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Abstract
This paper presents twin-hyperspheres of resisting noise for binary classification to imbalanced data with noise. First, employ-
ing the decision of evaluating the contributions created by points for the training of the hyperspheres, then the label density
estimator is introduced into the fuzzy membership to quantize the provided contributions, and finally, unknown points can
be assigned into corresponding classes. Utilizing the decision, the interference created by the noise hidden in the data is
suppressed. Experiment results show that when noise ratio reaches 90%, classification accuracies of the model are 0.802,
0.611 on the synthetic datasets and UCI datasets containing Gaussian noise, respectively. Classification results of the model
outperform these of the competitors, and these boundaries learned by the model to separate noise from majority classes and
minority classes are superior to these learned by the competitors. Moreover, efforts gained by the proposed density fuzzy are
effectiveness in noise resistance; meanwhile, the density fuzzy does not rely on specific classifiers or specific scenarios.

Keywords Binary classification · Density fuzzy · Hyperspheres · Imbalanced data · Noise

Introduction

The so-called imbalanced data refer to the extreme differ-
ence in the number of samples between classes in the data
[1–3]. Both the noise hidden in the data and imbalance ratio
between the classes have seriously negative effects on clas-
sification methods and classifiers [4]. From the view of data
level, highlighting class attributes is likely to encounter those
unpredicted traps due to noise can blur class attributes (so-
called noise interference) [5]. Additionally, from the view
of algorithm level, the noise has the capability to induce
classifiers or classification methods to treat minority classes
as noise [6]. Consequently, the above complex issue nature
brings challenges for the classification aiming at imbalanced
data containing the noise.

Recently, some efforts have been gained to address this
issue. For instance, (i) sampling-based techniques address-
ing the classification of imbalanced data. The distribution
between classes is balanced via applying oversampling tech-
niques on the minority classes or adopting under-sampling
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techniques on the majority classes. Unfortunately, data dis-
tribution is likely to be damaged during sampling, causing
incorrect classification results. Particularly, when the den-
sity of the noise is close to that of the minority classes,
sampling techniques are embarrassed in noise resistance. (ii)
Label noise-based methods, which apply spatial distribution
of sample points tofilter the label noise [4]. (iii) Fuzzy theory-
based methods. Fuzzy approaches are used in classification
tasks, decision-making tasks and security tasks. Such as, the
fuzzy set method proposed by [7], the fuzzy set method in
[8], the orthopair fuzzy sets method [9], and the method pro-
posed in [10]. Additionally, to address noise interference, the
[11] designed the optimal ARX models and the [12] robust
Kalman filtering method.

Motivation

The study goal of this work is binary classification aiming
at the imbalanced data containing noise. However, we are
eager to demonstrate that the method can separate the noise
frommajority andminority classes, so as to provide the valu-
able insights for noise resistance, and there also supplies a
reference for the development of the classifier. Certainly, the
final motivation is to learn these boundaries separating the
noise frommajority andminority classes, which can promote
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the classified precision during classifying highly imbalanced
data containing the noise. Here, this paper proposed the
twin-hyperspheres with density fuzzy, namely DHS-DF. To
suppress the interference created by the noise, from a data
level of perspective, using the density fuzzy judges whether
an unknown point is the noise. From an algorithm level point
of view, the hypersphere itself has the natural ascendency to
classify imbalanced data.

Contributions

The specific contributions of this work are summarized, as
follows.

(i) The twin-hyperspheres utilizing the density fuzzy is
proposed to classify imbalanced data containing the
noise. The fuzzy membership of importing the label
density estimator, i.e., so-called the density fuzzy, quan-
tizes the contributions provided by instance points,
thereby suppressing noise resistance.

(ii) These efforts gained by the density fuzzy are effective-
ness in the identification of the noise; moreover, they
also do not rely on specific classifiers or specific sce-
narios.

The rest of this paper is organized as follows. Related
works are summarized in "Relatedworks". Section "Method-
ology" describes the problem formalization, the theory and
the implementation of the model. The details regarding
experiment settings and the design are illustrated in "Experi-
ment settings". "Results" section displays experiment results,
and then we discuss the results in "Discussion". Finally, a
conclusion is drawn in section "Conclusion".

