance dis(ti, tbest) between ti and tbest ,
which is recorded as the data xi,1 of a1, is put into the set �1.
The factorial cost f (ti) of individual ti, which is recorded as
the data xi,2 of a2, is put into the set �2. The transfer ability
ω(ti ) of individual ti, which is recorded as the data yi of label
attribute, is put into the set �3. Let xi � xi , 1 ∪ xi , 2, the can-
didate attribute set A � {a1,a2}, the dataset D � {(x1, y1),
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(x2, y2), . . . , (xm , ym)}.

dis(ti , tbest ) � ‖ti − tbest‖2 (5)

3. Calculate the Gini index of each feature attribute with
the sets �1, �2 and �3, where pk represents the proportion
of the current category k.

Gini(ai ) � 1 −
K∑

k�1

p2k (6)

4. Calculate the Gini index of the jth splitting value bj
corresponding to the feature attribute ai, where v represents
the category for the label attribute in dataset D.

Gini_index(ai , b j ) � 1 −
V∑

v�1

|Dv|
|D| Gini(Dv) (7)

5. The splitting value b* with the lowest Gini index is
selected as the optimal splitting attribute. In the candidate
attribute set A, the feature attribute a* corresponding to b* is
selected as the current node.

b∗ � argmin Gini_index(ai , b j ) (8)

Algorithm 2 presents the construction of decision tree.

Take Table 3 as an example to construct a decision tree.
Euclidean distance (denoted as dis) represents the first fea-
ture attribute, while factorial cost (denoted as f ) represents

the second feature attribute. Firstly, determine the root node.
Since the attribute dis is a numerical attribute, sort the data in
ascending order. Then, the samples are split into two groups
with the middle value of adjacent values from small to large.
Significantly, two adjacent values are different. For example,
if dis � 0.2 and dis � 0.4, the median value is 0.3. Then,
the median value is used as the split point, the calculated
Gini index is 0.619. Similarly, other median values and Gini
indexes can also be calculated in the same way, as shown in
Table 4. In Table 4, the Gini index obtained by taking 0.95 as
the split point is the smallest, which is 0.32. Table 5 shows
the Gini index of different split points with the factorial cost
as node. In Table 5, the Gini index obtained by taking 17.5 as
the split point is the smallest, which is 0.441. As seen from
Tables 4 and 5, since theGini index 0.32 in Table 4 is less than
theGini index 0.441 inTable 5, the Euclidean distance is used
as the split attribute of the root node, and 0.95 is used as the
split value to construct the decision tree. After calculation,
the factorial cost is used as the split attribute of intermediate
node on the second level, and 10.5 is used as the split value to
construct the decision tree. Finally, the constructed decision
tree is shown in Fig. 3.

In Fig. 3, the leaf node represents the transfer ability.
x1 represents the first feature attribute: Euclidean distance,
while x2 represents the second feature attribute: factorial cost.
Take the transfer ability prediction of data (0.4, 6) as an exam-
ple, firstly, we judge at the root node. Since 0.4 is less than

0.95, we turn to the left subtree to judge. At the intermediate
node, 6 is less than 10.5, the data transfer ability is predicted
to be 2.
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Table 3 Dataset D

dis 0.6 2.4 2.1 0.5 0.4 1.7 1.1 0.8 0.4 0.2 0.8 0.7 1.5 0.6 0.8

f 21 3 7 18 12 16 9 16 1 3 7 9 19 4 2

ϕ 0 1 1 0 0 1 1 0 2 2 2 2 1 2 2

Table 4 Gini index for feature
attribute Euclidean distance 2 0 2 0 0 2 2 0 2 2 1 1 1 1 1

dis 0.2 0.4 0.4 0.5 0.6 0.6 0.7 0.8 0.8 0.8 1.1 1.5 1.7 2.1 2.4

mid 0.3 0.45 0.55 0.65 0.75 0.95 1.3 1.6 1.9 2.25

Gini 0.619 0.611 0.594 0.541 0.512 0.32 0.412 0.489 0.554 0.61

Table 5 Gini index for feature
attribute factorial cost 2 2 1 2 2 1 2 1 2 0 0 1 0 1 0

f 1 2 3 3 4 7 7 9 9 12 16 16 18 19 21

mid 1.5 2.5 3.5 5.5 8 10.5 14 17.5 18.5 20

Gini 0.619 0.574 0.585 0.533 0.507 0.444 0.52 0.441 0.621 0.6

For further explain the prediction of individual transfer
ability, a two-task benchmark problem including Griewank
problem and Rastrigin problem is selected. Both problems
are characterized by multimodal and nonseparable. The
detailed properties are shown as follows.

(1) Rastrgin:

F(x) �
D∑
i�1

(x2i − 10cos(2πxi ) + 10), x ∈ [50, 50]D , D � 50 (9)

(2) Griewank:

(10)

F (x) � 1 +
1

4000

D∑
i�1

x2i −
D∏
i�1

cos

(
xi√
i

)
, x

∈ [100, 100]D , D � 50

Figure 4 shows the decision tree model constructed by
the proposed algorithm EMT-ADT at generation g on the
two-task benchmark problem (Eqs. (9), (10)). At this time,
there are six cases of transfer ability (2, 3, 4, 5, 6, 7). Take
the transfer ability prediction of data (2.794, 18,694) as an
example, firstly, we judge at the root node. Since 2.794 is less
than 2.96472, we turn to the left subtree to judge. Similarly,
2.794 is less than 2.95378, we continue to judge on the root
node of the left subtree of this node. Since 2.794 is greater
than 1.08146, we judge on the root node of the right subtree
of this node. Similarly, 2.794 is greater than 2.75214, we
continue to judge on the root node of the right subtree of
this node. Finally, 18,694 is less than 18,869.9, the transfer
ability prediction result of this data is 4.

Fig. 3 Decision tree model construction

The transferability of an individual is defined as follows.
If an auxiliary parent participates in the generation of an off-
spring form times, and there are n offspring that are superior
to the corresponding parent, then the transfer ability of the
auxiliary parent is n. As seen in Fig. 4, take the leaf node
marked in red circle as an example. The node in red circle
indicates that an individual reaches the position of the current
leaf node through decision tree classification, its correspond-
ing transferability is 7.
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Fig. 4 Decision tree model
construction for a two-task
benchmark problem

Search strategy

Many classical optimization algorithms, such as GA (genetic
algorithm), DE (differential evolution), PSO (particle swarm
optimization), TLBO (teaching–learning-based optimiza-
tion), and BSO (brain storm algorithm) can be used as
search engine in MFO paradigm [22–25]. Different algo-
rithms have different search performance. Obviously, well
designed search strategies can improve the search efficiency.
The success-history based adaptive differential evolution
algorithm (SHADE) proposed by Tanabe et al. [26] has been
proved to be an effective optimization algorithm. In SHADE,
a historical memory is used to store the control parame-
ters that performed well during the evolution. New control
parameters are generated by sampling the parameters in the
historical memory, which may further improve the perfor-
mance of the algorithm. Since SHADE outperformed many
state-of-the-art DE algorithms on CEC2013 benchmark set
and CEC2005 benchmarks, this paper selects SHADE as the
search engine. The mutation operator is defined as follows
[26].

vi � xi + Fi
(
xpbest − xi

)
+ Fi (xr1 − x̃r2) (11)

where xi is the ith individual of the current population. xpbest
is randomly selected from the top p% individuals in the cur-
rent population, while xr1 is randomly selected from the
current population.̃xr2 is randomly selected from the union of
the current population and the archive. The details of SHADE
can be found in [26].

To improve the knowledge transfer between different tasks
onMFOproblems, the original mutation operator of SHADE

is modified and is defined as follows.

vi � xi + Fi
(
xpbest − xi

)
+ Fi (x′

r1 − x′
r2) (12)

For a multitask problem with two tasks, P is the sub-
population corresponding to the target task, and P ′ is the
subpopulation corresponding to the auxiliary task. TP is the
historical transferred population, which is used to provide the
transferred individuals for the target task. xi is the ith indi-
vidual of the population P. xpbest is randomly selected from
the top p% individuals in the population P ′. x′

r1 and x′
r2 are

randomly selected from TP. F is the scale factor. After muta-
tion operator, the same crossover operator as in SHADE is
used to generate the final offspring.

In the modified SHADEmutation operator, xpbest can pro-
vide the promising direction for the population, which can
promote the convergence. The randomly constructed differ-
ence vector (x′

r1 − x′
r2) not only enhances the population

diversity, but also promote positive knowledge transfer due
to the selection of the transferred individuals with highest
transfer ability.

The proposed EMT-ADT

The pseudocode of the EMT-ADT algorithm is shown in
Algorithm 3. P ′ is the subpopulation corresponding to the
auxiliary task. The archive A is used to store individuals
involved in knowledge transfer. xbest is the best individual of
P ′. NPi is the population size of ith task. FES andMAXFES
represent the current number of function evaluations and the
maximal number of function evaluations, respectively.
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The main steps of EMT-ADT is as follows. First, for each
task Ti, the offspring is generated by Eq. (11) or (12) accord-
ing to the random mating probability rmp. Meanwhile, the
associated subset �i , the transfer amount λi , j and the trans-
fer ability ω(ti ) are calculated according to Eqs. (1)–(3).
When knowledge transfer is required during the generation
of offspring, the training data D is first constructed by TP
of continuous LP generation. Next, the decision tree model
DT is constructed by the training data. Then, DT is used to
predict the transfer ability of all individuals in P ′. All indi-
viduals are sorted based on the transfer ability. The top n-1

individuals and the historical best individual in P ′ are stored
into the archive A. Then, DT is used to predict the transfer
ability of all individuals in the archive A. After ranking these
individuals according to their transfer ability, the top n−1
individuals and the historical best individual in P ′ are stored
into the historical transferred population TPg+1 at genera-
tion g + 1. When there is no knowledge transfer during the

generation of offspring, the top n−1 individuals with bet-
ter factorial cost and the historical best individual in P ′ are
stored into the archive A. The individuals in the archive A are
sorted according to their transfer ability. Then, the top n−1
individuals and the historical best individual inA are selected
as the historical transferred population TPg+1 at generation
g + 1.

