
Complex & Intelligent Systems (2023) 9:6645–6659
https://doi.org/10.1007/s40747-023-01083-7

ORIG INAL ART ICLE

KPRLN: deep knowledge preference-aware reinforcement learning
network for recommendation

Di Wu1 ·Mingjing Tang2,3 · Shu Zhang1 · Ao You1 ·Wei Gao1

Received: 25 October 2022 / Accepted: 17 April 2023 / Published online: 26 May 2023
© The Author(s) 2023

Abstract
User preference information plays an important role in knowledge graph-based recommender systems, which is reflected
in users having different preferences for each entity–relation pair in the knowledge graph. Existing approaches have not
modeled this fine-grained user preference feature well, as affecting the performance of recommender systems. In this paper,
we propose a deep knowledge preference-aware reinforcement learning network (KPRLN) for the recommendation, which
builds paths between user’s historical interaction items in the knowledge graph, learns the preference features of each user–
entity–relation and generates the weighted knowledge graph with fine-grained preference features. First, we proposed a
hierarchical propagation path construction method to address the problems of the pendant entity and long path exploration in
the knowledge graph. The method expands outward to form clusters centered on items and uses them to represent the starting
and target states in reinforcement learning. With the iteration of clusters, we can better learn the pendant entity preference
and explore farther paths. Besides, we design an attention graph convolutional network, which focuses on more influential
entity–relation pairs, to aggregate user and item higher order representations that contain fine-grained preference features.
Finally, extensive experiments on two real-world datasets demonstrate that our method outperforms other state-of-the-art
baselines.

Keywords Knowledge graph · Recommender system · Deep reinforcement learning · Graph neural network

Introduction

With the rapid development of the Internet, recommenda-
tion systems are dedicated to enhancing the user experience
in various online applications. Collaborative filtering (CF)
analyzes the user’s historical behavior to predict based on
user–user and user–item similarities [1]. However, sparse
and cold start problems plague CF-based methods. Graph-
structured data (e.g., social networks, etc.) that contain the
connections between entities can more accurately reflect
real-world circumstances. The Knowledge Graph (KG) is

B Mingjing Tang
tmj@ynnu.edu.cn

1 School of Information Science and Technology, Yunnan
Normal University, Kunming, China

2 Key Laboratory of Educational Informatization for
Nationalities Ministry of Education, Yunnan Normal
University, Kunming, China

3 Yunnan Key Laboratory of Smart Education, Yunnan Normal
University, Kunming, China

a heterogeneous graph in which entities are linked by vari-
ous relations, making the KG rich in semantic information
[2, 3]. Therefore, KG is usually used as external information
to improve the performance of recommender systems. As
an example shown in Fig. 1, movie items are linked to other
entities by different relations. Besides, KG can enhance the
explainability of recommendation [4].

It is essential to obtain the user’s interest preferences in the
knowledge graph. As shown in the left of Fig. 1, a movie item
links to other entities by different relations (e.g., stars, direc-
tors, writers, etc.). However, the reasons why users choose to
watch movies are complex. The reason why u1 choose this
movie is that the actress in the film is Zhang Ziyi. However,
for u2, the director of the film, Ang Lee, is the reason why
he likes this movie. This proves that different users have dif-
ferent behavioral motivations. On the right of Fig. 1, the user
has tagged two movies (Forrest Gump and Crouching Tiger,
Hidden Dragon). The reasons why this user likes the two
movies are different. It shows that the same user will have
different preferences when choosing different items. There-
fore, we cannot simply calculate the user preference for the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01083-7&domain=pdf
http://orcid.org/0000-0003-0435-8854

6646 Complex & Intelligent Systems (2023) 9:6645–6659

Fig. 1 An example of movie recommendation, in the left image u1, u2
like the same movie (Crouching Tiger, Hidden Dragon), but they like
it for different reasons. u1 is because of the movie’s director, and u2 is
because of the movie’s actor. In the figure on the right, the same user

has different reasons for liking different movies; for Forrest Gump, it
is because of the movie starring Tom Hanks, and for Crouching Tiger,
Hidden Dragon because of the movie director Ang Lee

type of relationship but learn the preference features based
on the user–entity–relation. Usually, the user preference can
be reflected by the weight of the edge. Therefore, the person-
alized weighted knowledge graph of users can improve the
performance of the recommender system.

Many works have shown that edge weights play an impor-
tant role in the feature learning of graphs. GAT [5]computes
the weights of edges based on the similarity of head and tail
vertices through graph attention. KGAT [6] introduces this
method into recommender systems. KGCN [7] and KGNN-
LS [8] use a trainable and personalized relation scoring
function to learn the weight for the relation between enti-
ties and have achieved good results. However, KGAT cannot
distinguish the preference of different users for relations,
and KGCN uses the score function to calculate the weight,
but it cannot distinguish the user’s preferences for the same
relation on different entities. Personalized preference infor-
mation influences the performance of recommendations [9,
10]. Currently, most KG-based methods cannot make fine-
grained feature learning for each user–entity–relation. Users’
preferences are fine-grained, and direct calculating prefer-
ence for each user–entity–relation, not only increases the
training burden of the model but also leads to model overfit-
ting, which makes a worse performance.

In recent years, the successful application of deep rein-
forcement learning (RL) to graph structures has sparked
great interest. Therefore, some research works combine rein-
forcement learning and knowledge graphs in recommender
systems. However, learning fine-grained user preference fea-
tures in the knowledge graph by reinforcement learning has
the following challenges: (1) Data sparsity problem. The user
interaction data are very sparse compared to the knowledge

graph, and the distribution of user history interaction items
in the knowledge graph may be discrete or aggregated. It is
difficult to make a unified method exploring all user inter-
action items. However, we need to model each user, so it
is necessary to learn personalized information about users
quickly and efficiently. (2) Pendant entity in the knowledge
graph. The pendant entity is the entity with just one adjacent
neighbor in KG, which is not employed as the starting or tar-
get state in RL. It is not included in the path between items,
so only negative feedback is available during the reinforce-
ment learning training. However, they may contain useful
information about user preferences. (3) Long path explo-
ration, reinforcement learning tends to repeatedly explore
shorter paths, because they lead to higher feedback rewards.
Although we can design higher feedback rewards for long
paths, this increases the training burden of themodel. In addi-
tion, we believe that closer items reflect more user preference
features. Therefore, it is necessary to make a well-designed
explore policy in RL.

