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Abstract
Opposition-based learning (OBL) is often embedded in intelligent optimization algorithms to solve practical engineering and
mathematical problems, but the combinatorial problems among different OBL variants are rarely studied. To this end, we
propose a novel OBL variant based on the principle of optical imaging, which combines two novel types of quasi-opposite
learning and extended opposite learning, called diversity-driven fused opposition learning (SQOBL). First, a density center
based on a neighborhood model is proposed. Based on the rapid convergence of the centroid, combined the advantages of
density and centroid to construct a double mean center (DMC) to replace the original center point in quasi-opposite learning
based on the principle of refraction. Secondly, an extended opposite learning method based on optical refraction imaging
is proposed. Diversity is then exploited to drive different opposing learning strategies at different stages of evolution, thus
controlling the exploration and utilization of the algorithm. Finally, SQOBL was embedded in the PSO with eight others
representative OBL variants to find the most optimal solution for a test suite. In addition, 8 novel intelligent optimization
algorithms and the first three algorithms were selected to evaluate the performance of the latest CEC2022 benchmark test set
and realistic constrained optimization problems. Experiments with 56 test functions and 3 real-world constraint optimization
problems show that the proposed SQOBL has good integrative properties in CEC2015, CEC2017, CEC2020, and CEC2022
test suites.

Keywords Opposition-based learning · Particle swarm optimization · Exploration and exploitation · Optimization problems

Introduction

With the development of human cognition, complex opti-
mization problems arise in many fields, such as material
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design [1], remote sensing [2], energy consumption [3] and
epidemic control [4]. Traditional optimization algorithms are
only suitable for solving small-scale problems because of
their large computation volume, and it is often difficult to
be effective in practical engineering applications. In recent
years, many intelligent optimization algorithms have come
into being due to the influence of biological evolution or
group behavior in nature [5–11].

The meta-heuristic optimization algorithm is a commonly
used method to solve global optimization problems. It is
mainly achieved by simulating the intelligence of nature
and people. Broadly speaking, metaheuristic algorithms can
be divided into four branches: biological evolutionary algo-
rithms, algorithms based on physical and chemical laws,
algorithms based on human behavior, and algorithms based
on group intelligence. Evolutionary algorithms are inspired
by the evolution of living things in nature. Based on Dar-
win’s theory’s theory of evolution, simulates natural selection
and survival of the fittest to achieve the overall evolution
of the population. Common evolutionary algorithms include
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genetic algorithm [12], differential evolution algorithm [13]
and optimization algorithm based on biogeography [14].
Algorithms based on the laws of physics and chemistry are
mainly derived from the laws of physics and chemical reac-
tions in the universe. Famous algorithms based on physics
and chemistry include simulated annealing [15], big-bang
big-crunch [16], gravity search [17], and black hole algo-
rithm [18]. Human-centered algorithm is mainly inspired by
human behavior, such as teaching behavior, social behav-
ior, emotional behavior, etc. Learner performance-based
behavior optimization [19], children’s drawing development
optimization [20], socio evolution and learning optimization
algorithm [21], volleyball premier league algorithm [22] is an
intelligent optimization algorithm based on human behavior.
Group intelligence is a major branch of intelligent comput-
ing. The group intelligence optimization algorithm achieves
the global optimal solution by simulating the intelligence of
the group. In this algorithm, each group is a biological group,
and cooperative behavior among individuals in the group
can accomplish tasks that individuals cannot. So far, various
swarm intelligence algorithms have been widely studied to
solve different optimization problems, such as particle swarm
optimization [23], gray wolf optimizer [24], whale optimiza-
tion algorithm [25], fox algorithm [26], and nest algorithm
[27], and fitness-dependent optimizer [28].

The success swarm intelligence algorithm is largely due
to the adjustment of parameters which reduces the over-
all complexity of the algorithm, the calculation cost, and
the time consumption. The common goal of all optimiza-
tion algorithms is to obtain the highest-quality solution at
the lowest cost. Different types of optimization problems
require appropriate algorithms. No optimization algorithm
in the world is universally applicable, that is, it can solve
all kinds of optimization problems. Therefore, the central
idea of dealing with optimization problems is to choose the
appropriate optimizationmethodwisely to solve a given opti-
mization problem with less effort and higher convergence
performance [29]. Eberhardt and Kennedy [23] introduced
particle swarm optimization as an optimization method, the
basic idea of which is derived from the study of bird foraging
behavior. Thewhole algorithm is simple in structure, involves
few parameters, and is easy to implement. It has a strong
global search ability and fast convergence speed. It is a well-
known swarm intelligence algorithm widely used in hybrid
technology. Among many swarm intelligence algorithms,
Particle SwarmOptimization (PSO) has been widely favored
by researchers in the field of optimization because of its sim-
plicity and adaptability [30]. TAREQM. SHAMI et al [31]
have thoroughly and rigorously examined the basic concepts
of PSO optimization, neighborhood topology, binary parti-
cle swarm optimization, recent variations of particle swarm
optimization, important engineering applications and their

drawbacks, and many researchers are working to improve
particle swarm algorithm.

The PSO algorithm is one of the most acclaimed swarm
intelligence algorithms in the literature, and it showed good
characteristics of fast convergence speed and high solution
efficiency when it was proposed. However, the closer we get
to the most optimal particle, the more “convergent” particle
population swarms become, unable to take full advantage
of the information gained in the search and prone to local
optimality. Therefore, it is necessary to dynamically coordi-
nate the relationship between overall exploration and local
exploitation in order to obtain optimization results. How to
grasp the balance of exploration and development is the basis
of using swarm intelligence algorithms to solve problems
[32]. Therefore, people try to improve the PSO algorithm
from different perspectives and research backgrounds.

At present, the improvement direction of PSO is divided
into three categories: (1) the study of important parameters
[33–35] and the selection of topology among particles [36–
38]. (2) Revision of velocity update strategy [39–41] and
particle location formula [42–44]; (3) Keep the fundamental
rules of particle interaction the same and combine other intel-
ligent methods to mine useful information from intermediate
data to improve individual learning as a complement to par-
ticle interaction [45–48]. Opposition-Based Learning (OBL)
is one of them.

OBL is an intelligent technology developed by Tizhoosh
[49]. The main idea is to evaluate both current and reverse
solutions and use the best solutions to speed up the search
process. If the fundamental rules of interaction between par-
ticles resemble the skeleton of an intelligent optimization
algorithm, then OBL is like a soul. Without strong bones,
the soul has no support. Instead, if you lose your soul, it’s
like walking dead. OBL can be combined with swarm intel-
ligence algorithms to solve engineering and math problems
[50], often with better results than individual intelligence
algorithms. The combination of PSO and OBL has two main
aspects. On the one hand, the idea of OBL is used to update
particle parameters and selection strategies, such as the iner-
tia weight based on the idea of OBL [51]. Another aspect
is to embed the OBL framework into the particle initializa-
tion phase and local renewal strategies based on the jump
rate. The particle swarm optimization algorithm (OPSO)
based on opposite-based learning was originally proposed
in 2007 [52]; Wang et al. [53] extended the opposite-based
learning and proposed the generalized opposite-based learn-
ing particle swarm optimization algorithm (GOPSO); in
[54], GOPSO is complemented with an adaptive mutation
selection strategy for performing a local search process
on globally optimal particles; Tang et al. [55] designed an
enhanced opposite learning strategy controlled by an adver-
sarial probability parameter,which is similar to particle group
optimization algorithm combination (EOPSO); Shao Peng et
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al. [56] improved the opposite-based learning strategy with
the principle of refraction in physics, and combined it with
PSO to apply it to the design of FIR digital filtering.

Through these studies, the application of OBL to the PSO
algorithm has obtained good results [56]. However, the cur-
rent research on OBL also has the following shortcomings:
(1) in recent years, scholars have used different OBL variants
to improve the degree of particle exploration and develop-
ment [57], but there is no research on the combination of
extended opposition variants and quasi-opposition variants;
(2) the center of gravity opposite learning strategy using the
group search experience has stronger learning ability than
the opposite-based learning strategy using the search space
boundary [58], but the selection of the center of mass will
ignore the favorable information carried by the overall opti-
mization, such as the population dynamic distribution.

It is well known that the current research on OBL variants
mainly focuses on quasi-opposition [52, 53], and there is
little research on expanding opposition mutations. Extend-
ing opposition learning has unique advantages, which can
expand the global search ability of population to a certain
extent and avoid premature convergence. Therefore, it is
necessary to study the variant of extended objection, which
supports the construction of a comprehensive OBL variant
system. The quasi-opposition variant significantly improves
the local search ability of the population. It is interesting to
observe the changes in the performance of the algorithm by
combining the advantages of the quasi-opposition variant and
the extended opposition variant and embedding them into the
swarm intelligence optimization algorithm.

To this end, we propose a diversity-driven opposite-
fusion strategy (SQOBL) that utilizes refraction imaging
principles in physics to construct extended opposites and
quasi-opposition variants to balance the exploration and
development capabilities of this population. At the same
time, the mathematical properties of density are used to rede-
fine the population center and improve the quasi-opposite
variant, considering that the center of mass is not rep-
resentative of the population as a whole. The proposed
SQOBL strategy is compared with experimental results from
CEC2015, CEC2017, CEC2020, and CEC2022 test suites to
validate the algorithm.

Overall, the main innovations of this paper are summa-
rized as follows:

1. A density definition method based on a neighborhood
model is proposed. Combining the advantages of density
and centroid, a double mean centroid is constructed to
replace the original centroid and improve the learning
ability of quasi-opposing variables;

2. Inspired by optical refraction imaging, a new extended
opposition OBL variant is constructed;

3. In order to balance the ability of exploration and devel-
opment, diversity-driven different opposition learning
variants are used at different stages of optimization,
called the diversity-driven fusion of opposition strategies
(SQOBL);

4. For thefirst time, extendedopposition andquasi-opposition
are combined, and the new OBL strategy constructed
combines the advantages of the two variants.

The rest of this article is structured as follows. In the
“Preliminaries” section, PSO, OPSO algorithms, and OBL-
related variants are introduced; the next section introduces
the combination of SQOBL and PSO. In the “Experiments”
section, various benchmark sets are used to comprehensively
assess SQOBL performance. Finally, in the “Statistical anal-
ysis” section, the statistical results of the experiment are
presented.

Preliminaries

PSO algorithm

The PSO algorithm is generated by simulating the forag-
ing behavior of a flock of birds. Initially, the position of
each bird is random, and each bird is flying in different
directions. The flock of birds transmits information through
interaction, gradually gathers into small groups, and flies in
the same direction at the same speed, and finally, the whole
flock gathers at the same location, which is the source of
food. In the basic PSO algorithm, on the one hand, the inde-
pendent individuals in the population will carry simple and
limited own-specific information and continuously exchange
local information. On the other hand, it will form a group,
complete the information dissemination of the whole pop-
ulation in the way of group behavior, and show excellent
cooperation ability and intelligence. Particles search contin-
uously by learning their own historical cognition (pbest) and
group cognition (gbest) to achieve the purpose of optimiza-
tion. For a D-dimensional search space, let the number of
swarm particles be n, and the position and velocity of the
i-th particle are denoted as Xi = (

xi,1, xi,2, . . . , xi,D
)
and

Vi = (
vi,1, vi,2, . . . , vi,D

)
, i = 1, 2, . . . , n, respectively.

The formula for calculating the d (1 ≤ d ≤ D)-dimensional
velocity and position of the i-th particle are as follows:

vi,d (t + 1) = ωvi,d (t) + c1r1
(
pbesti,d − xi,d (t)

)

+c2r2
(
gbestd − xi,d (t)

)
(1)

xi,d (t + 1) = xi,d (t) + vi,d (t + 1) (2)

Among them, vi,d (t + 1) and xi,d (t + 1) are the velocity
and position of particle i in the t + 1 -th generation respec-
tively, ω is the inertia factor, the acceleration constants c1
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and c2 are the weight parameters for adjusting the current
optimal value and the global optimal value, r1 and r2 are [0,
1] uniformly distributed random numbers.

Combination of PSO basic algorithm and OBL

The combination of the PSO algorithm and OBL is usually
divided into two ways, one is to use the opposite idea to
improve the algorithm locally, and the other is to embed the
OBL variant in the whole algorithm. In the BPSO algorithm,
the idea of OBL is integrated into the individual optimal
update equation of particles [59]. In [51], the ideas of oppo-
sition and rank are introduced to construct a new inertia
weight, which is used to balance the degree of exploration
and development of particle swarms, thereby speeding up the
convergence speed.

The most basic OBL variant was first combined with the
PSO algorithm called OPSO [52]. In OPSO, OBL is used
in the population initialization phase and the local update
strategy based on the jump rate. In the population initial-
ization stage, the population Xi = (xi,1, xi,2, . . . , xi,D) is
randomly generated within the constraint range, and then n
opposite solutionX̃i = (x̃i,1, x̃i,2, . . . , x̃i,D) of the random
population is obtained based on the OBL strategy. The spe-
cific calculation formula is as follows:

x̃i,d = ai + bi − xi,d (3)

where xi ∈ [ai , bi ], d = 1, 2, . . . , D.
Finally, select N individuals with the best fitness from{

X (N ) ∪ X̃ (N )
}
to form the initial population.

In the update process, after the population completes the
speed and position update, if a random number rand(0,1)
obeying a uniform distribution is less than the set jump rate
Jr , the population shows opposition, that is, the local OBL
strategy is executed, and the specific update steps Similar to
the initialization phase. First, generate N opposing positions
corresponding to the original N positions, select the best
from the original population and the opposing population,
and select the N solutions with the best fitness as the current
new population:

x̃i,d = ad + bd − xi,d (4)

The boundary of the relative individual is different from
the initialization stage, which changes with the iterative
process, and ad and bd represent the interval boundary (
xi,d ∈ [ad , bd ] ) of the i-th variable d-dimension.