When the success rate sri (sri denotes the rate that off-
spring is better than its parent) is greater than the given
threshold, the random mating probability rmpi for each task
is updated as follows [10].

rmpi �

⎧⎪⎪⎨
⎪⎪⎩
min{rmpi + 0.3(1 − sri ), 1]} i f T N P � 0⌊

tsri
tsri+sri

+ 0.5
⌋

× min{rmpi + 0.3 × tsri , 1}
+
⌊

sri
tsri+sri

+ 0.5
⌋

× max{rmpi − 0.3 × (1 − tsri ), 0} otherwise

, (13)

where tsri denotes the rate that offspring generated with
knowledge transfer is better than its parent. If all offspring
are generated without knowledge transfer, then TNP is set to
0; otherwise, TNP is the number of offspring generated with
knowledge transfer.
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Complexity analysis

The computational cost of the EMT-ADTmainly comes from
assortative mating, the adaptive knowledge transfer based on
decision tree and historical transferred population update. In
EMT-ADT, a loop over NP (population size) is conducted,
containing a loop over D (dimension) and m optimization
tasks. Assortative mating is performed according to the ran-
dommating probability (rmp). Then, the runtime complexity

is O(m · N P · D) at each iteration. For the adaptive knowl-
edge transfer based on decision tree, the Euclidean distance
between the transferred individual ri and the optimal trans-
ferred individual rbest is calculated, which may increase the
time complexity of the algorithm. Due to five consecutive
iterations, the runtime complexity is O(5 · n · D), in which
n is the number of the transferred individuals. Similarly, the
runtime complex of historical transferred population update
is O(n ·D). Therefore, the total time complexity of the EMT-
ADT is O(m · N P · D).
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Table 6 Properties of problem
pairs for CEC2017 multitask
problems

Intersection degree Problem Task group Similarity

T1 T2

Complete CI + HS Griewank Rastrigin High (1.0000)

CI + MS Ackley Rastrigin Medium (0.2261)

CI + LS Ackley Schwefel Low (0.0002)

Partial PI + HS Rastrigin Sphere High (0.8670)

PI + MS Ackley Rosenbrock Medium (0.2154)

PI + LS Ackley Weierstrass Low (0.0725)

No NI + HS Rosenbrock Rastrigin High (0.9434)

NI + MS Griewank Weierstrass Medium (0.3669)

NI + LS Rastrigin Schwefel Low (0.0016)

Comparative studies of experiments

To evaluate the competitiveness of the proposed EMT-ADT
algorithm, 9 benchmark test problems from the CEC2017
Evolutionary Multi-Task Optimization Competition [27] are
employed. Each test problem is a two-task problem. Accord-
ing to the similarity between the landscapes of two tasks, the
benchmark problems can be categorized into three groups:
high similarity (HS), medium similarity (MS) and low sim-
ilarity (LS). Furthermore, the benchmark problems can be
divided into three groups according to the intersection degree
of the global optima: complete intersection (CI), partial
intersection (PI) and no intersection (NI). The details of
these benchmark problems can be found in [27]. In addi-
tion, two complex single-objective MFO test suites, i.e.
WCCI20-MTSO and WCCI20-MaTSO, are selected to fur-
ther verity the competitiveness of the proposed EMT-ADT.
Both WCCI20-MTSO andWCCI20-MaTSO include 10 test
problems, which are put forward for WCCI 2020 Competi-
tion on Evolutionary Multitasking Optimization [28]. Each
test problem in WCCI20-MTSO is with 2 tasks, while each
test problem in WCCI20-MaTSO is with 10 tasks.

Parameter settings

The aforementioned CEC2017 multitask problems are given
in Table 6.

The proposed EMT-ADT is compared with eight pop-
ular multitask optimization algorithms, namely MFEA
[1], MFEARR (MFEA with resource reallocation) [29],
MFDE(multifactorial differential evolution) [23],AT-MFEA
(affine transformation-enhancedMFEA) [8], SREMTO [13],
MFMP (MFO via explicit multipopulation evolutionary
framework) [10], TLTLA (two-level transfer learning algo-
rithm) [30] and MTEA-AD (MTEA based on anomaly
detection) [31]. The default parameter settings for these algo-
rithms are given in Table 7. N denotes the population size.

Table 7 Default parameters settings of compared algorithms

Algorithm N rmp Parameter

MFEA 100 0.3 mu � 2; mum � 5

MFEARR 100 0.3 mu � 2; mum � 5; ε � 0.01

MFDE 100 0.3 F � 0.5; CR � 0.9;

AT-MFEA 100 0.3 pc � 1; ηc � 15; pm � 0.02; ηm �
15; α � 0.5

SREMTO 100 0.3 Pα � 0.7; Pβ � 1.0

MFMP 200 / θ � 0.2; c � 0.3; α � 0.25

TLTLA 100 0.3 mu � 2; mum � 5

MTEA-AD 100 0.1 pc � 1; ηc � 2; pm � 0.02; ηm � 5;
α � 0.25

EMT-ADT 200 / n � 10; γ � 0.001

Experiments on CEC2017multitask problems

In this section, the proposed EMT-ADT algorithm is com-
pared with the above-listed algorithms to verify the per-
formance. Tables 8, 9, 10 summarize the mean fitness
(mean) and standard deviation (Std) achieved by MFEA,
MFEARR, MFDE, AT-MFEA, SREMTO, MFMP, TLTLA,
MTEA-AD and EMT-ADT over 30 runs. The codes are con-
ducted with MAXFES as the termination criterion, which
is set to 200,000. Three statistical test measures including
the Wilcoxon signed-rank test [32], the multiple-problem
Wilcoxon’s test [33] and Friedman’s test [33] are used to
compare EMT-ADTwith other eight algorithms.With regard
to the single-problemWilcoxon’s test, “†”, “≈” and “−” are
used to indicate that EMT-ADT significantly wins, equal,
and is worse than the compared algorithm, respectively.With
regard to the multiple-problem Wilcoxon’s test, R+ and R−
are used to indicate that EMT-ADT is significantly better than
or worse than the compared algorithm, respectively. The best
solution is highlighted in bold.
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Table 8 Mean fitness values and Std obtained by MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO, MFMP and EMT-ADT
on complete intersection problems

Algorithm Index CI-HS CI-MS CI-LS Summary

T1 T2 T1 T2 T1 T2 †/≈/–

MFEA Mean 8.84E−02† 1.63E + 02† 4.79E + 00† 1.95E + 02† 2.01E + 01† 2.97E + 03† 6/0/0

Std 1.90E−02 5.59E + 01 8.96E−01 5.27E + 01 4.58E−02 4.05E + 02

MFEARR Mean 6.57E−02† 4.40E + 02† 1.46E + 01† 4.58E + 02† 2.01E + 01† 2.64E + 03† 6/0/0

Std 1.39E−02 8.63E + 01 7.82E + 00 7.20E + 01 8.66E−02 4.28E + 02

AT-MFEA Mean 7.10E−03† 3.65E + 01† 2.58E + 00† 1.03E + 02† 2.06E + 01† 2.68E + 03† 6/0/0

Std 9.60E−03 5.22E + 01 5.22E−01 3.31E + 01 5.40E−01 4.09E + 02

MTEA-AD Mean 1.38E−02† 9.27E + 01† 3.10E + 00† 1.66E + 02† 2.04E + 01† 2.52E + 03† 6/0/0

Std 1.16E−02 1.03E + 02 7.07E−01 5.27E + 01 5.20E−01 4.94E + 02

MFDE Mean 7.55E−16† 7.35E−13† 3.06E−08† 7.33E−12† 2.11E + 01† 7.13E + 03† 6/0/0

Std 2.81E−15 3.42E−12 1.13E−07 2.89E−11 2.20E−01 1.73E + 03

TLTLA Mean 5.84E−06† 9.30E−03† 4.50E−03† 1.59E−02† 1.48E + 01† 9.94E + 02† 6/0/0

Std 1.18E−05 1.84E−02 2.60E−03 2.01E−02 9.21E + 00 5.19E + 02

SREMTO Mean 8.30E−03† 5.39E + 01† 1.09E + 01† 3.97E + 02† 1.58E + 01† 1.15E + 04† 6/0/0

Std 1.05E−02 7.52E + 01 6.48E + 00 1.98E + 02 3.03E + 00 2.18E + 03

MFMP Mean 0.00E + 00≈ 4.74E−15≈ 2.66E−15† 0.00E + 00≈ 1.82E + 01† 2.37E + 01† 3/3/0

Std 0.00E + 00 1.84E−14 3.46E−15 0.00E + 00 6.77E + 00 6.52E + 01

EMT-ADT Mean 0.00E + 00 0.00E + 00 8.88E−16 0.00E + 00 3.36E−03 6.36E−04 /

Std 0.00E + 00 0.00E + 00 1.04E−31 0.00E + 00 1.50E−03 0.00E + 00

Table 9 Mean fitness values and Std obtained by MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO, MFMP and EMT-ADT
on partial intersection problems

Algorithm Index PI-HS PI-MS PI-LS Summary

T1 T2 T1 T2 T1 T2 †/≈/–

MFEA Mean 5.43E + 02† 3.55E−01† 3.13E + 00† 2.27E + 02† 1.94E + 01† 1.92E + 01† 6/0/0