Related works

Sampling-based approaches

Oversampling techniques and under-sampling techniques
are used to handle the classification issue of imbalanced
data. For example, the AB-Smote method [13]-based over-
sampling gains good classified results via paying more
attention to boundary points. Neighborhood approach [14]-
based under-sampling gain the advanced results through
finding the nearest neighbor points. Similarly, the under-
sampling approach implemented in [15].Generally, sampling
approaches need to generate the data points in minority
classes or to remove the data points in majority classes.
Considering binary classification, the number of points after
sampling is twice in that of points in the minority class (i.e.,
under-sampling) or in the majority classes (i.e., oversam-
pling) [4]. Consequently, samplingmethods are prone to gain

high classification accuracy, by contrary, they get poor effi-
ciency in treating large-scale classification.

Label noise-based approaches

The [16] defines that label noise is these points with incor-
rect labels. For instance, the MadaBoost [17], AveBoost [18]
and AveBoost2 [18] are proposed to reduce the sensitiv-
ity of boosting to label noise, which improve classification
results in the presence of label noise. Similarly, includ-
ing the A-Boost (average boosting) [19]. Additionally, the
method-based semi-supervised learning in [20] is proposed
to perform semi-supervised learning in the presence of label
noise. Indeed, label noise-based approaches are sensitive to
the density of labels so that the number of labels directly
impacts their classification capabilities.

Deep learning-based approaches

Deep learning-based classification models have moved from
theory to practice, and have been widely used in data clas-
sification, for example, the CNNs (convolutional neural
networks) [21] are used for classification tasks and gain
good classified precision. Deep architectures not only extract
deeper representations of the input data by utilizing deep non-
linear network structures, but also have strong capabilities
to learn the essential features of the input data. Therefore,
many excellent deep learning-based classification models
have been proposed for different application backgrounds,
such as, the CNN using 3D convolution kernel [22], and the
deep models proposed in [23]. Deep learning-based classifi-
cation models may involve complex feature decomposition
in the classification process [24, 25], which need to carry out
more efforts on feature decomposition. As including, these
classification models in [26–28].

Deep long-tailed learning attempts to learn deep neural
network models from a training dataset with a long-tailed
class distribution, where a small fraction of classes havemas-
sive samples and the rest classes are associated with only a
few samples [29, 30]. For instance, Wang [31] et al. pro-
posed a routing diverse experts (RDE) classifier to reduce
model variance and bias, which allow the model to be less
confused for long-tail classes. Cui et al. [32] and Jamal et al.
[33] adopted deep long-tailed learning for classification. The
imbalance of the classes causes deep models biased to head
classes so as to perform poorly to tail classes [34]. Due to
the lack of tail-class samples, it is more challenging to train
a model for tail-class classification [35].

Fuzzy-based approaches

The fuzzy membership of a point can be used to judge
whether the point provides contributions for the construction
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of classes [36]. If the point cannot provide the contribu-
tions, it allows to be regarded as the noise. For instance,
Richhariya et al. [37] proposed a fuzzy least squares twin
support vector machine (RFLSTSVM), because of utilizing
the fuzzy membership function, RFLSTSVM achieves good
noise immunity. Whereas, it needs to afford dear computa-
tion to solve a pair of system of linear equations. Similarly,
the model with fuzzy implemented in [38].

Methodology

Problem formalization

For an unknown point xk in Fig. 1, it was assigned into the
majority class, illustrated in Fig. 1a, or was classified into the
minority class, as shown in Fig. 1b, or was treated as noise
in Fig. 1c. However, these classification results cause some
concern, (i) we are eager to how to avoid noise interference
during classification. (ii) We pay attention to whether point
xk is noise.

Several definitions are given, and Table 1 gives the details
of symbols.

Definition 1 Imbalanced dataset Dim = {M+1, N−1, ς0} ∈
�h consists of majority class M+1, minority class N−1 and
noise ς0.�h is the h-dimensional Euclidean space.|M+1|,
|N−1| are the number of the majority class and the minor-
ity class, respectively.|ς0| indicates noise ratio. If |ς0| = 0
holds, this means that there is no noise in Dim . By contrary,
if |ς0| > 0 holds, there is noise in Dim.