OBL variants and improvements

Tizhoosh et al. [49] proposed the idea of opposition learning
in 2005, and then in 2008 provided the relevant definitions of
the type-I opposite point and the type-II opposite point [60].

Fig. 1 Example samples of Type-I and Type-II opposition points

Type-I opposite points are aimed at the relationship between
points in the search space, and Type-II opposite points con-
sider the relationship between the target values of points in
the space.

Definition 1 (Type-I opposite points) [60] Given X = (x1,
x2,…,xD) be a point in D-dimensional space, where xi ∈
[ai , bi ], ∀i ∈ {1, 2, . . . , D}. The type-I opposite of X is
defined by X̃ = (x̃1, x̃2, . . . , x̃D) as follow:

x̃ I = a + b − x (5)

Definition 2 (Type-II opposite points) [60] Given X =
(x1, x2, . . . , xD) be a point in D-dimensional space, ∀i ∈
1, 2, . . . , D.Suppose that for the function y = f (x1,
x2, . . . , xD), where y ∈ [ymin, ymax]. The type-II opposite
of X is defined by X̃ = (x̃1, x̃2, . . . , x̃D) as follow:

x̃ I I = {x |ỹ = ymax + ymin − y } (6)

Example samples of Type-I and Type-II opposite points
are shown in Fig. 1.

Because Type-II opposition needs to clarify the evaluation
value of the target space in advance, it is very difficult to cal-
culate Type-II opposition when solving black-box problems
[50]. At present, most research are carried out for Type-I
opposition. Considering the distance between the opposite
solution and the current solution, two types of opposition are
extended in Type-I opposition: Type-I Super-Opposition and
Type-I Quasi-Opposition [60].

Definition 3 (Type-I super-opposition) [60] Let C be an n-
dimensional set of concepts. Then for the distance function

d (·, ·), when d
(
C̃q,C

)
< d

(
C̃,C

)
, all points C̃q are Type-

I Super-Opposite of C .

Definition 4 (Type-I quasi-opposition) [60] Let C be an n-
dimensional set of concepts. Then for the distance function
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d (·, ·), when d
(
C̃q,C

)
> d

(
C̃,C

)
, all points C̃q are Type-

I Quasi-Opposite of C .

Seif et al. [61] propose the following extended opposition
for Type-I Super-Opposition.

Definition 5 (Reflected extended opposition) [61] Given
X = (x1, x2, . . . , xD) be a point in D-dimensional space,
where xi ∈ [ai , bi ], ∀i ∈ {1, 2, . . . , D}. The Reflected
extended point of X is defined by X̃ reo = (x̃ reo1 , x̃ reo2 , . . . ,

x̃ reoD ) as follow:

x̃ reoi =
{
rand (xi , bi ) , xi > (ai + bi ) /2

rand (ai , xi ) , xi < (ai + bi ) /2
(7)

Definition 6 (Extended opposition) [55] Given X = (x1, x2,
. . . , xD) be a point in D-dimensional space, where xi ∈
[ai , bi ], ∀i ∈ {1, 2, . . . , D}. The extended point of X is
defined by X̃ eo = (

x̃eo1 , x̃eo2 , . . . , x̃eoD
)
as follow:

x̃eoi =
{
rand (x̃i , bi ) , xi < (ai + bi ) /2

rand (ai , x̃i ) , xi > (ai + bi ) /2
(8)

Based on the above two definitions, it can be found that
reflected extendedopposition randomlygenerates each initial
solution between the current solution and the closest bound-
ary. Whereas extended opposition randomly generates each
solution between the solution’s opposing solution and the
farther bound.

Similarly, Type-I Quasi-Opposition can also be divided
into two categories: reflection and opposition.

Definition 7 (Quasi-reflection opposition) [62] Given X =
(x1, x2, . . . , xD) be a point in D-dimensional space, where
xi ∈ [ai , bi ], ∀i ∈ {1, 2, . . . , D}. The Quasi-reflection point
of X is defined by X̃qr = (

x̃qr1 , x̃qr2 , . . . , x̃qrD
)
where x̃qri =

rand (xi , ci ) and ci = (ai + bi ) /2.

Definition 8 (Quasi opposition) [63] Given X = (x1, x2,
. . . , xD) be a point in D-dimensional space, where xi ∈
[ai , bi ], ∀i ∈ {1, 2, . . . , D}. The Quasi point of X is defined
by X̃qo = (

x̃qo1 , x̃qo2 , . . . , x̃qoD
)
where x̃qoi = rand(ci , x̃i ) and

ci = (ai + bi )/2.

Based on Definitions 5, 6, 7, and 8, it can be found that
quasi-reflected opposition extends the range of opposite-
based learning between the value center and the current
solution, and quasi-opposition moves each solution between
the solution’s opposite and the value center. Figure2 shows
the range of opposition points forQuasi opposition, Extended
opposition, and Reflected extended opposition.

Currently, the vast majority of literature is on quasi oppo-
sition variants. In [53], Wang et al. proposed the definition

Fig. 2 Opposition range of quasi opposition, extended opposition and
reflected extended opposition

of generalized opposite-based learning (GOBL):

x̃goi = k · (ai + bi ) − xi (9)

where k is a random number in the range[0,1].
Although GOBL can alleviate the problem of premature

convergence of the algorithm to a certain extent, it will also
increase the probability of falling into the local optimum. To
this end, [64] employs two adaptive strategies as supplements
to improve the performance of GOPSO.

The opposition based on the current optimal solution
information was proposed by Xu et al. [65] The definition
of COOBL is as follows:

x̃cooi = 2xbesti − xi (10)

where xbesti is the optimal solution for the current population.
Rahnamayan et al. [66] proposed centroid opposition

computing, which uses the center of gravity of the entire
group as a reference point to calculate the reverse point,
so that the reverse point includes the group search expe-
rience. Let the center of gravity of X = (x1, x2, . . . , xD)

be C , then the definition of the centroid opposition points
X̃ co = (

x̃co1 , x̃co2 , . . . , x̃coD
)
is as follows:

x̃coi = 2C − xi (11)

Tables 1 and 2 show the combination of the PSO algorithm
and OBL, and give the most influential OBL-related variants
in recent years. For the algorithm, the common purpose of
adding theOBL strategy is to speed up the convergence speed
of the population. The OBL variant is mainly used in the
initialization phase of the population and the iterative update
phase based on the hopping rate.

Population diversity analysis

In the swarm intelligence algorithm, population diversity is
used to describe the distribution of a single particle in the
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Table 1 Summary of OBL variants

Variants Type

OBL [49] Type-I Quai-Opposition

QOBL [63] Type-I Quai-Opposition

QROBL [62] Type-I Reflected

EOBL [55] Type-I Super-Opposition

REOBL [61] Type-I Reflected

GOBL [53] Type-I Quai-Opposition

COBL [66] Type-I Quai-Opposition

COOBL [65] Type-I Quai-Opposition

NOBL [67] Type-I Quai-Opposition

DOBL [57] Type-I Quai-Opposition

Table 2 Combination of PSO basic algorithm and OBL

Use OBL ideas Pbest update equation [55]

Inertia weight [51]

Combination of
PSO basic
algorithm and
OBL

OBL variants and
improvements

OPSO [52] Combination of
OBL and PSO

QOPSO [69] Combination of
QOBL and
PSO

GOPSO [53] Combination of
GOBL and
PSO

AMOPSO [64] Introducing
Adaptive
Strategies to
GOBL

OpbestPSO [68]Adversarial
measures
against the best
individual

EOPSO [55] EOBL combined
with PSO

search area, which is an important factor affecting the global
performance of the algorithm. When the PSO algorithm is
searching, it is usually accompanied by the lack of popula-
tion diversity, which causes the algorithm to fall into local
optimum and premature [70]. Exploration and exploitation
are two important stages of population evolution.When in the
exploration stage, the population will explore a wider search
area, and the positions of the particles will be relatively scat-
tered; during the exploitation, the population will perform a
fine search for the optimal solution area, and the particle posi-
tions will be relatively concentrated. To show how different
OBL variants differ in population diversity, we introduce a
diversity measure [71]. In a D-dimensional search space, the

population diversity defined based on the mean is as follows:

Div j = 1

N

N∑

i=1

∣∣xi j − x̄ j
∣∣ (12)

Div = 1

D

D∑

j=1

Div j (13)

where N is the population size, xi j is the value of the j th vari-
able of the i th particle, and x̄ j represents the average value
of the j th dimension of the population, defined as follows:

x̄ j = 1

N

N∑

i=1

xi j (14)

In order to show the variation trend of diversity of different
OBL variants in the process of population iteration, the mul-
timodal function Griewank is selected as the experimental
function [72]:

f (x) = 1

4000

D∑

i=1

x2i −
D∏

i=1

cos

(
xi√
i

)
+ 1 (15)

In the experiment, set the common parameters population
size N = 100, dimension D = 30, and maximum function
evaluation times to 100,000. After 25 independent runs of
each algorithm, the curve of the mean population diversity
with the number of iterations is shown in Fig. 3.

It can be clearly seen from the figure that as the number
of iterations increases, EOBL can maintain a higher popula-
tion diversity than other OBL variants, which means a wider
range of search for optimal values, effectively avoiding pre-
mature trapping local optimum. However, the local search
ability of particles is insufficient, and the convergence accu-
racy cannot be guaranteed. COBL relies on the advantage of

Fig. 3 Diversity trends of various OBL variants
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centroid-based opposition to converge rapidly compared to
other OBL variants. Premature convergence will lead to the
inability to jump out of the local optimum, and the lack of
searchability in the later stage is an obvious defect of COBL.
To this end, how integrating the advantages of the above two
basic variants and balancing the ability of population explo-
ration and development is one of the research focuses of this
paper.

Proposed algorithm

Double mean center

In the original version of OBL, the selection of opposite
points depended on the center point of each dimension
boundary. But compared to the centroid point of the overall
population, the center point is obviously not an appropriate
choice. Therefore, Rahnamayan proposed in 2014 to replace
the center point with the centroid point to calculate the cor-
responding opposite point [66]. In the D-dimensional search
space, suppose there are N particles X = (x1, x2, . . . , xD),
and each particle in this space has a mass attribute. Then
the mass center point of the particle population, that is, the
Mean Center (MC) of the population can be expressed by the
following formula:

xMC
d = ΣN

i=1xi,d
N

(16)

Among them, i = 1, 2, . . . , N , N is the number of particles,
d = 1, 2, . . . , D, in the formula represents the d-th dimen-
sion value of the mean center, that is, the particle’s centroid
value in the d-th dimension.

In physics, the center of mass is defined as the imaginary
point of concentration of an object of uniform density and
is used to characterize the average location of the mass of
the object. However, the solution space where the particles
are located is not always strictly uniform distribution, but
there is a certain degree of offset [73], so it is not rigor-
ous to describe the properties of the entire population with
the centroid point. In the calculation of the center of mass,
only the influence of the mass attribute is considered, but
the density attribute of the particle is ignored. The opposite
points obtained through the centroid points cannot reflect
the distribution of data points in the neighborhood. There-
fore, this paper takes the mean density of all particles as the
benchmark and selects particles higher than the mean den-
sity to form a representative density subgroup. The particle
density is defined by calculating the number of data points
contained in the decentered neighborhood, the Euclidean
distance between samples, and the corresponding fitness of
samples. Assuming that X = (x1, x2, . . . , xD) is N points

in the D-dimensional search space, the average distance
between particle points and particle points in the neighbor-
hood is:

D (xi ) = 1

k

∑

x j∈Nk

√(
xi − x j

)2 + (
yi − y j

)2 (17)

Among them, Nk = {
x j

∣∣0 <
∣∣xi − x j

∣∣ < ε
}
is the neigh-

borhood of xi , ε is the radius of the neighborhood, and k is
the number of particles in the neighborhood of particle xi .

Let xk = {xi |The number of neighbors of xi is k},
Dk
max = maxxi∈xk D (xi ), Dk

min = minxi∈xk D (xi ), introduce
a linear normalization function to reduce the computational
complexity, then the density of particle xi is:

ρi =
⎧
⎨

⎩
k + Dk

max−D(xi )
Dk
max−Dk

min
k �= 0

0 k = 0
(18)

Select particles that are better than the overall density
mean to form a density subgroup, and the mean of the den-
sity subgroup is the Density Center (DC) of the population,
which can be expressed by the following formula:

xDCd = Σn
i=1xi,d
n

(19)

Among them, n is the number of particles that are better
than the mean density, and the formula represents the d-th
dimension value of the density center, that is, the mean value
of all the particles that are better than the density means in
the d-th dimension.

In order to comprehensively consider the two factors of
the mean center and the density center, this paper combines
the advantages of the two to define a new center called the
double mean center(DMC), which can be expressed by the
following formula:

xDMC
d =

(
xDCd + xMC

d

)
/2 (20)

where represents the d-th dimension value of DMC.
Judging the range of parameters according to the char-

acteristics of data distribution can effectively determine the
parameters in a relatively reasonable range. Kernel den-
sity estimation can characterize the data distribution [74]
and is a nonparametric method. Assuming that the indepen-
dent distribution F contains x1,x2,…,xn sample points, the
probability density function is f , and the kernel density is
estimated as follows:

f̂h (x) = 1

nh

n∑

i=1

K

(
x − xi

h

)
(21)
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Among them, h is the bandwidth, K (x) is the kernel function,
and n is the number of samples.

In the kernel density estimation theory, the choice of the
bandwidth value has a great influence on the estimator [75]. If
h is too small, the density estimation is limited to the nearby
area of the observed data, resulting in too few observed sam-
ples in the neighborhood. If h is too large, then the density
estimation divides the probability densities too scattered,
which filters out some important properties. According to
the above analysis, if the size of h can be determined math-
ematically, the value of the parameter neighborhood radius
ε can be determined. In statistics, the integral mean square
error MI SE(h) is usually used as the criterion for judging
the quality of the density estimator [75].