Std 1.15E + 02 9.85E−02 7.31E−01 5.92E + 01 2.96E + 00 4.06E + 00

MFEARR Mean 4.39E + 02† 1.40E−01† 1.68E + 01† 7.67E + 02† 1.29E + 01† 1.80E + 01† 6/0/0

Std 5.88E + 01 3.61E−02 6.43E + 00 1.23E + 03 8.20E + 00 2.59E + 00

AT-MFEA Mean 2.47E + 02† 2.00E−03† 2.57E + 00† 1.37E + 02† 2.75E + 00† 3.09E + 00† 6/0/0

Std 5.00E + 01 1.20E−03 5.03E−01 3.42E + 01 4.64E−01 9.89E−01

MTEA-AD Mean 3.29E + 02† 2.27E−02† 2.84E + 00† 1.41E + 02† 3.11E + 00† 3.86E + 00† 6/0/0

Std 6.18E + 01 1.61E−02 4.71E−01 3.35E + 01 4.33E−01 9.52E−01

MFDE Mean 7.67E + 01≈ 2.66E−15† 9.52E−07† 6.84E + 01† 1.47E−03† 4.76E−04† 5/1/0

Std 1.98E + 01 1.34E−14 3.64E−06 1.99E + 01 4.70E−03 1.40E−03

TLTLA Mean 1.77E + 01 − 4.17E−02† 1.99E + 00† 4.80E + 01† 9.58E−02† 2.40E−03† 5/0/1

Std 5.49E + 01 1.62E−02 3.78E−01 2.20E + 01 4.08E−02 6.20E−03

SREMTO Mean 4.25E + 02† 3.11E−05† 7.88E + 00† 2.48E + 02† 1.43E + 01† 1.00E + 01† 6/0/0

Std 1.48E + 02 6.78E−05 5.10E + 00 1.92E + 02 7.19E + 00 4.49E + 00

MFMP Mean 1.16E + 02† 7.47E−28† 1.27E−14† 1.92E + 01† 1.84E−15† 1.99E−18≈ 5/1/0

Std 1.30E + 01 6.94E−28 4.41E−15 1.59E + 01 3.09E−15 0.00E + 00

EMT-ADT Mean 7.72E + 01 0.00E + 00 7.99E−15 4.63E + 00 8.88E−16 1.99E−18 /

Std 1.28E + 01 7.23E−28 5.75E−15 4.40E + 00 1.42E−31 0.00E + 00

123



Complex & Intelligent Systems (2023) 9:6697–6728 6709

Table 10 Mean fitness values and Std obtained by MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO, MFMP and EMT-ADT
on no intersection problems

Algorithm Index NI-HS NI-MS NI-LS Summary

T1 T2 T1 T2 T1 T2 †/≈/–

MFEA Mean 2.48E + 02† 2.18E + 02† 1.03E−01† 2.68E + 01† 5.78E + 02† 2.85E + 03† 6/0/0

Std 6.71E + 01 5.40E + 01 2.24E−02 2.47E + 00 1.22E + 02 4.17E + 02

MFEARR Mean 5.89E + 02† 4.30E + 02† 6.78E−02† 4.59E + 01† 4.38E + 02† 2.84E + 03† 6/0/0

Std 1.22E + 03 7.46E + 01 1.70E−02 3.82E + 00 9.83E + 01 4.88E + 02

AT-MFEA Mean 1.42E + 02† 1.76E + 02† 1.01E−02† 2.22E + 01† 2.52E + 02† 2.54E + 03† 6/0/0

Std 3.71E + 01 5.72E + 01 6.90E−03 4.04E + 00 5.17E + 01 4.37E + 02

MTEA-AD Mean 1.60E + 02† 2.45E + 02† 1.90E−02† 2.38E + 01† 3.03E + 02† 2.76E + 03† 6/0/0

Std 4.98E + 01 5.10E + 01 9.40E−03 4.16E + 00 5.01E + 01 3.43E + 02

MFDE Mean 6.80E + 01† 2.42E + 01† 9.86E−04† 3.21E + 00† 9.11E + 01† 4.01E + 03† 6/0/0

Std 3.06E + 01 1.37E + 01 3.20E−03 9.61E−01 2.34E + 01 7.60E + 02

TLTLA Mean 4.53E + 01† 1.28E−01† 1.72E−04† 2.43E−01 − 3.69E−01 − 7.87E + 02† 4/0/2

Std 6.70E + 00 4.48E−01 2.20E−04 1.17E−01 5.77E−01 4.92E + 02

SREMTO Mean 6.42E + 02† 3.26E + 02† 1.42E−01† 2.75E + 01† 5.31E + 02† 1.19E + 04† 6/0/0

Std 1.07E + 03 2.47E + 02 7.33E−01 4.20E + 00 2.14E + 02 5.55E−12

MFMP Mean 1.71E + 01† 1.33E−14† 1.34E−15† 1.84E + 00† 1.09E + 02† 4.34E + 01† 6/0/0

Std 1.13E + 01 2.77E−14 8.91E−16 6.92E−01 1.85E + 01 6.59E + 01

EMT-ADT Mean 3.88E + 00 0.00E + 00 5.26E−16 3.10E−01 4.87E + 01 6.36E−04 /

Std 3.38E + 00 0.00E + 00 2.89E−16 4.89E−01 1.05E + 01 2.93E−12

Comparisons on complete intersection problems

Table 8 shows that the proposedEMT-ADTalgorithmoutper-
forms MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE,
TLTLA and SREMTO on complete intersection problems,
which indicates that the decision tree model prediction strat-
egy employed in the proposed algorithmwork effectively and
efficiently. More specially, EMT-ADT andMFMP have sim-
ilar performance on CI + HS and CI + MS problems, while
EMT-ADT performs better than MFMP on CI + LS prob-
lems. Furthermore, the experimental results show that the
proposed EMT-ADT algorithm wins the MFEA, MFEARR,
AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO and
MFMP on 6, 6, 6, 6, 6, 6, 6, 3 optimization tasks, respec-
tively. The convergence curves of the mean fitness values
obtained by each algorithm on complete intersection prob-
lems are plotted in Fig. 5. As can be seen in Fig. 5, EMT-ADT
algorithm converges faster than the competitive algorithms.

Comparisons on partial intersection problems

As can be observed in Table 9, the proposed EMT-ADT
algorithm outperforms the MFEA, MFEARR, AT-MFEA,
MTEA-AD, MFDE, TLTLA, SREMTO and MFMP in 4 out
of 6 tasks. TLTLA performs best on task T1 of PI + HS

problem. For the task T2 of PI + LS problem, the perfor-
mance of EMT-ADT is similar to that ofMFMP.All in all, the
results show that the proposed EMT-ADT outperforms the
MFEA,MFEARR,AT-MFEA,MTEA-AD,MFDE, TLTLA,
SREMTO and MFMP on 6, 6, 6, 6, 5, 5, 6, 5 optimization
tasks, respectively. Figure 6 shows the convergence curves of
the mean fitness values obtained by each algorithm on par-
tial intersection problems. As can be seen in Fig. 6, compared
with the eight competitive algorithms, EMT-ADT algorithm
converges faster on all tasks except task T1 of PI + HS prob-
lem.

Comparisons on no intersection problems

Table 10 shows that the proposed EMT-ADT algorithm out-
performs the MFEA, MFEARR, AT-MFEA, MTEA-AD,
MFDE, TLTLA, SREMTO and MFMP in 4 out of 6 tasks.
For task T2 of NI-MS problem and task T1 of NI-LS,
TLTLA ranked first while EMT-ADT ranked second. The
results show that the proposed EMT-ADT outperforms the
MFEA,MFEARR,AT-MFEA,MTEA-AD,MFDE, TLTLA,
SREMTO and MFMP on 6, 6, 6, 6, 6, 4, 6, 6 optimization
tasks, respectively. Figure 7 shows the convergence curves
of the mean fitness values obtained by each algorithm on no
intersection problems. As can be seen in Fig. 7, compared
with the eight competitive algorithms, EMT-ADT algorithm
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(a) CI-HS: T1                                     (b) CI-HS: T2

(c) CI-MS: T1                                    (d) CI-MS: T2

(e) CI-LS: T1                                       (f) CI-LS: T2
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Fig. 5 Convergence curves of the average fitness values obtained byMFEA,MFEARR, AT-MFEA,MTEA-AD,MFDE, TLTLA, SREMTO,MFMP
and EMT-ADT on complete intersection problems

converges faster on all tasks except task T2 of NI +MS prob-
lem and task T1 of NI + LS problem.

Adaptive knowledge transfer analysis

To evaluate the effectiveness of the proposed adaptive knowl-
edge transfer, EMT-ADT is compared with the algorithm
without adaptive knowledge transfer (EMT) on 3 represen-
tative CEC2017 multitask problems including CI + MS, PI
+ MS and NI + MS. As explained before, if the offspring
generated with adaptive knowledge transfer has better per-
formance than its parent, it is referred to as positive transfer.
Figure 8 shows the convergence curves of the mean fitness

values obtained by EMT-ADT and EMT on test problems CI
+ MS, PI + MS and NI + MS. Figure 9 shows the mean
number of the transferred individuals during evolution in
EMT-ADT on test problems CI + MS, PI + MS and NI +
MS. In Fig. 9, red circles and blue stars denote the num-
ber of transferred individuals in the process of evolution on
task T1 and task T2, respectively. As seen in Figs. 8 and 9,
EMT-ADToutperformsEMT in terms of the solution quality,
which demonstrates that adaptive knowledge transfer strat-
egy can improve the performance of the algorithm.
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(a) PI-HS: T1 T2

(c) PI-MS: T1

                                       (b) PI-HS: 

                                       (d) PI-MS: T2
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(e) PI-LS: T1                                      (f) PI-LS: T2
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Fig. 6 Convergence curves of the average fitness values obtained byMFEA,MFEARR, AT-MFEA,MTEA-AD,MFDE, TLTLA, SREMTO,MFMP
and EMT-ADT on partial intersection problems

Comparisons onWCCI20-MSTO

To investigate the performance on more complex multitask-
ing problems, the proposed EMT-ADT is further compared
with eight state-of-the-art multitasking optimization algo-
rithms on WCCI20-MSTO benchmark suite. Tables 11 and
12 show the comparative results of nine algorithms in terms
of mean fitness.