Considering the limitations of the existing methods, we
propose a personalized Knowledge Preference-aware rec-
ommender systems combined with Reinforcement Learning
Network (KPRLN). Specifically, we describe the learning
user’s preference for different entity-relation as the process
of building interaction paths in the graph. By constructing
the path network between the user’s historical interaction
items in the KG, which can be expressed as a Markov deci-
sion process [11]. Unlike previous work, to learn the user’s
preference features on the KG more completely, we replace
the single node with a cluster of entities as the starting and
target states. We iteratively extend user history interaction
items along the links in the KG to their neighbors. The start-

123

Complex & Intelligent Systems (2023) 9:6645–6659 6647

ing and target states are represented as item-centric clusters,
which reduce the complexity of the state space and action
space. The cluster will add the pendant entity when expand-
ing, and after a few iterations, the cluster will absorb the short
path between items, making reinforcement learning explore
more distant paths. Furthermore, we design hierarchical
propagation paths to develop rewards, with each path con-
struction making the model get more feedback. Meanwhile,
we design two different rewardmechanisms tomakeKPRLN
have stable performance in recommendation tasks. Based on
the expected payoff estimates for item–relation pairs, RL
computes the preference for each user–entity–relation and
generates the user’s preference-weighted knowledge graph.
In user and item representations learning, we design an atten-
tion mechanism to propagate the user’s preference interests
in their preference-weighted KGs, making KPRLN focus on
influential entities and relations to aggregating item embed-
ding representations. Extensive experiments on two real
datasets show that our method has efficient performance.

Our contributions are summarized as follows:

1. We propose a personalized recommendation method,
KPRLN, which only uses the topological information
to learn the fine-grained features of each user–entity–
relation.

2. We propose a hierarchical propagation path construc-
tion method, which can explore more complex states and
increases the efficiency of the model.

3. Extensive experiments on two real-world datasets demon-
strate that KPRLN outperforms state-of-the-art baselines.
Furthermore, it also has a good performance in reducing
the effect of noise and providing explainability for the
recommendation.

Related work

Knowledge-aware recommendationmethod

Knowledge graph assists the recommender systems through
multi-dimensional dense associations and rich semantic
information between entities, providing a new perspec-
tive to enhance recommender systems. Currently, KG-based
recommender systems are mainly divided into three cate-
gories: embedding-based method, path-based method, and
unifiedmethod.Embedding-basedmethod (e.g., TransE [12],
TransH [13], MuPR [14], DihEdral [15], etc.) learns the
embeddings of entities and relations in KG, and keeps the
original structural information of KG as much as possible.
For example, [16, 17] unify the structural knowledge and
other side information in a unified CF framework. These
methods focus on learning semantic associations between
knowledge graph entities but ignore the connectivity patterns

of information in KG and high-order relationships between
entities. Therefore, they lack the interpretability of the rec-
ommendation process. The path-based method (e.g., [4, 18,
19] etc.) regards the KG as a heterogeneous information net-
work, constructing and extracting the latent features based on
meta-path/meta-graph between users and items. These meth-
ods’ performancedepends onmanually designingmeta-paths
and meta-graphs, which makes it difficult to achieve optimal
performance in reality and leads to information loss when
dealing with KG with complex relationships. The unified
method combines the ideal of the embedding-based method
andpath-basedmethod.RippleNet [20] andKGCN[7] enrich
the representation of users or items by aggregating the target
entity and their multi-hop neighbors. These methods mine
the information in the knowledge graph more comprehen-
sively and perform well in recommender systems. However,
RippleNet and KGCN do not learn the user preferences by
each user–entity–relation.

The existing methods are not modeling the fine-grained
preferences of users in KG well. We combine deep rein-
forcement learning with knowledge graph learning users’
fine-grained preference features and apply them to the rec-
ommendation.

Reinforcement learning for recommendation

Reinforcement learning is a methodology of machine learn-
ing that, through interaction with their environment, learns
to maximize a numerical reward. The Markov Decision Pro-
cess (MDP), proposed byBellman, is themost common form
of defining reinforcement learning. After that, Q-learning
further extended the application of reinforcement learning
[21]. DQN [22] introduces deep learning in reinforcement
learning, which significantly increases the application sce-
narios of reinforcement learning. A series of applications of
deep reinforcement learning methods (e.g., AlphaGo [23],
autonomous driving [24], etc.) have demonstrated its power-
ful potential.

In recommender systems, user interactions are sequen-
tial [25]. The recommendation process can be regarded
as a sequential decision process [26], which is formu-
lated as an MDP. Reinforcement learning interacts with
recommender systems by the agent, which makes it effec-
tively learn dynamic features and improve recommendation
explainability. With the development of deep learning, deep
reinforcement learning in recommender systems has aroused
great interest in recent years. DRN [27] proposed news
recommender systems based on the deep reinforcement
learning framework, and [28] made non-sequential ranking
recommendations by deep reinforcement learning. Mean-
while, some recommendation methods based on other deep
learning models have been successfully applied [29], and
many researchers have explored the application of deep

123

6648 Complex & Intelligent Systems (2023) 9:6645–6659

Q(,)action

statestate

…

Replay memory

Actor Critic

State
Path sequence

Input

Return

Feedback

Reward
Immediate reward

Action
Next nodeKG

cluster-to-cluster path

hierarchical attention paths

Reward
Delay rewardNormal path

Weighted-KG

Candidate item

User

Predict

Attention
Graph

Convolutional
Network

propagate user
preferences

Recommendation layer

Fig. 2 Illustration of the KPRLN framework

reinforcement learning with other deep learning models in
recommender systems.

In our work, we use deep reinforcement learning to
enhance Graph Neural Networks (GNNs) feature represen-
tation by building preference-weighted graphs to learn the
fine-grained preference features of users.

Reinforcement learning on knowledge graph

Knowledge graphs are often used as external information
to improve the performance of recommender systems, and
reinforcement learning increases the explainability of the
recommendation due to the agent interacting with the recom-
mender systems. Many works have explored the application
of reinforcement learning in the knowledge graph. GRL
[30] designed a generative adversarial net (GAN)-based rein-
forcement learning model for knowledge graph completion.
DeepPath [31] applies reinforcement learning to knowledge
graph reasoning. Specifically, DeepPath is to find reliable
multi-hop paths between entity pairs in KG. [32] explored
the application of RL to question–answering tasks in the
KG environment, [33] was devoted to solving the prob-
lems of reinforcement learning-based path-finding methods
in question–answering applications, PGPR [34] uses RL to
find explainable paths between users and potential items, and
[35] proposed amultimodal knowledge-aware reinforcement
learning network dedicated to achieving interpretable causal
reasoning procedures.