MISE (h) = AMISE (h) + O

(
1

nh
+ h4

)
(22)

In,

AMISE (h) =
∫
K 2 (x) dx

nh
+ h4σ 4

∫ [
f ′′ (x)

]2 dx
4

(23)

MinimizingMISE (h) is equivalent tominimizingAMISE
(h). We must set the bandwidth h at some intermediate value
to avoid excessively biased kernel estimates. First, take the
partial derivative of AMISE (h) and set the derivative equal
to 0:

∂

∂h
AMISE (h)

= −
∫
K (x)2 dx

nh2
+

(∫
x2K (x) dx

)2

h3
∫ [

f ′′ (x)
]2dx

(24)

Then the optimal bandwidth value is:

h =
( ∫

K 2 (x) dx

nσ 4
∫
[ f ′′ (x)]2 dx

)1

5
(25)

For the unknown quantity
∫ [

f ′′ (x)
]2 dx in the opti-

mal bandwidth, Sliverman proposed a rule of thumb [76],
replacing f with a normal density whose variance matches
the estimated variance. This is equivalent to estimating∫ [

f ′′ (x)
]2 dx using

∫ [
φ′′ (x)

]2 dx/σ̂ , where φ is the stan-
dard normal density function. If the kernel function is the
Gaussian density kernel function, φ uses the sample vari-
ance σ̂ , and uses the rule of thumb to obtain the adaptive
neighborhood radius:

ε = h =
(
4

3
n

)1

5
σ̂ (26)

Fig. 4 shows the particle distributions with reference to
the convergence of different centers in the iterative process
of the population. Four algorithms were selected and com-
pared at 1, 10, and 30 iterations. Figure4a–c are the particle
distributions of the standard PSO algorithm, and Fig. 4d–f are
the particle distributions of the standard PSO algorithm. The
particle distribution of the OPSO algorithm, Fig. 4g–i are the
particle distribution of the OPSO algorithm with the center
of mass instead of the center, Fig. 4j–l are replaced by the
double mean center. The particle distribution of the center’s
OPSO algorithm. Overall, the four algorithms are randomly
dispersed in the solution space in the early stage of evolution.
With the increase in the number of iterations, OBL uses its
own characteristics to guide the particles to gather the global
optimal solution, which is obviously different from the ordi-
nary PSO algorithm. In addition, the OPSO algorithm that
replaces the center with MC and the OPSO algorithm that
replaces the center with DMC can converge to the global
optimal solution faster than the PSO algorithm.

In order to reflect the advantages of DMC, the test is car-
ried out on 12 test functions of CEC2022. The population
size is set to N = 10, the dimension D = 20, the maximum
number of function evaluations is 5000, each test function is
run independently 30 times, and the final result is taken as
30. The average value of the times, the experimental results
obtained are shown in Table 3. Wilcoxon rank sum test and
Friedman test were performed on the data in the table, and
the rank means of DMC was the smallest, which verified
that DMC has more advantages than MC. The specific DMC
strategy is shown in Algorithm 1.

Algorithm 1: DMC strategy

1 Calculate the adaptive neighborhood radius Nbr using equation
(26);

2 Calculate the mean center(MC);
3 for i = 1 to popsize do
4 for j = 1 to popsize do
5 if

∣
∣xi − x j

∣
∣ < Nbr then

6 Add x j to the set of decentered neighborhoods of xi
and calculate the distance according to equation (17);

7 Calculate the density of each particle according to equation (18)
and the density mean T ;

8 for i = 1 to popsize do
9 if pi > T then

10 The density of the current xi is greater than the threshold,
put the point into the density subgroup;

11 Calculate the density center(DC) according to equation (19);
12 Calculate the dual mean center(DMC) according to equation (20);
13 final ;
14 return ;
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Fig. 4 Particle distribution of PSO, OPSO, OPSO using MC and OPSO using DMC after 1, 10 and 30 iterations
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Table 3 Results of OPSO algorithm with different reference centers at
CEC2022

OPSO MC DMC

F1 1.78E+04 (−) 3.04E+04 (−) 1.14E+04

F2 6.89E+02 (−) 6.58E+02 (−) 6.27E+02

F3 6.35E+02 (−) 6.42E+02 (−) 6.20E+02

F4 8.58E+02 (−) 8.65E+02 (−) 8.46E+02

F5 1.60E+03 (−) 2.02E+03 (−) 1.32E+03

F6 1.03E+08 (−) 6.08E+06 (−) 2.09E+07

F7 2.06E+03 (=) 2.08E+03 (−) 2.06E+03

F8 2.24E+03 (+) 2.24E+03 (+) 2.25E+03

F9 2.62E+03 (−) 2.60E+03 (−) 2.57E+03

F10 2.66E+03 (−) 3.01E+03 (−) 2.65E+03

F11 3.01E+03 (+) 3.26E+03 (−) 3.03E+03

F12 2.89E+03 (=) 2.88E+03 (+) 2.89E+03

-/=/+ 8/2/2 10/0/2 –

Ranks 2.17 2.33 1.50

Refraction imaging quasi-opposition

Refraction of light is a common physical phenomenon in
nature. Snell gave the definition of light refraction, called
Snell’s Law [77]. When light is refracted into another
medium from a vacuum, the ratio n of the incident angle
α to the sine of the refraction angle β is called the absolute
refractive index of the medium, which can be expressed by
the following formula:

n = sin α

sin β
(27)

The process of OBL strategy is improved by introducing
the principle of refraction, as shown in Fig. 5, which is a
schematic diagram of the Quasi opposition process based on
the principle of refraction.

The discrete solution space is divided into two along the
x-axis, the upper half of the space is in a vacuum state, and
the lower half can be regarded as other medium space (such
as water). Assuming that the value range of particle x on the
x-axis is [a, b], point O is the midpoint of the value range of
x . Make the normal of the x-axis along the point O , which
is the y-axis. In order to apply the principle of refraction to
the opposition learning process, the following assumption is
made: there is a beam of light source x ′ (called the incident
point) directly above the particle x , and a beam of incident
ray Ox ′ is emitted to the midpoint O , and the distance of
Ox ′ is h. The incident light is refracted at the midpoint O ,
the refracted ray is x∗′

O , x∗′
is the refraction point, and the

distance of x∗′
O ish∗. It is not difficult to obtain the following

calculation formula from Fig. 5:

Fig. 5 Schematic diagram of quasi opposition process based on the
principle of refraction

sin α

sin β
= ((a + b) /2 − x) · h∗

(x∗ − (a + b) /2) · h = n (28)

Set k = h/h∗, then Eq. (28) can be rewritten as:

x∗ = (a + b) /2 + (a + b) / (2kn) − x/kn (29)

Extending Eq. (29) to multidimensional space, it can be
rewritten as:

x∗
i, j = (

a j + b j
)
/2 + (

a j + b j
)
/ (2kn) − xi, j/kn (30)

where a j and b j are the maximum and minimum values of
the j th dimension in the current population, xi, j is the j th
dimension value of the i th particle in the population, and x∗

i, j
is the refraction solution of xi, j .

Replacing the midpoint O with the DMC mentioned in
the previous section, Eq. (29) can be rewritten as:

x∗ = DMC/2 + DMC/kn − x/kn (31)

Extending Eq. (31) to multidimensional space, it can be
rewritten as:

x∗
i, j = DMCt

j/2 + DMCt
j/kn − xi, j/kn (32)

where DMCt
j represents the double mean center of the j-th

dimension of the population at the t-th iteration, xi, j is the
j-th dimension value of the i-th particle in the population,
and x∗i, j is the refraction solution of xi, j .
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The refractive index n is 4/3 in water, and the value of k
is linearly decreasing:

k = kmax − (kmax − kmin) t/tmax (33)

Among them, kmax and kmin are the maximum and minimum
values of k, respectively, t is the current number of iterations,
and tmax is the maximum number of iterations.

Therefore, in this paper, the opposition learning strategy
of refraction imaging is combined with the double mean cen-
ter, and the Quasi opposition learning strategy of refraction
imaging based on DMC is obtained.

Extended opposition based on the principle of
refraction

Macroscopically, light reflected fromanobject contains innu-
merable photons, which are radiated in all directions due to
diffuse reflection. The virtual image generated by the object
through refraction is actually a collection of image points cor-
responding to each point on the object. What people see is
like the intersection of the reverse extension lines of the light
source emitted by the object and entering the human eye after
being refracted, and the position of the virtual image can be
determined by selecting any two of the many rays. As shown
in Fig. 6, two rays are arbitrarily selected, the slopes of the
straight lines l0 and l1 are set as k0 and k1 respectively, the
coordinates of the intersection of the straight lines are (x , y),
and the intercepts between the two straight lines and the coor-
dinate axes are x

′
0, x

′
1, y

′
0, y

′
1, then the straight line equation

of l0 and l1 can be expressed as:

y = k0
(
x − x

′
0

)
(34)

Fig. 6 Intersection and intercept of two refracted rays

y = k1
(
x − x

′
1

)
(35)

Substitute y
′
0 = −k0x

′
0 and y

′
1 = −k1x

′
1 into Eqs. (34)

and (35) to obtain the coordinates of the intersection:

x = − y
′
1 − y

′
0

k1 − k0
(36)

y = − x
′
1 − x

′
0

1/k1 − 1/k0
(37)

If the intercept of a straight line changes continuously
with the slope, then the numerator and denominator in Eqs.
(36) and (37) are changed to differential equations, and the
formula for the coordinates of the intersection of two approx-
imately parallel straight lines can be obtained:

⎧
⎨

⎩

x = − dy′
dk

y = − dx ′
d(1/k)

(38)

It can be seen from Eq. (38) that the intersection coor-
dinates of two approximately parallel straight lines can be
obtained by derivation of the intercept of the straight line
against the slope or the reciprocal of the slope.

When people look down at the chopsticks that are
obliquely inserted in the bowl full of water, they will see that
the chopsticks are deflected upwards. This is actually because
the virtual image produced by the chopsticks is deflected
upwards relative to the chopsticks themselves. As shown in
Fig. 7, it is the learning process of Extended opposition based
on the principle of refraction.

Insert the chopsticks AA′ into thewater diagonally in half,
the angle θ between the chopsticks and the water surface,
point O is both the midpoint of the chopsticks and the origin
of the coordinate axis. Assume that the abscissa correspond-
ing to endpoint A is particle x , and the search space of x is
[a, b]. The underwater object point A′is at a depth h from the
water surface (x-axis), and an incident light beam is emitted
from the object point A′, and refraction occurs at the intersec-
tion point M of the water surface. The virtual image point A∗
is obtained through the reverse extension line of the refracted
light through point M , the incident angle is i , and the refrac-
tion angle is r . The projection of the virtual image point A∗
on the x-axis is x∗, and x∗ is called the extended opposition
solution of particle x based on the principle of refraction.

The midpoint O of Extended opposition learning based
on refraction imaging, like OBL, is the midpoint (a+b)/2
of the particle x search space. It can be seen from Fig. 7
that x ′ = h tan i + a + b − x , y′ = -(x’+x-a-b) cot r =
−h tan i · cot r , h = tan θ · |x | are the slope k = cot r of the
refracted ray l. The position coordinates of the virtual image
point in the direction of viewing angle r can be obtained by
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Fig. 7 Extended opposition
learning process based on the
principle of refraction

substituting the above parameters into Eq. (38). First, using
n = sin r/ sin i of Snell’s Law (when n is the refractive index
of water, n = 4/3), tan i , x ′, and y′ are expressed as:

tan i = 1
√
n2k2 + (

n2 − 1
) (39)

x ′ = tan θ · |x |
√
n2k2 + (

n2 − 1
) + a + b − x (40)

y′ = − tan θ · |x | · k
√
n2k2 + (

n2 − 1
) (41)

Substituting the above formula into thepreviously obtained
intersection coordinate Eq. (38), we can get:

x∗ = a + b − h ·
(
n2 − 1

)
· tan3 i − x (42)

y∗ = −h

n

[
1 −

(
n2 − 1

)
· tan2 i

]3/2
(43)

It can be seen from Eqs. (42) and (43) that as i (or view-
ing angle r ) increases, the coordinates x and y increase
synchronously, which means that the virtual image point a
moves upward to the right as the viewing angle r increases,
until it moves to the water surface (y = 0), at this time
tan2 i = 1/

(
n2 − 1

)
, namely sin i = 1/n, is obviously

the critical position where total reflection occurs. At this
time, the coordinate of the virtual image point A∗ is xmax =
a + b − x + h ·

√
1/

(
n2 − 1

)
, which is also the maxi-

mum value of the opposition solution x∗. When the viewing
angle is r → 0, the coordinate of the virtual image point is
(a + b − x,−h/n), which is directly above the object point

A′, and the depth is about 75% of the depth of the object
point A′. At this time, the opposition solution corresponding
to the virtual image point A′ is actually the OBL opposition
solution. In order to see the change trajectory of the virtual
image point more clearly, with a + b − x as the origin, the
trajectory equation can be obtained by eliminating tan i from
Eqs. (42) and (43) simultaneously:

y = −

[
h

2
3 − (

n2 − 1
) 1
3 x

2
3

] 3
2

n
(44)

The specific trajectory is shown in Fig. 8.
Extending Eq. (42) to multidimensional space, it can be

rewritten as:

x∗
i, j = a j + b j − xi, j · (tan θ · (n2 − 1) · tan3 i + 1)

(45)

Among them, the angle θ = 30 between the chopsticks and
the water surface, the incident angle is i , the refractive index
in the water is n = 4/3, xi, j is the j-th dimension value of
the i-th particle in the population, and x∗

i, j is the refraction
solution of xi, j . The value of the incident angle i is linearly
decreasing in the range [0◦, 90◦):

i = imax − (imax − imin) t/tmax (46)

Among them, imax and imin are the maximum and minimum
values of i , respectively, t is the current number of iterations,
and imax is the maximum number of iterations.
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Fig. 8 The change trajectory of
the virtual image point position
with the viewing angle r when h
= 1

Integration of opposites

According to the global search characteristics of the PSO
algorithm, with the iterative operation of the algorithm, the
particles gradually approach each other, and the diversity of
the population decreases. At this time, the global exploration
ability of the algorithm is weakened, and it is easy to fall into
the local optimum. However, it is not enough to only enhance
the global exploration ability. Neglecting the local develop-
ment ability will cause the particles to be in the search stage
all the time, unable to converge to the optimal value. There-
fore, the degree of exploration and development needs to
be balanced. Different evolutionary stages require different
diversity and accurate control of population diversity helps
population evolution. Given the above analysis, in order to
prevent local convergence or prematurematurity, the percent-
age of exploration and exploitation in each iteration of the
algorithm needs to be determined according to the diversity
metric in the Preliminaries section [78]:

Xpl% = Div

Divmax
× 100 (47)

Xpt% = |Div − Divmax|
Divmax

× 100 (48)

whereDiv is the diversity of the population in the current iter-
ation and Divmax is the maximum diversity of the population
in all iterations. Xpl% and Xpt% are iterative exploration
and development percentages, respectively, and these two
elements are conflicting and complementary.

