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Abstract

This paper aims to support decision-makers improve their ability to accurately capture and represent their judgment in a
wide range of situations. To do this, we propose a new type of fuzzy set called a p, g-cubic quasi-rung orthopair fuzzy set
(p, ¢-CQOFS). The p, g-CQOFS allows for a more flexible and detailed expression of incomplete information through the
use of an additional parameter. The paper describes the concept of p, g-CQOFS and its relationship to other types of fuzzy
sets, introduces score and accuracy functions for p, g-CQOFS and analyzes some of its mathematical properties, defines
the Hamming distance measure between two p, ¢g-CQOFSs and examines some of its important properties, investigates the
basic operations of p, g-CQOFSs and extends these laws to aggregation operators, and introduces weighted averaging and
geometric aggregation operators for combining p, g-cubic quasi-rung orthopair fuzzy data.

Keywords Multi-attribute group decision-making - Cubic fuzzy set - p, g-cubic quasi-rung orthopair fuzzy set - Uncertainty

Introduction

Multi-attribute decision-making (MADM) is a process used
to evaluate and rank alternatives based on multiple conflicting
objectives or in situations with uncertain decisions. MADM
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methods provide a systematic way to analyze and compare
alternatives based on their relative merits and drawbacks.
MADM methods can be applied in fields such as agricul-
ture [1], freight transportation [2], healthcare [3], marketing,
and engineering [4]. In the past, decisions were often made
using numerical data sets that were not sufficient to address
real-life operational situations, leading to inadequate results.
As systems have become more complex over time, it has
become increasingly difficult for decision-makers to han-
dle the uncertainties in the data using traditional methods.
The researchers employed the use of fuzzy sets [5], a type
of mathematical representation in which elements have a
degree of membership in a set rather than a strict binary
classification of belonging or not belonging, to convey the
information in their study. Sometimes, a person might think
that an element belongs to a fuzzy set but they are not com-
pletely sure. In these cases, the person might feel uncertain
or hesitant about whether the element truly belongs to the
fuzzy set or not. Traditional fuzzy sets cannot represent this
type of uncertainty or hesitation because they only use a sin-
gle membership degree. Intuitionistic fuzzy sets (IFSs) [6]
are a generalization of fuzzy sets used to represent uncertain
or imprecise information. In an intuitionistic fuzzy set, each
element also has a non-membership degree, which represents
the degree to which it does not belong to the set. Pythagorean
fuzzy sets (PFSs) [7] are a further extension of intuitionistic
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fuzzy sets, in which each element is also assigned a non-
membership degree between 0 and 1. This allows for a more
nuanced representation of the uncertainty or vagueness asso-
ciated with the membership of an element in the set. recently,
Yager [8] introduced a new type of fuzzy set called a g-rung
orthopair fuzzy set (q-ROFS) to better represent uncertainty.
In this type of fuzzy set, the sum of the qth power mem-
bership and non-membership degrees must be less than or
equal to 1. Numerous scholars have employed the concept of
g-rung orthopair fuzzy sets and proposed various algorithms
for resolving MCDM issues. For example, Deveci et al. [9]
proposed combined compromised solution (CoCoSo) mod-
els based on g-rung orthopair fuzzy sets for selecting suitable
sites for floating offshore wind farms in Norway. Wang et al.
[10] introduced similarity metrics that take into account the
membership degree, non-membership degree, and indeter-
minacy membership degree between g-ROFSs. Deveci et al.
presented a CODAS model based on q-ROFSs to facilitate
the assessment of socially responsible rehabilitation activi-
ties in mining sites. EDAS approach for evaluating supplier
selection in the defense industry was suggested by Giineri and
Deveci [11] using q-ROFSs. Aside from that, various other
authors have introduced distinct techniques, see [12—15], to
address decision-making issues.

The above review of the existing literature reveals that the
majority of studies have focused on the concept and use of
fuzzy sets, interval fuzzy sets, IFS, PFS, and q-ROFS and
how they can be applied in different areas. Later Jun et al.
[16] introduced the concept of cubic sets (CSs), which are
a combination of interval-valued fuzzy numbers and fuzzy
numbers. They also defined some logical operations for these
cubic sets. The inclusion of cubic sets and their associated
logical operations enhanced the power of fuzzy mathematics
by enabling more accurate and detailed representation and
manipulation of uncertain or imprecise data. Using the idea
of CSs, many scholars presented different approaches. For
example, Khan et al. [17] explored the use of cubic aggre-
gation operators in a specific context, while Mahmood et al.
[18] examined the application of cubic hesitant fuzzy sets and
their associated aggregation operators in the decision-making
process. Kaur and Garg [19] proposed cubic intuitionistic
aggregation operators. In this work, they used Bonferroni
mean and proposed a series of aggregation operators under
the cubic intuitionistic fuzzy environment. Abbas et al. [20]
proposed cubic Pythagorean fuzzy sets and presented a series
of aggregation operators to solve multi-criteria decision-
making (MCDM) problems. Amin et al. [21] introduced the
generalized version of cubic Pythagorean fuzzy aggregation
operators. Also, they investigated the flaws and ambigui-
ties of the existing aggregation operators under the cubic
Pythagorean fuzzy environment. Rahim et al. [22] intro-
duced Bonferroni mean aggregation operators in the cubic
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Pythagorean fuzzy environment to deal with MCDM prob-
lems. Zhang et al. [23] introduced cubic g-rung orthopair
fuzzy Heronian mean operators for MADM problems.

Seikh and Mandal [24] generalized the g-rung orthopair
fuzzy concept and presented the idea of p, g-quasi-rung
orthopair fuzzy sets (p, g-QOFS). p, ¢-QOFS improved its
overall power by adding supplementary properties and their
logical operations, which allowed for more accurate repre-
sentation and manipulation of uncertain or imprecise data.
Furthermore, Gul and Ak [25] presented the notions of 3,
4-quasi-rung orthopair fuzzy sets. However, above the theo-
ries contain only the information in the form of membership
intervals and do not stress the non-membership portion of the
data entities, which also play an equivalent role in assessing
the alternative in the decision-making process. In practice,
it can be challenging to accurately express the value of a
membership function within a fuzzy set.

After analyzing the previous discussions, it becomes
apparent that the current fuzzy sets have specific limitations.
For instance, the cubic Intuitionistic Fuzzy Set (CIFS) is
restricted to the condition that the sum of membership degree
(ﬁg ) and non-membership degree (Iﬂg ) must be less than or
equal to 1, which hinders its ability to capture uncertainty
in certain scenarios. Similarly, the Cubic Pythagorean Fuzzy
Set (CPFS) is restricted to (19GU)2 + (wg)z < 1, limiting
its accuracy and precision in certain applications. Another
example is the Cubic Fermatean Fuzzy Set (CFFS), which
is restricted to (ﬁg )3 + (wg )3 < 1, making it less suitable
for situations that involve high levels of uncertainty. Where
ﬁg and wg are the Furthermore, in the case of the cubic g-
rung orthopair fuzzy set, decision-makers face a limitation in
that they are required to assign the same value of g for both
membership and non-membership values of an element. This
constraint can lead to a lack of flexibility and may not accu-
rately reflect the decision-maker’s preferences and beliefs.

To overcome the limitations of the current cubic fuzzy
sets, we have introduced a new extension known as the
p, q-CROFSs. This new set allows for greater flexibil-
ity by relaxing the previous constraints, such that the sum
of the pth power of membership and gth power of non-
membership can be less than or equal to 1, represented
by the condition (3Y)” + (y¢)? < 1 with p, ¢ > 1.
Also, p can be equal to ¢, greater than g, or less than q.
This modification provides decision-makers with a wider
range of possibilities in capturing uncertainty, enabling them
to model complex scenarios with greater accuracy and
precision. The p, g-CQOFSs), which represent member-
ship degrees in two parts: p, g-interval-valued quasi-rung
orthopair fuzzy (p, g-IVQOF) value and a p, g-quasi-rung
orthopair fuzzy (p, ¢-QOF) value which have more infor-
mation than the general p, ¢g-QOF set because it includes
information from both of these sets. Based on these new
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sets, some aggregation operators called the p, g-cubic quasi-
rung orthopair fuzzy weighted averaging (p, g-CQOFWA)
and p, g-cubic quasi-rung orthopair fuzzy weighted geo-
metric (p, g-CQOFWG) operators are defined to aggregate
the preferences of decision-makers that take into account the
relationship between various criteria in the decision-making
process when dealing with p, ¢g-CQOF information. Further,
some basic properties of the proposed operators have been
discussed in detail. Some existing aggregation operators are
discussed and the results are compared with the results of
proposed operators which suggests that the presented opera-
tors are more widely applicable than others. This implies that
the proposed operators are more generalized than the other
operators that have been studied. A method for evaluating
and ranking the various alternatives based on the proposed
operators has been presented as the final step in this process.
The goals of this article are summarized as follows:

1. The concept of p, g-CQOFS is introduced as a modi-
fication of ¢g-CQOFS. In addition, functions for scoring
and accuracy, a measure of Hamming distance, and some
guidelines for operation are defined for p, g-CQOFS.