Definition 2 The class centers of M+1 and N−1 are denoted
as C+1

M and C−1
N , respectively. The hypersphere of learning

M+1 and the hypersphere of learning N−1 are defined as
S+1
M , S−1

N , respectively, and as follows

S+1
M = min R2+1 + δ+1

∑

i∈M+1

ξ+1 −
∑

j∈N−1

||φ(x j ) − a+1||2

s.t.||ϕ(xi ) − a+1||2 ≤ R2+1 + ξ+1 , i ∈ M+1,
(1)

S−1
N = min R2−1 + δ−1

∑

j∈N−1

ξ−1 −
∑

i∈M+1

||φ(xi ) − a−1||2

s.t.||ϕ(x j ) − a−1||2 ≤ R2−1 + ξ−1 , j ∈ N−1,
(2)

where δ±1 > 0 are a penalty factor.a±1 and R±1 are the
centers and radii of S+1

M , S−1
N .ξ±1 ≥ 0 are slack variables.φ(·)

is a nonlinear function.

Definition 3 Binary classification tasks on Dim is to train
�(S+1

M , S−1
N ) to learn class labels.�(S+1

M , S−1
N ) is the pro-

posed model, which consists of both S+1
M and S−1

N .

Table 1 Illustrations of symbols

Symbol Illustrations

Dim Imbalanced dataset

�h h-dimensional Euclidean space

M+1 The majority class

N−1 The minority class

ς0 Noise

|M+1| The number of M+1

|N−1| The number of N−1

|ς0| Noise ratio

C+1
M Class center of M+1

C−1
N Class center of N−1

S+1
M Hypersphere of learning M+1

S−1
N Hypersphere of learning N−1

�(S+1
M , S−1

N ) The proposed model

+1, −1 Majority class label, minority class label

X = {x1, x2, x3, ....} Sample

δ+1, δ−1 Penalty factor

ξ+1, ξ−1 Slack variable

a+1, R+1 Sphere center, radius of S+1
M

a−1, R−1 Sphere center, radius of S−1
N

φ(·) Nonlinear function

diM Distance between point xi and C
+1
M

diN Distance between point xi and C
−1
N

d
X
M Average distance between X and C+1

M

d
X
N Average distance between X and C−1

N

f (·) Fuzzy membership

�(xi ) Contributions created by point xi

o f ≥ 1 A constant

−∞ A very small constant
∑

I A density estimator

Symbols are arranged in the order of occurrence in this work

Theory

The noise is suppressed through evaluating the contributions
provided by each point for the training of S+1

M and S−1
N .The

contributions are quantized through calculating the fuzzy
membership of each point in Dim . Using the contributions
employs the decision which a point should be regarded as
noise or be assigned into corresponding classes. Therefore,
this can address (i) and (ii) in "Problem formalization" from
a data level of perspective. The details are as follows, illus-
trated in Fig. 2.

Given sample X = {x1, x2, x3, ....}, we consider three
types of scenarios regarding the contributions provided by a
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Fig. 1 Classification illustration of an unknown point. a, b Show that
unknown point xk was assigned into the majority class or the minor-
ity class. c Indicates unknown point xk was treated as the noise. The

majority classes and the minority classes are marked as purple squares,
gold triangles, respectively. The red circle is an unknown point. The
purple and black curves are the boundaries

Fig. 2 Illustrated chart of contribution assessment. The classification
procedure of (a), (b), (c) correspond to Scenario (1), Scenario (2) and
Scenario (3), respectively. Themajority classes and theminority classes

aremarked as purple squares, gold triangles, respectively. Sample points
aremarked as red circles. The purple and black curves are the boundaries

point, including Scenario (1), (2) and (3) in Fig. 2. To sim-
plify, let point x1, x2, x3 be taken as an example, respectively.

Scenario (1). Point x1 is close to the class center C+1
M of

M+1, then it is considered to provide great contributions for
the training of S+1

M . Therefore, point x1 is assigned intoM+1,
and gains a majority class label +1, illustrated in Fig. 2a.

Scenario (2). Point x2 is close to the class center C−1
N of

N−1, then it provides major contributions for the training of
S−1
N , so that it can be classified into N−1 in Fig. 2b, and gains

a minority class label.