The above methods use reinforcement learning to find
user–item or item–item paths in the knowledge graph. How-
ever, the challenges of reinforcement learning based on KG,

such as the efficiency ofmodel training, complete exploration
in the knowledge graph, and long path exploration, have not
been well solved. Therefore, in this paper, we design a novel
path construction method to address these issues.

Proposedmethod

Aimed at the above problems and challenges, we pro-
pose a knowledge preference-aware reinforcement learning
network named KPRLN, which extracts fine-grained user
interest preference features in the knowledge graph. The
overall framework is shown in Fig. 2. The KPRLN model
is generally divided into the preference-weighted knowledge
graph generation layer and the recommendation prediction
layer. In the user preference-weighted knowledge graph gen-
eration layer, we construct the path network of user historical
interaction items in the knowledge graph based on deep
reinforcement learning. The deep reinforcement learning
model explores the knowledge graph by cluster expansion
and designs feedback rewards based on hierarchical prop-
agation paths. Meanwhile, the deep reinforcement learning
agent globally updates the weights of edges in the knowledge
graph by the expected returns for each link. In the recommen-
dation prediction layer, we design an attention mechanism to
propagate the higher order interest of users in the knowledge
graph and aggregate user and item representations for pre-
diction. The notations and descriptions used in this paper are
shown in Table 1.

123

Complex & Intelligent Systems (2023) 9:6645–6659 6649

Table 1 Notations and their descriptions used in this paper

Notations Descriptions

G Knowledge graph

rt The reward at time t

st The state at time t

at The action at time t

Gu Weighted knowledge graph for user u

E, e Entities of KG and entity of entities

R, r Relations of KG and relation of relations

Eu , eu Interaction entities of user u

S Path sequence set

P Path sequence

fi Feature representation of entity ei
ri , rfeedback Immediate reward and delayed feedback reward

y j Expected value of action j

D The experience replay

Framework

Wefirst introduce our general idea and the overall structure of
our model. The knowledge graph is defined as G = (E, R),
where E represents the entity (node) set in the KG, and R
represents the relation (edge) set in the KG. The KG is rep-
resented in the form of triples as G = {e, r , e′|e, e′ ∈ E, r ∈
R}, between entity e and entity e′ connected by the relation
r . In our deep reinforcement learning model, we learn the
user’s higher order interest preferences through the user’s
historical interaction items. The user’s historical interaction
item set is represented by Eu , and for any eu ∈ Eu , they,
respectively, reflect the user’s preference features and relate
to each other. However, they are sparsely distributed in the
knowledge graph. Therefore, we build a network of paths
among them to learn their connection.

Initially, the RL agent will randomly select an eu as the
starting state st=0 to construct a path.We select the neighbors
of the last entity in the path as the action range.When another
user interaction item has been added to the path, return a
positive reward and start a new walking process. Otherwise,
return a negative reward and continue to walk. For each path,
it is described as follows:

S =

⎧
⎪⎨

⎪⎩

p1 = (eu
r_→ e1

r_→ · · · r_→ eu′), r+
1

p2 = (eu
r_→ e2

r_→ · · · r_→ eu′), r+
2

· · · ,

(1)

where S is the path sequence-reward set.We do not add dupli-
cate nodes in p, so p will not be a cycle or a loop.

Then, we extend the representation of user history inter-
action items to their neighbors. Therefore, the starting and
target states represent a node cluster. As the walking process

described above, the RL model constructs cluster-to-cluster
paths. When the cluster-to-cluster path is found, we back-
propagate to the relevant nodes in the starting cluster and link
them to all the nodes in the target cluster. Return the rewards
based on the hierarchical propagation paths. We formulate
the number of extensions based on the size of the knowledge
graph and the number of historical interaction items of the
users. When the RL model is sufficiently trained, globally
generate the weighted graph Gu based on local paths.

Finally, we propagate user preferences on Gu and aggre-
gate the item embedding representation and user embedding
representation by GNNs for CTR prediction and Top-K rec-
ommendation.

Reinforcement learning guides weighted graph
generation

To illustrate the detailed design of our deep reinforcement
learningmodel, we first introduce the detailed design of state,
action, and reward.

State: Consists of the topology information of all entities
in the current path, and st represents a general description
of the current path sequence p at step t . We use Node2vec
[36] to obtain the entities embedding representations in the
knowledge graph as the inputs of state representations in
deep reinforcement learning. The embedding representation
of entity ei is fi , for p = (e1, e2, . . . , et), the st is represented
as follows:

st = [f1; f2; . . . ; ft], (2)

where [;] represents vector concatenation.
We utilize pooling to simplify state input to enhance the

efficiency of the reinforcement learning model. Consider
that in path p, the last node determines the action range.
Therefore, we pool the path except for the last node. The
st = [f1; f2; . . . ; ft] is pooled as

st = [max − pooling{ f1; f2; . . . ft−1}; ft], (3)

where max-pooling{·} is the pooled representation of the p
after removing the last node. And it is concatenated with the
embedding of the last node.

Action: The next node to join path p. Define at to be an
action at time t , at is the embedding representation of the
entity which adds to p. The action set (neighbors of the last
node) removes the nodes already present in p to make sure
that p is a real path. The RL agent selects action based on
the expected reward of at according to Q(st , at), and updates
state st to s(t+1). Q(st , at) is the return reward value predicted
by Q-network for action at . We will introduce the design of
the Q-network later.

123

6650 Complex & Intelligent Systems (2023) 9:6645–6659

Reward: The reward is used for feedback to guide deep
reinforcement learning model training. In our model, it is
designed into two parts: immediate reward for model train-
ing and delayed feedback reward for balancing the immediate
reward. We define the immediate reward as ri , which is
obtained by constructing the path network. And the delayed
feedback reward is defined as rfeedback, determined by the
current weighted knowledge graph.