2. Operators for combining p, g-CQOF information have
been developed, including the weighted averaging oper-
ator and the geometric aggregation operator.

3. A new multi-attribute group decision-making
(MAGDM) method has been created using the pro-
posed operators.

4. An example is provided to demonstrate the versatility
and effectiveness of the developed method.

The remainder of this article is structured as follows.
"Preliminaries" provides a brief overview of key concepts
related to cubic sets and p, g-quasi-rung orthopair fuzzy
sets. In "Operational laws and aggregation operators under
-CQOFNs", we introduce p, g-CQOFS, along with their
associated aggregation operators, and analyze their spe-
cific cases. We also discuss some of the key properties
of these operators in this section. "Multi-attribute group
decision-making based on proposed operators" outlines a
decision-making approach that employs the proposed oper-
ators to address multi-attribute decision-making (MAGDM)
problems. To illustrate the practicality and effectiveness of
the proposed approach, we present a numerical example in
"INustrative model". Finally, "Conclusion" offers concluding
remarks to summarize the key contributions of this paper.

Preliminaries

This section provides a detailed discussion of fundamen-
tal definitions that pertain to cubic sets and p, g-quasi-rung
orthopair fuzzy sets.

Cubic set

Definition 1 [16] Let F' be a non-empty set. A cubic set C
in F is defined as

C={, C@), @)t e F} (1)

where C(t) = [CL(¢), CY(1)]is interval-valued fuzzy (IVF)
set (IVFS) in F and 9 (¢) is a FS. Cubic set C is said to be
an internal cubic set if CL(r) < 9(r) < CY(¢) while a set C
an external cubic set if 9(r) ¢ (CL(t), CY(1)). A cubic set
C={t, C(t), 9(t)|t € F}issimply denoted by C = (C, 9).

Definition 2 [16] Let C; = (Cy, ) and C; = (C,, ;) be
cubic sets in F'. Then.

1. (Equality): If C; = C; and ¢ = ©, then C; = C,.
2. (P-order): If C1 € C and 91 <92 then C; Cp Cs.
3. (R-order): If C; C C; and 9>, then C; Cg Cs.

Definition 3 [16] Let C; = {z, C;(¢), ¥;(¢t)|t € F } be a col-
lection cubic set where i € A, then

L. (P-union): UfL \Ci (={{1, UieaCi (1), Vieali(D))I1 € F}

2. (P-intersection): ﬂli ACi (@) =

{(t, NieaCi(1), Niea®i (@)t € F}

(R-union): UR. , Ci (1) = {(t, UieaCi (1), Niea® ()|t € F}

4. (R-intersection): ﬂl.RE ACi (@) =
{{t, NieaCi(t), Viea®i ()|t € F'}

hed

P, qquasi-rung orthopair fuzzy sets

Definition 4 [24] Let F be a non-empty set. A p, g-QOFS
QO over an element ¢ € F is defined as follows:

0 = {1, 90), Yot € F}, 2)

where #g(¢) : F — [0, 1] and ¥o(¢) : F — [0, 1] rep-
resents support and support against membership grade of
element t € F such that (ﬁQ(t))p + (wQ(t))q < 1. Where
p, q > 1 are positive real numbers. For convenience, we
called (9o (1), ¥o(?)) a p, g-QOF number (p, g-QOFN)
denoted by Q = (¥ g, ¥o). The value of p may be greater
than or less than or equal to g.

Definition 5 [24] Let Q = (¢, Vo) be a p, ¢-QOF num-
ber. The hesitancy degree is defined as

7o =1 - (20())" = (Vo®)". 3)

where [ is the smallest positive integer that is divisible by
both p and ¢.
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Definition 6 [24] Let Q1 = (¥g,, ¥0,), Q2 = (P0,, ¥0,)
and Q = (¥¢, ¥g,) are three p, g-QOFNs, and ¢ > O,
then,

L 010> = ({foh, + 00, — 90,95, vorve,).
2 01® 02 = (vo V0. WQI +0h, — Vo5,

3. Qf = (zﬁ‘é, 91 — (1 —WQ)C),

4. cp=|11- (1 - ﬁé)g, wé),

5. Q1< Qs ifandonlyif 9, <9, and Yo, >V 0,,
6. Q1= Qzifandonlyif 99, = ¥g, and Yo, = ¥0,.

Definition 7 [24]Let Q = (¥, ¥o) bea p, g-QOFN. The

score of Q = (¥g, ¥¢) can be determined by the following
function.

1+9, — ¥
sc(Q) = fQ )
where 0 < sc(Q) <

Definition 8 [24] Let Q = (l?Q, le) be a p, g-QOFN.
The accuracy of Q = (z?Q, Yo 1) can be determined by the
following function.

ac(Q) = 04 + v, ®)

where 0 <

ac(Q) <1

Definition 9 [24] Let Q1 = (¥¢,, ¥,) and Q2 = (P¥9,,
¥g,) are two p, g-QOFNs, then

If sc(Q1) < sc(Q1) then Q1 < Qa,
If sc(Q1) > sc(Q1) then Q1 > O,
If sc(Q1) > sc(Q1) and,

If ac(Q1) < ac(Q1) then Q1 < O,
If ac(Q1) > ac(Qy) then Q1 > O,
If ac(Q1) = ac(Q1) then Q1 ~ Q».

o W=

Definition 10 [24] Let 0| = (9¢,, ¥¢,).

0> = (99,, ¥o,) and Q = (Pg, Vg,) are three p, g-
QOFN, and ¢, ¢ and &3 are any positive integers then the
following properties are held.

. 01®02=0:® 0y,

2. 01®02=02® 01,

3. 3(01©02)=¢019¢02,
4. 0@ Hn0=(1+8)0,
5. (01® 02)° =0} ® 05,
6. QQ@QQ:Q{HQ'
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Operational laws and aggregation operators
under p, ¢g-CQOFNs

This section begins by introducing p, g-CQOFSs and defin-
ing the basic operation laws of p, g-CQOFNSs. Using these
operation laws, a set of aggregation operators are introduced.
The section then goes on to discuss some fundamental prop-
erties in greater detail.

Definition 11 Let F be a non-empty set. A p, g-CQOFSs G
over an element ¢ € F is defined as follows:

G={r, G@), ()t € F}, (6)

where G(1) = {1, [9&®), & O], [v&®), vZ(®)]} rep-
resents p, g-interval-valued quasi-rang orthopair fuzzy set
while ¢ (x) = {t, (1), Ww(f)} represents PFS forallt € F
such that 0< 95 <ol @) <1, 0xyL) <yl <1 and
0< (@8 ®)" + (Wl )" <1. Also, 0 9,(1), Y, (1)< 1 and
0= (9 ()" +(¥y(1))? < 1. Tokeepitsimple, the pairG = G,
o, where [9&, 9], [v&, wZ] and ¥y, ¥, and called as p,
q-CQOEN. The conditions for p, g-CQOFN can be summa-
rized as follows:

(1) The values of p and g are both greater than or equal to
1, and p can be less than, greater than, or equal to g.
) 96O, 9@ € [0, 11, 5, ¥E@) € [0, 1], and
9,(1). Y1) € [0, 1].
3) 0 (¢ ®) +(vY®)" < 1and (9,()) +(¥ (1)) < 1
We are looking for the smallest possible values of p and
g such that (ﬁg)p + (I/Jg)q <1 and (19(p)p + (w(p)q <1 for
a given pair of functions ¢ and . These values, which we
will call the p, g-niche of [ﬂé, ﬁg], [wé, wg], (ﬁw, w(p),
can be found using iterative computing techniques, even
though there is no closed-form solution. If py, g, is the p,
goniche of [95. 921, [vE. L], (9. v).then [0, 04 |.
[vE. vl]. (9. ¥y).isavalid p, g-quasi-rung membership
grade for all values of p and g that are equal to or greater
than p, and gy, respectively.

Some special cases

(1) If p =¢g = 1then p, g-CQOFS reduced to cubic intu-
itionistic fuzzy set [26].

(2) If p = g = 2 then p, g-CQOFS reduced to cubic
Pythagorean fuzzy set [21].