Scenario (3). Point x3 just provides a weak contribution
for the training of either S+1

M or S−1
N , unfortunately, point x3

is treated as noise, as shown in Fig. 2c.
There needs to determine how to evaluate the so-called far

distance or near distance mentioned in Fig. 2. Let us define
that the distance between point xi ∈ X and C+1

M is diM , i =
1, 2, 3, …, and that the distance between point xi and C

−1
N is

diN .The average distance between sample X and C+1
M , C−1

N

is d
X
M and d

X
N , respectively. For example, taking point x1 in
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Fig. 2a as an example, d1M must be less than d1N and d
X
M at

the same time, which is the so-called near distance appeared
by point x1 and C+1

M . By contrast with near distance, d1N is

greater than d
X
N , which is the so-called far distance exhibited

by point x1 and C−1
N . Similarly, for point x2 in Fig. 2b and

point x3 in Fig. 2c.

Calculation of density fuzzy

The distance between point xi and C+1
M is calculated by

Eq. (3)

diM = ||xi − C+1
M ||2. (3)

Similarly, the distance between xi and C−1
N is given in

Eq. (4), where κ is a kernel function.

diN = ||xi − C−1
N ||2. (4)

The average distance between sample X and C+1
M , C−1

N is,
respectively, calculated, as follows:

d
X
M = 1

α − 1

α∑

i=1

(d1M + d2M+, . . . , di−1
M , di+1

M , di+2
M , . . . , dα

M ),

(5)

d
X
N = 1

β − 1

β∑

i=1

(d1N + d2N+, . . . , di−1
N , di+1

N , di+2
N , . . . , dβ

N ).

(6)

The calculation of the proposed fuzzy membership f (·)
is as follows

f (·) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 1/
√
diM + o f if d

i
M < diN and diM < d

X
M

1 − 1/
√
diN + o f if d

i
N < diM and diN < d

X
N

−∞ otherwise,

(7)

where o f ≥ 1 is a constant item to avoid the situation where
the denominator appears zero.−∞ is a very small value spec-
ified by the users, e.g., −∞ = 1e − 7.

To determine C+1
M in Eq. (3) and C−1

N in Eq. (4), the
method of estimating class label density used in the [39]
is selected, which estimates the density of class labels from
a probabilistic view. Since there exists the difference of the
density between majority classes and minority classes, the
method is suitable to be used to determine class center. As
follows:

C+1
M =

∑

k

I (zk ∈ M+1), (8)

C−1
N =

∑

j

I (y j ∈ N−1), (9)

where
∑

I is a density estimator, which is used to estimate
label density of the majority class and the minority class,
respectively. For the calculation of

∑
I , please refer to the

Proposition 1 in [39]. According to the above derivation, it
can be known that the density estimator was introduced into
the fuzzymembership, i.e., namely the proposed dense fuzzy.

Evaluation of contributions

The f (·) is used to quantize the contributions. For above
Scenarios (1), (2) and (3), the contributions created by point
xi are illustrated, respectively. As following:

Manner (I). If diM < diN and diM < d
X
M , i.e., Scenario (1) in

Fig. 2a, f (·) = 1 − 1/
√
diM + 1 evaluates the contributions

provided by point xi for the training of S
+1
M . Here, an example

was given to interpret the details. Assuming that o f = 1,

diM = 4, diN = 10 and d
X
M = 6. Clearly, diM < diN and

diM < d
X
M hold, so that xi can provide the contributions for

the training of S+1
M . Consequently, the contribution �(xi ) is

1 − 1/
√
diM + 1 = 1 − 1/

√
4 + 1 = 0.8, i.e., �(xi ) = 0.8.

Manner (II). If diN < diM and diN < d
X
N , i.e., Scenario (2) in

Fig. 2b, 1−1/
√
diN + 1 evaluates the contributions provided

by point xi for the training of S−1
N . Similarly, assuming that

diM = 14, diN = 9 and d
X
N = 12. Clearly, diN < diM and

diN < d
X
N hold, therefore, xi can provide the contributions

for the training of S−1
N . The contribution is 1−1/

√
diN + 1 =

1 − 1/
√
9 + 1 = 0.9, i.e., �(xi ) = 0.9.