In order to better balance the global exploration and
local development capabilities of the population, a diversity-
driven fusion-opposition strategy (SQOBL) is designed in
this paper. Diversity is used to drive the mutual adaptive con-
version of the two opposing strategies.WhenXpl% is greater
than the set threshold, the refraction principle based on the
double mean center is used to quasi-opposition, which not
only accelerates the algorithm convergence but also performs
local fine search. However, when the population diversity
gradually decreases, the particles are also prone to fall into
the local optimum, that is, the case where Xpl% is lower than
the threshold. At this time, the principle of refraction is used
to expand the opposition, increase the diversity of the popula-

tion, help the particles to jump out of the local optimum, and
prevent premature maturity. Once Xpl% is above the thresh-
old, the extended opposition learning strategy stops, switches
to the quasi-opposition learning strategy again, and repeats
this step until the maximum number of iterations is reached.

Algorithm 2: SQOPSO
1 Random initialization of population X and velocity V ,
population size N ;

2 for i = 1 to N do
3 Calculate opposite of initial population OXi according to

equation (30);
4 Calculate the fitness of population f (Xi );
5 Calculate the fitness of opposite population f (OXi );
6 if f (Xi ) < f (OXi ) then
7 The opposite solution OXi replaces Xi to join the

population in the iteration ;

8 while FE ≤ FEMax do
9 Update the incidence angle i and contraction factor k;

10 Update Double Mean Center(DMC);
11 for i = 1 to N do
12 Update velocity V and position Xnew according to

equations (1) and (2); if X PL < T then
13 Calculate extended opposite population OXi

according to equation (45);

14 else
15 Calculate quasi opposite population OXi according to

equation (32);

16 Calculate the fitness of population f (Xi );
17 Calculate the fitness of opposite population f (OXi );
18 if f (Xi ) < f (OXi ) then
19 The opposite solution OXi replaces Xi to join the

population in the iteration;

20 Update the personal best and the global best;

21 final ;
22 return ;

On the basis of the above research, a combination of the
SQOBL strategy and PSO algorithm is proposed. The spe-
cific flow chart of the algorithm is shown in Fig. 9, and its
pseudo-code is shown in Algorithm 2. The code is available
at https://github.com/ZooooZoooo/SQOBL. The algorithm
flow of the combination of SQOBL and PSO is shown
in Algorithm 2. It can be seen from Algorithm 2 that the
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Fig. 9 Flow chart of SQOBL strategy

SQOPSO algorithm mainly includes four components: ini-
tialized population, initialized opposition population, DMC
strategy, and fusion-opposition strategy based on diversity
drive. Let the dimension of the objective function be D, the
population size be N , and the maximum number of iterations
be T . The initialization phase includes initializing the pop-
ulation and initializing the opposing population. The time
complexity of the initializing population and the opposing
population are both O(ND), so the time complexity of the
entire initialization phase is O(2ND). In the iterative pro-
cess, the time complexity of Algorithm 1 is O(NN ), and
the time complexity of the fusion-opposition strategy based
on diversity drive is O(D), so the time complexity of the
entire iterative process is O(T (NN + ND)), then the total
time complexity of SQOPSO is O(2ND + T (NN + ND)),
which is only related to T , N , and D. Because the problem
dimension D is often larger than or similar to the number
of groups N , the low-order terms are ignored, and the time
complexity of the SQOPSO algorithm is O(T ND), which
is consistent with the time complexity of the PSO algorithm.

SQOBL strategy analysis

In this subsection, the proposed SQOBL strategy is analyzed.
First of all, the opposite solution with DMC as the reference
point is closer to the optimal solution of the optimization
problem than the current solution, and the proof derivation
process refers to the literature [79].

Theorem 1 When the optimal solution and the current solu-
tion are on different sides of the double mean center, the
opposite solution x∗

i with DMC as the reference point is
closer to the optimal solution xbest than xi .

Proof The population with the number of particles is N , and
the center of the double mean is xDMC. In the search space,
there is a particle xi ∈ {x1, x2, . . . , xN }, and xi ∈ [a, b] will

opposite solve x∗
i :

x∗
i = 2 · xDMC − xi (49)

where x∗ ∈ [
2xDMC − b, 2xDMC − a

]
, it can be clearly seen

from Eq. (48) that the center of the search space changes
from (a + b) /2 to xDMC, but the size of the space remains
the same. When xi �= x∗

i , if x
∗
i wants to be closer to the

optimal solution xbest than the ordinary particle xi , it needs
to satisfy:

∣∣∣x∗
i − xbest

∣∣∣ <

∣∣∣xi − xbest
∣∣∣ (50)

Then,

(
x∗
i − xbest

)2 −
(
xi − xbest

)2
< 0

⇒
(
x∗
i + xi − 2xbest

) (
x∗
i − xi

)
< 0

⇒
(
xDMC − xbest

) (
xDMC − xi

)
< 0

(51)

Obviously,

xi < xDMC, i f xbest > xDMC (52)

xi > xDMC . i f xbest < xDMC (53)

It can be seen that when the optimal solution xbest and the
ordinary particle xi are located on different sides of the dou-
ble mean center xDMC, the opposite solution x∗

i is closer to
the optimal solution xbest than xi . �

Then, under the given assumptions, briefly analyze the
convergence of the extended oppositional learning strategy
based on the refraction imaging principle:

Theorem 2 If the PSO algorithm based on general opposite
learning converges, then the SQOPSO algorithm is also con-
vergent.

Proof Let xi, j (t) and x∗
i, j (t) be the values on the j th dimen-

sion of the current solution and opposite solution of the t th
generation respectively, and the global optimal position of
the function is xbest. It can be seen from the theorem that the
PSOalgorithmbased on general opposite learning converges,
and for the solution xi, j (t) in the t-th generation population,
there is

lim
t→∞xi, j (t) = xbest, j (54)

Since a j (t) = min
(
xi, j (t)

)
and b j (t) = max

(
xi, j (t)

)
,

there is

lim
t→∞a j (t) = lim

t→∞b j (t) = xbest, j (55)
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The reverse solution of the current solution generated by
extended opposite learning based on the principle of refrac-
tion imaging is:

x∗
i,j = a j + b j − xi,j ·

(
tan θ ·

(
n2 − 1

)
· tan3 i + 1

)
(56)

When the algebra t → ∞ in the above formula has

lim
t→∞x∗

i, j (t) = lim
t→∞

(
a j (t) + b j (t)

)

− lim
t→∞

(

xi, j (t) ·
((√

21

9

)

· tan3 i (t) + 1

))

= 2xbest, j − xbest, j

= xbest, j (57)

It can be seen from the results that when xi, j (t) converges
to xbest, j , the extended opposite solution
x∗
i, j (t) established based on the principle of refraction
imaging also converges to xbest, j . Therefore, the PSO algo-
rithm based on general opposite learning converges, and the
SQOPSO algorithm also converges. �

Experiments

Experimental setup

All experiments were performed inMATLABR2022b and in
aWindows 10 hardware environmentwith Intel Core i5-8500
with frequency 3.00 GHz and 8.0 GB of RAM. In the experi-
ment, the population size N =100, there are different problem
dimension values on different benchmark function sets, the
maximum number of function evaluations FE_max=100,000
and the iteration termination condition of each algorithm is
that the current iteration number is equal to the maximum
iteration number, and each algorithm is in 25 independent
runs on each function.

To comprehensively and objectively evaluate the perfor-
mance of SQOBL variants presented in the overall OBL
variant framework, SQOBL was compared with 8 represen-
tative OBL variants. The OBL variants compared were: OBL
[49], QOBL [63], QROBL [62], COOBL [65], COBL [66],
GOBL [53], EOBL [55], and REOBL [61]. We embed all
OBL variants into the PSO algorithm, such as QOPSO is to
embed QOBL into PSO and QROPSO is to embed QROBL
into PSO. In order to compare the differences between the
algorithms fairly, the common parameters of each compar-
ison algorithm are set uniformly, such as population size,
maximum function evaluation times, etc.; other parameter
settings are consistentwith the original literature, and the spe-
cific parameter settings are shown in the appendix. The jump
rate of OPSO, GOPSO, COOPSO, and COPSO is 0.3 [52,

53, 65, 66], and the jump rate of QOPSO, QRPSO, EOPSO,
and REOPSO are 0.05 [55, 61–63].

In order to further observe the performance of the
SQOPSO algorithm, we select 8 newly proposed intelli-
gent optimization algorithms and test them on the latest
benchmark function set CEC2022. The smart optimization
algorithms compared are: Sparrow Search Algorithm (SSA)
[5], Dwarf Mongoose Optimization (DMO) [6], Northern
Goshawk Optimization (NGO) [7], Tuna swarm optimiza-
tion (TSO) [8], Golden jackal optimization (GJO) [9], Sand
Cat Swarm Optimization (SCSO) [10], Generalized normal
distribution optimization (GNDO) [11] and PSO. The param-
eter settings of each comparison algorithmare consistentwith
the original literature, and the specific parameter settings are
shown in the appendix. The early warning value of the SSA
algorithm is 0.6, the proportion of discoverers is 0.7, and
the proportion of aware of dangerous sparrows is 0.2. The
number of babysitters in the DMO algorithm is 3, and the
Alpha female vocalization is 2. In the TSO algorithm, it is
determined that the degree of tuna following the optimal in
the initial stage is 0.7. The constants c1 and β of the GJO
algorithm are both 1.5. The auditory characteristic of sand
cats in the SCSO algorithm is 2.

In the SQOPSO algorithm, the refractive index n is 4/3,
the angle of the chopsticks entering the water is 30◦, the
value of k is linearly decreasing, and the initial value is 0.75,
which is near the middle value of the better interval [0, 1.4],
the incident angle i is linearly decreasing in the interval [0◦,
90◦], and the threshold T of the fusion strategy is equal to
0.1 [58].

We choose different benchmark function sets for com-
parative experiments, they are divided into three kinds with
different characteristics. The first is an unconstrained opti-
mization problem, which selects 15 optimization functions
in CEC2015 [80]; the second is a constrained optimiza-
tion problem, which selects 29 optimization functions in
CEC2017 [61]; the third is the latest single-objective opti-
mization Question, 12 optimization functions in CEC2022
are selected. Record the mean (Mean) and standard devia-
tion (SD) of the difference between the actual results of each
calculation and the optimal solution.

Comparison with different OBL variants

CEC2015

CEC2015 [80] is an unconstrained single-objective optimiza-
tion test set based on actual parameters. Nine algorithms
are applied to the CEC2015 constraint function test set for
testing. The 15 constrained problems of CEC2015 include
unimodal functions (F1, F2), simple multimodal functions
(F3–F5), hybrid functions (F6–F8), and composition func-
tions (F9–F15). SQOPSO and the PSO algorithm embedded
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Table 4 Means and standard deviations of PSO algorithm with different OBL variants for F1–F15 of 30D in CEC2015

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 1.58E+06 2.06E+06 1.37E+06 1.98E+06 1.32E+06 1.53E+06 1.60E+06 2.14E+06 7.89E+05

Std 1.20E+09 2.04E+09 1.49E+09 1.35E+09 1.43E+09 1.74E+09 1.62E+09 1.79E+09 1.29E+06

F2 Mean 1.05E+07 1.18E+07 1.31E+07 9.38E+06 1.37E+07 1.60E+07 1.38E+07 1.28E+07 3.80E+01

Std 5.16E+10 4.24E+10 6.06E+10 2.86E+06 6.37E+10 6.65E+10 2.18E+06 5.96E+10 3.41E+10

F3 Mean 2.09E+01 2.07E+01 2.08E+01 2.09E+01 2.07E+01 2.08E+01 2.09E+01 2.08E+01 2.07E+01

Std 4.35E−02 7.46E−02 8.45E−02 4.31E−02 6.65E−02 5.53E−02 4.03E−02 8.66E−02 5.98E−02

F4 Mean 1.29E+02 1.17E+02 1.29E+02 1.13E+02 1.23E+02 1.09E+02 1.04E+02 1.20E+02 1.08E+02

Std 2.46E+01 1.45E+02 1.41E+02 2.78E+01 1.65E+02 1.27E+02 3.12E+01 3.78E+01 3.55E+01

F5 Mean 3.34E+03 2.93E+03 3.03E+03 3.22E+03 2.98E+03 3.20E+03 2.82E+03 2.57E+03 2.18E+03