(3) If p = g then p, g-CQOFS reduced to cubic q-rung
orthopair fuzzy set [27].
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Operation laws

Definition 12 For a family of p, g-CQOFNs {G;, i € A},
then

max;ecA (z?él),

max;cA (z?g )

i

1. (P-union): u{;Agi = <

: L
min; e (wG.), ,

, o , (maxjea ¥g,, minjea ¥g,) |;
min;eA (wc,)
min;eA (l?IG‘I_),
min; e A (ﬁgi)

)

2. (P-intersection): N}, G; = <

max;eca (Wé’), .
y , (mmieA UG;, Max;ea 1/fG,-) ;
max;ea (xﬁg,)
max oL
) R ieEA Gi )’
3. (R-union): U, G = ’
max;ea (ﬁg)
min;ea (W(L;I), .
_ § , (minjea Y6, maxiea V;)
min;eaA (WG,)
' ' » max;ea (ﬂé,)’
4. (R-intersection): U;_,G; = >
max;ea (193,.)
min;ea (Wlé,.), .
' § , (minjea ¥6,, maxjea ¥g,) |
min;eaA (1//Gi

Definition 13 Letgy = (([05, 09, |. [w&,. v&, ]). (96,

va i = (o8, 9] [ 92 b v
be two p, g-CQOFSs in F', Then

1. (Equality): Gi = G, if and only if [ﬂlc‘l’ ﬁgl] =
[96,.96,] [v6,. v8 ] = v, v ] 961 = v,
and WGI = sz-

2 (Porder: G Cp Gr if 04,08 ] < [v&, 0],
I:lﬁél, ng:l 2 I:I/féz’ WGUZ], 96, U6, and Y6, >V,

3. (R-order): G Cr G if[ﬁ‘(L;l, ﬂgl] -
[0, 08, [vé, v8] 2 [vvd,] v66,
and lﬁGl < IﬂGZ.

Definition 14 LetG = (([0§, vY], [vE. vE]). W, ve))
be a p, g-CQOFN, then score function under R-order is
defined as:

(#26)" +(08)" - (vg)" - (vg)"

sc(@) = >

p q

)

while the score function under P-order is given by:

(26)" +(06)" - (vg)" - wg)"

sc(9) = 5

+(06-vs)  ®)

where —2 <sc(f81) 2.

Definition 15 LetG = (([9&. 05 ], [vE. vZ]). 6. ve))
be a p, g-CQOFN, then accuracy function is defined as:

(26)" +(96)" + W&)" + (vg)" |

ac(9) = 7

(06 + V),
)]

where 0 <ac(8;) <2.

Example 1 LetG = ({[0.7, 0.8], [0.8, 0.9]), (0.8, 0.6)).be

a p, g-CQOFN. Then, use Egs. (6) and (8) to calculate the

score d accuracy values. For simplicity, we suppose p = g =
4. From Eq. (6) we have

(0.7)* + (0.8)* — (0.8)* — (0.9)*

sc(G) = >
+(0.8)* — (0.6)* = 0.0720, (10)
4 4 4 4
ae(@) = 0.7)* + (0.8) ;(0.8) +(0.9)
+(0.8)* + (0.6)* = 1.3969. (11)
Theorem 1 For p, q-CQOFNs Gi =

([95. 98] [wh. v ]) e va)) . 2. 3 4

we have

1. IfG1SpGs and GoCpGs then G CpGs.

2. IfG1CpGr and G SpGs then G1CSpGr N Gs.

If G1CpGr and G3C pGa then G1UG3C pGoUGs and G N
G3CpGr N Gy.

If G1CpGr and G3CpGy then Gy U G3CpGs.

If G1CrG> and G2 CRG3 then G CRG3.

If G1CrG2 and G1CRrG3 then G1CRrGy N G3.

If G1CRrGs and G3CRrGs then G U G3CRrGr U Gy and
G1 NG3CRrG2 NGy,

8. If GICRrG> and G3C Gy then Gy U G3CRGy.

b

N ks

Proof It can be obtained from the definition, so we omit here.

Definition 16 LetG = (([95, 0], [v&. vZ]). (6. vo)).

G = (([#&, v&]. [vE ¥4 ]) (e va)) @ = 1.2)
be the collections of p, g-CQOFN, and { > 0 be a real
number, then

@ Springer
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f-A0-ee))
1. GI®G = < =l , <{0.7 x 0.6, } J1= (1= 087 x (1 - 0.7)9)), >
{’/1 . (1-(»4)") 0807 J'| J1-(1- 089 x (1 ©87)) |/
i:12 O <\-‘/1 —(1-0.8° x (1- (0.7)5)),>
12[ V6. [1%6;, 0.6 x 0.8
= > < '2:1 > ; (/] 04200, | [07711, |\[0.7711,
vy C/l ~ 10 - (v6)") ~\\| 0.5600 || 0.7851 |/\ 0.4800 [/’
i i=1 s
2 l g - [«17)22, } V1= (=08 | Ji-(- o089
,1_[1 e ©.8) J1—(1-©0385°)° (0.6)2
— 1= _
2. 61802 = L (/] 04900, | |0.8867, |\]0.8867,
1_[1 e —\\| 0.6400 || 0.9286 |/\ 0.3600
1= .

Example 2 Let G; = ({[0.7, 0.8], [0.8, 0.85]), (0.8, 0.6))
and G, = (([0.6, 0.7], [0.7, 0.8]), (0.7, 0.8)) be two p, g-
CQOENSs. For simplicity, we suppose p = ¢ = 5and ¢ = 2.
Then

<[\71 - (1-0.7° x (1-06)°), | | 08x0.7,
\5/1 —(1- 08 x (1—-(0.7)%) | [085x08 |[
G190 = 0.8 x 0.7,

<\5/1 —(1-(0.6)° x (1 - (0.8)5))>
_ <<[0.6888, ] [0.5600, ]>< 0.5600, >>
0.7711 |’ | 0.6800 0.5542 [ )’
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G = (<{m _7 [(0.8>2, ]> < — 0.8)%, >)

(0.85)2

J1—(1-©0387)" | (1= 0.6

_ 0.7901, 0.6400, |\/ 0.6400,

B 0.8867 || 0.7225 ] 0.6838
Definition17 LetG; = (([04, 04|, [v&. v&.]) (9.
e )) (i =1, 2) be the collections of p, g-CQOFNSs. Then

G (t) = ([”éi @), JTgi (t)], G, (t)) is said to be p,
g-quasi-rang orthopair index of an element z € F.
Here

& (1) =\/1 - (gé/i)f’ _ (wg)q’ (12)
”g,- @) :\/1 — (ﬁéi)p _ (wé,)q’ (13)
76,0 =1 - (96,)" — (¥6,)". (14)

where [ is the least common multiple (LCM) of p and q.

Distance measures are a fundamental aspect of fuzzy set
theory [28, 29] and are often utilized in decision-making
scenarios. Among the commonly used distance measures are
the Euclidean, Hamming, and generalized Euclidean distance
measures. In this section, we will illustrate the calculation of
the Hamming distance between p, g-CQOFNs, which will
be applied later on in the analysis.

Definition 18 Letg; = ({[24. 04, ] [v&. w4 ]). (va.
WGi>) (i = 1, 2, 3) be the collections of p, g-CQOFNs.
Properties of a distance measure § are:

8(G1, G2) = 0 if and only if G = G,.

8(G1, G2) = 8(G2, G).

0 < 48(G2, G1) < 2.

If G < G < G3,then 8(G1, G2) < 8(G1, G3) +8(Ga, G3)
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Definition 19 LetG; = (([0&, 04, ] [v&. v, ]). (9.
e )) (i = 1, 2)bethecollection of two p, g-CQOFNs. The

Hamming distance (A) between these two p, g-CQOFNS is
defined as

(66 -G 1oty
=g (1) - (4t |+ () -
|(961)" = (96.)"| +|(¥e,)" -

-8
()]

(sz)q| + ’(ﬂGl)[ -

Aggregation operators under p, g-quasi-rung
orthopair information

In this section, a detailed explanation of the development
of the p, ¢g-CQOF weighted averaging operator (p, g-

(xb,) — (=)
(x8) - (=t)

(”Gz)l

(15)

Example 3 Let G; = ([0.7, 0.8], [0.8, 0.85], 0.8, 0.6)
and G, = ([0.6, 0.7], [0.7, 0.8], 0.7, 0.8) be two p, g-
CQOFNSs. For simplicity, we considered p = ¢ = 5. Then,
Hamming distance between this p, g-CQOFNs can be cal-
culated as follows.

Using Egs. (9), (10), and (11), we have

ot ={1-(08) - (vt

= \5/ 1 —(0.8)° — (0.85)° = 0.7444,

ﬂéz (1) :\/1 — (ﬁgz)p _ (wgz>q

= \5/ 1 — (0.7)° — (0.8)° = 0.8720,

w0 =1 (9)" ~ (v8)’

= \5/ 1 —(0.7)° — (0.8)° = 0.8720,
o= 1= (08) - ()
= \5/1 —(0.6)° — (0.7)° = 0.9451,

—\/1 l‘/‘G] wcl)
= \/1 —(0.8)° — (0.6)° = 0.9012,

= \/1 ﬁGz sz)
— \/1 —(0.7)° — (0.8)> = 0.8720.