Manner (III). Otherwise, i.e., Scenario (3) in Fig. 2c, point
xi is treated as noise, because this scenario provides little or
no contribution for the training of S+1

M or S−1
N . For example,

for this scenario diM = 14, diN = 9 and d
X
N = 6, although

diN < diM holds, diN < d
X
N does not hold, therefore, point xi

is treated as the noise, and f (·) = −∞ assesses the contri-
butions of the noise point xi , i.e., �(xi ) = 1e − 7. In this
scenarios, point xi is closer to the minority class, compared
with the majority class, i.e., diN < diM , however, point xi
is still far away from the class center of the minority class,

i.e., diN > d
X
N , so point xi just creates little contribution for

the training of S−1
N . Certainly, also including another sce-

nario, diM = 4, diN = 10 and d
X
M = 3. Similarly, diM = 20,

d
X
M = 13 and diN = 20, d

X
N = 16.

Noting that regarding the Manner (I), (II) and (III), there
displays a relative comparison. For an unknown point xi , we
are prone to that it can create great contributions to which of
the two hyperspheres, so the relative comparison is consid-
ered.
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Model�(S+1
M , S−1

N )

Fuzzy membership f (·) in Eq. (7) is added into hypersphere
S+1
M , S−1

N , so Eqs. (1) and (2) can be converted into Eqs. (10),
(11), respectively. As follows:

S+1
M = min R2+1 + δ+1

∑

i∈M+1

f (·) ∗ ξ+1 −
∑

j∈N−1

||φ(x j ) − a+1||2

s.t. ||ϕ(xi ) − a+1||2 ≤ R2+1 + ξ+1 , i ∈ M+1,
(10)

S−1
N = min R2−1 + δ−1

∑

j∈N−1

f (·) ∗ ξ−1 −
∑

i∈M+1

||φ(xi ) − a−1||2

s.t. ||ϕ(x j ) − a−1||2 ≤ R2−1 + ξ−1 , j ∈ N−1.

(11)

As such, Eqs. (10) and (11) are the twin-hyperspheres
with density fuzzy, that is, the proposed model �(S+1

M , S−1
N )

is composed of Eqs. (10) and (11). The implementation of
�(S+1

M , S−1
N ) is given in Algorithm 1 and Algorithm 2.

Algorithm1displays the trainingof�(S+1
M , S−1

N ).Training
sample X = {x1, . . . , xi , . . . , } is used for the input of
�(S+1

M , S−1
N ).The final input of �(S+1

M , S−1
N ) is the learned

class label {. . . , label+1
j , . . . , label−1

k , . . . , }. First, the
parameters are initialized in Step 1. We configured a greater

initialization value for the d
X
M and d

X
N . The procedure of Step

2 and Step 6 displays the assigned process of each point in
X through calculating the corresponding contributions. The
details are as follows.

Utilizing Eqs. (3), (4) calculates the distance between
point xi andC

+1
M ,C−1

N , denoted as di+1 and d
i−1, respectively,

illustrated in Step 4 and Step 5 in Algorithm 1. Thereafter,
Step 6 in Algorithm 1 invokes Algorithm 2 to calculate the
fuzzy membership of point xi . The calculated description is
below.

The output of Algorithm 2 is class center and class labels.

For point xi , ifdi+1 < di−1 andd
i+1 < d

X
M holds, i.e., Scenario

(1), using f (·) = 1− 1/
√
diM + o f in Eq. (7) calculates the

fuzzymembership. Point xi is assigned into themajority class
M+1, and gains a majority class label label+1

i . Using Eq. (8)
calculates the class center C+1

M of the majority class M+1;

meanwhile, using Eq. (5) updates the average distance d
X
M

between sample X and C+1
M . The quantized contributions,

i.e., the value of f (·), are used for the training of hyper-
sphere S+1

M , and then the class center C+1
M and the learned

class label label+1
i are returned, illustrated in the procedure

between Step 2 and Step 16 in Algorithm 2. Similarly, for
the procedure of between Step 17 and Step 31 in Algorithm
2, i.e., Scenario (2), if point xi is assigned into the minority
class, the corresponding contribution is used for the training
of hypersphere S−1

N . Otherwise, point xi is treated as noise,
i.e., Scenario (3), the fuzzy membership is calculated using
f (·) = −∞, as shown in Step 32–Step 35 in Algorithm 2.
According to the returned results in Step 6 in Algorithm 1,

these learned class labels are obtained in Step 7 in Algorithm
1. The training of the model is terminated once each point in
sample is judged, illustrated in Step 8 to Step 11 inAlgorithm
1. Finally, the learned class labels are outputted in Step 12 in
Algorithm 1.
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Experiment settings

Illustrations of datasets

Five imbalanced datasets were synthesized using random
distribution, denoted as S1–S5, and Gaussian noise with dif-
ferent ratio was added into the five synthetic datasets, as
shown in Table 2. There did not consider specific distribu-
tion to synthesize the dataset, since those data distributions
in applications are usually complex and unknown. Using the
random distribution is to objectively analyze classification
performance of the proposed model.