1. Immediate rewards: Our model expects to build the
path network among the user historical interaction items.
Therefore, when another user historical interaction item
adds to p, return a positive reward, otherwise return a
negative reward

ri =
{ |d| i f e ∈ Eu

−ζ |d| otherwise
, (4)

where d is a constant and ζ is a balancing hyperparame-
ter.
KPRLN extend user history interaction items along the
links in the knowledge graph to their neighbors. When
finding a cluster-to-cluster path, the model will back-
propagate to the relevant nodes in the starting cluster. Find
all potential paths within the starting cluster based on the
extended hops. And link these potential paths with the
cluster-to-cluster path. In the target cluster, these paths
spread outward around the user interaction item center.
The hierarchical propagation path reward is designed as
follows:

rhi = 1

2h
ri , (5)

where h represents the number of hops. In KPRLN, the
reward is halved for each additional hop compared to the
original immediate reward.

2. Delayed feedback reward: We hope that the weighted
knowledge graph can work well in the recommender sys-
tems. Therefore, we designed a delayed feedback reward
based on the recommendation task. We divide the whole
training process into multiple epochs. We sample users’
historical interactions in each epoch andmake predictions
in the current weighted knowledge graph. According to
the predicted performance, the rfeedback is defined as

rfeedback = Z(scores(Gu))riβ, (6)

where scores(·) is the user weighted graph model esti-
mate, which is calculated base on the recommended task
performance, Z(·) is a normalization function, and β is a
balance hyperparameter.

The design of the Q-network is shown in Fig. 3. Input the
current path state s and the next action a to the Q-network.
After applying two ReLU layers, the output Q(s, a) repre-
sents the expected value of the action a in the s state, as
follows:

Q(st , at) = fθ ([st ; at]), (7)

where fθ (·) is the deep neural network shown in Fig. 3.
Experience replay enables the Q-network to update

parameters with recent experience stored in the replay mem-
ory, thus stabilizing the training process. However, it may
lead to overestimating and local optimum, as great q-value
paths are found repeatedly. Therefore, we use DDQN [37]
as our RL framework. Our model first finds the action corre-
sponding to the maximum q-value. Then, calculate the target
q-value of the action in the target network. Finally, decou-
pling the choice of target Q-value action and the calculation
of the targetQ-value to eliminate the problem of overestima-
tion

yQj = r + γ Q(s j+1, argmaxa′Q(s j+1, a, θ), θ ′), (8)

where γ is the discount factor, θ is the parameter of the orig-
inal network, and θ ′ is the parameter of the target network.
Backpropagation updates the parameters in the Q-network
by the mean squared loss function

LRL(θ) = 1

|D|
∑

(s,a,r ,s′)∼D

[(yQj − Q(s, a j , θ))2], (9)

where |D| represents the number of samples collected in the
experience replay pool.

Preference knowledge-aware recommendation

In the deep reinforcement learning layer, the preference-
weighted KG Gu is generated for each user based on their
historical interactions.Wepropagate users’ interests onGu to
get high-order preference representations of items and users.

Item representation

First, we propagate user preferences along the relations in
Gu . To learn more semantic information in the knowledge
graph and consider the size of the knowledge graph, we
designed an attention graph convolutional network based on
[38].

As shown in Fig. 4, we sample the neighbors of the item
sequentially according to the values of the edge weights in
Gu and aggregate the multi-hop neighbors of items based
on this. Then, aggregate item representation based on the
attention graph convolutional network

123

Complex & Intelligent Systems (2023) 9:6645–6659 6651

Fig. 3 The structure of the
Q-network in our framework.
The state s is the embedding of
the vertices of the path
sequence, and the action a is the
neighbor of the last vertex. After
pooling, they are used as the
input to the Q-network

Fig. 4 Item feature aggregation
in user weight graph

() ()

() =
| ()| | ()|

()

() =
| ()| | ()|

()

h=2

h=1

…

h(l+1)
i = σ(b(l) +

n∑

j∈N (i)

e ji
c ji

h(l)
j W (l)), (10)

wheren represents the number of samples, and l is the number
of layers in graph convolution, which represents the number
of propagation hops. N (i) represents the neighbors of the
node i , c ji is the square-root product of node degrees (i.e.,
c ji = √|N (i)|√|N (j)|), σ(·) is an activation function, and
e ji is the scalar weight from node j to node i .

User representation

Considering that the item embedding already contains the
user’s preference features, we associate the users with their
historical interaction items.

Specifically, we build the user–item bipartite graph and
aggregate the features of user interaction items to get user
embedding representation, which can be described as

u = fagg(iu), (11)

123

6652 Complex & Intelligent Systems (2023) 9:6645–6659

where iu represents the interaction item embedding of user
u, which is aggregated in Gu . And, fagg(·) is a function for
aggregating the user embedding representation.

Learning algorithm

We predict the interact probability between the user and the
item based on user embedding u and item embedding v

ŷuv = F(u, v). (12)

In our recommender system, we iterate over all possible
user–item pairs by negative sampling strategy. The loss is
calculated as

LRS =
∑

u,v

J (yuv, ŷuv) −
∑

σ(b(l)

+Gu ∗ W (l)) + λ||�||22, (13)

where J (·) is the cross-entropy loss, the second term is the
item aggregation loss, ||�||22 is the L2-regularization loss
function, and λ is the balance hyperparameter.

The process of KPRLN is described as Algorithm 1. It
mainly consists of two parts: (1) generate the user preference-
weighted knowledge graph; (2) aggregating users’ higher
order interest preferences under the GNNS framework.

Algorithm 1 KPRLN algorithm
Require: Knowledge graph G, interaction matrix Y ;
Ensure: Prediction function F(u, v|�, Y ,G)

1: Initialize all parameters
2: while KPRLN not converge do
3: for user in Users do
4: put user interaction items in RL model
5: while number in training iteration do
6: Get state st
7: Select at according to the policy network
8: Interact with RL agent
9: Get immediate reward ri
10: if |step t | = |L| then
11: Reconstruct weight graph
12: Get r f eedback
13: end if
14: Get reward rt ,state st+1,path pt
15: Store transition(st+1, at , r) in D

16: Update value and policy network
17: Update state st = st+1
18: Update the parameters by gradient descent
19: end while
20: Generate user weight graph Gu
21: end for
22: Aggregate items embedding and users embedding
23: Calculate predicted probability ŷuv

24: Update parameters of F
25: end while
26: Return F(u, v|�, Y ,G)

Table 2 Detailed statistics of the three datasets

Movielens-1M Last.FM

Users 6036 1872

Interactions 753,772 42,346

Items 2347 3846

Relations 12 60

Entities 6729 9366

KG triples 20,195 15,518

Experiments

In this section, we show the performance of KPRLN. We
evaluate our model on two real-world scenarios: Movielens-
1M and Last.FM, and compare it with state-of-the-art meth-
ods. First, we introduce the experimental setup, including
datasets and baselines. Second, compare with other baselines
and model variants under the same scenario. Then, we dis-
cuss the impact of hyperparameters on model performance.
Finally, we show a case on the movie dataset, demonstrating
that KPRLN can provide reasonable explanations for users’
preferences on recommendations.