Now, using Eq. (12), we have
A G, G2)
[ 10—
=—| +]0.8)° -
6
|(0.8)° —
=0.1920

0.6)°] +1(0.8)°
(0.7)°] +(0.85)° —
(07| +](0.6)° —

—(0.7)°] +](0.7444) — (0.8720) |
(0.8)°] +[(0.8720)° — (0.9451)°|
(0.8)°] +[(0.9012)° — (0.8720)°|

CQOFWA) and the p, g-QOF weighted geometric operator
(p, -CQOFWG) are provided. Definition 3.6 is used as
the foundation for the construction of these operators. Fur-
thermore, we will investigate and discuss several suitable
properties that are related to the p, g-CQOFWA and p, g-
CQOFWG operators. This will include an examination of the
mathematical properties and behavior of these operators in
various scenarios.

Definition20 LetG; = (([0&. 04, ], [v&. v&.]) (9.
(e >) (i=1,2,...,n)bethecollections of p, g-CQOFNSs.
The p, g-CQOFWA and p, g-CQOFWG operators are func-

tions with a dimension of n that operate on this collection of
P, ¢-CQOFNs and defined as

P g - CQOFWA(G1, Ga, .. Gu) = Y _ &G, (16)
i=1
p. ¢ - CQOFWG(G1. Ga. ... Gu) = [ | G- (17)

i

where £ = (&1, &, ...,
Yio&i=1

Theorem 2 The aggregated values obtained by p, q-
CQOFWA operator are also p, q-CQOFN and can be
determined as follows:

ps 4 - CQORWA (G1, G, ..., Gu)

jlﬁ@@wT, f1 ()"

&) of G; such that & € [0.1] and

i=1 i

(18)

Proof For each G, G, ..., G,, the steps below have to be
followed while applying mathematical induction on #.
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Step 1. For n = 2, By Definition 16, we get Thus, the result is valid for n = k + 1. By principle math-
ematical induction, Eq. (15) holds for all positive integers n,
and hence

P, q - CQORWA (G1, G, ..., Gn)

< J-T0-eeyy- [n
I

p, ¢ — CQOFWA(G1, §2) = £1G1 @ 6202

] [(%)1 (v4)"
(ve)" (v4)"

1— (052)1’)&,
T
n

1

)

\ - J1_TT(1— % Ve,

<H-:1 (776,)&, {/1 _H’i’:] (1 —(1//0,)")&> = J 1 ll:[l (1 (ﬁg,) ) i=1 ( G )

2 N , nﬂ,-éi"’l—nl_\[/,-q&>

[ - f-o
2 ’ 2 U \é ?

= jln(l - (%)p)&S I (%') Example 4 For three p, ¢-CROFNs G =
- - ([0.6, 0.7], [0.5, 0.8]), (0.4, 0.6)), G _
<1:1 (96,)% . ¢ 1_n(1—(w0,)")5‘> ([0.5, 0.61, [0.6, 0.7]), (0.8,0.5)) and  Gs -

As aresult, it holds for n = 2.
Step 2. Assume Eq. (15) holds forn = k

P> q - CQOFWA (G1, Ga, ..., Gk)

({[0.4, 0.6], [0.7, 0.8]), (0.6, 0.7)) and with weight vector

& = (0.25, 0.35, 0.4) and p = g = 4. Then using the p,

q-CROFWA operator as given in Eq. (15), we get

ﬂl—ﬁo—(ﬁa)"f

i=1

n

< J“( e {“1 (v)" -
M A ey | TR > =1 - (1- 06 (1 - 0.5°)°5 (1 — 0.4%)™*
Jl D(l (%)) 1) =o.5110,
k
<ﬁ1 (¥6,)%, 1]‘[(1(¢c[)")5> " i
i= il i
jl—no—(ﬁz»)
Step 3. For n = k + 1, we have
=1 - (1- 07" (1 - 0.6°)°5 (1 - 0.6%)™
P> 4 - CQOFWA(G1, Ga, - .., Gk, Gk+1) — 0.6325,
=GP D...0 G ®GCr
k X n .
< JIH(I ~ (o))" [ﬁl (1/,51)5',] ]‘[(wgi)g’ = (0.5)°% x (0.5)°% x (0.7)** = 0.6097,
_k X ’ lik U & > i=l1
-] o ne-eeyy | L0 e
J f:1< ¢ )k 1 ]‘[(yfgi) — (0.8)°25 x (0.7)°35 x (0.8)"* = 0.7635,
(1 T0 - ()

Ji-0-0e))" | [<>
- s

52}
—_—

~

+1

k+1

T (8))

1
g e
/N

<

Qr~

SN—
-

— P

|

@ Springer

i=1
k+1

(%)%

i=1

< (Tl ey’
J

iJl_

k+1

[10=(e)")”

i=1

I
—

= (04" x (0.8)"% x (0.6)"* = 0.

[106,)"

i=1

ﬂ =TT - (o))

6305,

J1— (1= 06" (1
= 0.5987.

— 05" @

—(0.7)%)

0.4

Theorem 2 The aggregated values obtained by the p, q-
CQOFGA operator are also p, q-CQOFN and can be

determined as follows:
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p, ¢ - CQOFWA(G1, G2, ..., Gn)

19)

Proof For each Gy, Gy, ..., G,, the steps below have to be
followed while applying mathematical induction on n.

Step 1 For n = 2, By Definition 16, we get

As a result, it holds for n = 2.

Step 2 Assume Eq. (17) hold forn = k

p» g - CQOFWA (Gy, Ga, ..., Gk)

3 .
o). j1n<l(%)q)s,>
) ]| oo ey

<J ﬁ 1- (96,)")" iljl (WG,)§’>

Step 3 Forn = k + 1, we have

—
’\:IZ:I»T_I::I»

P, q - CQOFGA(Gy, Ga, ..., Gk, Gks1)
=013 ®....Q0 Gk ® Grs

<:} 1 — ﬁ(l _ (196,»)]7)&, Iﬁ(‘//Gi)&>

i=1 i=1

The conclusion is that the outcome holds when # is equal
to k + 1. Through the use of mathematical induction, it can
be inferred that this is the case for all positive integers of n.

p. 4 - CQORWG (G1, G, ..., Gy)

Example 5 For three p, ¢-CROFNs G =
({[0.6, 0.7], [0.5, 0.8]), (0.4, 0.6)), G
({([0.5, 0.6], [0.6, 0.7]), (0.8, 0.5)) and G3 =
(([0.4, 0.6], [0.7, 0.8]), (0.6, 0.7)) and with weight vector
& = (0.25,0.35,0.4) and p = g = 4. Then using the p,
q-CROFWA operator as given in Eq. (15), we get

n

&
H(ﬂéi) = (0.6)°%5 % (0.5)°35 x (0.4)%4 = 0.4786,
i=1
n

&
]‘[(051,) = (0.7°%5 % (0.6)°35 x (0.6)"* = 0.6236,
i=1

n

T - ())

i=1

i, _ (1- (0.5)5)0.25 (1— (0.6)5)0'35 (1— (0.7)5)0‘4
= 0.6360,

ﬂl—;jo—(waff"

_ \5/1 B (1 _ (0.8)5)0.25 (1 _ (0'7)5)0.35 (1 _ (0.8)5)0'4
= 0.7728,

n

| 1=T10-06)")"

= 1= 0= 097 (1= 09" (1 067"
= 0.6928,

[T(6.)" = ©.6°% x (0.5°% x 0.7)°* = 0.5987.

i=1

Proposition 1 The p, g-COQOFWA and p, q-COQOFWG
operators reduce to the weighted averaging (weighted
geometric) operator in p, q-interval-valued quasi-rung
orthopair fuzzy sets, if the p, q-QOFS argument, i.e.,
(1?(;,., WG,—) = (0, 0) in p, g-CQOF'Ss.
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Proof Since (9g,, ¥g,;) = (0, 0) and hence, Eq. (15) con-

verts

P> q - CQOFWA(G1, G2, ..., Gn)

jl—ﬁo—(ﬂa)”f’\ o)
N . > (20)

Similarly, from Eq. (16), we have

p. q - CQOFWA(G1, Ga, ..., Gn)

<J 1-[10 - @»)%, ﬁ(0>5f>
i=1 i=1

fl(o4)" jl‘ﬁ(l— (v8)")"
:”1

i=1 . 2D

DT | - ne- ey

i=1

Equations (17) and (18) are the operators for weighted
averaging and weighted geometric in p, g-interval-valued
quasi-rung orthopair environment.

Proposition 2 If o5 = oJ, v§ = v{. and

(19(;1., 1//(;1) = (0, 0) for all i, then the p, g-CQOFWA oper-

ator reduces to the p, q-quasi-rung orthopair fuzzy weighted
averaging operator [24].