Std 5.31E+02 1.02E+03 6.29E+02 5.63E+02 5.90E+02 4.82E+02 1.22E+03 7.38E+02 9.29E+02

F6 Mean 7.28E+04 3.04E+04 4.64E+04 7.45E+04 6.23E+04 5.01E+04 6.47E+04 3.99E+04 1.94E+04

Std 1.34E+08 1.24E+08 1.68E+08 9.95E+07 1.35E+08 1.04E+08 1.48E+08 1.57E+08 9.74E+04

F7 Mean 9.52E+00 1.01E+01 1.05E+01 1.11E+01 9.21E+00 1.04E+01 8.20E+00 9.73E+00 8.94E+00

Std 4.09E+02 4.44E+02 4.74E+02 4.98E+02 5.27E+02 4.44E+02 4.19E+02 4.93E+02 1.44E+02

F8 Mean 2.46E+04 4.01E+04 3.60E+04 2.19E+04 1.33E+04 2.99E+04 3.44E+04 2.24E+04 2.06E+04

Std 1.79E+07 3.89E+07 3.98E+07 9.09E+06 3.90E+07 2.86E+07 1.04E+07 3.46E+07 3.39E+04

F9 Mean 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02 1.03E+02

Std 2.39E+02 1.55E+02 2.86E+02 2.63E+02 2.65E+02 2.38E+02 2.47E+02 2.65E+02 4.65E−01

F10 Mean 7.76E+04 4.49E+04 4.56E+04 6.39E+04 5.70E+04 4.96E+04 5.34E+04 6.03E+04 2.49E+04

Std 5.42E+07 1.01E+08 9.80E+07 9.15E+07 9.33E+07 6.11E+07 4.60E+07 7.95E+07 1.54E+05

F11 Mean 3.05E+02 3.06E+02 3.04E+02 3.07E+02 3.04E+02 3.06E+02 3.04E+02 3.06E+02 3.03E+02

Std 8.14E+02 8.57E+02 7.14E+02 5.95E+02 8.16E+02 7.15E+02 7.52E+02 8.33E+02 5.04E+02

F12 Mean 1.07E+02 1.07E+02 1.07E+02 1.10E+02 1.08E+02 1.06E+02 1.09E+02 1.07E+02 1.08E+02

Std 6.12E+01 3.37E+01 6.11E+01 3.92E+01 7.43E+01 7.07E+01 7.18E+01 7.38E+01 1.79E+00

F13 Mean 1.51E+02 1.42E+02 1.44E+02 1.53E+02 1.47E+02 1.49E+02 1.48E+02 1.45E+02 1.27E+02

Std 3.03E+02 4.98E+02 2.73E+02 4.37E+01 3.40E+02 4.28E+02 1.49E+02 6.64E+02 3.78E+01

F14 Mean 3.15E+04 3.14E+04 3.12E+04 8.07E+04 1.04E+03 3.12E+04 3.62E+04 1.07E+03 3.12E+04

Std 3.91E+04 3.40E+04 5.75E+04 1.72E+04 6.29E+04 6.05E+04 1.87E+04 4.50E+04 1.65E+03

F15 Mean 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.02E+02 1.00E+02

Std 3.92E+00 7.09E+04 1.25E+05 2.20E+00 1.07E+05 1.23E+05 4.93E+00 1.11E+05 5.43E+04

with 8 OBL variants were tested on 30-D and 50-D on
CEC2015. The specific experimental results of 30 dimen-
sions are shown inTable 4, and the best results are highlighted
in bold:

1. In the unimodal functions (F1, F2), it can be clearly seen
that SQOPSO has achieved better solutions on all uni-
modal functions, and its performance exceeds the other
8 algorithms.

2. In the simple multimodal function (F3–F5), SQOPS-O
finds the global optimal solution on the functions F3 and
F5. Regarding function F4, EOPSO has better perfor-
mance, and the optimal solution of SQOPSO is not much
different from the result of EOPSO.

3. Among the hybrid functions (F6–F8), SQOPSO has a
significant advantage on functions F6 and F7. Regarding

the function F8, the results of the COPSO algorithm are
better than the rest of the algorithms.

4. Among the composition functions (F9–F15), SQOPS-
O finds the global optimal solution except for the F14
function. On the F14 function, REOPSO and COPSO
have the best performance, followed by SQ-OPSO.

In most functions, the SQOPSO algorithm has significant
advantages over other comparative algorithms. Therefore,
SQOPSO has the best performance on the 30-dimensional
CE-C2015 benchmark test set.

To intuitively display the convergence effect of each algo-
rithm, the convergence curves of nine algorithms in 30
dimensions are shown in Fig. 10.Observing the trend change,
the convergence curve of SQOPSO confirms our theory. In
the early stage of iteration, affected by the double mean cen-
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Fig. 10 Convergence curves of PSO algorithm with different OBL variants in 30-D on functions F1, F3, F6, F8, F9, F10, F11, F12 and F14

ter, it can quickly converge to the current optimum compared
with other algorithms. But when the population diversity is
lower than the set threshold, change the opposing strategy,
increase the particle search range, help the particles jump out
of the local optimum, and prevent premature maturity.

To study the impact of variables of different dimensions
on the performance of the algorithm, we conducted tests on
50-D. Table 5 lists the mean, standard deviation, Wilcoxon
rank sum test, and Friedman test results.

1. In the unimodal functions (F1, F2), it can be clearly seen
that SQOPSO has achieved better solutions on all uni-
modal functions, and its performance exceeds the other
8 algorithms.

2. Among the simple multimodal functions (F3–F5),
SQOPSO finds the global optimal solution on the func-
tions F3, F4 and F5. On the function F4, the optimal
solutions of each algorithm have little difference.

3. Among the hybrid functions (F6–F8), SQOPSO has a
significant advantage on functions F6 and F7. Regarding
the function F8, the results of the REOPSO algorithm are
better than the rest of the algorithms.

4. In the composition functions (F9–F15), SQOPSO found
the global optimal solution in all functions. On the F11
function, EOPSO, QROPSO and SQOP-SO all have the
best performance. On functions F12 and F15, the perfor-
mance of all algorithms is not much different.

It can be found that the SQOPSO algorithm performs best
on 14 functions, and the REOPSO algorithm performs best
on 1 function. In most functions, the SQOPSO algorithm has
significant advantages over other comparative algorithms.
Therefore, SQOPSO has the best performance on the 50-
dimensional CEC2015 benchmark test set.
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Table 5 Means and standard deviations of PSO algorithm with different OBL variants for F1–F15 of 50-D in CEC2015

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 1.05E+07 1.18E+07 1.04E+07 8.12E+06 1.07E+07 1.41E+07 1.10E+07 6.25E+06 4.60E+06

Std 4.43E+09 4.70E+09 1.77E+09 4.88E+09 4.08E+09 5.06E+09 3.00E+09 4.48E+09 4.03E+09

F2 Mean 4.65E+07 5.72E+07 4.70E+07 4.96E+07 4.51E+07 4.81E+07 5.20E+07 4.14E+07 1.36E+03

Std 6.25E+10 4.33E+10 8.59E+10 1.11E+11 1.13E+11 1.29E+11 1.19E+09 9.99E+10 6.68E+08

F3 Mean 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.10E+01 2.11E+01 2.11E+01 2.10E+01 2.08E+01

Std 4.32E−02 3.03E−02 5.28E−02 8.66E−02 4.06E−02 3.83E−02 4.51E−02 4.44E−02 3.43E−02

F4 Mean 2.96E+02 3.23E+02 3.17E+02 3.03E+02 2.59E+02 2.52E+02 3.04E+02 3.09E+02 2.20E+02

Std 2.42E+02 1.33E+02 2.07E+02 4.46E+01 2.82E+02 2.05E+02 2.25E+01 1.05E+02 3.21E+01

F5 Mean 5.86E+03 5.68E+03 5.54E+03 6.19E+03 5.54E+03 5.64E+03 4.74E+03 5.24E+03 4.38E+03

Std 9.09E+02 9.46E+02 1.54E+03 8.74E+02 9.61E+02 9.85E+02 1.12E+03 1.28E+03 8.72E+02

F6 Mean 3.78E+05 3.35E+05 3.19E+05 4.69E+05 3.04E+05 3.93E+05 3.52E+05 3.23E+05 2.18E+05

Std 2.63E+08 3.64E+08 3.90E+05 3.16E+08 3.67E+08 2.37E+08 2.55E+08 2.50E+08 2.87E+08

F7 Mean 1.85E+01 2.21E+01 1.95E+01 1.93E+01 1.94E+01 2.07E+01 1.77E+01 1.88E+01 1.60E+01

Std 1.55E+03 1.04E+03 7.15E+02 1.81E+03 1.91E+03 1.68E+03 9.21E+02 1.44E+03 1.33E+03

F8 Mean 5.60E+05 3.92E+05 3.01E+05 3.36E+05 7.45E+05 4.14E+05 4.98E+05 2.09E+05 2.69E+05

Std 5.04E+07 7.76E+07 3.58E+07 5.60E+07 5.38E+07 6.44E+07 4.62E+05 6.16E+07 6.09E+07

F9 Mean 1.05E+02 1.05E+02 1.06E+02 1.06E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02 1.05E+02

Std 5.65E+02 5.61E+02 2.81E+02 6.63E+02 6.64E+02 6.65E+02 6.17E+02 5.60E+02 6.65E+02

F10 Mean 2.16E+05 2.28E+05 2.57E+05 3.47E+05 1.08E+05 1.40E+05 1.78E+05 2.60E+05 4.30E+04

Std 1.78E+08 1.82E+08 1.83E+05 2.07E+08 1.26E+08 1.38E+08 8.59E+07 9.95E+07 1.94E+08

F11 Mean 3.20E+02 1.68E+03 3.13E+02 3.18E+02 1.64E+03 3.22E+02 3.15E+02 3.16E+02 3.06E+02

Std 7.62E+02 8.03E+02 6.98E+02 1.07E+03 7.18E+02 8.90E+02 1.03E+03 1.01E+03 6.88E+02

F12 Mean 1.11E+02 1.12E+02 1.11E+02 2.64E+02 1.11E+02 1.12E+02 1.10E+02 1.12E+02 1.11E+02

Std 1.15E+02 7.06E+00 6.21E+01 1.28E+02 1.43E+02 1.33E+02 7.66E+01 1.05E+02 2.95E+01

F13 Mean 2.56E+02 2.54E+02 2.56E+02 2.77E+02 2.54E+02 2.59E+02 2.59E+02 2.61E+02 2.29E+02

Std 1.19E+03 8.48E+01 7.85E+01 1.67E+03 1.36E+03 1.31E+03 6.93E+02 9.15E+02 2.46E+02

F14 Mean 7.12E+03 4.98E+04 1.89E+03 1.78E+05 5.25E+04 5.12E+04 7.82E+04 1.96E+03 1.10E+02

Std 1.99E+05 1.22E+05 1.88E+04 1.97E+05 2.00E+05 1.99E+05 4.97E+04 2.10E+05 3.48E+04

F15 Mean 1.03E+02 6.93E+04 1.09E+02 1.02E+02 1.03E+02 1.03E+02 1.02E+02 1.03E+02 1.00E+02

Std 3.57E+00 4.44E+04 8.53E+04 5.17E+00 1.98E+05 1.68E+05 4.76E+00 1.89E+05 3.99E+00

The optimal value under the current index is in bold

The last row in Table 5 gives the average grade value of all
algorithms based on the Friedman test on all test functions.
The ranking of the nine algorithms after the average grade
is SQOPSO, REOPSO, COPSO, EOPSO, QROPSO, OPSO,
GOPSO, COOPSO, and QOPSO. This statistical result fur-
ther verifies that the proposed SQOPSO algorithm has the
best performance among all the algorithms participating in
the comparison, and the SQOPSO algorithm performs better
on high-dimensional data sets, ranking about 0.7 higher.

To intuitively display the convergence effect of each algo-
rithm, the convergence curves of nine algorithms in 50
dimensions are given in Fig. 11. Compared with Fig. 10, the
convergence effect of Fig. 11 is more obvious, indicating that
the SQOPSO algorithm has significant advantages compared
with otherOBLvariantswhendealingwith high-dimensional
problems.

CEC2017

CEC2017 [81] is a test set with constraint functions proposed
in the past five years. Nine algorithms are applied to the test
set of CEC2017 constraint functions for testing. Among the
29 constrained problems of CEC2017 are unimodal func-
tions (F1, F2), simple multimodal functions (F3–F9), hybrid
functions (F10–F19) and composition functions (F20–F29).
SQOPSO and 8 PSOs with OBL variants were tested in 30-D
and 50-D at CEC2017. The specific experimental results are
shown in Table 6, and the best results are highlighted in bold:

1. In the unimodal function (F1, F2 ), SQOPSO achieves a
better solution on the function F1, and its performance
exceeds the other 8 algorithms. But on the function F2,
the effect of COPSO is better, and the performance of
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Fig. 11 Convergence curves of PSO algorithm with different OBL variants in 50-D on functions F1, F3, F6, F8, F9, F10, F11, F12 and F14

OPSO, COOPSO and REOPSO algorithms are all better
than SQOPSO.

2. Among the simple multimodal functions (F3–F9),
SQOPSO finds the global optimal solution on the func-
tions F3, F4, F5, F6 and F8. Regarding functions F7 and
F9, COOPSO and QOPSO have better performance, and
the optimal solution of SQOSPO is not much different
from the results of COOPSO and QOPSO.

3. Among the hybrid functions (F10–F19), SQOPSO has
significant advantages on functions F10, F11, F12, F13,
F14, F15, F16 and F18. In function F10 and function F16,
there is little difference in the performance of GOPSO,
REOPSO and SQOPSO. On function F17 and function
F19, the result of OPSO algorithm is better than other
algorithms.