As canbe seen fromTables 11 and12,EMT-ADTobtained
17 best values out of 20 WCCI20-MTSO test instances.
MFEA, MFEARR and MTEA-AD perform well on prob-
lem P8. SREMTO achieves the best value on the Task T1 of
problem P9. The last rows of Tables 11 and 12 imply that

EMT-ADT performs significantly better than the eight com-
petitors over almost all the test instances.

Figure 10 plots the trajectory of the mean fitness ver-
sus the number of function evaluations in each algorithm on
WCCI20-MSTO benchmark suite. As seen in Fig. 10, EMT-
ADT demonstrates a clear advantage over eight competitors.

Comparisons onWCCI20-MaTSO

The mean fitness values obtained by nine algorithms on
WCCI20-MaTSO are shown in Table 13. It is clear that
EMT-ADT show obvious advantage over the competitors.
More specifically, EMT-ADT significantly outperforms the
eight competitors on 94 instances out of 100 instances. The
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(a) NI-HS: T1 :SH-IN)b( T2

(c) NI-MS: T1 :SM-IN)d( T2

(e) NI-LS: T1 :SL-IN)f( T2
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Fig. 7 Convergence curves of the average fitness values obtained byMFEA,MFEARR, AT-MFEA,MTEA-AD,MFDE, TLTLA, SREMTO,MFMP
and EMT-ADT on no intersection problems

last row of Table 13 shows that the proposed EMT-ADT
outperforms the MFEA, MFEARR, AT-MFEA, MTEA-AD,
MFDE, TLTLA, SREMTO and MFMP on 94, 94, 95, 94,
100, 94, 94 and 100 optimization tasks, respectively.

Comparisons with single-task algorithms

Multitasking optimization algorithm makes full use of pos-
itive knowledge based on sharing solutions across tasks,
which can improve convergence and solution quality. To ver-
ify the competitiveness of the proposed algorithm, a series
of experiments are conducted against two state-of-the-art
single-task methods, i.e. SHADE and LSHADE. SHADE

is an adaptive DE characterized by introducing success-
history based parameter adaptation, while LSHADE is an
improvement of SHADE. The performance of EMT-ADT,
SHADE and LSHADE on CEC2017 benchmark problems
and WCCI20_MTSO benchmark problems are summarized
in Tables 14 and 15.

As can be observed in Table 14, EMT-ADT achieves supe-
rior performance in terms of solution quality on almost all
the CEC2017 benchmarks. More specifically, the proposed
EMT-ADTwins 17 out of the 18 competitions,which demon-
strates that the implicit knowledge transfer across tasks in
multitasking is beneficial for improving the performance of
EMT-ADT. From Table 15, it can be seen that EMT-ADT
works well on more complex multitasking benchmark suits

123



Complex & Intelligent Systems (2023) 9:6697–6728 6713

Fig. 8 Convergence curves of the mean fitness values obtained by EMT-ADT and EMT on CI + MS, PI + MS and NI + MS

WCCI20_MTSO, better than the values obtained by SHADE
and LSHADE, i.e., SHADE and LSHADE got the best result
on 0 and 3 instances.

Statistical analysis

In this section, the multiple-problem Wilcoxon’s test is used
to compare the significant difference (p value) between the
competitor algorithmandEMT-ADT,while theFriedman test
is used to rank the significance of the compared algorithms
statistically. Table 16 shows that EMT-ADT provides higher
R + values than MFEA, MFEARR, AT-MFEA, MTEA-AD,
MFDE, TLTLA, SREMTO and MFMP. The p values of
MFEA, MFEARR, AT-MFEA, MTEA-AD, SREMTO and
MFMP are less than 0.05, which indicates that the proposed

EMT-ADT considerably wins these competitors. For PI +
HS, PI + MS and PI + LS problems, the p values of MFDE
and TLTLA are greater than 0.05, which indicates that the
performance ofMFDE and TLTLA is similar to that of EMT-
ADT on these problems. For NI + HS, NI + MS and NI + LS
problems, the p value of TLTLA is greater than 0.05, which
indicates that the performance of TLTLA is similar to that of
EMT-ADT on these problems. Furthermore, Table 17 shows
the average rank and the overall rank of the compared algo-
rithms for CEC2017multitask problems. In sum, the average
performance of EMT-ADT is first rank on all test problem.

Figure 11 visually shows the ranking of the EMT-ADT
and competitor algorithms for CEC2017multitask problems.
The left side demonstrates the ranking of nine algorithms on
CEC2017 multitask problems, while the right side illustrates
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Fig. 9 Curves of the mean
number of the transferred
individuals during evolution in
EMT-ADT on three test
problems. a CI-MS, b PI-MS,
c NI-MS
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Table 11 Mean fitness values
obtained by MFEA, MFEARR,
AT-MFEA, MTEA-AD and
EMT-ADT on WCCI20-MTSO

Problem Task MFEA MFEARR AT-MFEA MTEA-AD EMT_ADT

P1 T1 6.57E + 02† 6.39E + 02† 6.28E + 02† 6.32E + 02† 6.00E + 02

T2 6.55E + 02† 6.38E + 02† 6.25E + 02† 6.32E + 02† 6.00E + 02

P2 T1 7.01E + 02† 7.01E + 02† 7.00E + 02† 7.01E + 02† 7.00E + 02

T2 7.01E + 02† 7.01E + 02† 7.00E + 02† 7.01E + 02† 7.00E + 02

P3 T1 1.57E + 06† 1.53E + 06† 9.67E + 05† 1.37E + 06† 4.97E + 03

T2 1.57E + 06† 3.27E + 06† 1.12E + 06† 1.31E + 06† 4.72E + 03

P4 T1 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03

T2 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03

P5 T1 1.53E + 03† 1.56E + 03† 1.52E + 03† 1.52E + 03† 1.51E + 03

T2 1.53E + 03† 1.55E + 03† 1.51E + 03† 1.52E + 03† 1.51E + 03

P6 T1 1.28E + 06† 1.06E + 06† 7.66E + 05† 7.17E + 05† 4.85E + 03

T2 7.53E + 05† 1.14E + 06† 4.58E + 05† 6.33E + 05† 5.90E + 03

P7 T1 2.74E + 03† 3.04E + 03† 2.61E + 03† 2.72E + 03† 2.25E + 03

T2 2.95E + 03† 3.09E + 03† 2.89E + 03† 2.89E + 03† 2.38E + 03

P8 T1 5.20E + 02– 5.20E + 02– 5.21E + 02† 5.20E + 02– 5.21E + 02

T2 5.20E + 02– 5.20E + 02– 5.21E + 02† 5.20E + 02– 5.21E + 02

P9 T1 7.89E + 03† 8.58E + 03† 6.64E + 03≈ 6.91E + 03† 6.42E + 03

T2 1.62E + 03† 1.62E + 03† 1.62E + 03† 1.62E + 03† 1.62E + 03

P10 T1 1.23E + 04† 2.45E + 04† 1.69E + 04† 1.78E + 04† 2.20E + 03

T2 1.09E + 06† 5.90E + 05† 1.18E + 06† 9.17E + 05† 6.62E + 03

†/≈/– 18/0/2 18/0/2 19/1/0 18/0/2 /

The best solutions are highlighted in bold

Table 12 Mean fitness values
obtained by MFDE, TLTLA,
SREMTO, MFMP and
EMT-ADT on WCCI20-MTSO

Problem Task MFDE TLTLA SREMTO MFMP EMT_ADT

P1 T1 6.24E + 02† 6.17E + 02† 6.30E + 02† 6.01E + 02† 6.00E + 02

T2 6.25E + 02† 6.19E + 02† 6.30E + 02† 6.01E + 02† 6.00E + 02

P2 T1 7.00E + 02† 7.01E + 02† 7.01E + 02† 7.00E + 02† 7.00E + 02

T2 7.00E + 02† 7.01E + 02† 7.01E + 02† 7.00E + 02≈ 7.00E + 02

P3 T1 5.28E + 07† 1.57E + 06† 1.14E + 06† 7.02E + 03† 4.97E + 03

T2 5.29E + 07† 1.89E + 06† 8.81E + 05† 6.50E + 03† 4.72E + 03

P4 T1 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03

T2 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03† 1.30E + 03

P5 T1 1.54E + 03† 1.52E + 03† 1.52E + 03† 1.51E + 03† 1.51E + 03

T2 1.54E + 03† 1.52E + 03† 1.52E + 03† 1.51E + 03† 1.51E + 03

P6 T1 2.12E + 07† 7.72E + 05† 5.92E + 05† 8.17E + 03† 4.85E + 03

T2 2.05E + 07† 6.86E + 05† 5.22E + 05† 7.28E + 03† 5.90E + 03

P7 T1 4.49E + 03† 2.64E + 03† 2.63E + 03† 2.38E + 03† 2.25E + 03

T2 4.61E + 03† 2.81E + 03† 2.79E + 03† 2.54E + 03† 2.38E + 03

P8 T1 5.21E + 02† 5.21E + 02† 5.21E + 02† 5.21E + 02† 5.21E + 02

T2 5.21E + 02† 5.21E + 02† 5.21E + 02† 5.21E + 02† 5.21E + 02

P9 T1 1.46E + 04† 6.65E + 03≈ 6.37E + 03≈ 7.10E + 03† 6.42E + 03

T2 1.62E + 03† 1.62E + 03† 1.62E + 03† 1.62E + 03† 1.62E + 03

P10 T1 7.37E + 04† 2.18E + 04† 1.84E + 04† 2.25E + 03† 2.20E + 03

T2 2.17E + 07† 1.13E + 06† 6.78E + 05† 1.10E + 04† 6.62E + 03

†/≈/– 20/0/0 19/1/0 19/1/0 19/1/0 /

The best solutions are highlighted in bold
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Fig. 10 Convergence curves of the average fitness values obtained by MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO,
MFMP and EMT-ADT on WCCI20-MTSO
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Fig. 10 continued
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Fig. 10 continued

the bar chart of average ranking of nine algorithms. Since
the size of EMT-ADT in radar graph is smaller than that of
other compared algorithms, it indicates that the EMT-ADT is
competitive. Moreover, EMT-ADT has the shortest bar in the
bar chart, which demonstrates that the EMT-ADT is superior
to other competitor algorithms.