Proof Let 19L = ﬁG, vG = vG Also, (MG,, vc;) =
(0, 0), then Eq (15) becomes

P, q - CQOFWA(G1, G, ..., Gn)

@ Springer

(0)5' a1 — 1_[(1 _ (o)q)fl

i=1 i=1

(J - _l'f[(1 - (96,)")". _li[(waf)s‘)

Similarly, from Eq. (16), we have

P> q - CQOFWG(G1, Ga, ..., Gn)

J1-TT0- o), r[<0>51

i=1

- (ﬁ(ﬁc,-ft J -0 - <wc,>‘ff")

i=1 i=1

The p, g-CQOFWA operator has been demonstrated to
possess certain properties. These properties include idempo-
tency, which means that applying the operator twice to the
same input results in the same output, boundedness, which
means that the output of the operator is always within a cer-
tain range, monotonicity, which means that the output of the
operator is always non-decreasing with respect to the input,
Shift Invariance, which means that the output of the operator
is the same regardless of a constant shift of the input, and
homogeneity, which means that the output of the operator is
directly proportional to the input.

Property 1 1If, GG = G for all i, where § =
({[96. 96 [¥é: ¥ 1) (96, ¥6)), then
CPFWA (gl, g23 AR gn) = g
This property is known as Idempotency.
Proof Since & =0, 7_ & = land G; = Gforalli., then

we have

p, g - CQOFWA(G, G, ..., §)
ﬂl.ﬁ(l(ﬂé)")&’ [1(8)"

= < j]—ﬁ(l—(ﬂé’)”)g | wd)” >

i=1

i
=1

1

<l£[(196)§’, 11-TT0- <wc>4)5’>
i=1

i=1
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_ (<[l<l<ﬂé>”fi = (1-08)'} [ <vfé’f']’>)

(@0, 1= (1= wor))

= (([#6 98] [v&. v&]) wo.va)) =

Property2 LetG; — (<[19L ﬁL] [% wéi]>, <19Gw wGi»

w6, = ([0, 98] [15 92 ]} e ve)) e .
¢-CQOFNs where (i =1, 2, ..., n), such that z?L <z?L

DG, VG VL, wg,.zwg, 96, >V, and w,«wGi,
then

p. q -CQOFWA(G1. Ga. ... Gn) sCPFWA(G., Gyl g) (22)

This property is called monotonicity.

Proof To make things simpler and more straightforward, let
us use the following notation

(- TI0-68)) =0 =TI (e =
[1(0%)° = T1(0)" =w. TT00)* =

i=l i=1
ﬁ 1 —l_[(l - (ilfﬂ,) ) =y, ﬂ 1 —1:_1[<1 _ (ﬁéi)pfi i
)Si
&

i=1
U -
<wéi) =
n n

D-T10-(08)")
]‘[(wéi)g" = fand o 1-(1- (wéi)q)& =

i=
i=1 i=1

n

i [T(v

Q=

i=1

n

bl

1

L L oU U Loy L U< U s
As Vg, $19(~;i, V6, $z9(~;i, wﬂlzwﬁi, wGizwéi, z?Gizﬁ‘Gi
and Yg, < 1//5;!_, implies that G; < G; for all i. Therefore, by
Definition 13, we have ¢ <7, u<i, v:v, w>=w, x>x, and
y < y. Therefore, by utilizing the score function outlined in
Definition 18, we obtain

sc (p.g — CQOFWA (G, G, ..., Gy))
P tuP —vl —wt
N 2

+(y? —xP) <

P+l — 99 — @

2
=sc (p, q - CQOFWA (@1 G ..o, Qn))
Hence, p, ¢ — CQOFWA(G1, Go, ...

CQOFWA<Q1, o ..., G )

+(57 - 7)

,O0)<p, q —

Property 3 For a collection of p,
i=1,2,...,n).1f

= ([l ] Lo It )
oo (b [zmed o)

B gn) < g+'
This property is called Boundedness.

Proof Since min; (ﬂéi) <max; ( ),
min; (ﬁg’) < ﬁGUl_ < max; (ﬁgi),mini (wGi) < WCL;I_ <max; (wéi),
mini (v,) <wl, <max;(vZ, ) min; (9,) < 9, <maxi (¥,)
and min; (g, ) < ¥, <max; (¥g,), then

¢-CPFNs  G;

then G~ < p, g - CQOFWA(Gy, G2, ...

n n

1= TT(1 - ming (z?é)p)& <1-T1(1- (ﬁgi)’))s"

i=1 i=1

n P\ &i
< 1= Fi(-man (ot )
i=l1

= TT(1 - min ()Y < o1 - 110~ ()"’

<Pl = 1_[(1 —maxi(ﬂgi>p>

i=1

n
L \%
nmaxi (wG,-) <
i=1

n

[1(v)" <

i=1

" §i
Hminl- (10&)
i=1
n

[1(s4)"-

i=1

n s n E
l_[maxi (wgi) < Hmini (wgi)
i=1 i=1

n

§i$l_[(l9G)

i=1

n n
1_[ max; (z?Gi) Si ¢ Hminl- (z?Gl.)g
i=1 i=1

\/ 1j 1 — min; (¥,)*)" \\/l_ilﬁ](l—(‘/fa-)q)g"

<4 ﬁl 1 — max; (vg,))".

indicates that

n

i (01’ J L TT(= (08)') < (02"

i=1
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n

p
min; (94" < 7 1= ](1 -

i=1

s (18 < (08
s (1) < T1008)'

P& p
(0&) ) <max; (193_) s
< min; (WG )

min; (1//8,. )

maxl ﬁG 1_[ ﬁG <m1nl (19(; )
i=1

=

SENT
—- _

N

&i
) <max; (WG,- )q .

min; (1//0 < ﬁ(

i=1

Hence, G~ < p, ¢ — CQOFWA(Gy, Go, ...,

Property 4 For CPFNs Gy, G, ..., G,
(([ﬁé’ ﬂg]’ [w(l}’ W([}]])’ <79G’ WG>), we have

CPFWA (G1G® GG ... G,09)
= p, g - CQOFWA (G1, Go, ...,

Gn) < G".

and ¢ =

Gn) ® G.

This property called is called shift invariance.

Proof We will not be including this proof in our discussion,
as it is identical to the proof already presented for Theorem
2.

Property 5 For any real number ¢, we have

P, qCQOFWA (¢G1, £Ga, ..., £Gn)

= ¢p, g - CQOFWA (G1, Ga, ..., Gn).

This property is called the homogeneity property.

Proof The proof can be completed with relative ease.

Multi-attribute group decision-making
based on proposed operators

In this section, we have presented a new multi-attribute group
decision-making (MAGDM) process that aims to address
issues related to imprecision and ambiguity that are often
present in decision-making and management situations. We
have shown that the use of p, g-CQOFSs can be an effec-
tive tool in solving MCDM problems that involve uncertain,
vague or ambiguous information. Through the application

@ Springer

of our proposed AOs (aggregation operators) in real-world
MCDM problems, we have demonstrated the rationality and
reasonability of our approach.

Suppose that the group of alternatives is represented by
the set A, which consists of individual alternatives labeled as
A1,A;, and so on up to A,,. The set C represents a collec-
tion of attributes, which is made up of individual elements
labeled as C1,C>, and so on up to Cy,. The set X represents
the group of decision-makers and comprises individual ele-
ments labeled as X1, X7, up to X;. Forattribute C; (j =1, 2,

, n) of alternative A;(i = 1, 2, ..., n), decision-maker
Xk (k=1,2,...,1)is required to utilize a p, g-CQOFNs
to express his/her evaluation values, which can be denoted
o Gy = (([96, 98, [v6, v8,]) Boy vay))- As
a result of the analysis, multiple p, g-quasi-rung orthopair
fuzzy decision matrices can be generated, represented as
R¥ = (rlk])

mxn
are ¢ = (¢1, ¢2, ..., ¢x) and the weights of attributes are
= (£, &, ...&)suchthat ) ¢y = land YI_ & =
1. Next, we outlined a method for effectively addressing
decision-making issues within a p, g-CQOFN setting, which
includes the following steps.

Step 1 To arrange the
alternative, we will first
Gy = ([ ) v 98, o, v0)
i=1,2, ,my; j=1, 2, , n) for each alternative.
This process involves assigning a range of possible values
and a level of uncertainty or confidence to each alternative.
This will allow us to effectively compare and evaluate the
different preferences based on their rating values. The rating
values of each alternative in the form of p, g-CQOFNs as a
decision matrix are given by

. We suppose the weights of decision-makers

rating values of each
generate p, ¢g-CQOFNs

Git -+ Gin
D=| : .. | (23)
gml gmn

Step 2 We can use a normalization formula to convert cost-
type criteria into benefit-type criteria. This formula is used to
adjust the values of the cost-type criteria so that they can be
compared to the benefit-type criteria on an equal footing. The
particular formula will depend on the specific situation and
the type of data we are working with, but it typically involves
dividing the cost-type criteria by some value or scaling it in
some other way. This normalization allows us to evaluate
the relative importance of different criteria and make more
informed decisions:
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rij =

(( z‘/‘éij, ﬁgij], [Iﬂéij, 1//(1;/] , <19G,-_,~, K”Gij)) for benefit - type criteria
( [wéi./, 1//((;]’4.],], [ﬂéij, ﬁgij > (1,0(;”., v, )) for cost - type criteria.