Five UCI datasets with different imbalanced ratio were
also used, denoted as U1–U5, illustrated in Table 3. To ver-
ify the ability of the model to resist noise, without changing
the attributes of the five UCI datasets, Gaussian noise with
different noise ratio was added into them. The noise ratio
is increased as imbalanced ratio (IR) increases. The UCI
datasets adding theGaussian noise are named asUG6–UG10.
The details are displayed in Table 4.

Assessment metrics and comparisonmodels

Evaluated metrics are accuracy metric and F1-score, as fol-
lows

Accuracy = TP + TN

TP + FP + TN + FN
, (12)

F1-score = 2TP

2TP + FP + FN
, (13)

where TP, TN are the indicator that correctly predicts the
number of the minority class and the majority class, respec-
tively. FP is the indicator that predicts the majority class as
the number of the minority class. FN is the indicator that pre-
dicts the minority class as the number of the majority class.

The AB-Smote [13] model-based sampling, MadaBoost
[17] model-based label noise, CNNs [21] model-based deep
learning, RDE [31] model-based deep long-tailed learn-
ing and RFLSTSVM [37] model-based fuzzy are used for
comparisons. Additionally, the benchmark model, namely
DHS-B, was designed referring as our DHS-DF. DHS-B has
the same structure and parameters as DHS-DF, while it does
not apply the proposed density fuzzy. This is to analyze the
effects of the proposed density fuzzy on resisting noise.

Regarding the selection of parameters, RBF (radial basis
function) is used for the DHS-B and DHS-DF, and the kernel
parameter was tuned in rang of {0.1, 0.3, 0.5, 0. 7, 1, 1.5,
2, 3, 5}. For these parameters of competitors, there applied
the parameters observed in the corresponding literature. We
implemented the corresponding algorithms of these models
by Python 3.8 in Tensorflow framework on the Linux system.

Experiment description

Experiment (i), to observe the results of separating noise from
minority classes and majority classes, these models were run
on the five synthetic datasets S1–S5, then the learned classi-
fication boundaries were visualized.

Experiment (ii), to test the ability of resisting noise, these
models were run on the five UCI datasets UG6–UG10, and
then the results were analyzed by using Accuracy and F1-
score metrics.

Experiment (iii), to test classification ability on imbalanced
datasets, these models were run on the five UCI datasets
U1–U5, then, using accuracy and F1-score metrics assess
the classification results.

Ablation experiment. To demonstrate that the proposed
density fuzzy can resist noise, the ablation experiments were
also implemented.

Results

Classification boundaries

The results in Fig. 3 show that the proposed DHS-DF outper-
forms the competitors and the benchmark model. In terms
of the seven models (DHS-DF, DHS-B and the five com-
peting models), although the capabilities of resisting noise
decrease quickly as noise ratio increases, the dropped ten-
dency of DHS-DF is slower than that of the competitors and
the benchmark model DHS-B.

To observe the results of separating noise from the major-
ity and minority classes, Fig. 4 visualized the classification
boundaries learned by these models on the synthetic dataset
S5 when noise ratio is 90%. In this case, it can be seen that
DHS-DF still learned the desired boundaries so that it can
separate noise fromminority andmajority classeswell, corre-
spondingly,DHS-DFgained the classification precisionwell.
By contrary, the competitors and benchmark model learned
poor classification boundaries, however, the competitor with
fuzzy RFLSTVM outperforms the four competitors without
fuzzy and the benchmark model DHS-B.