Population size sensitivity analysis

Population size has a considerable bearing on the rate of
convergence. Generally, large population size may slow
the convergence rate, while small population may promote
a faster convergence [34]. In the proposed algorithm, the
parameter γ represents the dispersion degree of population
convergence, which is used to control the population size. To
analyze the effects of the parameter γ on the performance
of EMT-ADT, firstly, the degree of dispersion (DOD) of the
population is defined as follows.

G �
∑N

i�1xi
N

(14)

DOD �
∑N

i�1‖G − xi‖2
N

(15)

where xi is the ith individual in the population P, and N is
the population size.

Figure 12 shows the degree of dispersion obtained by
EMT-ADT on CEC2017 multitask problems. As seen from
Fig. 12, the dispersion of the population is different during
the evolution process for different problems with different
tasks. To determine the parameter γ for better performance
of EMT-ADT, CI + MS, PI + MS and NI + MS problems are
selected to test the performance of EMT-ADT with different
values of the parameter γ , i.e. γ � 0.0005, γ � 0.001, γ �
0.005, γ � 0.01, γ � 0.015, on all tasks.

Figure 13 and Table 18 respectively show the convergence
curves and the ranking results on CI + MS, PI + MS and NI
+ MS problems with different values of the parameter γ . As
can be seen in Fig. 13 and Table 18, the algorithm performs
better with γ � 0.001. Therefore, γ is set to 0.001 in the
proposed algorithm.

As mentioned before, the population size is adjusted at
γ � 0.001, the algorithm performs the best. Since the dis-
persion of the population is different during the evolution
process for different problems with different tasks, the mean
dispersion degree of the population on nine CEC2017 multi-
task problems is calculated, as seen in Fig. 14. The location
of red circle is recorded as (FES, γ ), which represents the
time when the population is adjusted. Therefore, when FES
is 50,000, that is FES/MAXFES � cos(γ )/4, the population
size should be adjusted to achieve better performance.
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Table 13 Mean fitness values obtained by MFEA, MFEARR, AT-MFEA, MTEA-AD, MFDE, TLTLA, SREMTO, MFMP and EMT-ADT on
WCCI20-MaTSO