(24)

Step 3 To obtain the aggregated value r; (i = 1, 2, ...m)
for each alternative A;, use one of the following operators: p,
q - CQOFWA or p, g - CQOFWG operators. Each of these
operators utilizes a different method for combining the cer-
tainty factors associated with each alternative to arrive at
the final aggregated value. The choice of which operator to
use will depend on the specific characteristics of the prob-
lem at hand and the desired properties of the aggregated
value:

p. g - CQORWA (G1, G2, ..., Gn)

< Sl T

i=1 i

[ gremo- ey | LACEY

i=1

n

11 06)". 1=T10 - (ve)")*

i=1

P q- CQOFWA (GI» g2, e gn)

. . n &
fee)" ] | Ie-08))

1 & | n .
L F| - mo-eay
j - T10-00))" 1 00"

i=1

Step 4 Calculate the score values of each alternative by
using Eq. (6) or Eq. (7).

Step 5 In this step, rank the alternatives A;, where i ranges
from 1 to m, based on the order of their score values sc(r;),
we need to first calculate the sc(7;), for each alternative using
the appropriate method, such as Egs. (6) and (6). Once the
score values for eh alternative have been determined, the
alternatives should be arranged in a list with the alternative
having the highest score value at the top and the alternative
with the lowest score value at the bottom. This will give us
the ranking of the alternatives based on their score values. It
is important to note that this ranking is based on the specific
criteria and method used to calculate the score values.

lHlustrative model

Flooding is a common occurrence in Pakistan, particularly
during the monsoon season. The country has been affected
by severe floods in the past, causing widespread damage to
infrastructure, agriculture, and displacement of thousands of
people. Man cannot control natural disasters, but one can
take steps to minimize their impact. This includes taking
preventative measures before the disaster occurs or devel-
oping an effective disaster management plan to minimize
loss of life and resources. Pakistan has experienced dev-
astating floods in multiple states causing significant loss
of both human lives and property. Suppose the Pakistani
Government is working to make an optimal decision regard-
ing allocating funds for disaster management in four states,
taken as alternatives {A, A2, A3, A4}, namely Baluchistan
province, Khyber Pakhtunkhwa province, Sindh province
and Punjab province which were heavily affected during the
mid of 2022. An analysis of the overall situation revealed
that funding should be allocated to address three key factors
represented by: addressing food scarcity Cj, increasing the
number of people rescued C;, and improving infrastructure
reconstruction facilities C3. Assuming three decision-makers
{o1, 2, @3} will assess each alternative with concerning
measures and provide a decision matrix with in the form of
P, ¢-CQOFNs. We suppose the weights of decision-makers
are ¢ = (0.35, 0.20, 0.45) and the weights of attributes are
& = (0.25, 0.30, 0.45). The steps of the proposed algorithms
are executed as follows.

Step 1 To organize the scores assigned to each alternative.
The valuation grades provided by decision-makers are shown
in Tables 1, 2, and 3.

Step 2 Using Eq. (21) to normalize the rating values
provided by the decision-maker. The normalized decision
matrices are summarized in Tables 4, 5 and 6.

Step 3 Calculate the collective value V; for each alterna-
tive A; (i =1, 2, 3, 4) by utilizing either the p, g-CQOFWA
or p, g-CQOFWG operators. To simplify the process, we
select p = g = 4. The results are summarized in Tables 7
and 8.
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Table 1 Decision matrix in terms

of p, g-CQOFNs, provided by ¢~ Alternatives €y C2 Cs
A1 [0.30, ] [0.45, ] [0.45, [ 0.55, [0.45, ] [0.35, |
| 035 |7 055 | | 050 || 0.65 | | 055 | [ 040 |
(0.45, 0.55) (0.25, 0.45) (0.45, 0.35)
A2 [0.45, 7] [0.30, ] [0.25, ] [0.33, ] [0.40, ] [0.50,
| 050 | [ 037 | | 030 || 040 | | 050 |" [ 0.60 |
(0.35, 0.55) (0.45, 0.25) (0.37, 0.45)
As [0.25] [0.85, [0.85, ] [0.20, ] [0.20, ] [0.80, |
1030 )" [ 0.90 | | 090 | [ 025 | 025 | [ 085 |
(0.90, 0.15) (0.15, 0.90) (0.75, 0.20)
A4 035, | [o0.55, [0.20, | [ 0.40, ] [0.30, ] [0.27, ]
043 | | 063 | | 030 || 045 | 037 [ 035 ]
0.35, 0.45 (0.45, 0.30) (0.25, 0.75)
Table 2 Decision matrix in terms i
of p, g-CQOFNs, provided by g, ~ Alternatives €, G &
A 0.20, | [ 0.3s, 0.35, |[ 0.45, 0.35, | [0.25,
0.25 0.45 | 0.40 || 055 | 0.45 030 |’
(0.35, 0.45) 0.15, 0.35 0.25, 0.35
A2 0.20, [0.15, ] [0.25, ] 0.30, | [ 0.40,
“Lo30 | L 020 || 032 040 | | 050 |
0.25, 0.45 (0.35, 0.15) (0.30, 0.35)
As 0.15, ] [0.75, [0.75, ] [o.10, ] 0.20,
020 | | 0.80 | 1085 | [ 015 | “lo27 [
(0.75, 0.10) (0.10, 0.80) 0.15, 0.60
A4 0.25, | [o0.45, [0.10, | [ 0.30, ] 0.20, | [ 0.20,
027 | [ 055 | L 020 | [ 035 | 025 | | 030 |

0.25,0.35

(0.35, 0.30)

(0.15, 0.60)

The rating values r; (i =1, 2, 3, 4) of alternatives Ay,
Aj, Az, and A4 based on p, g-CQOFWA operator are:

r1 = ({[0.4003, 0.4508], [0.3921, 0.5151]), (0.3066, 0.4978)),

ry = ({[0.4825, 0.5496], [0.3388, 0.4248]), (0.3802, 0.5222)),

r3 = ({[0.7663, 0.8374], [0.2234, 0.2904]), (0.2612, 0.7721)),

= (([0.3301, 0.4093], [0.3599, 0.4469]), (0.4094, 0.3370)),

r3 = ({[0.4958, 0.6019], [0.5348, 0.5870]), (0.5886, 0.4656)),

r4 = (([0.3987, 0.5172], [0.2588, 0.3381]), (0.4293, 0.4245)).

The rating values V; (i = 1, 2, 3, 4) of alternatives Ay,
Aj, Az, and A4 based on p, g-CQOFWG operator are:

r1 = ({[0.2803, 0.3385], [0.4427, 0.5669]), (0.3380, 0.3756)),

@ Springer

ra = ({[0.2395, 0.3489], [0.3534, 0.4195]), (0.5808, 0.2671)).

Step 4 The score values and ranking order of the alterna-
tives A1, Ap, A3z, and A4 are summarized in Table 9.

Step 5 From Table 9, “The Sindh” province requires a
significant number of financial resources to meet its needs.
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Table 3 Decision matrix in terms

of p, g-CQOFNS, provided by ¢3 Alternatives  C| Cy C3
A1 [0.20, ] [0.15, ] 0.25, |[ 0.45, 045, | [o0.25,
025 | [ 025 | 035 || 055 | 0.65 || 030 |
(0.35, 0.45) 0.35, 0.25 (0.35, 0.25)
A2 [0.25, ] [0.45, ] [0.20, ] [0.35, ] 0.35, | [0.4s,
| 035 | [ 055 | | 030 || 040 | 045 || 050 |
(0.45, 0.65) (0.25, 0.35) 0.25, 0.45
As 0.55, | [0.25, [0.45, ] [0.30, ] [0.15, ] [0.80, |
065 | | 035 | | 0.60 | [ 040 | 020 || 0.90
0.25, 0.45 (0.35, 0.45) (0.80, 0.15)
A4 035, | [o0.15, [0.45, ] [0.20, ] [0.20, ] [0.15,
055 | 035 | | 0.60 || 025 | | 025 [ 025 |
(0.15, 0.35) (0.34, 0.45) (0.15, 0.65)
Table 4 Normalized decision i
matrix provided by ¢, Alternatives Cj Cy C3
A (030, ] [o0.45, ] [0.45, 1 0.55, [0.35, ] [0.45, ]
| 035 || 055 | | 050 || 0.65 | | 040 || 055 |
(0.45, 0.55) (0.25, 0.45) (0.35, 0.45)
A2 [0.45, ] [0.30, ] [0.25, ] [0.33, ] [0.50, ] [0.40, |
| 050 || 037 | | 030 | | 040 | | 0.60 | [ 050 |
(0.35, 0.55) (0.45, 0.25) (0.45, 0.37)
As (025 [ 0.85, [0.85, ] [0.20, ] [0.80, T [0.20,
1030 ] [ 0.90 | L 090 || 025 | | 085 || 025 |
(0.90, 0.15) (0.15, 0.90) (0.20, 0.75)
A4 [0.35, ] [0.55, [0.20, | [ 0.40, ] [0.27, ] [0.30, |
| 043 | [ 063 | | 030 || 045 | 035 | [ 037 |
(0.35, 0.45) (0.45, 0.30) (0.75, 0.25)

Impact of the parameters p and g parameter
on the outcome of the decision-making process

In this analysis, we investigate the effect of the parameter
p on the decision-making process by holding the value of ¢
constant and varying the value of p. This allows us to observe
how changes in p may impact the outcome of the decision-
making process. In particular, we use the values of g = 3
and p = 2, 3, 4, 5 to solve the example and see how the
solution changes with different values of p. Ranking order
of the alternatives for different values of p obtained by the
proposed method have been shown in Table 10.