The results of ablation experiments in Fig. 5 shown that
DHS-DF and RFLSTSVMwith fuzzy are significantly supe-
rior to these models without fuzzy (DHS-B, AB-Smote,
MadaBoost, CNNs, RDE) in terms of classification perfor-
mance. DHS-DF has more advantages than RFLSTSVM.
However, compared the benchmark model DHS-B with the
competitors without fuzzy, some of they win over DHS-B
on most datasets. These indicate that the benefit of resisting
noise with fuzzy is greater than that of with the model struc-
tures itself. Clearly, these models with fuzzy can gain more
efforts than these without fuzzy in terms of noise resistance.
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Table 2 The five synthetic
datasets Synthetic

dataset
Data
dimensionality

IR Training Testing

|M+1| |N−1| |ς0| |M+1| |N−1| |ς0|

S1 2 10:1 1500 150 10% 500 50 10%

S2 1500 150 30% 500 50 30%

S3 1500 150 50% 500 50 50%

S4 1500 150 70% 500 50 70%

S5 1500 150 90% 500 50 90%

Training and testing datasets have the same imbalanced ratio (IR) and noise ratio

Table 3 The five UCI datasets

# UCI datasets (Minority class) vs (majority class) IR |M+1| |N−1| Data volume Data dimension

U1 led7 (9) vs (0–8) 11:1 406 37 443 7

U2 ecoli (other) vs (om) 15.8:1 316 20 336 7

U3 yeast6 (other) vs (exc) 41.4:1 1449 35 1484 8

U4 poker (6) vs (8, 9) 58.4:1 1460 25 1485 10

U5 wine-red (other) vs (8) 87.8:1 1581 18 1599 11

IR and data dimensionality are used as the major indicator for consideration

Table 4 The five UCI datasets with noise

# UCI datasets (minority class) vs (majority class) IR |M+1| |N−1| |ς0| Data volume Data dimension

UG 6 led7 (9) vs (0–8) 11:1 406 37 50% 443 7

UG 7 ecoli (other) vs (om) 15.8:1 316 20 60% 336 7

UG 8 yeast6 (other) vs (exc) 41.4:1 1449 35 70% 1484 8

UG 9 poker (6) vs (8, 9) 58.4:1 1460 25 80% 1485 10

UG 10 wine-red (other) vs (8) 87.8:1 1581 18 90% 1599 11

Take the five data sets in Table 3 as the benchmark, keep the attributes unchanged, and add Gaussian noise with different ratios

Fig. 3 Classification results on the five synthetic datasets. a Displays the accuracy metric. b Displays the F1-score metric. The measurement results
of the two metrics drop as noise ratio increases
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Fig. 4 Visualization of classification results on the synthetic dataset S5. The minority classes and majority classes are marked as red circles, blue
circles, respectively. The noise is marked as yellow squares. The black curves are the learned boundaries

Fig. 5 Comparisons between fuzzy and non-fuzzy on the five synthetic datasets. The models with fuzzy are marked as the symbol +. Otherwise,
they are marked as the symbol −. a Displays the accuracy metric. b Displays the F1-score metric

Ability of noise resistance

The results in Fig. 6 show that DHS-DF is still a winner
on the five datasets UG6–UG10 in terms of noise resis-
tance. Even on the dataset UG10 with highly imbalanced
ratio (IR = 87.8:1) and with high noise ratio (|ς0| =
90%), DHS-DF gains the advanced classification results, i.e.,
accuracy = 0.611, F1-socre = 0.623, observing the com-
petitors; however, they get the poor classification results,
and the accuracy and F1-score all are below 0.5. Hence, on
datasets UG6–UG10, DHS-DF gains the advanced classifi-
cation results of being similar to these on the five synthetic
datasets.

The results of ablation experiments in Fig. 7 show that
these models with fuzzy are superior to these without fuzzy
in suppressing noise. These comparison results confirm that
they are consistentwith those in Fig. 5. Together, these results
in Figs. 3, 4, 5, 6 and 7 demonstrate that fuzzy indeed pro-
motes these models to resist noise.

Classification ability

Figure 8 displays the classification results of these models
on the five UCI datasets U1–U5 without noise. DHS-DF out-
performs the six models on most datasets, e.g., datasets U1,

U3, U4 and U5. Especially, on highly imbalanced dataset
U6 (IR = 87.8:1), DHS-DF has outstanding ascendency
than the six models. Additionally, the competitor with fuzzy
RFLSTSVM wins over the four competitors without fuzzy
AB-Smote, MadaBoost, CNNS and RDE (noting DHS-B is
the benchmark model) on the three datasets U1, U2 and U5.
However, in Fig. 7, RFLSTSVM outperforms the four com-
petitors without fuzzy and the benchmark model DHS-B on
the five datasets UG6–UG10with noise. Together, these indi-
cate that fuzzy can suppress noise.