4. Among the composition functions (F20–F29), SQOP

SOhas significant advantages in functions F21, F24, F52,
F26, F27, F28 and F29. Among the functions F20, F22
and F23, the performance of COPSO, OPS
O, REOPSO and GOPSO is better. While on function
F24 and function F27, the performance of COO
PSO, COPSO, GOPSO and SQOPSO is not much differ-
ent.

It can be found that the SQOPSO algorithm performs best
on 21 functions, the REOPSO algorithm performs best on 2
functions, and theOPSOandGOPSOperformbest on 3 func-
tions. QOPSO performs best on 1 function, and COOPSO
and COPSO perform best on 4 functions. In most functions,
the SQOPSO algorithm has significant advantages over other
comparative algorithms. Therefore, SQOPSO has better per-
formance on the 30-dimensional CEC2017 benchmark test
set.
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Table 6 Means and standard deviations of PSO algorithm with different OBL variants for F1–F29 of 30-D in CEC2017

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 1.39E+07 1.85E+07 1.25E+07 1.03E+07 1.14E+07 1.18E+07 1.12E+07 1.37E+07 5.11E-01

Std 3.22E+10 1.66E+10 2.50E+10 2.22E+06 4.08E+10 4.20E+10 2.30E+06 4.06E+10 2.83E+10

F2 Mean 3.28E+02 4.73E+02 4.73E+02 3.51E+02 2.25E+02 3.85E+02 3.94E+02 3.31E+02 3.68E+02

Std 2.45E+02 2.90E+04 3.01E+04 6.63E+02 3.27E+04 4.96E+02 3.15E+02 5.08E+02 5.05E+02

F3 Mean 1.59E+02 1.60E+02 1.63E+02 1.05E+02 1.07E+02 1.68E+02 1.50E+02 1.08E+02 1.05E+02

Std 1.12E+04 9.03E+03 5.27E+03 2.82E+01 1.33E+04 1.43E+04 6.45E+03 1.46E+04 1.51E+04

F4 Mean 2.21E+02 2.82E+02 2.30E+02 2.28E+02 2.33E+02 2.27E+02 2.07E+02 2.32E+02 1.67E+02

Std 8.18E+01 1.01E+02 4.99E+01 2.89E+01 1.19E+02 1.55E+02 2.76E+01 1.43E+02 1.43E+02

F5 Mean 1.36E+02 1.40E+02 1.40E+02 1.33E+02 1.42E+02 1.42E+02 1.41E+02 1.36E+02 1.28E+02

Std 6.20E+00 2.90E+01 1.23E+01 6.67E+00 5.81E+00 1.32E+01 4.65E+00 2.19E+01 2.16E+01

F6 Mean 3.39E+02 6.21E+02 3.29E+02 3.17E+02 3.75E+02 3.71E+02 3.72E+02 3.75E+02 2.11E+02

Std 4.95E+01 1.74E+02 3.92E+02 5.35E+01 6.19E+01 5.90E+01 5.09E+01 6.13E+01 3.80E+01

F7 Mean 2.01E+02 2.27E+02 2.03E+02 1.69E+02 2.03E+02 1.91E+02 1.97E+02 1.86E+02 1.77E+02

Std 7.59E+01 1.17E+02 5.37E+01 3.57E+01 8.11E+01 7.78E+01 1.78E+01 3.82E+01 2.13E+01

F8 Mean 2.73E+03 3.75E+03 2.45E+03 2.89E+03 3.27E+03 3.17E+03 2.91E+03 3.77E+03 1.60E+03

Std 1.27E+03 5.53E+03 2.85E+03 1.27E+03 3.78E+03 1.19E+03 1.19E+03 1.56E+03 5.94E+02

F9 Mean 3.13E+03 2.24E+03 3.80E+03 2.99E+03 3.20E+03 2.99E+03 3.55E+03 3.07E+03 2.45E+03

Std 6.52E+02 1.24E+03 5.03E+02 5.97E+02 1.01E+03 6.38E+02 5.19E+02 5.74E+02 6.27E+02

F10 Mean 1.69E+02 1.80E+02 1.98E+02 1.69E+02 1.67E+02 1.63E+02 1.71E+02 1.85E+02 1.62E+02

Std 3.33E+01 4.92E+03 4.17E+03 3.65E+01 4.98E+03 4.20E+01 3.43E+01 3.57E+03 4.17E+03

F11 Mean 2.61E+06 2.91E+06 2.95E+06 2.78E+06 3.02E+06 2.36E+06 3.73E+06 3.86E+06 5.22E+04

Std 5.23E+09 8.20E+09 4.03E+06 5.08E+09 9.85E+09 9.94E+09 3.22E+09 8.64E+09 1.00E+10

F12 Mean 2.60E+05 4.27E+05 4.79E+05 3.71E+05 2.02E+05 2.80E+05 2.66E+05 3.00E+05 3.39E+02

Std 6.72E+09 1.03E+10 1.61E+05 7.94E+09 8.43E+09 8.16E+09 7.44E+09 7.84E+09 8.67E+09

F13 Mean 8.29E+02 1.37E+03 9.14E+02 1.40E+03 1.16E+03 8.60E+02 9.79E+02 1.25E+03 3.42E+02

Std 3.82E+06 4.68E+06 2.15E+06 5.22E+06 4.63E+06 9.16E+05 8.13E+05 4.37E+06 1.69E+06

F14 Mean 2.51E+04 4.04E+04 3.39E+04 3.77E+04 5.96E+04 5.18E+04 4.19E+04 3.81E+04 2.76E+02

Std 3.28E+08 9.31E+08 3.80E+08 1.69E+09 7.03E+08 5.37E+08 3.75E+04 9.76E+08 4.38E+08

F15 Mean 1.12E+03 9.30E+02 9.62E+02 1.32E+03 1.28E+03 9.89E+02 9.67E+02 7.04E+02 4.80E+02

Std 1.70E+03 1.94E+03 2.58E+02 1.80E+03 2.14E+03 2.21E+03 2.36E+03 2.34E+03 2.25E+03

F16 Mean 2.25E+02 2.51E+02 3.26E+02 5.66E+02 4.58E+02 3.00E+02 3.33E+02 2.20E+02 2.21E+02

Std 5.42E+03 7.55E+03 2.38E+02 2.35E+03 2.92E+03 1.89E+03 2.11E+02 2.31E+03 5.70E+03

F17 Mean 3.29E+04 9.14E+04 3.49E+04 5.44E+04 1.18E+05 6.87E+04 6.43E+04 5.93E+04 5.99E+04

Std 6.72E+07 9.91E+07 1.11E+05 5.07E+07 6.23E+07 1.54E+08 1.50E+05 2.34E+07 7.94E+07

F18 Mean 6.17E+04 1.67E+05 1.47E+05 1.01E+05 9.02E+04 1.12E+05 1.67E+05 9.46E+04 2.52E+02

Std 4.19E+08 1.14E+09 3.77E+08 1.16E+09 8.95E+08 9.34E+08 3.44E+05 1.23E+09 1.23E+09

F19 Mean 3.10E+02 4.28E+02 4.64E+02 4.17E+02 3.57E+02 4.25E+02 3.84E+02 4.55E+02 4.11E+02

Std 2.22E+02 2.20E+02 2.26E+02 1.95E+02 2.26E+02 1.60E+02 1.71E+02 1.97E+02 2.25E+02

F20 Mean 2.07E+02 4.67E+02 4.24E+02 4.06E+02 2.10E+02 4.34E+02 4.21E+02 4.52E+02 3.92E+02

Std 1.53E+02 1.42E+02 4.38E+01 9.05E+01 1.86E+02 1.63E+02 3.16E+01 1.56E+02 1.65E+02

F21 Mean 2.22E+02 2.20E+02 2.21E+02 2.20E+02 2.22E+02 2.22E+02 2.21E+02 2.22E+02 2.00E+02

Std 2.16E+03 2.72E+03 3.04E+03 2.40E+03 2.63E+03 2.55E+03 2.39E+03 2.82E+03 1.99E+03

F22 Mean 8.75E+02 8.02E+02 8.03E+02 1.06E+03 7.66E+02 7.82E+02 8.32E+02 7.70E+02 7.79E+02

Std 2.82E+02 1.25E+02 1.25E+02 1.45E+02 3.36E+02 2.44E+02 2.49E+02 2.51E+02 3.05E+02

F23 Mean 7.64E+02 8.17E+02 7.91E+02 1.15E+03 9.02E+02 5.86E+02 9.57E+02 9.75E+02 7.60E+02

Std 3.72E+02 1.27E+02 1.21E+02 1.25E+02 3.32E+02 4.80E+02 2.35E+02 4.02E+02 4.57E+02
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Table 6 continued

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F24 Mean 4.87E+02 4.90E+02 4.88E+02 4.85E+02 4.85E+02 4.85E+02 4.85E+02 4.86E+02 4.83E+02

Std 2.04E+01 1.40E+03 2.06E+03 2.01E+01 2.63E+03 3.12E+03 1.48E+01 2.57E+03 3.34E+00

F25 Mean 3.90E+02 4.26E+03 3.79E+02 4.02E+02 3.87E+02 3.94E+02 3.75E+02 3.86E+02 3.00E+02

Std 3.60E+03 2.07E+03 2.83E+03 4.49E+03 3.89E+03 3.78E+03 4.02E+03 3.94E+03 4.09E+03

F26 Mean 7.98E+02 7.49E+02 7.08E+02 1.04E+03 7.17E+02 8.02E+02 8.11E+02 8.09E+02 6.77E+02

Std 6.21E+02 4.80E+02 1.78E+02 3.66E+02 5.67E+02 5.92E+02 5.68E+02 6.01E+02 7.90E+02

F27 Mean 5.00E+02 5.07E+02 4.97E+02 4.81E+02 5.01E+02 4.98E+02 5.06E+02 5.03E+02 4.76E+02

Std 2.66E+03 2.01E+03 2.35E+03 1.75E+03 3.47E+03 3.46E+03 1.42E+03 2.47E+03 2.34E+03

F28 Mean 1.25E+03 1.20E+03 1.07E+03 1.28E+03 1.03E+03 1.24E+03 9.08E+02 1.24E+03 7.94E+02

Std 1.56E+03 3.34E+03 7.09E+02 3.43E+03 4.73E+03 2.67E+03 2.47E+02 3.18E+03 8.15E+03

F29 Mean 5.12E+05 1.13E+06 1.78E+06 4.40E+05 8.00E+05 9.35E+05 1.09E+06 7.82E+05 4.52E+03

Std 3.58E+08 1.57E+09 8.16E+05 1.05E+09 1.63E+09 1.44E+09 1.39E+09 1.01E+09 1.36E+09

The optimal value under the current index is in bold

In order to study the impact of variables of different dimen-
sions on the performance of the algorithm,we conducted tests
on 50-D. Table 7 lists themean, standard deviation,Wilcoxon
rank sum test and Friedman test results.

1. In the unimodal functions (F1, F2), SQOPSO has
obtained a better solution on the function F1, and its
performance exceeds the other 8 algorithms. But on the
function F2, the effect of COPSO is better, and the per-
formance of OPSO, COOPSO and REOPSO algorithms
are all better than SQOPSO.

2. Among the simple multimodal functions (F3–F9),
SQOPSO finds the global optimal solution on the func-
tions F3, F4, F5, F6 and F8. Regarding functions F7 and
F9, COOPSO and QOPSO have better performance, and
the optimal solution of SQOSPO is not much different
from the results of COOPSO and QOPSO.

3. Among the hybrid functions (F10–F19), SQOPSO has
significant advantages on functions F10, F11, F12, F13,
F14, F15, F16 and F18. In function F10 and function F16,
there is little difference in the performance of GOPSO,
REOPSO and SQOPSO. On function F17 and function
F19, the result of OPSO algorithm is better than other
algorithms.

4. Among the composition functions (F20–F29), SQO-PSO
has significant advantages in functions F21, F24, F52,
F26, F27, F28 and F29. Among the functions F20, F22
and F23, the performance of COPSO, OPSO, REOPSO
andGOPSO is better.While on function F24 and function
F27, the performance ofCOOPSO,COPSO,GOPSOand
SQOPSO is not much different.

It can be found that the SQOPSO algorithm performs best
on 21 functions, the REOPSO algorithm performs best on 2
functions, and theOPSOandGOPSOperformbest on 3 func-

tions. QOPSO performs best on 1 function, and COOPSO
and COPSO perform best on 4 functions. In most functions,
the SQOPSO algorithm has significant advantages over other
comparative algorithms. Therefore, SQOPSO has better per-
formance on the 50-dimensional CEC2017 benchmark test
set.

CEC2022

CEC2022 [82] is the latest single-objective bounded con-
straint optimization function test set, and 9 algorithms are
applied to the CEC2022 function test set for testing. The 12
constrained problems of CEC2022 include unimodal func-
tions (F1), basic functions (F2–F5), hybrid functions (F6–F8)
and composition functions (F9–F12). SQOPSO and the PSO
algorithm embedded with 8 OBL variants were tested on
CEC2022 for 30-D and 50-D. The specific experimental
results are as follows, and the best results are highlighted
in bold:

1. In the unimodal function (F1), EOPSO, REOPSO and
SQOPSO achieved better results than other algorithms.

2. Among the basic functions (F2–F5), SQOPSO has a
significant advantage on function F3. There is little differ-
ence in the performance of all algorithms on functions F2
and F5. Regarding function F4, GOPSO has better per-
formance, and the optimal solution of SQOSPO is not
much different from the result of GOPSO.

3. Among the hybrid functions (F6–F8), SQOPSO has a
significant advantage on functions F6 and F7. Regarding
the function F8, the results of the QOPSO algorithm are
better than the rest of the algorithms.