Datasets

We use datasets based on real scenarios as follows:

1. Movielens-1M1 is a widely used movie dataset. It is
smaller than Movielens-20M and contains about 1 mil-
lion ratings.

2. Last.FM2 is awidely usedmusic dataset that contains data
from Last.FM. Information from over 2000 users of the
online music system.

Since these datasets are explicitly fed back, we convert
them to implicit feedback by setting a rating threshold, mark-
ing all entries larger than the threshold as 1, indicating that
the user is satisfied, and sampling unsatisfactory onesmarked
as 0 for each user matching set. And we removed users who
did not include positive implicit feedback.

The Movielens-1M includes 6036 users and 753,772
interactions, and the knowledge graph contains 2347 items,
6729 entities, and 20,195 triples. The Last.FM includes 1872
users and 42,346 interactions, and the knowledge graph con-
tains 3846 items, 9366 entities, and 15,518 triples. The basic
statistics of the two datasets are shown in Table 2.

The knowledge graph of Last.FM is published by [7], and
the knowledge graph of Movielens-1M is published by [39].

1 https://grouplens.org/datasets/movielens/1m/.
2 https://grouplens.org/datasets/hetrec-2011/.

123

https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/hetrec-2011/

Complex & Intelligent Systems (2023) 9:6645–6659 6653

Table 3 Hyper-parameters’ setting

d η N H λ Batch size

Movielens-1M 64 1 × 10−3 4 2 1 × 10−5 1024

Last.FM 16 5 × 10−4 8 1 1 × 10−4 256

Baselines

We use the following state-of-the-art baselines for compari-
son with KPRLN.

1. LibFM [40] is a feature-based factorizationmodel in CTR
scenarios. We concatenate user ID and item ID as input
for LibFM.

2. PER [18] connections between users and items are
captured by extracting meta-path-based features in het-
erogeneous networks. We use the properties of items as
features to build the meta-path between the user and the
item.

3. CKE [16] based on the embedding method, which com-
bines collaborative filtering (CF) with structural infor-
mation, textual information, and visual information in a
unified recommendation framework. In this paper, CF is
used in conjunctionwith the structural knowledgemodule
to implement CKE.

4. RippleNet [20] is a method of obtaining links in the
knowledge graph in the form of water wave diffusion.
Expand users’ potential interests through multiple links.
In the recommender system, users’ interests can be more
comprehensively reflected.

5. KGCN [7] is an end-to-end framework that effectively
captures inter-item correlations by mining relevant
attributes on the knowledge graph. Calculate the scores
of users and relations, and use the links on the item to
propagate the user’s potential interest on the knowledge
graph.

6. HAGERec [41] emphasizes the importance of character-
izing semantic information of relations, which explores
users’ potential preferences from the high-order connec-
tivity structure of the heterogeneous knowledge graph,
combining graph convolutional networks for explainable
recommendation.

Experiments setup

The hyperparameter statistics of our experiments are shown
in Table 3. The hyperparameters are as follows: d represents
the embedding dimension, H represents the number of item
propagation hops, N represents the number of aggregation
domains, λ represents the L2-regularization weight, and η

represents the learning rate.

The training, evaluation, and test sets ratio for each dataset
is 8:1:1. Each experiment was repeated three times, and the
average performance was reported. We evaluate model per-
formance using the following two experimental scenarios:
(1) CTR prediction. We use the model to predict click proba-
bilities for items in the test set.WeuseACC (Accuracy),AUC
(Area Under Curve), and F1 to evaluate the performance of
CTR prediction. (2) Top-K recommendation. We select the
K items with the highest predicted click probability for users
in the test set and then select Precision@K and Recall@K to
evaluate the recommended set. We use the Adam algorithm
to optimize all training parameters. The code for KPRLN
is implemented under Python 3.7, Tensorflow 1.14.0, and
Numpy 1.21.5.

Results

Performance comparisons with baselines

We present the results of CTR prediction and top-K recom-
mendation of KPRLN and other baselines in Table 4 and
Figs. 5 and 6, respectively, and draw the following conclu-
sions:

1. In general, KPRLN has the best performance on the rec-
ommendation scenarios of the two datasets. As shown in
Table 4, in Movielens-1M, the average improvement in
AUC, ACC, and F1 is 7.5%, 6.55%, and 6.37%, respec-
tively. In the Last.FM, the average improvement in AUC,
ACC, and F1 is 6.8%, 6.22%, and 5.77%. Furthermore,
KPRLN also performs well in Precision@K, Recall@K,
as shown in Figs. 5 and 6, demonstrating the efficacy of
KPRLN in learning users’ high-order interest preferences.

2. PER does not perform well. Because the meta-path we
designed is difficult to achieve optimally in movie and
music recommendation scenarios, we need a lot of exper-
tise to design meta-paths. This makes it difficult for
PER to be optimal in results. Compared with other base-
lines, CKE performs relatively poorly, which may be
because the learning of image features and text features
is introduced into the original CKE model, while only
the knowledge structure features are in the process of our
construction.

3. Ripple and KGCN are unified methods that integrate
the semantic representation of entities and relations and
the connectivity information base on GNN. However,
none of them are well designed to learn the user fine-
grained preference interest for each user–item–relation
triple. Therefore, they do not perform as well as KPRLN.