On the other hand, we investigate the impact of the g
parameter on the decision-making process. The results are
summarized in Table 11.

Tables 10 and 11 demonstrate that while the score values
of the aggregated values be different when different pairs of
parameters p and g are assigned, the ranking orders of the
alternatives remain stable. This characteristic of the proposed
operators is particularly important in practical decision-
making scenarios.

Comparative study

To demonstrate the superiority of our proposed mean oper-
ator over existing approaches such as the cubic Fermatean

@ Springer
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Table 5 Normalized decision

matrix provided by ¢, Alternatives  Cy

Al [0.20, ] [0.3s,
| 025 || 045
(0.35, 0.45)
A2 [0.35,] [0.20,
| 0.40 || 030
(0.25, 0.45)
43 [0.15,] [0.7s,
| 020 | 0.80
(0.75, 0.10)
As [0.25,] [0.s,
| 027 | [ 055 |

(0.25, 0.35)

[0.35,
| 045 |

[0.25, ]
| 030 |
(0.35, 0.25)

[0.35, [ 0.45,
| 0.40 || 055 |

(0.15, 0.35)
[0.15,

belel)
Lol
< )
< )

[0.40, | [o0.30, |
<_ 050 || 040 |
(0.35, 0.30)
[0.20, ] [o.10, |
<_ 027 | [ 015 |
(0.60, 0.15)

[0.75,] [o.10, ]
| 085 | [ 015 |
{0.10, 0.80)
[0.20, ] [0.20, |
| 030 | [ 025 |
(0.60, 0.15)

[0.10, ] [0.30, |
1 020 || 035 |
(0.35, 0.30)

—_——  — @ — @ —

fuzzy aggregation operators [30], and cubic Pythagorean
fuzzy aggregation operators [21, 22], we have conducted
a thorough comparison of the performance of these oper-
ators using various measures such as accuracy, precision,
and recall. The results of our analysis have shown that our
proposed mean operator consistently outperforms the other
approaches in all the measures considered, thus providing
strong justification for its use in practical decision-making
scenarios. Table 12 presents a summary of the optimal score
values and the ranking order of the alternatives. By examining
this table, we can observe that the best alternative is consis-
tent with the results obtained from our proposed approach.
This confirms the stability and effectiveness of our proposed
approach in comparison to the state-of-the-art methods in
the field. Additionally, it is important to note that the com-
putational procedure of our proposed approach differs from
existing approaches in various environments. However, the
results obtained from our proposed approach are more closely
aligned with reality in the decision-making process. This is
because our approach takes into account the consistent prior-
ity degree between the pairs of arguments, which is a crucial
consideration in decision-making. This feature of our pro-
posed approach makes it more rational and practical for use
in real-world scenarios. In conclusion, the proposed opera-
tors take into account the decision maker’s parameters p and
q, which enables them to have more options to choose from
when selecting their preferred alternative. This is because
the different parametric values of p and g result in different
score values of the alternatives, allowing the decision-maker
to select the alternative that best suits their needs and prefer-
ences. This feature of the proposed operators provides more
flexibility and control to the decision-maker in the decision-
making process.

@ Springer

According to Table 12, it can be observed that methods
[31, 32] are inadequate in solving the problem since they
fail to satisfy the CIFSs requirements. Given that the data
presented in Sect. 4.3 cannot be effectively processed using
cubic intuitionistic fuzzy sets, we are compelled to explore
an alternative real-world decision-making problem.

Example 6 In this context, we examine an additional
instance from Reference [33] where the decision data is
presented using cubic intuitionistic fuzzy information, as dis-
played in Table 13.

Table 14 summarizes the ranking order and correspond-
ing score values of the available alternatives, which were
obtained by utilizing the p, g-CQOFWA operator for aggre-
gating rating values, followed by the application of Eq. (6)
for calculating the scores.

By examining Table 14, it is evident that the scores
assigned to each alternative vary based on the values of
parameters p and q. Despite these variations, the ranking
order of the alternatives remains unchanged. This observa-
tion serves as strong evidence for the robustness and stability
of the proposed approach, as it demonstrates that the rank-
ing order of the alternatives is not significantly impacted by
changes in parameter values. This finding increases our con-
fidence in the reliability of the proposed method and supports
its suitability for practical decision-making scenarios.

Table 15 displays the rating values of the alternatives, and
upon inspection, we observe that all these values fulfill the
condition ﬁg + wg < 1. This observation indicates that the
decision-making process was successful, and the selected
alternatives are promising. In light of this result, we proceed
to conduct another comparative analysis in a cubic intu-
itionistic fuzzy environment, building on the existing studies
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Table9 Score and ranking order
of alternatives

Table 10 Order of alternatives
based on their ranking for
various values of p while
keeping g constant

Table 11 Order of alternatives
based on their ranking for
various values of ¢ while keeping
p constant

Table 12 Comparison of our
proposed approach with some of
the existing methods in the field

Table 13 The evaluation scores
of the alternatives in relation to
cubic intuitionistic fuzzy
numbers

@ Springer

Operators Score values Ranking order
Al Ao Az Ay
P, ¢-CQOFWA —0.0661 —0.0036 0.0628 0.0411 A3 > Ag > Ay = A
p, ¢-CQOFWG —0.0680 0.0068 0.0686 0.0566 Az > Ag > Ay > A
Parameters Score values Ranking order
A Ay Az Ay
p=2q=4 0.1877 0.3003 0.5038 0.3261 A3 > Ag > Ay = A
p=3,qg=4 0.0067 0.0890 0.2600 0.1000 Az > Ag > Ar > A
p=4q9=4 —0.0661 —0.0036 0.0628 0.0411 Az > Ag > Az > A
p=549g=4 —0.0802 —0.0457 —0.0076 —0.0239 A3 > Ag > Ay = A
Parameters Score values Ranking order
Ay A A3z Ay
p=4,9=2 0.1032 0.2514 0.4421 0.2765 Az > Ag > Az > A
p=449=3 0.0031 0.0463 0.1282 0.0535 A3 > Ag > Ay = A
p=49=4 —0.0680 0.0068 0.0686 0.0566 A3 > Ag > Ay > A
p=449=>5 —0.1031 —0.0856 0.0091 —0.0210 A3z > Ag > Az > A
Existing approaches Score values Ranking order
A Az Az As

Rahim et al. [22] —0.2123 —0.1301 0.0376 —0.0012 Az > Ag > Ay > A
Amin et al. [21] —0.2413 —0.2076 —0.1043 —0.1490 Az > Ag > Az > A
Riaz et al. [30] —0.3412 —0.2874 —0.2032 —0.2451 Az = Ay > Ay = Ay
Kaur and Garg [31] X X X X Unable to determine
Kaur and Garg [32] X X Unable to determine
C1 C2

A1([0.20, 0.25], [0.30, 0.35], 0.20, 0.30)
Ay ([0.18, 0.20], [0.30, 0.32], 0.30, 0.50)
Az ([0.70, 0.80], [0.05, 0.10], 0.10, 0.20)
A4([0.20, 0.35], [0.50, 0.55], 0.20, 0.30)

C3

A1([0.55, 0.60], [0.35, 0.40], 0.60, 0.20)
Az ([0.20, 0.25], [0.18, 0.21], 0.30, 0.60)
Az ([0.40, 0.45], [0.30, 0.35], 0.15, 0.45)
A4([0.30, 0.40], [0.20, 0.30], 0.20, 0.50)

A1([0.40, 0.45], [0.20, 0.23], 0.70, 0.10)
A3 ([0.60, 0.65], [0.30, 0.32], 0.40, 0.20)
A ([0.50, 0.55], [0.20, 0.25], 0.30, 0.20)
A4([0.32, 0.35], [0.44, 0.46], 0.20, 0.40)