Discussion

Insights

Compared with the six models, the proposed model shows
ascendency since an unknown point should be assigned into
majority or minority classes, or be treated as the noise,
depending on the contributions that the point provides for the
hypersphere training. The contributions provided by the point
for the hypersphere training can be assessed by Eq. (7). Then,
the decision on which points are noise can be made based on
the contributions provided by points. Therefore, from a data
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Fig. 6 Classification results on the datasets UG6–UG10. a Displays the accuracy metric. b Displays the F1-score metric. The measurement results
of the two metrics drop as noise ratio increases

Fig. 7 Comparisons between fuzzy and non-fuzzy on the datasets UG6–UG10. The models with fuzzy are marked as the symbol +. Otherwise,
they are marked as the symbol −. a Displays the accuracy metric. b Displays the F1-score metric

Fig. 8 Classification results on UCI datasets without noise. The models with fuzzy are marked as the symbol +. Otherwise, they are marked as the
symbol −. a Displays the accuracy metric. b Displays the F1-score metric
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level of view, this can address the issue of noise interfer-
ence. Overall, the proposed model gains good classification
accuracy and shows better noise resistance on imbalanced
datasets with noise.

Cost-sensitive learning aims at rebalancing classes by
adjusting loss values for different classes during training
[40], including class-level re-weighting and class-level re-
margining. As for class-level re-weighting, themostmethods
are to directly utilize label frequencies of training samples for
loss re-weighting, namely weighted softmax loss [41]. The
[42] proposed that the label frequencies are used to adjust
model predictions during training, so as to alleviate the bias
of class imbalance by using the prior knowledge, called bal-
anced softmax. To disentangle the learned model from the
long-tailed training distribution, Hong et al. [29] applied a
label distribution to disentangle loss, and indicate that mod-
els can adapt arbitrary testing class distributions if the testing
label frequencies are available. Unlike the [29], Cui et al.
[32] introduced a concept of effective number to approxi-
mate the expected sample number of different classes, rather
than using label frequencies. So-called the effective num-
ber refers to an exponential function of the training sample
number. To address class imbalance, the [32] enforces a new
class-balanced weighting item that is inversely proportional
to the effective number of classes, also including equalization
loss [43], seesaw loss [44], and adaptive class suppression
loss [45].

Model limitations

Certainly, the proposedmodel also has disadvantages.During
the training of the model, the number of iterations relies on
data dimensionality Id and data volume Iv, i.e., c1*Id + c2*
Iv, where c1 and c2 are constants. The model depends on the
fuzzy membership function in Eq. (7), when large-scale data
are used as the training set, the convergence epochs of our
model may be increased. Whereas, this does not imply that
our model cannot converge, but the training epochs become
long. In addition, Eqs. (8) and (9) invoke the density estimator∑

I in [39], due to
∑

I has high computational complex-
ity, the overall computational complexity of the proposed
model is increased. Therefore, the time complexity T (O) of
the model is n3 > T (O) > n2.

Conclusion

The noise hidden in the data has negative effects on clas-
sification capabilities of those classifiers. To address the
issue of noise interference, this paper proposed the twin-
hyperspheres model for binary classification on imbalanced
datasets containing noise. Utilizing the proposed density

fuzzy, the noise is effectively suppressed during classifi-
cation. Results on the synthetic datasets and UCI datasets
containing Gaussian noise show that the proposed model
outperforms the competitors in noise resistance and clas-
sification accuracy, moreover, the classification boundaries
learned by the proposed model are better than these learned
by the competitors. These efforts gained by the density
fuzzy are not only effectiveness in suppressing noise, but
also they do not rely on specific classifiers or specific
scenarios. In future work, we will look at addressing multi-
classification on those datasets containing noise. Due to
multi-classification tasks are more complex than binary clas-
sification tasks, classification capabilities of those classifiers
are challenged.

Data availability Data will be made available on request. The data are
cited at http://archive.ics.uci.edu/ml/datasets.php?format=&task=&
att=&area=&numAtt=&numIns=&type=mvar&sort=nameUp&view=
table.
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