4. HAGERec performs the best in all baselines, which uses
the attention mechanism to filter aggregated neighbors
and designs an interaction signals unit to make GCN
characterize more passed information from the network

123

6654 Complex & Intelligent Systems (2023) 9:6645–6659

Table 4 Performance
comparisons with baselines

Dataset Methods AUC Impr ACC Impr F1 Impr

LibFM 0.892 4.3% 0.812 4.5% 0.819 4.0%

PER 0.710 22.5% 0.664 19.3% 0.673 18.6%

CKE 0.801 13.4% 0.742 11.5% 0.742 11.7%

Movielens-1M Ripplenet 0.921 1.4% 0.844 1.3% 0.848 1.1%

KGCN 0.913 2.2% 0.840 1.7% 0.843 1.6%

HAGERec 0.923 1.2% 0.847 1.0% 0.847 1.2%

KPRLN 0.935 – 0.857 – 0.859 –

LibFM 0.769 5.5% 0.711 4.2% 0.710 3.7%

PER 0.633 19.1% 0.596 15.7% 0.596 15.1%

CKE 0.744 8.0% 0.673 8.0% 0.673 7.4%

Last.FM Ripplenet 0.780 4.4% 0.691 6.2% 0.702 4.5%

KGCN 0.796 2.8% 0.731 2.2% 0.721 2.6%

HAGERec 0.814 1.0% 0.743 1.0% 0.734 1.3%

KPRLN 0.824 – 0.753 – 0.747 –

Best results are bolded

Fig. 5 The results of Precision@K in top-K recommendation

of a central entity. It demonstrates that effectively dis-
tinguishing users’ preferences for items can improve the
performance of the recommender system.

Ablation study

We conduct ablation experiments on the KPRLN to ana-
lyze the effect of different components. To demonstrate the
improvement of the performance of the recommendation sys-
temby thegeneratedweightedknowledgegraph,wecompare
theweighted knowledge graph generated byKPRLNwith the
unweighted knowledge graph (average aggregate neighbors),
and the result is shown in Table 5. Furthermore, we verified
the impact of the hierarchical propagation paths in the deep
reinforcement learning training on the model’s performance.

The results are shown in Figs. 7, and 8, and the following
conclusions are drawn:

1. As shown in Table 5, KPRLN performs better than the
average aggregate method, which proves that user pref-
erence information can improve the performance of the
recommender systems, and KPRLN can effectively learn
user preferences.

2. As shown in Fig. 7, we train each dataset 10,000 times
to ensure model convergence and use the comprehensive
indicators of AUC, ACC, and F1 to determine the per-
formance of the recommender systems. We find that the
performance of KPRLN is proportional to the number of
training sessions of the model, and the model is stable in
the late training period.

123

Complex & Intelligent Systems (2023) 9:6645–6659 6655

Fig. 6 The results of Recall@K in top-K recommendation

Table 5 User weight and none weight

Movielens-1M Last.FM

AUC ACC F1 AUC ACC F1

Average 0.907 0.830 0.835 0.798 0.723 0.712

KPRLN 0.935 0.857 0.859 0.824 0.753 0.747

Best results are bolded

Fig. 7 Performance in different training times

3. K PRLN att− is a variant of the KPRLN that removes
the hierarchical propagation paths in deep reinforce-
ment learning. As shown in Fig. 8, in recommender
systems, KPRLN not only has better performance than
K PRLN att− but is also more efficient than
K PRLN att−.

Research on noise resistance

KPRLN generated the users’ weighted knowledge graphs, so
that we could remove small weight edges in the knowledge
graph. We have removed 5%, 10%, and 20% of edges (as
noises) in ascending order of edge weight value and com-
pared the recommendation performance. As shown in Fig. 9,
the following conclusions are drawn:

1. In Movielens-1M, KPRLN gets the best performance
in the original knowledge graph, and the performance
gradually decreases as the remove ratio increases. In
Last.FM, KPRLN achieves the best performance in the
5% removed knowledge graph, which proves that the
edges we removed are useless noise.

2. In Last.FM, the performance of removing 20% is better
than removing 10%. The reason may be that the KG of
Last.FM ismore sparse than theKGofMovielens-1Mand
the KG of Last.FM has 60 relation types which are more
than Movielens-1M. Therefore, the KG of Last.FM may
containmore useless information, whichmakes removing
20% edges can make the model focus better on useful
information than removing 10% edges.

Performance comparisons with hyperparameters

We compare the effect of item aggregation domain number
N and item propagation hop number H on the model.

(1) The performance on different N .
Knowledge graph has rich semantic information that enriches
the representation of items. We emphasize that user prefer-
ences for entity–relation pairs affect the performance of the
recommender system and propagate users’ preferences on

123

6656 Complex & Intelligent Systems (2023) 9:6645–6659

Fig. 8 The impact of attention mechanism on the model

Fig. 9 The results of noise experiment

the knowledge graph based on the attention mechanism. The
hyperparameter N represents the number of neighbors we
sampled. Therefore, we need to discuss the impact of N on
KPRLN.

• The results are shown in Fig. 10. KPRLN shows the best
performance at N = 4 in Movielens-1M and achieves
the best result in Last.FM when N = 8. This is because
if N is too small, it does not contain enough neighbor
information, and if N is too large, themodel performance
is susceptible to noise. It should be noted that the number
of neighbors for some itemsmay be less than N , in which
case we select all neighboring entities.

(2) The performance on different H .
The number of neighbor propagation hops H is also very
critical, and the size of the propagation hops determines the
range through entity information. Therefore, it is important
to ensure the appropriate number of propagation hops.

• The results are shown in Fig. 11. In Movielens-1M,
KPRLN achieves the best performance when H = 2,
but in Last.FM, the best performance is obtained when
H = 1. The number of entities aggregated to the item
increases exponentially with H , which makes H more
sensitive than N . In Movielens-1M, we can get more
information in the longer relation chain, while Last.FM
is relatively sparse, so too large H brings more noise to

123

Complex & Intelligent Systems (2023) 9:6645–6659 6657

Fig. 10 The results of hyperparameters N on datasets

Fig. 11 The results of hyperparameters H on datasets

Fig. 12 The local structure of
the preference-weighted
knowledge graph, which shows
an example of movie
recommendation. Establish the
reasonable paths between users
and predicted items based on the
weight values, and explain the
recommendations

Raiders of the Lost
Ark (Indiana Jones
and the Raiders of
the Lost Ark) (1981)

Star Wars: Episode V
- The Empire Strikes
Back (1980)

American
Werewolf
in London,
An (1981)

Star Wars: Episode
I - The Phantom
Menace (1999)

Star Wars: Episode
VI - Return of the
Jedi (1983)

user

movie items

en��es

interact
predict
rela�ons

0.808 0.751

0.755

0.620
0.694

0.661 0.763

0.6770.351

123

6658 Complex & Intelligent Systems (2023) 9:6645–6659

the model. In addition, the performance of KPRLN is
more stable in Movielens-1M than in Last.FM.