Problem Task MFEA MFEARR AT-MFEA MTEA-AD MFDE TLTLA SREMTO MFMP EMT-ADT

P1 T1 1.19E + 02† 1.59E + 02† 3.06E−01† 2.28E + 02† 2.18E + 01† 1.15E + 02† 4.65E + 02† 8.36E−17† 8.35E−20

T2 1.10E + 02† 1.52E + 02† 3.22E−01† 2.31E + 02† 1.67E + 01† 1.14E + 02† 4.87E + 02† 4.50E−17† 2.58E−19

T3 1.29E + 02† 1.74E + 02† 3.38E−01† 2.35E + 02† 1.95E + 01† 1.26E + 02† 4.94E + 02† 1.10E−16† 6.49E−18

T4 1.49E + 02† 1.85E + 02† 3.69E−01† 2.67E + 02† 1.66E + 01† 1.32E + 02† 5.03E + 02† 2.13E−16† 2.30E−20

T5 1.29E + 02† 1.59E + 02† 3.58E−01† 2.38E + 02† 1.98E + 01† 1.21E + 02† 4.74E + 02† 8.61E−17† 1.14E−20

T6 1.26E + 02† 1.76E + 02† 3.10E−01† 2.46E + 02† 2.34E + 01† 1.26E + 02† 4.58E + 02† 7.86E−17† 1.16E−18

T7 1.32E + 02† 1.59E + 02† 3.48E−01† 2.49E + 02† 2.00E + 01† 1.38E + 02† 5.20E + 02† 6.02E−17† 1.26E−17

T8 1.37E + 02† 1.75E + 02† 3.18E−01† 2.81E + 02† 2.01E + 01† 1.31E + 02† 5.30E + 02† 2.14E−16† 4.37E−18

T9 1.10E + 02† 1.62E + 02† 3.10E−01† 2.81E + 02† 1.83E + 01† 1.18E + 02† 5.16E + 02† 6.78E−17† 4.47E−20

T10 1.20E + 02† 1.62E + 02† 3.28E−01† 2.28E + 02† 2.03E + 01† 1.26E + 02† 5.11E + 02† 1.08E−16† 6.54E−18

P2 T1 8.58E + 04† 5.06E + 04† 3.63E + 02† 9.51E + 04† 2.73E + 04† 3.17E + 04† 3.11E + 05† 4.42E + 01† 4.10E + 01

T2 5.76E + 04† 3.42E + 04† 2.15E + 02† 8.94E + 04† 1.14E + 04† 1.78E + 04† 2.23E + 05† 8.85E + 01† 3.95E + 01

T3 9.75E + 04† 4.40E + 04† 1.76E + 02† 1.09E + 05† 1.75E + 04† 3.15E + 04† 3.01E + 05† 5.34E + 01† 4.28E + 01

T4 9.09E + 04† 3.89E + 04† 2.02E + 02† 1.02E + 05† 2.40E + 04† 2.56E + 04† 2.99E + 05† 4.52E + 01† 4.24E + 01

T5 7.01E + 04† 4.93E + 04† 3.66E + 02† 8.89E + 04† 1.08E + 04† 1.92E + 04† 2.92E + 05† 6.83E + 01† 4.33E + 01

T6 1.28E + 05† 4.07E + 04† 2.43E + 02† 1.35E + 05† 1.32E + 04† 2.13E + 04† 2.83E + 05† 4.56E + 01† 4.34E + 01

T7 6.82E + 04† 5.15E + 04† 8.09E + 01† 1.10E + 05† 1.13E + 04† 2.95E + 04† 2.87E + 05† 4.72E + 01† 4.41E + 01

T8 1.07E + 05† 4.36E + 04† 1.45E + 02† 1.04E + 05† 1.50E + 04† 2.92E + 04† 3.00E + 05† 5.09E + 01† 4.16E + 01

T9 6.18E + 04† 4.72E + 04† 1.25E + 03† 8.24E + 04† 8.64E + 03† 2.06E + 04† 2.61E + 05† 4.52E + 01† 4.30E + 01

T10 8.50E + 04† 5.78E + 04† 1.74E + 02† 1.32E + 05† 1.34E + 04† 3.02E + 04† 2.83E + 05† 4.47E + 01† 3.78E + 01

P3 T1 6.09E + 02† 5.72E + 02† 3.99E + 02† 5.36E + 02† 4.42E + 02† 5.89E + 02† 8.09E + 02† 1.54E + 02† 1.30E + 02

T2 5.67E + 02† 5.74E + 02† 3.83E + 02† 5.40E + 02† 4.57E + 02† 5.53E + 02† 7.34E + 02† 1.54E + 02† 1.34E + 02

T3 5.96E + 02† 5.93E + 02† 4.00E + 02† 5.75E + 02† 4.44E + 02† 5.67E + 02† 7.76E + 02† 1.53E + 02† 1.33E + 02

T4 6.21E + 02† 6.61E + 02† 4.02E + 02† 5.32E + 02† 4.48E + 02† 5.84E + 02† 8.10E + 02† 1.59E + 02† 1.34E + 02

T5 6.07E + 02† 6.04E + 02† 3.92E + 02† 5.19E + 02† 4.43E + 02† 6.31E + 02† 7.73E + 02† 1.58E + 02† 1.33E + 02

T6 5.81E + 02† 5.90E + 02† 3.52E + 02† 5.30E + 02† 4.60E + 02† 6.23E + 02† 7.88E + 02† 1.53E + 02† 1.22E + 02

T7 6.03E + 02† 6.17E + 02† 4.07E + 02† 5.04E + 02† 4.57E + 02† 5.98E + 02† 8.19E + 02† 1.60E + 02† 1.21E + 02

T8 6.13E + 02† 5.89E + 02† 4.04E + 02† 5.50E + 02† 4.59E + 02† 6.69E + 02† 7.38E + 02† 1.57E + 02† 1.34E + 02

T9 6.20E + 02† 5.76E + 02† 3.87E + 02† 5.51E + 02† 4.61E + 02† 6.19E + 02† 7.54E + 02† 1.55E + 02† 1.32E + 02

T10 6.22E + 02† 5.91E + 02† 4.17E + 02† 5.50E + 02† 4.57E + 02† 6.45E + 02† 7.67E + 02† 1.48E + 02† 1.11E + 02

P4 T1 2.09E + 02† 3.24E + 02† 2.06E−01† 7.23E + 02† 2.16E + 01† 1.79E + 02† 5.09E + 02† 1.19E−16† 3.26E−18

T2 1.49E + 05† 1.36E + 05† 9.91E + 01† 5.45E + 05† 1.45E + 04† 1.14E + 05† 2.48E + 05† 5.17E + 01† 3.97E + 01

T3 6.31E + 00† 7.19E + 00† 4.70E−01† 8.88E + 00† 3.59E + 00† 6.26E + 00† 8.15E + 00† 2.89E−10† 1.82E−11

T4 1.75E + 02† 3.26E + 02† 2.86E−01† 7.52E + 02† 1.61E + 01† 1.79E + 02† 5.63E + 02† 3.58E−16† 1.96E−17

T5 1.65E + 05† 1.55E + 05† 1.04E + 02† 3.45E + 05† 3.53E + 03† 8.74E + 04† 2.28E + 05† 6.22E + 01† 4.28E + 01

T6 6.30E + 00† 6.96E + 00† 5.30E−01† 8.51E + 00† 3.58E + 00† 5.95E + 00† 8.43E + 00† 2.62E−09† 3.01E−11

T7 1.80E + 02† 3.33E + 02† 3.69E−01† 7.84E + 02† 1.76E + 01† 1.88E + 02† 5.69E + 02† 1.74E−16† 2.05E−17

T8 8.88E + 04† 1.55E + 05† 9.12E + 01† 4.12E + 05† 2.72E + 04† 5.20E + 04† 2.92E + 05† 4.49E + 01† 4.01E + 01

T9 6.30E + 00† 6.97E + 00† 4.29E−01† 8.17E + 00† 3.44E + 00† 5.97E + 00† 8.20E + 00† 8.28E−10† 2.30E−11

T10 1.85E + 02† 3.38E + 02† 3.91E−01† 7.92E + 02† 1.72E + 01† 1.87E + 02† 5.73E + 02† 1.37E−16† 1.18E−20

P5 T1 6.66E + 02† 7.34E + 02† 4.14E + 02† 6.94E + 02† 4.46E + 02† 6.80E + 02† 8.57E + 02† 1.60E + 02† 1.33E + 02

T2 1.04E + 00† 1.09E + 00† 5.82E−02† 1.22E + 00† 5.33E−01† 1.04E + 00† 1.15E + 00† 7.81E−13† 4.66E−15

T3 4.17E + 01† 4.42E + 01† 6.15E + 00† 3.86E + 01† 1.70E + 01† 3.63E + 01† 4.28E + 01† 1.71E + 00† 1.11E + 00

T4 7.42E + 02† 6.82E + 02† 4.00E + 02† 7.10E + 02† 4.52E + 02† 6.91E + 02† 8.06E + 02† 1.59E + 02† 1.24E + 02

T5 1.05E + 00† 1.08E + 00† 7.60E−02† 1.23E + 00† 5.33E−01† 1.04E + 00† 1.14E + 00† 7.40E−04† 5.11E−15

T6 4.53E + 01† 4.42E + 01† 4.50E + 00† 3.77E + 01† 1.77E + 01† 3.57E + 01† 4.07E + 01† 1.55E + 00† 9.76E−01

T7 7.12E + 02† 7.73E + 02† 4.04E + 02† 7.14E + 02† 4.44E + 02† 7.02E + 02† 8.30E + 02† 1.61E + 02† 1.43E + 02

T8 1.04E + 00† 1.08E + 00† 9.07E−02† 1.20E + 00† 5.42E−01† 1.04E + 00† 1.15E + 00† 1.27E−12† 3.11E−15

T9 4.14E + 01† 4.44E + 01† 3.57E + 00† 3.84E + 01† 1.79E + 01† 3.40E + 01† 4.16E + 01† 1.96E + 00† 1.13E + 00

T10 7.31E + 02† 7.02E + 02† 4.11E + 02† 7.07E + 02† 4.49E + 02† 7.09E + 02† 8.05E + 02† 1.72E + 02† 1.47E + 02
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Table 13 (continued)