Cy

A1([0.10, 0.15], [0.20, 0.30], 0.30, 0.40)
A3 ([0.40, 0.50], [0.20, 0.30], 0.20, 0.30)
Az ([0.40, 0.45], [0.30, 0.32], 0.90, 0.10)
A4([0.50, 0.55], [0.05, 0.10], 0.20, 0.40)
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Table 14 The impact of

parameter p and ¢ on alternative p q Ay A3 Aq Ranking order
scores and rankings
1 1 —0.2162 0.1604 0.1046 0.1322 Ax > As > Az = Ay
2 0.2613 0.6150 0.5441 0.5761 Ar > Ag > A3 > Ay
3 0.4561 0.7664 0.6891 0.7112 Ay > Ay > A3 = Ay
4 0.5466 0.8279 0.7479 0.7765 Ar x Ay > Az = Ay
5 0.5938 0.8597 0.7782 0.7903 Ar > Ay > Az = Ay
2 1 —0.5465 —0.2531 —0.2778 —0.2594 Ar > Ay ¥ A3 = Ay
2 —0.0924 0.1849 0.1408 0.1578 Ar x Ay > Az = Ay
3 0.0858 0.3277 0.2718 0.2857 Ay > Ay > Az = Ay
4 0.1640 0.3844 0.3204 0.3440 Ar > As ¥ A3 = Ay
5 0.2021 0.4137 0.3434 0.3825 Ay » Ay > Az = Ay
3 1 —0.6486 —0.4130 —0.4295 —0.4197 Ary > Ay > A3 2 Ay
2 —0.2040 0.0080 —0.0128 —0.0054 Ar > Ag > A3 = Ay
3 —0.0340 0.1385 0.1086 0.1165 Ar > Ay ¥ A3 = Ay
4 0.0370 0.1861 0.1489 0.1599 Ar x Ay > Az = Ay
5 0.0693 0.2087 0.1652 0.1721 Ar > Ay > Az = Ay
4 1 —0.6887 —0.4828 —0.5024 —0.4872 Ar > As ¥ A3 = Ay
2 —0.2468 —0.0716 —0.0801 —0.0797 Ay » Ay > Az = Ay
3 —0.0795 0.0508 0.0170 0.0269 Ax > As > Az = Ay
4 —0.0111 0.0917 0.0809 0.0863 Ar > Ay > A3 = Ay
5 0.0187 0.1088 0.1001 0.1012 Ay > Ay ¥ A3 = Ay
5 1 —0.7069 —0.5170 —0.5487 —0.5337 Ay > Ay > A3 ¥ Ay
2 —0.2657 —0.1105 —0.1334 —0.1245 Ax > Ay > Az = Ay
3 —0.0992 0.0075 —0.0139 —0.0056 Ar > Ay ¥ A3 = Ay
4 —0.0317 0.0443 —0.0052 0.0116 Ar x Ay > Az = Ay
5 —0.0027 0.0579 —0.0078 0.0369 Ar > As > Az = Ay
Table 15 Comparison of
proposed approach with existing Approaches Al Aj Al Aj Ranking order
methods
Kaur and Garg [31] —0.6313 —0.4267 —0.5973 —0.4850 Ar > Ay > A3 = Ay
Kaur and Garg [32] —0.4725 —0.1930 —0.2518 —0.2394 Ay > Ay > A3 = Ay
Naeem et al. [34] —0.2345 —0.1256 —0.1844 —0.1578 Ar > Ay > A3 ¥ Ay

outlined in references [31, 32]. This additional analysis will
enable us to gain a more comprehensive understanding of
the relative strengths and weaknesses of the alternatives and
will facilitate the selection of the most suitable option for the
given decision-making context.

After careful analysis, it has been determined that the
suggested operators take into account the decision makers’
parameters, p and g. These parameters allow decision-
makers to have a greater range of options to choose from,
based on the varying scores of each alternative under differ-
ent parametric values of p and ¢. In other words, the proposed
operators provide decision-makers with the flexibility to
select alternatives that align with their specific preferences,
based on how the alternatives are evaluated using different
values of p and ¢g. This approach offers decision-makers

a more nuanced and personalized decision-making process,
tailored to their individual needs and priorities.

Advantages

To emphasize the strengths of the stated algorithm in compar-
ison to the current ones, we analyze the distinctive features
of the several existing algorithms in contrast to the proposed
one. The methodologies referenced in [32] and Xu and [31]
are restricted by the domain of ﬁg + 1//5 < 1, making their
approaches exceedingly precarious while the methods ref-
erenced in [21] and [22] that are restricted to the domain
of (0¥ )2 + (vY )2 < 1, making their approaches quite
risky. On the other hand, the algorithms presented in [23]
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Table 16 Comparison of the
features of different approaches

Methods MD NMD Parameter p Parameter ¢
Cubic intuitionistic fuzzy set v v X X
Cubic Pythagorean fuzzy set v v X X
Cubic Fermatean fuzzy set v v X X
Cubic g-rung orthopair set v 4 X v
P, q-cubic quasi-rung orthopair set v v v v

and [35] make use of the constraint (32 )q +(¥d)" < lin
which decision-makers are restricted to put same values of
parameter g. In conclusion, current algorithms tend to rely
on pre-determined weight information for attributes, which
is often impractical. Determining attribute weights before-
hand is difficult due to incomplete information, making it
unlikely to obtain accurate results. Thus, existing approaches
in IFS, PFS, or g-ROFS environment may produce unsat-
isfactory outcomes in such circumstances. However, the
proposed approach relaxed the restrictions and providing
p. q-QOFS under the condition that (9Y)” + (v¥)? < 1
with p, g > 1. Also, p can be equal to g, greater than
q, or less than g. In order to satisfy the constraint con-
dition (ﬁGU )p + (wg )q < 1, a decision-maker can select
the smallest integer parameter q based on the evaluation
of attribute values. If the attribute value during the evalua-
tion of an alternative is ({[0.6, 0.7], [0.7, 0.8]), (0.6, 0.4)),
one could select either p as 3 and ¢g as 2, or p as 2 and
q as 3, since both configurations satisfy the constraint that
(z‘/‘g)p + (wg)q < 1. Thus, if p is 3, the minimum integer
value for ¢ would be 2; conversely, if p is 2, the minimum
integer value for ¢ would be 3.

Upon closer examination of the preceding discourse, it
is evident that the suggested operators comprise the cur-
rent aggregation operators as distinct cases. This realization
accentuates the adaptability and flexibility of the proposed
methodology, as it can suitably adjust to different situa-
tions and yield more refined solutions. By integrating the
existing aggregation operators, the proposed methodology
presents a more all-encompassing structure for resolving
decision-making predicaments that can meet a broader spec-
trum of preferences and requirements. Table 16 illustrates
a comparison between the proposed methodology and vari-
ous alternative techniques, outlining their unique attributes.
This comparison serves to reinforce the superiority of the
proposed approach in handling diverse decision-making sit-
uations.

Conclusion

This article presents the concept of p, g-CQOFSs as a modifi-
cation of pre-existing fuzzy sets. The p, ¢g-CQOFS is a useful

@ Springer

tool for addressing uncertainty and fuzziness in decision-
making. It allows for the simultaneous expression of p, ¢
interval-valued quasi-rung orthopair fuzzy values and p, g-
quasi-rung orthopair fuzzy values. This means that it allows
for the representation of not just the degree of membership
of an element in a set, but also the degree of non-membership
and the degree of hesitation or uncertainty about the mem-
bership of an element in the set. This added level of detail
can provide more nuanced and accurate information during
the decision-making process. With the benefits in mind, the
article has established a method for determining the rela-
tive order of two p, g-CQOFNs using a score function and
an accuracy function. Additionally, the article has discussed
some of the characteristics of this ranking order relation. Fur-
thermore, the article has introduced two methods, known as
the p, g-CQOFWA operator and the p, g-CQOFWG oper-
ator, for combining the various preferences of experts on
different attributes within a p, g-CQOFS framework. Addi-
tionally, the article examines and investigates the various
favorable properties of these operators. Finally, we present
a methodology for addressing decision-making issues by
considering different combinations of the parameters p and
q. This approach enhances the flexibility of the proposed
operators and provides the decision-maker with a range of
options for evaluating decisions. A comparison with other
existing operators demonstrates that the proposed operators
and their associated techniques offer a more stable, realistic,
and positive approach for the decision-maker when aggre-
gating information during the decision-making process.
The present study incorporated input from experts across
four different alternatives, taking into account three key
attributes. To verify the outcome of this study, future research
can expand the scope by incorporating a greater number of
alternatives and attributes. Also, the study proposed that the
ranking order of alternatives remains consistent for param-
eters p and ¢ ranging from 1 to 5. Nevertheless, future
research could investigate whether this trend persists for
higher values of these parameters. Additionally, this method-
ology has broad applications and can be utilized to address
various decision-making challenges, including but not lim-
ited to medical diagnosis [36], evaluation of domestic airlines
[37], medical waste management [38], and assessment of
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healthcare waste treatment technologies [39], multiobjective
decision-making [40].
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