Case study

We select a real example from Movielens-1M to intu-
itively demonstrate the effectiveness of KPRLN. We
randomly select a user–item pair from the test dataset, and
the item (e694) is treated as a target item that would be rec-
ommended for the user. Then, KPRLN generates the user
preferenceweight knowledge graph based on the user’s inter-
action items. Themovies used formodel training are Raiders
of the Lost Ark (Indiana Jones and the Raiders of the Lost
Ark) (1981), Star Wars: Episode I—The Phantom Men-
ace (1999), and American Werewolf in London, An (1981).
The movie used for prediction is Star Wars: Episode V-The
Empire StrikesBack (1980). As shown in Fig. 12, theweights
of the edges in the graph represent the user’s preference, and
the edges which in the path between the interaction items
can get higher weights. Therefore, the model can learn more
useful information when aggregating the representation of
e694. The edge weight between entity e5280 and predicted
item e694 is relatively low, because e5280 is not associated
with the user’s historical interaction items.

Conclusions and future work

This paper proposes a knowledge graph recommender sys-
tem based on deep reinforcement learning (KPRLN). In
the deep reinforcement learning model, we design hierar-
chical propagation paths to establish associations between
users’ historical interaction items and learn the features of
users’ preferences for entities and relations of KG. At the
same time, coordinated by different reward mechanisms, the
preference-weighted KG is generated for each user. Then,
more influential neighbors are sampled based on an atten-
tion mechanism to propagate users’ preferences on the KG,
aggregating to get embedding representations of items and
users. Our method is not to learn users’ preferences for var-
ious relations at a macro-level but to learn in detail about
the user and specific entity–relation–entity combinations.
And demonstrate excellent performance onwidely used real-
world datasets, achieving significant progress compared to
several state-of-the-art baselines.

Our future work intends to evaluate the effectiveness of
our model on more real-world data.

Acknowledgements This work is supported by the National Natural
Science Foundation of China (Grant No. 62266054), and Science and
Technology Program of Yunnan Province (Grant No. 202101AT070
095).

Author Contributions DW: conceptualization, methodology, software,
formal analysis, investigation, visualization, writing-original draft. MT:
conceptualization, funding acquisition, writing-review and editing. SZ:
writing-review and editing. AY: data curation, validation. WG: investi-
gation, supervision.

Data Availability Data available on request from the authors.

Declarations

Conflict of interest The authors declare that they have no known com-
peting financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Wang S, Hu L,Wang Y, He X, Sheng QZ, OrgunMA, Cao L, Ricci
F, Yu PS (2021) Graph learning based recommender systems: a
review. arXiv:2105.06339

2. Wang Q, Mao Z,Wang B, Guo L (2017) Knowledge graph embed-
ding: a survey of approaches and applications. IEEE Trans Knowl
Data Eng 29:2724–2743

3. Liu J, Duan L (2021) A survey on knowledge graph-based recom-
mender systems. In: 2021 IEEE 5th advanced information tech-
nology, electronic and automation control conference (IAEAC),
Chongqing, vol 5. pp 2450–2453

4. WangX,WangD,XuC,HeX,CaoY,ChuaT-S (2019) Explainable
reasoning over knowledge graphs for recommendation. In: Pro-
ceedings of the AAAI conference on artificial intelligence, Hawaii,
vol 33. pp 5329–5336

5. Veličković P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y
(2018) Graph attention networks. In: International conference on
learning representations. https://arxiv.org/abs/1710.10903

6. Wang X, He X, Cao Y, Liu M, Chua T-S (2019) Kgat: knowledge
graph attention network for recommendation. In: Proceedings of
the 25th ACM SIGKDD international conference on knowledge
discovery and data mining, Anchorage. pp 950–958. https://doi.
org/10.1145/3292500.3330989

7. Wang H, Zhao M, Xie X, Li W, Guo M (2019) Knowledge graph
convolutional networks for recommender systems. In: The world
wide web conference, San Francisco. pp 3307–3313. https://doi.
org/10.1145/3308558.3313417

8. Wang H, Zhang F, Zhang M, Leskovec J, Zhao M, Li W, Wang
Z (2019) Knowledge-aware graph neural networks with label
smoothness regularization for recommender systems. In: Pro-
ceedings of the 25th ACM SIGKDD international conference on
knowledge discovery and data mining, Anchorage. pp 68–977

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2105.06339
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3308558.3313417

Complex & Intelligent Systems (2023) 9:6645–6659 6659

9. Huai Z, Tao J, Che F, Yang G, Zhang D (2021) Knowledge graph
enhanced recommender system. arXiv preprint arXiv:2112.09425

10. Hui B, Zhang L, Zhou X, Wen X, Nian Y (2022) Personalized
recommendation system based on knowledge embedding and his-
torical behavior. Appl Intell 52:954–966

11. Afsar MM, Crump T, Far B (2022) Reinforcement learning based
recommender systems: a survey. ACM Comput Surv. https://doi.
org/10.1145/3543846

12. Bordes A, Usunier N, Garcia-Duran A, Weston J,
Yakhnenko O (2013) Translating embeddings for mod-
eling multi-relational data. Adv Neural Inf Process Syst
2:2787–2795. https://proceedings.neurips.cc/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

13. Wang Z, Zhang J, Feng J, Chen Z (2014) Knowledge graph embed-
ding by translating on hyperplanes. In: Proceedings of the AAAI
conference on artificial intelligence, Québec City, vol 28

14. Balazevic I, Allen C, Hospedales T (2019) Multi-relational
poincaré graph embeddings. Adv Neural Inf Process Syst 4460–
4470

15. Xu C, Li R (2019) Relation embedding with dihedral group in
knowledge graph. In: Proceedings of the 57th annual meeting of
the association for computational linguistics, Florence. pp 263–272

16. Zhang F, Yuan NJ, Lian D, Xie X, Ma W-Y (2016) Collaborative
knowledge base embedding for recommender systems. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on
knowledge discovery and data mining. KDD’16, San Francisco. pp
353–362