Problem Task MFEA MFEARR AT-MFEA MTEA-AD MFDE TLTLA SREMTO MFMP EMT-ADT

P6 T1 9.88E + 04† 1.50E + 05† 1.91E + 02† 6.13E + 05† 1.64E + 04† 6.44E + 04† 2.03E + 05† 4.47E + 01† 4.22E + 01

T2 1.04E + 00† 1.10E + 00† 4.89E−02† 1.23E + 00† 5.36E−01† 1.05E + 00† 1.14E + 00† 8.90E−06† 1.82E−14

T3 7.91E + 03– 8.26E + 03– 9.74E + 03† 6.65E + 03– 1.33E + 04† 7.88E + 03– 8.14E + 03– 9.88E + 03† 9.42E + 03

T4 1.69E + 05† 3.05E + 05† 2.82E + 02† 6.23E + 05† 4.76E + 04† 1.29E + 05† 3.20E + 05† 5.89E + 01† 3.45E + 01

T5 1.04E + 00† 1.09E + 00† 5.16E−02† 1.22E + 00† 5.17E−01† 1.05E + 00† 1.15E + 00† 3.20E−12† 2.66E−15

T6 7.79E + 03– 7.98E + 03– 6.89E + 03– 7.33E + 03– 1.35E + 04† 8.15E + 03– 7.77E + 03– 9.87E + 03† 9.40E + 03

T7 1.10E + 05† 1.73E + 05† 2.22E + 02† 6.19E + 05† 6.93E + 03† 1.33E + 05† 3.12E + 05† 4.40E + 01† 4.10E + 01

T8 1.04E + 00† 1.10E + 00† 7.83E−02† 1.23E + 00† 5.06E−01† 1.05E + 00† 1.14E + 00† 2.82E−12† 1.67E−15

T9 8.03E + 03– 8.06E + 03– 6.42E + 03– 7.44E + 03– 1.30E + 04† 7.81E + 03– 8.47E + 03≈ 1.00E + 04† 8.76E + 03

T10 4.87E + 04† 1.39E + 05† 3.82E + 03† 7.58E + 05† 2.53E + 03† 7.75E + 04† 3.76E + 05† 5.52E + 01† 4.29E + 01

P7 T1 6.72E + 00† 7.23E + 00† 4.25E−01† 8.86E + 00† 3.84E + 00† 5.96E + 00† 9.49E + 00† 6.21E−10† 1.12E−11

T2 7.05E + 02† 7.47E + 02† 4.05E + 02† 6.91E + 02† 4.60E + 02† 7.40E + 02† 8.30E + 02† 1.66E + 02† 1.42E + 02

T3 4.39E + 01† 4.74E + 01† 4.03E + 00† 3.79E + 01† 2.04E + 01† 4.11E + 01† 4.57E + 01† 1.91E + 00† 5.85E−01

T4 6.54E + 00† 7.39E + 00† 3.75E−01† 8.75E + 00† 3.80E + 00† 6.21E + 00† 9.58E + 00† 6.59E−09† 3.51E−11

T5 7.15E + 02† 6.72E + 02† 4.14E + 02† 6.77E + 02† 4.57E + 02† 6.73E + 02† 7.65E + 02† 1.66E + 02† 1.45E + 02

T6 4.14E + 01† 4.35E + 01† 3.63E + 00† 3.91E + 01† 1.80E + 01† 3.81E + 01† 4.42E + 01† 2.37E + 00† 1.13E + 00

T7 6.52E + 00† 7.06E + 00† 3.25E−01† 8.76E + 00† 3.95E + 00† 6.14E + 00† 9.62E + 00† 8.79E−02† 2.10E−11

T8 7.15E + 02† 7.51E + 02† 4.03E + 02† 6.57E + 02† 4.45E + 02† 6.79E + 02† 7.71E + 02† 1.60E + 02† 1.19E + 02

T9 4.17E + 01† 4.04E + 01† 4.97E + 00† 3.76E + 01† 1.83E + 01† 3.45E + 01† 4.19E + 01† 1.68E + 00† 5.20E−01

T10 6.53E + 00† 7.25E + 00† 3.47E−01† 8.74E + 00† 3.68E + 00† 6.12E + 00† 9.18E + 00† 2.80E−09† 1.37E−11

P8 T1 1.07E + 05† 2.65E + 05† 5.98E + 01† 4.98E + 05† 2.25E + 04† 1.30E + 05† 3.99E + 05† 4.49E + 01† 4.06E + 01

T2 2.03E + 01† 2.04E + 01† 5.55E−01† 1.38E + 01† 1.28E + 01† 2.02E + 01† 2.05E + 01† 7.15E−10† 5.07E−11

T3 7.53E + 02† 7.89E + 02† 4.06E + 02† 7.38E + 02† 4.44E + 02† 7.64E + 02† 8.15E + 02† 1.60E + 02† 1.14E + 02

T4 1.05E + 00† 1.12E + 00† 6.07E−02† 1.23E + 00† 4.86E−01† 1.06E + 00† 1.23E + 00† 7.40E−04† 8.22E−15

T5 5.18E + 01† 5.02E + 01† 5.10E + 00† 4.28E + 01† 3.69E + 01† 4.96E + 01† 5.23E + 01† 4.17E + 00† 1.93E + 00

T6 1.08E + 05† 3.01E + 05† 2.36E + 02† 8.46E + 05† 1.11E + 04† 8.51E + 04† 8.33E + 05† 5.68E + 01† 4.29E + 01

T7 2.03E + 01† 2.04E + 01† 5.12E−01† 1.39E + 01† 9.35E + 00† 1.50E + 01† 2.05E + 01† 1.82E−08† 6.67E−11

T8 7.21E + 02† 7.72E + 02† 3.81E + 02† 7.01E + 02† 4.48E + 02† 7.71E + 02† 9.14E + 02† 1.69E + 02† 1.46E + 02

T9 1.06E + 00† 1.12E + 00† 5.13E−02† 1.20E + 00† 4.96E−01† 1.06E + 00† 1.23E + 00† 2.01E−12† 3.55E−15

T10 4.98E + 01† 4.81E + 01† 1.12E + 01† 4.04E + 01† 3.65E + 01† 5.00E + 01† 5.58E + 01† 5.03E + 00† 1.70E + 00

P9 T1 1.01E + 05† 2.54E + 05† 3.22E + 02† 9.15E + 05† 1.52E + 04† 6.92E + 04† 5.73E + 05† 1.34E + 02† 4.20E + 01

T2 2.03E + 01† 2.04E + 01† 5.13E−01† 1.09E + 01† 8.26E + 00† 1.62E + 01† 2.04E + 01† 4.03E−09† 3.86E−11

T3 7.24E + 02† 8.00E + 02† 3.66E + 02† 7.31E + 02† 4.50E + 02† 7.65E + 02† 8.26E + 02† 1.76E + 02† 1.61E + 02

T4 1.06E + 00† 1.11E + 00† 7.90E−02† 1.28E + 00† 4.60E−01† 1.06E + 00† 1.18E + 00† 4.13E−14† 2.11E−15

T5 5.36E + 01† 5.16E + 01† 3.05E + 01† 4.03E + 01† 3.23E + 01† 5.31E + 01† 5.43E + 01† 3.81E + 00† 9.24E−01

T6 6.61E + 03– 5.98E + 03– 3.54E + 03– 5.80E + 03– 1.27E + 04† 6.50E + 03– 6.21E + 03– 8.44E + 03† 7.66E + 03

T7 1.16E + 05† 3.88E + 05† 2.92E + 02† 8.82E + 05† 1.23E + 04† 2.52E + 05† 7.28E + 05† 5.28E + 01† 4.21E + 01

T8 2.03E + 01† 1.91E + 01† 4.82E−01† 1.08E + 01† 5.64E + 00† 2.02E + 01† 2.03E + 01† 1.87E−10† 3.31E−11

T9 7.15E + 02† 8.05E + 02† 3.87E + 02† 7.48E + 02† 4.58E + 02† 6.93E + 02† 8.83E + 02† 1.63E + 02† 1.44E + 02

T10 1.05E + 00† 1.11E + 00† 5.64E−02† 1.30E + 00† 4.62E−01† 1.06E + 00† 1.22E + 00† 4.79E−12† 1.67E−15

P10 T1 2.03E + 01† 2.03E + 01† 3.07E−01† 1.29E + 01† 1.35E + 01† 1.87E + 01† 2.04E + 01† 2.52E−10† 3.64E−11

T2 7.35E + 02† 8.17E + 02† 2.46E + 02† 7.33E + 02† 4.37E + 02† 7.43E + 02† 7.80E + 02† 1.64E + 02† 1.44E + 02

T3 1.06E + 00† 1.11E + 00† 5.79E−02† 1.28E + 00† 5.01E−01† 1.06E + 00† 1.24E + 00† 7.40E−04† 2.66E−15

T4 5.16E + 01† 5.06E + 01† 7.92E + 00† 3.97E + 01† 3.60E + 01† 5.13E + 01† 5.57E + 01† 4.20E + 00† 1.97E + 00

T5 6.30E + 03– 6.42E + 03– 4.25E + 03– 5.80E + 03– 1.22E + 04† 6.75E + 03– 6.76E + 03≈ 8.55E + 03† 7.94E + 03

T6 2.03E + 01† 2.04E + 01† 2.34E−01† 1.22E + 01† 1.05E + 01† 2.00E + 01† 2.04E + 01† 5.14E−10† 1.31E−10

T7 7.42E + 02† 9.04E + 02† 4.10E + 02† 7.63E + 02† 4.44E + 02† 7.43E + 02† 8.01E + 02† 1.74E + 02† 1.40E + 02

T8 1.06E + 00† 1.11E + 00† 5.04E−02† 1.24E + 00† 4.93E−01† 1.06E + 00† 1.20E + 00† 5.80E−13† 4.33E−15

T9 5.02E + 01† 5.17E + 01† 1.78E + 01† 4.01E + 01† 3.59E + 01† 4.90E + 01† 5.43E + 01† 4.05E + 00† 2.35E + 00

T10 6.91E + 03– 6.62E + 03– 5.67E + 03– 6.14E + 03– 1.24E + 04† 6.53E + 03– 6.79E + 03– 8.77E + 03† 7.64E + 03

†/≈/– 94/0/6 94/0/6 95/0/5 94/0/6 100/0/0 94/0/6 94/2/4 100/0/0 /

The best solutions are highlighted in bold
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Table 14 Mean fitness values
obtained by SHADE, LSHADE
and EMT-ADT on CEC2017
problems

Problem Task EMT-ADT SHADE LSHADE

P1 T1 0.00E + 00 2.99E−13† 0.00E + 00≈
T2 0.00E + 00 1.59E + 02† 1.16E + 02†

P2 T1 8.88E−16 4.07E−01† 3.00E−14†

T2 0.00E + 00 1.58E + 02† 1.11E + 02†

P3 T1 3.36E−03 2.09E + 01† 2.07E + 01†

T2 6.36E−04 4.60E + 03† 2.42E + 01†

P4 T1 7.72E + 01 1.61E + 02† 1.08E + 02†

T2 0.00E + 00 1.24E−20† 1.13E−27†

P5 T1 7.99E−15 1.91E−01† 2.65E−14†

T2 4.63E + 00 5.69E + 01† 3.13E + 01†

P6 T1 8.88E−16 1.16E−01† 1.58E−14†

T2 1.99E−18 6.18E−03† 1.99E−18≈
P7 T1 3.88E + 00 4.77E + 01† 3.87E + 01†

T2 0.00E + 00 1.58E + 02† 1.11E + 02†

P8 T1 5.26E−16 1.74E−13† 0.00E + 00–

T2 3.10E−01 3.17E + 00† 5.66E−01≈
P9 T1 4.87E + 01 1.62E + 02† 1.14E + 02†

T2 6.36E−04 4.49E + 03† 3.61E + 01†

†/≈/– / 18/0/0 14/3/1

The best solutions are highlighted in bold

Table 15 Mean fitness values
obtained by SHADE, LSHADE
and EMT-ADT on
WCCI20_MTSO problems

Problem Task EMT-ADT SHADE LSHADE

P1 T1 6.00E + 02 6.03E + 02† 6.00E + 02≈
T2 6.00E + 02 6.03E + 02† 6.01E + 02≈

P2 T1 7.00E + 02 7.00E + 02† 7.00E + 02≈
T2 7.00E + 02 7.00E + 02† 7.00E + 02†

P3 T1 4.97E + 03 7.95E + 03† 6.10E + 03≈
T2 4.72E + 03 7.64E + 03† 5.80E + 03†

P4 T1 1.30E + 03 1.30E + 03† 1.30E + 03†

T2 1.30E + 03 1.30E + 03† 1.30E + 03†

P5 T1 1.51E + 03 1.52E + 03† 1.51E + 03†

T2 1.51E + 03 1.52E + 03† 1.52E + 03†

P6 T1 4.85E + 03 1.04E + 04† 6.77E + 03†

T2 5.90E + 03 7.84E + 03† 5.85E + 03≈
P7 T1 2.25E + 03 2.35E + 03† 2.43E + 03†

T2 2.38E + 03 2.51E + 03† 2.54E + 03†

P8 T1 5.21E + 02 5.21E + 02† 5.21E + 02†

T2 5.21E + 02 5.21E + 02† 5.21E + 02†

P9 T1 6.42E + 03 9.87E + 03† 8.17E + 03†

T2 1.62E + 03 1.62E + 03† 1.62E + 03†

P10 T1 2.20E + 03 2.31E + 03† 2.18E + 03–

T2 6.62E + 03 8.09E + 03≈ 5.74E + 03–

†/≈/– / 19/1/0 13/5/2

The best solutions are highlighted in bold
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Table 16 Wilcoxon test results for EMT-ADT on CEC2017 multitask problems

Functions CI + HS & MS & LS PI + HS & MS & LS NI + HS & MS & LS All functions

VS R+ R– p value R+ R– p value R+ R– p value R+ R– p value

MFEA 21.0 0.0 0.021098 21.0 0.0 0.021098 21.0 0.0 0.021098 171.0 0.0 0.00018

MFEARR 21.0 0.0 0.021098 21.0 0.0 0.021098 21.0 0.0 0.021098 171.0 0.0 0.00018

AT-MFEA 21.0 0.0 0.021098 21.0 0.0 0.021098 21.0 0.0 0.021098 171.0 0.0 0.00018

MTEA-AD 21.0 0.0 0.021098 21.0 0.0 0.021098 21.0 0.0 0.021098 171.0 0.0 0.00018

MFDE 21.0 0.0 0.021098 16.0 5.0 0.208413 21.0 0.0 0.021098 161.0 10.0 0.000934

TLTLA 21.0 0.0 0.021098 15.0 6.0 0.294507 14.0 7.0 0.401678 132.0 39.0 0.040671

SREMTO 21.0 0.0 0.021098 21.0 0.0 0.021098 21.0 0.0 0.021098 171.0 10.0 0.00018

MFMP 19.5 1.5 0.046399 15.0 0.0 0.030971 21.0 0.0 0.021098 151.5 1.5 0.000352

Table 17 Average ranking of the
algorithms (Friedman) Functions CI + HS & MS &

LS
PI + HS & MS &
LS

NI + HS & MS &
LS

All functions

Algorithm Ave.
rank

Overall
rank

Ave.
rank

Overall
rank

Ave.
rank

Overall
rank

Ave.
rank

Overall
rank

MFEA 7.25 8 8.3333 9 7.3333 7 7.6389 8

MFEARR 7.5833 9 8.1667 8 7.6667 8 7.8056 9

AT-MFEA 5.6667 5 5 5 4.8333 5 5.1667 5

MTEA-AD 6.1667 6 6 6 6 6 6.0556 6

MFDE 4.5 4 2.8333 3 4.5 4 3.9444 4

TLTLA 3.5 3 3.8333 4 2.3333 2 3.2222 3

SREMTO 6.6667 7 7 7 8.5 9 7.3889 7

MFMP 2.1667 2 2.0833 2 2.3333 2 2.1944 2

EMT-ADT 1.5 1 1.75 1 1.5 1 1.5833 1

Fig. 11 The radar graph and bar charts of different algorithms on CEC2017 multitask problems
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(a) CI-HS                     (b) CI-MS                  (c) CI-LS