4. In the composition function (F9–F12), the performance
difference of all algorithms is not big. But the perfor-
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Table 7 Means and standard deviations of PSO algorithm with different OBL variants for F1–F29 of 50-D in CEC2017

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 4.66E+07 1.06E+11 4.89E+07 4.56E+07 4.19E+07 4.59E+07 4.01E+07 4.13E+07 2.89E+03

Std 5.27E+10 1.35E+10 6.75E+10 5.92E+10 3.95E+10 7.79E+10 1.71E+08 4.98E+10 3.92E+08

F2 Mean 2.03E+04 2.93E+04 2.48E+04 2.66E+04 2.72E+04 3.08E+04 2.70E+04 3.23E+04 2.66E+04

Std 9.73E+03 8.34E+04 7.38E+04 9.45E+04 1.22E+04 1.30E+04 6.98E+03 7.34E+03 9.28E+03

F3 Mean 1.46E+02 1.72E+02 1.37E+02 1.42E+02 1.88E+02 1.58E+02 1.35E+02 1.91E+02 1.36E+02

Std 5.92E+01 1.49E+04 2.34E+04 2.84E+04 3.71E+04 2.19E+04 5.55E+01 2.66E+04 5.46E+01

F4 Mean 3.21E+02 3.89E+02 3.40E+02 3.24E+02 3.44E+02 3.51E+02 3.37E+02 3.43E+02 2.89E+02

Std 5.76E+01 1.17E+02 1.35E+02 3.54E+01 1.21E+02 1.49E+02 3.78E+01 1.64E+02 3.50E+01

F5 Mean 1.56E+02 1.58E+02 1.54E+02 1.57E+02 1.55E+02 1.54E+02 1.53E+02 1.51E+02 1.41E+02

Std 4.43E+00 2.85E+01 9.67E+00 3.83E+00 2.61E+01 1.81E+01 3.94E+00 1.35E+01 3.69E+00

F6 Mean 7.39E+02 1.12E+03 9.61E+02 7.00E+02 8.50E+02 8.01E+02 7.59E+02 7.85E+02 3.01E+02

Std 7.75E+01 4.09E+02 4.56E+02 5.40E+01 8.81E+01 7.14E+01 7.63E+01 8.11E+02 6.62E+01

F7 Mean 3.49E+02 4.44E+02 3.63E+02 3.69E+02 3.54E+02 3.63E+02 3.19E+02 3.54E+02 3.06E+02

Std 1.33E+02 1.61E+02 1.71E+02 1.92E+02 2.36E+02 1.46E+02 3.77E+01 2.14E+02 2.79E+01

F8 Mean 1.75E+04 2.31E+04 1.78E+04 1.92E+04 1.70E+04 1.79E+04 1.69E+04 1.80E+04 6.90E+03

Std 3.19E+03 1.44E+04 8.13E+03 1.62E+03 1.00E+04 3.54E+03 2.46E+03 1.14E+04 2.50E+03

F9 Mean 6.16E+03 6.05E+03 6.25E+03 5.87E+03 6.17E+03 6.63E+03 6.02E+03 6.08E+03 5.42E+03

Std 8.89E+02 2.75E+03 1.57E+03 5.13E+02 7.72E+02 7.68E+02 8.75E+02 7.95E+02 9.53E+02

F10 Mean 2.97E+02 3.12E+02 3.03E+02 3.03E+02 3.03E+02 2.74E+02 3.15E+02 3.03E+02 1.97E+02

Std 4.82E+01 1.70E+04 1.59E+04 9.57E+03 5.63E+01 1.17E+04 3.39E+01 5.48E+01 5.29E+01

F11 Mean 2.32E+07 3.50E+07 2.01E+07 3.10E+07 2.38E+07 2.39E+07 2.08E+07 2.89E+07 6.80E+05

Std 4.70E+10 3.64E+10 1.88E+10 5.33E+10 4.83E+10 6.17E+10 2.29E+10 5.44E+10 5.18E+10

F12 Mean 2.42E+06 2.57E+06 3.04E+06 2.31E+06 3.30E+06 2.89E+06 2.48E+06 1.54E+06 1.30E+03

Std 3.45E+10 2.74E+10 7.12E+05 3.31E+10 2.91E+10 3.42E+10 2.57E+10 2.69E+10 3.12E+10

F13 Mean 2.77E+04 8.31E+03 1.07E+04 4.99E+04 2.69E+04 3.71E+04 2.93E+04 3.91E+04 1.37E+04

Std 5.75E+07 1.07E+08 1.18E+05 8.29E+07 8.09E+07 8.51E+07 8.24E+07 8.63E+07 8.33E+07

F14 Mean 6.87E+05 8.01E+05 7.54E+05 4.76E+05 5.01E+05 5.55E+05 3.80E+05 4.74E+05 5.95E+02

Std 5.45E+09 6.82E+09 3.48E+09 5.86E+09 6.10E+09 6.85E+09 3.32E+05 9.25E+09 5.64E+09

F15 Mean 1.65E+03 1.65E+03 1.51E+03 9.81E+02 1.59E+03 1.73E+03 1.69E+03 1.28E+03 9.08E+02

Std 2.44E+03 3.51E+03 3.76E+02 4.43E+03 3.88E+03 4.20E+03 3.25E+03 3.12E+03 4.14E+03

F16 Mean 1.25E+03 1.15E+03 1.27E+03 1.22E+03 1.38E+03 1.15E+03 1.19E+03 1.38E+03 1.06E+03

Std 5.16E+04 1.26E+04 6.42E+03 2.88E+02 6.14E+04 1.06E+04 3.29E+02 2.62E+04 3.07E+02

F17 Mean 2.07E+05 3.44E+05 3.20E+05 1.45E+05 3.90E+05 2.86E+05 2.49E+05 2.82E+05 1.36E+05

Std 9.34E+07 2.25E+08 5.89E+07 1.77E+08 2.59E+08 1.05E+08 1.21E+08 9.94E+07 1.13E+08

F18 Mean 4.51E+05 6.31E+05 6.03E+05 4.32E+05 5.24E+05 6.03E+05 5.47E+05 5.13E+05 3.22E+02

Std 2.85E+09 3.47E+09 1.02E+09 3.27E+09 4.42E+09 3.17E+09 2.30E+09 3.68E+09 2.81E+09

F19 Mean 1.03E+03 1.03E+03 7.95E+02 8.51E+02 6.37E+02 9.85E+02 6.54E+02 8.28E+02 8.02E+02

Std 3.26E+02 2.63E+02 3.31E+02 2.47E+02 3.78E+02 3.05E+02 3.67E+02 3.52E+02 3.13E+02

F20 Mean 6.03E+02 6.47E+02 6.05E+02 6.05E+02 5.90E+02 6.11E+02 6.34E+02 5.94E+02 5.67E+02

Std 2.11E+02 3.31E+02 7.41E+01 3.33E+02 3.66E+02 3.43E+02 4.24E+01 2.87E+02 7.48E+01

F21 Mean 7.51E+03 7.22E+03 6.11E+03 6.82E+03 7.60E+03 7.17E+03 5.98E+03 7.05E+03 5.45E+03

Std 6.79E+02 2.11E+03 9.47E+02 1.75E+03 7.44E+02 1.70E+03 1.13E+03 9.59E+02 1.73E+03

F22 Mean 1.29E+03 1.41E+03 1.34E+03 1.91E+03 1.40E+03 1.39E+03 1.22E+03 1.51E+03 1.17E+03

Std 4.98E+02 1.68E+02 1.51E+02 6.59E+02 5.43E+02 5.54E+02 5.23E+02 5.88E+02 1.86E+02

F23 Mean 1.30E+03 1.14E+03 1.24E+03 1.98E+03 1.20E+03 1.31E+03 1.44E+03 1.17E+03 1.04E+03

Std 7.30E+02 4.13E+02 1.67E+02 9.36E+02 7.80E+02 8.26E+02 4.68E+02 8.97E+02 1.33E+02
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Table 7 continued

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F24 Mean 6.11E+02 6.30E+02 5.90E+02 6.00E+02 5.72E+02 6.21E+02 6.17E+02 6.19E+02 6.25E+02

Std 2.56E+01 4.37E+03 8.41E+03 2.32E+01 1.47E+04 2.97E+01 2.92E+01 1.07E+04 2.95E+01

F25 Mean 5.64E+02 1.59E+04 6.68E+02 5.63E+02 5.66E+02 6.17E+02 5.65E+02 6.12E+02 5.51E+02

Std 7.12E+03 1.29E+03 5.79E+03 9.01E+03 9.57E+03 7.93E+03 8.02E+03 7.25E+03 8.05E+03

F26 Mean 1.44E+03 1.40E+03 1.73E+03 1.34E+03 1.55E+03 1.95E+03 1.56E+03 1.83E+03 7.53E+02

Std 1.65E+03 5.44E+02 4.63E+02 1.74E+03 1.64E+03 1.63E+03 1.46E+03 1.41E+03 7.78E+02

F27 Mean 5.74E+02 5.64E+02 5.87E+02 5.78E+02 5.72E+02 5.81E+02 5.71E+02 5.82E+02 6.08E+02

Std 4.61E+03 3.67E+03 4.71E+03 7.49E+03 8.48E+03 7.96E+03 3.99E+03 5.30E+03 3.72E+03

F28 Mean 1.95E+03 1.77E+03 1.95E+03 1.80E+03 1.98E+03 2.34E+03 1.88E+03 2.09E+03 1.54E+03

Std 6.52E+04 1.71E+05 5.21E+02 2.02E+05 3.55E+05 1.47E+05 3.03E+05 1.26E+05 9.68E+04

F29 Mean 4.21E+07 4.11E+07 3.74E+07 4.22E+07 4.31E+07 4.01E+07 4.17E+07 4.43E+07 6.79E+05

Std 3.72E+06 4.86E+09 3.45E+09 5.50E+09 4.30E+09 6.88E+09 4.95E+06 6.69E+09 5.42E+09

The optimal value under the current index is in bold

mance of SQOPSO on function F11 is better than other
algorithms.

In order to study the impact of variables of different dimen-
sions on the performance of the algorithm,we conducted tests
on 20-D. Table 9 lists themean, standard deviation,Wilcoxon
rank sum test and Friedman test results.

1. In the unimodal function (F1), SQOPSOachieves a better
solution on the function F1, and its performance exceeds
the other 8 algorithms.

2. Among the basic functions (F2–F5), SQOPSO has sig-
nificant advantages in all basic functions. Regarding
function F3, the performance of SQOSPO and QROPSO
is not much different.

3. Among the hybrid functions (F6–F8), SQOPSO has sig-
nificant advantages on all blending functions.

4. Among the composition functions (F9–F12), SQOP-SO
has advantages in all compound functions (except F11).
COPSO performs better than other algorithms on func-
tion F11.

It can be found that SQOPSO algorithm performs best
on 11 functions, and COPSO performs best on 1 function.
In most functions, the SQOPSO algorithm has significant
advantages over other comparative algorithms. Therefore,
SQOPSO has the best performance on the 20-dimensional
CEC2022 benchmark test set. Comparing Tables 8 and 9, it
can be clearly seen that the higher the dimension, the better
the performance of SQOPSO.

Figure12 shows the comprehensive ranking results of nine
algorithms in different dimensions on three benchmark test
sets.

Comparison with the latest intelligent optimization
algorithms

In recent years, in the field of intelligent computing, many
more advantageous algorithms have been proposed and suc-
cessfully applied to engineering practice. In order to further
reflect the performance of SQOPSO algorithm, SQOPSO
is compared with SSA, DMO, NGO, TSO, GJO, SCSO,
GNDO and PSO. SQOPSO and 8 new intelligent optimiza-
tion algorithms were tested in 10-D and 20-D on CEC2022.
The specific experimental results are shown in Table 10, and
the best results are highlighted in bold:

1. In the unimodal function (F1), SQOPSO, GNDO, TSO
and NGO outperform the other 5 algorithms.

2. Among the basic functions (F2–F5), all algorithms per-
form roughly the sameon functionF2. SQOPSO,GNDO,
SCSO, TSO, NGO, and DMO outperform other algo-
rithms on function F3. NGO algorithm presents the best
performance on function F4. SQO-PSO, PSO, GNDO,
GJO, NGO, and DMO outperform other algorithms on
function F5.

3. Among the hybrid functions (F6–F8), the performance
of the GNDO algorithm on the function F6 is the best.
SQOPSO, GNDO, TSO, NGO and DMO algorithms
outperform other algorithms on function F7. SQOPSO,
GNDO, SCSO and TSO perform better than other algo-
rithms on function F8.