17. Wang H, Zhang F, Xie X, Guo M (2018) Dkn: Deep knowledge
aware network for news recommendation. In: Proceedings of the
2018 World Wide Web Conference. WWW ’18, Lyon. pp 1835–
1844

18. Yu X, Ren X, Sun Y, Gu Q, Sturt B, Khandelwal U, Norick B, Han
J (2014) Personalized entity recommendation: A heterogeneous
information network approach. In: Proceedings of the 7th ACM
international conference onweb search and datamining,NewYork.
pp 283–292

19. ZhaoH, YaoQ, Li J, SongY, LeeDL (2017)Meta-graph based rec-
ommendation fusion over heterogeneous information networks. In:
Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, Halifax. pp 635–644

20. Wang H, Zhang F, Wang J, Zhao M, Li W, Xie X, Guo M (2018)
Ripplenet: propagating user preferences on the knowledge graph
for recommender systems. In: Proceedings of the 27th ACM inter-
national conference on information and knowledge management,
Torino. pp 417–426

21. Wang X,Wang S, Liang X, Zhao D, Huang J, Xu X, Dai B,Miao Q
(2022) Deep reinforcement learning: a survey. IEEE Trans Neural
Netw Learn Syst 1–15

22. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al
(2015) Human-level control through deep reinforcement learning.
Nature 518(7540):529–533. https://doi.org/10.1038/nature14236

23. Silver D,HuangA,MaddisonCJ, GuezA, Sifre L, VanDenDriess-
che G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot
M et al (2016) Mastering the game of go with deep neural net-
works and tree search. Nature 529(7587):484–489. https://doi.org/
10.1038/nature16961

24. Codevilla F, Müller M, López A, Koltun V, Dosovitskiy A (2018)
End-to-end driving via conditional imitation learning. In: 2018
IEEE international conference on robotics and automation (ICRA),
Brisbane. pp 4693–4700

25. Shani G, Heckerman D, Brafman RI (2005) An mdp-based recom-
mender system. J Mach Learn Res 6:1265-1295

26. Hu B, Shi C, Liu J (2017) Playlist recommendation based on rein-
forcement learning. In: Intelligence Science I: Second IFIP TC 12
International Conference (ICIS), Shanghai. pp 172–182

27. Zheng G, Zhang F, Zheng Z, Xiang Y, Yuan NJ, Xie X, Li Z (2018)
Drn: a deep reinforcement learning framework for news recommen-
dation. In: Proceedings of the 2018 world wide web conference,
Lyon. pp 167–176

28. Zhao X, Xia L, Zhang L, Ding Z, Yin D, Tang J (2018) Deep
reinforcement learning for page-wise recommendations. In: Pro-
ceedings of the 12th ACMConference on Recommender Systems,
Vancouver. pp 95–103

29. Karimi M, Jannach D, Jugovac M (2018) News recommender
systems: survey and roads ahead. Inf Process Manag 54(6):1203–
1227. https://doi.org/10.1016/j.ipm.2018.04.008

30. Wang Q, Ji Y, Hao Y, Cao J (2020) Grl: knowledge graph com-
pletion with gan-based reinforcement learning. Knowl Based Syst
209:106421

31. Xiong W, Hoang T, Wang WY (2017) Deeppath: a reinforcement
learning method for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690

32. Das R, Dhuliawala S, Zaheer M, Vilnis L, Durugkar I, Krishna-
murthy A, Smola A, McCallum A (2018) Go for a walk and arrive
at the answer: reasoning over paths in knowledge bases using
reinforcement learning. In: International conference on learning
representations. https://arxiv.org/abs/1711.05851

33. Lin XV, Socher R, Xiong C (2018) Multi-hop knowledge graph
reasoning with reward shaping. In: EMNLP. https://arxiv.org/abs/
1711.05851

34. Xian Y, Fu Z, Muthukrishnan S, De Melo G, Zhang Y (2019)
Reinforcement knowledge graph reasoning for explainable recom-
mendation. In: Proceedings of the 42nd international ACM SIGIR
conference on research and development in information retrieval,
Paris. pp 285–294

35. Tao S, Qiu R, Ping Y, Ma H (2021) Multi-modal knowledge-aware
reinforcement learning network for explainable recommendation.
Knowl Based Syst 227:107217

36. Grover A, Leskovec J (2016) node2vec: scalable feature learning
for networks. In: Proceedings of the 22nd ACM SIGKDD inter-
national conference on knowledge discovery and data mining, San
Francisco. pp 855–864

37. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement
learning with double q-learning. In: Proceedings of the AAAI con-
ference on artificial intelligence, Phoenix, vol 30

38. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation
learning on large graphs. Adv Neural Inf Process Syst 1025–1035

39. Wang H, Zhang F, Zhao M, Li W, Xie X, GuoM (2019) Multi-task
feature learning for knowledge graph enhanced recommendation.
In: The world wide web conference, WWW ’19. San Francisco. pp
2000–2010

40. Rendle S (2012) Factorization machines with libfm. ACM Trans
Intell Syst Technol (TIST) 3(3):1–22. https://doi.org/10.1145/
2168752.2168771

41. Yang Z, Dong S (2020) Hagerec: hierarchical attention graph con-
volutional network incorporating knowledge graph for explainable
recommendation. Knowl Based Syst 204:106194. https://doi.org/
10.1016/j.knosys.2020.106194

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/2112.09425
https://doi.org/10.1145/3543846
https://doi.org/10.1145/3543846
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/j.ipm.2018.04.008
http://arxiv.org/abs/1707.06690
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://arxiv.org/abs/1711.05851
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1145/2168752.2168771
https://doi.org/10.1016/j.knosys.2020.106194
https://doi.org/10.1016/j.knosys.2020.106194

	KPRLN: deep knowledge preference-aware reinforcement learning network for recommendation
	Abstract
	Introduction
	Related work
	Knowledge-aware recommendation method
	Reinforcement learning for recommendation
	Reinforcement learning on knowledge graph

	Proposed method
	Framework
	Reinforcement learning guides weighted graph generation
	Preference knowledge-aware recommendation
	Item representation
	User representation

	Learning algorithm

	Experiments
	Datasets
	Baselines
	Experiments setup
	Results
	Performance comparisons with baselines
	Ablation study
	Research on noise resistance
	Performance comparisons with hyperparameters

	Case study

	Conclusions and future work
	Acknowledgements
	References