(d) PI-HS                      (e) PI-MS                 (f) PI-LS

(g) NI-HS                      (h) NI-MS                 (i) NI-LS
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Fig. 12 The degree of dispersion obtained by EMT-ADT on CEC2017 multitask problems

Results on real-world problems

In this section, two real-world problems called the traveling
salesman problem (TSP) [35] and traveling repairman prob-
lem (TRP) [36] are used to verify the practicability of the
proposed EMT-ADT algorithm. More specifically, TSP and
TRP are constructed as a multitask optimization problem,
which is asked for a tour with minimum cost.

Given a list of n cities and a list of maintenance times for n
cities, TSP aims tominimize the total time to visit these cities,
while TRP aims to minimize the sum of the elapsed times
for all customers that have to wait before being served [37].
Each city is allowed to visit only once, and finally returns
to the origin city. Given a distance matrix C � {c(xi , x j )|i ,
j � 1, 2, . . . , n}, where c(xi, xj) is the distance between
two cities xi and xj. Let x � (x1, x2, . . . , xn) to be a tour,
i.e. a solution of the objective function. P(x1, xn) represents
the path from x1 to xn. For the TSP problem, the total time
ls(p(x1, xn)) from starting city x1 to xn is computed as

ls(p(x1, xn)) �
n−1∑
i�1

c(xi , xi+1) + c(x1, xn) (16)

For the TRP problem, the total time lr (p(x1, xn)) from
starting city x1 to xn is computed as

lr(p(x1, xn)) �
n−1∑
i�1

(
c(xi , xi+1) +

∑i

j�1
r j

)
+ c(x1, xn) + rn

(17)

Generally, a unified representation scheme is used in mul-
titask optimization algorithm, in which every solution is
encoded by a random key between 0 and 1. Since the paths
in TSP and TRP problems should be a set of integers without
duplication, the real number encoding is converted to permu-
tation number encoding. Specifically, all dimension values of
the solution x are sorted in ascending order. Afterwards, the
permutation solution x′ of solution x is obtained according to
the ranking of dimension values. Figure 15 shows a simple
example. For a solution x � (0.21, 0.34, 0.84, 0.67, 0.11,
0.08, 0.55), its permutation solution x′� (3, 4, 7, 6, 2, 1, 5)
denotes that the traveler starts from the third city, visits the
fourth, seventh, sixth, second, first and fifth cities, and then
returns to the third city.

In this experiment, we investigate the EMT-ADT, MFDE,
MFPSO and the MFMP. Ten groups of problems are ran-
domly selected from TSPLIB [38]. Suppose travelers travel
between cities at a speed of 60 km/h. Each group is com-
posed of a TSP test case and a TRP test case. For each test
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(a) CI-MS: T1                                    (b) CI-MS: T2

(c) PI-MS: T1                                       (d) PI-MS: T2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
FES 105

-12

-10

-8

-6

-4

-2

0

2
m
ea
n
lo
g1
0(
O
pt
im
al
V
al
ue
)

γ=0.0005
γ=0.001
γ=0.005
γ=0.01
γ=0.015

0 5 10 15
FES 104

-15

-10

-5

0

5

m
ea
n
lo
g1
0(
O
pt
im
al
V
al
ue
)

γ=0.0005
γ=0.001
γ=0.005
γ=0.01
γ=0.015

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
FES 105

-12

-10

-8

-6

-4

-2

0

2

m
ea
n
lo
g1
0(
O
pt
im
al
V
al
ue
)

γ=0.0005
γ=0.001
γ=0.005
γ=0.01
γ=0.015

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
FES 105

0

2

4

6

8

10

m
ea
n
lo
g1
0(
O
pt
im
al
V
al
ue
)

γ=0.0005
γ=0.001
γ=0.005
γ=0.01
γ=0.015

(e) NI-MS: T1 :SM-IN)f( T2
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Fig. 13 Convergence curves with different γ

Table 18 Ranking of different γ
on CI + MS, PI + MS and NI +
MS problems

γ CI + MS PI + MS NI + MS Ave. rank

T1 T2 T1 T2 T1 T2

γ � 0.0005 4 4 1 4 1 5 3.17

γ � 0.001 2 1 5 1 3 1 2.17

γ � 0.005 5 5 4 5 4 4 4.50

γ � 0.01 1 2 3 2 5 3 2.67

γ � 0.015 3 3 2 3 2 2 2.50
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Table 19 Average time (hours)
spent by the traveler obtained by
each algorithm

Instances Task EMT_ADT MFDE MFPSO MFMP

berlin52 TSP 159.3643486 229.1462823 283.4451226 312.347257

TRP 8656.916011 9869.060957 11,966.12081 10,557.00903

ch130 TSP 498.7551751 508.8042919 670.930163 614.6604992

TRP 62,197.5479 66,509.4319 83,890.50617 73,100.84403

eil51 TSP 9.862641757 11.74736244 18.21326348 16.6438674

TRP 5358.397389 5482.648334 6088.072607 5412.303255

eil76 TSP 20.46134622 17.0673391 34.26721908 32.03857071

TRP 11,206.43997 11,596.42367 13,366.81866 11,439.34994

eil101 TSP 25.56555029 25.95953947 37.96147829 44.53472604

TRP 19,772.36955 20,877.96223 25,110.20341 19,964.23559

kroA100 TSP 956.0707501 984.8757903 2435.276189 1294.539043

TRP 62,854.12605 67,639.09777 139,053.2715 104,441.4754

kroB100 TSP 832.8762773 952.0612095 2317.943192 2060.514439

TRP 62,024.19728 67,160.81999 134,719.4472 113,395.1831

pr76 TSP 2832.830837 3430.747388 5108.208294 7206.661393

TRP 103,938.6386 123,705.6655 201,965.7336 215,881.814

rat99 TSP 59.56985418 61.30108744 41.23388859 102.4018896

TRP 21,927.70112 23,856.41117 24,195.14046 22,098.80504

rd100 TSP 269.5498536 383.716592 769.9456139 703.420969

TRP 34,068.40246 41,033.41973 61,720.5967 52,389.24794

The best solutions are highlighted in bold
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Fig. 14 Mean dispersion degree obtained by EMT-ADT on CEC2017
multitask problems

Solution
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Encode

3 4 7 6 2 1 5

Permutation of City Number

Fig. 15 An example of mapping a solution to a permutation of city
number

case, the average time spent by the traveler obtained by each
algorithm on 30 independent runs is presented in Table 19.

The number following the instance name indicates the num-
ber of city nodes. Table 19 shows that EMT-ADT achieves
a tour with minimum cost against all peer competitors on
almost all the instances. EMT-ADT wins 18 out of the 20
competitions, which demonstrates the superior performance
of the proposed EMT-ADT. Figures 16 and 17 show the opti-
mal TSP tour and the optimal TRP tour obtained by different
algorithms on the eil51 instance, respectively. Experimen-
tal results show that EMT-ADT obtains better solutions than
three state-of-the-art multitasking optimization algorithms.

Conclusions

To enhance the positive knowledge transfer between tasks,
this paper proposed an evolutionary multitasking optimiza-
tion algorithm with adaptive transfer strategy based on the
decision tree (EMT-ADT). A method of quantifying the
transfer ability of individuals is proposed to select individu-
als with high transfer ability. A decision tree is constructed
to predict the transfer ability of individuals in the archive.
Then, individuals with high transfer ability are selected to
conduct knowledge transfer, which can improve the per-
formance of the algorithm. The effectiveness of EMT-ADT
is verified through a comparison with eight state-of-the-art
algorithm, i.e. MFEA, MFEARR, AT-MFEA, MTEA-AD,
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Fig. 16 The optimal TSP tour on the eil51 instance obtained by different algorithms. a EMT-ADT, bMFDE, c MFPSO, d MFMP

MFDE, TLTLA, SREMTO and MFMP. The experimental
results indicated that EMT-ADT performed better on most
CEC2017,WCCI20-MTSOandWCCI20-MaTSOmultitask
problems.

As mentioned in [39], several specific actions are advo-
cated to bright light to the field of evolutionary multitask

optimization. For example, the computational complexity of
evolutionary multitasking methods should be regarded as a
metric for the evaluation of algorithms. Future work will
focus on improving the effectiveness of knowledge transfer
operations between tasks with low correlation, and reduc-
ing the computational complexity formultifactorial problems
with more than two tasks. Moreover, EMT-ADTwill be used
to solve multi-objective multitask optimization problems.
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Fig. 17 The optimal TRP tour on the eil51 instance obtained by different algorithms. a EMT-ADT, bMFDE, c MFPSO, d MFMP
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