4. In the composition function (F9–F12), the performance
differences of all algorithms on F9, F10 and F11 are not
significant. In function F12, PSO, GNDO, SCSO, GJO,
TSO, NGO and DMO performed better than other algo-
rithms.
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Table 8 Means and standard deviations of PSO algorithm with different OBL variants for F1–F12 of 10-D in CEC2022

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 5.87E−01 8.64E−01 7.67E−01 8.23E−01 9.43E−01 6.87E−01 4.88E−01 4.64E−01 0.00E+00

Std 2.45E+03 4.75E+03 3.49E−01 2.62E−01 2.22E−01 3.11E+03 3.20E−01 3.08E−01 4.82E−01

F2 Mean 6.16E−02 9.93E−02 6.23E−02 3.07E−01 6.86E−02 1.49E−01 8.92E−02 6.70E−02 3.00E−03

Std 4.36E+02 8.48E+02 1.82E+01 8.55E+02 8.86E+02 8.66E+02 7.30E+02 6.43E+02 9.48E+02

F3 Mean 6.30E+00 5.56E+00 5.25E+00 5.07E+00 5.59E+00 2.68E+00 1.85E+00 5.69E+00 4.06E−01

Std 1.09E+01 1.86E+01 7.56E+00 1.39E+01 1.58E+01 7.46E+00 5.50E+00 1.07E+01 1.40E+01

F4 Mean 9.34E+00 1.41E+01 9.28E+00 7.29E+00 1.25E+01 4.32E+00 1.24E+01 5.35E+00 4.97E+00

Std 9.70E+00 2.40E+01 9.34E+00 9.66E+00 9.33E+00 1.08E+01 1.02E+01 1.57E+01 8.36E+00

F5 Mean 1.27E−01 2.04E−01 2.27E−01 2.12E−01 1.92E−01 1.64E−01 1.92E−01 2.04E−01 0.00E+00

Std 1.97E+02 5.17E+02 6.05E+01 4.31E+01 3.15E+02 3.95E+02 3.09E+01 1.72E+02 2.46E+02

F6 Mean 2.30E+02 4.80E+02 1.20E+02 6.53E+02 5.46E+02 3.62E+02 3.95E+02 5.24E+02 8.60E+00

Std 1.04E+08 1.13E+08 1.67E+03 1.65E+08 3.75E+08 1.75E+08 2.38E+08 1.43E+08 3.13E+08

F7 Mean 4.92E+00 4.08E+00 1.33E+01 9.53E+00 1.72E+01 2.06E+01 2.25E+01 5.11E+00 1.99E+00

Std 1.32E+01 2.61E+01 1.19E+01 1.53E+01 2.67E+01 2.21E+01 1.23E+01 1.57E+01 2.24E+01

F8 Mean 5.27E+00 4.91E+00 9.37E+00 2.32E+01 8.86E+00 2.19E+01 2.25E+01 2.30E+01 2.00E+01

Std 3.02E+01 5.37E+01 3.92E+00 5.32E+01 8.48E+01 3.69E+01 4.26E+01 6.01E+01 6.65E+01

F9 Mean 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02

Std 7.49E+01 1.40E+02 1.29E−03 1.10E+02 1.24E+02 6.67E+01 3.72E+01 1.10E+02 1.29E+02

F10 Mean 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02

Std 8.06E+01 1.87E+02 6.07E+01 7.81E+01 1.23E+02 1.91E+02 6.05E+01 1.15E+02 1.00E+02

F11 Mean 5.52E+00 6.22E+00 6.84E+00 7.12E+00 6.72E+00 5.45E+00 6.11E+00 6.70E+00 0.00E+00

Std 1.69E+02 6.45E+02 9.66E+01 4.64E+02 4.65E+02 4.74E+02 2.37E+02 5.83E+02 4.29E+02

F12 Mean 1.67E+02 1.70E+02 1.69E+02 1.77E+02 1.66E+02 1.73E+02 1.72E+02 1.69E+02 1.68E+02

Std 8.62E+01 4.08E+01 4.09E+01 3.91E+01 8.19E+01 1.38E+02 5.56E+01 8.19E+01 9.20E+01

The optimal value under the current index is in bold

It can be found that compared with the latest intelligent
optimization algorithm, the performance of SQO-PSO algo-
rithm is in the upper middle, but there is little difference
with the optimal solution found by other algorithms. As a
framework, SQOBL is applied to the PSO algorithm. After a
number of tests, it can be clearly seen that it has been greatly
improved compared with the PSO algorithm. If SQOBL is
applied to the improvement of other intelligent optimization
algorithms, it will have strong competitiveness.

This result further verifies that the proposed SQOBL
strategy can greatly improve the optimization ability of the
algorithm, and has a good competitiveness in the latest intel-
ligent optimization algorithm.

In order to study the impact of variables of different dimen-
sions on the performance of the algorithm, we conducted
tests on 20-D. Table 11 lists the mean, standard deviation,
Wilcoxon rank sum test and Friedman test results.

1. In the unimodal function (F1), the performance of
SQOPSO, GNDO and TSO exceeds the other 6 algo-
rithms.

2. Among the basic functions (F2–F5), the performance of
SQOPSO and TSO on function F2 is more significant.

The performance of SQOPSO and DMO on function F5
is better. For functions F3 and F4, NGO and DMO out-
perform the other 7 algorithms.

3. Among the hybrid functions (F6–F8), the GNDO algo-
rithm has the best performance on functions F6 and F7.
SQOPSO, GNDO, NGO and TSO perform better than
other algorithms on function F8.

4. In the composition function (F9–F12), there is little dif-
ference in the performance of all algorithms on F9 and
F10. In function F11, TSO and SQOPSO perform better
than other algorithms. NGOalgorithm is better than other
algorithms in processing function F12.

It can be found that the SQOPSO algorithm performs well
on 7 functions, and the TSO, GNDO andNGO algorithms all
perform well on 6 functions. Consistent with the analysis of
the 10-dimensional experimental results, observing the 20-
dimensional test results, it can be found that compared with
the latest intelligent optimization algorithm, the SQOPSO
algorithmhas better performance andhas obvious advantages
in dealing with high-dimensional problems.
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Table 9 Means and standard deviations of PSO algorithm with different OBL variants for F1–F12 of 20-D in CEC2022

OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

F1 Mean 6.70E+00 5.18E+00 5.50E+00 7.55E+00 5.13E+00 5.41E+00 7.30E+00 4.24E+00 1.63E−02

Std 1.49E+00 1.97E+04 7.79E+03 1.86E+00 2.61E+04 2.16E+00 2.16E+04 1.42E+04 1.62E+00

F2 Mean 7.10E+00 4.92E+01 4.50E+00 5.25E+00 3.18E+00 4.51E+01 4.53E+00 6.99E+00 2.52E−04

Std 1.54E+03 1.16E+03 1.13E+03 1.10E+03 2.25E+03 2.10E+03 1.81E+03 2.07E+03 1.59E+01

F3 Mean 2.48E+01 3.15E+01 1.67E+01 2.32E+01 2.71E+01 3.06E+01 2.25E+01 2.36E+01 1.72E+01

Std 1.47E+01 2.41E+01 1.01E+01 8.67E+00 1.44E+01 1.43E+01 7.87E+00 1.88E+01 9.04E+00

F4 Mean 3.67E+01 3.22E+01 3.44E+01 4.10E+01 4.50E+01 3.89E+01 3.08E+01 4.52E+01 2.79E+01

Std 2.00E+01 7.04E+01 4.44E+01 1.78E+01 4.91E+01 3.89E+01 5.57E+01 4.00E+01 2.01E+01

F5 Mean 4.61E+02 9.17E+02 5.97E+02 3.57E+02 3.21E+02 5.94E+02 4.67E+02 4.17E+02 5.44E−01

Std 3.27E+02 1.91E+03 3.69E+02 3.36E+02 1.37E+03 1.35E+03 4.47E+02 5.71E+02 3.07E+02

F6 Mean 6.67E+04 7.24E+04 8.64E+04 8.82E+04 1.07E+05 9.52E+04 1.02E+05 8.66E+04 1.19E+02

Std 4.77E+04 1.72E+09 8.47E+08 1.35E+09 1.69E+09 1.86E+09 1.34E+09 2.19E+09 6.56E+04

F7 Mean 6.38E+01 4.91E+01 5.04E+01 5.51E+01 5.91E+01 5.18E+01 5.09E+01 6.91E+01 4.67E+01

Std 2.65E+01 5.96E+01 2.62E+01 2.44E+01 5.77E+01 6.81E+01 4.82E+01 4.25E+01 3.39E+01

F8 Mean 2.67E+01 2.70E+01 2.89E+01 2.94E+01 2.74E+01 2.64E+01 2.82E+01 2.88E+01 2.09E+01

Std 2.59E+02 5.66E+02 5.91E+01 4.39E+02 2.23E+03 6.39E+02 1.54E+03 1.51E+02 5.95E+01

F9 Mean 1.81E+02 1.81E+02 1.81E+02 1.81E+02 1.81E+02 1.81E+02 1.81E+02 1.81E+02 1.81E+02

Std 3.98E+02 4.85E+02 5.79E+00 4.26E+02 5.54E+02 5.45E+02 4.15E+02 4.46E+02 5.78E+00

F10 Mean 1.01E+02 1.01E+02 1.00E+02 1.01E+02 1.00E+02 1.01E+02 1.00E+02 1.01E+02 1.00E+02

Std 1.20E+03 1.14E+03 1.01E+03 7.06E+02 1.05E+03 9.97E+02 9.59E+02 1.10E+03 9.99E+02

F11 Mean 3.53E+02 6.68E+01 6.95E+01 6.56E+01 6.49E+01 6.65E+01 6.64E+01 6.69E+01 3.00E+02

Std 1.67E+03 2.85E+03 2.19E+03 2.63E+03 3.16E+03 2.57E+03 3.09E+03 3.42E+03 8.82E+01

F12 Mean 3.57E+02 4.15E+02 3.45E+02 3.71E+02 3.96E+02 4.38E+02 3.97E+02 3.34E+02 3.05E+02

Std 3.87E+02 2.49E+02 1.81E+02 1.65E+02 3.16E+02 2.55E+02 4.74E+02 3.18E+02 2.71E+02

The optimal value under the current index is in bold

Fig. 12 Multi-group stack
diagram showing the average
rank of three testsets on nine
algorithms

Realistic Constrained Optimization Problems

In this section, a practical engineering optimization problem
is used to compare SQOBL with popular algorithms for bet-
ter overall evaluation of SQOBLperformance. TheCEC2020
benchmark set is derived from real-world non-convex con-
strained optimization problems that reflect the difficulties
and challenges that arise in real-world optimization scenarios
[83].

In the comparative experiment, the top three advanced
constrained optimization methods ranked in the Genetic and
Evolutionary Computing Conference (GEC

CO’20Companion)were selected for exhaustive testing. The
details of the methods are as follows:

1. SASS: Adaptive Sphere Search Algorithm. [84]
2. COLSHADE: Evolved from the basic L-SHADE algo-

rithm, important features such as adaptive Levy flight
and dynamic tolerance are introduced into the constraint
processing technology. [85]

3. sCMAgES: A variant of Covariance Matrix Adaptive
Evolutionary Strategy (CMA-ES) with linear temporal
complexity. [86]
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Table 10 Means and standard deviations of multiple intelligent optimization algorithms for 10-D F1–F12 in CEC2022

PSO GNDO SCSO GJO TSO NGO DMO SSA SQOPSO

F1 Mean 1.10E+01 5.68E−14 3.30E+01 7.38E+01 0.00E+00 1.31E−12 6.83E+00 2.26E+00 0.00E+00

Std 3.16E+03 6.23E−14 7.72E+02 1.44E+03 9.17E−14 1.92E−10 1.69E+01 3.71E+02 4.69E−14

F2 Mean 1.84E−01 5.68E−14 1.22E−01 1.07E−01 1.32E−04 2.66E−05 2.53E−01 1.09E−03 5.17E−02

Std 7.06E+01 2.29E+01 2.82E+01 2.10E+01 3.45E+00 6.61E−02 2.56E+00 2.66E+01 7.91E+02

F3 Mean 1.06E+00 4.91E−02 2.91E−01 7.50E−01 3.15E−06 1.14E−13 0.00E+00 8.75E+00 1.14E−13

Std 4.18E+00 2.14E+00 9.50E+00 4.74E+00 2.72E+00 9.66E−06 0.00E+00 1.16E+01 1.57E+01

F4 Mean 9.06E+00 6.96E+00 4.35E+00 1.07E+01 6.96E+00 3.33E+00 1.93E+01 8.95E+00 4.97E+00

Std 8.53E+00 3.87E+00 8.11E+00 8.98E+00 6.91E+00 1.71E+00 3.45E+00 8.26E+00 7.79E+00

F5 Mean 2.86E−01 5.31E−09 2.47E+00 1.88E−01 6.33E−01 1.14E−13 0.00E+00 1.62E+02 0.00E+00

Std 6.03E+00 8.87E+00 1.07E+02 4.25E+01 3.43E+01 6.48E−12 2.70E−12 1.33E+02 2.99E+02

F6 Mean 2.23E+02 1.10E−01 1.45E+02 2.15E+03 3.53E+01 5.48E+01 2.93E+02 1.18E+02 8.04E+00

Std 1.72E+03 2.56E+00 2.15E+03 1.41E+03 5.80E+02 1.71E+01 1.55E+03 1.92E+03 2.55E+08

F7 Mean 2.37E+01 9.95E−01 2.24E+01 2.29E+01 9.95E−01 1.05E−02 1.22E+00 2.07E+01 4.97E+00

Std 8.18E+00 1.21E+01 1.08E+01 1.14E+01 1.06E+01 3.55E+00 4.42E+00 2.73E+01 4.40E+01

F8 Mean 2.29E+01 4.48E−01 3.57E+00 5.85E+00 8.25E−01 7.92E+00 9.10E+00 2.37E+01 5.41E−01

Std 4.03E+00 8.81E+00 5.57E+00 4.70E+00 6.87E+00 4.81E+00 4.14E+00 3.83E+01 1.90E+01

F9 Mean 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02 2.29E+02

Std 4.10E+01 9.09E−14 3.39E+01 3.27E+01 1.58E-13 9.09E−14 0.00E+00 4.00E+01 1.51E+02

F10 Mean 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02

Std 5.30E+01 5.46E+01 5.74E+01 5.57E+01 1.47E−01 2.07E+01 2.31E+01 7.68E+01 1.01E+02

F11 Mean 7.35E+00 4.55E−13 6.73E−01 5.35E+01 9.09E−13 4.55E−13 0.00E+00 4.48E−06 4.55E−13

Std 1.51E+02 9.32E+01 9.21E+01 1.10E+02 8.93E+01 6.17E−13 7.18E−06 2.08E+02 3.89E+02

F12 Mean 1.63E+02 1.63E+02 1.60E+02 1.63E+02 1.59E+02 1.59E+02 1.61E+02 1.76E+02 1.70E+02

Std 4.59E+01 2.51E+00 3.32E+00 1.02E+01 1.70E+01 1.45E+00 8.13E−01 5.18E+01 6.38E+01

The optimal value under the current index is in bold

In the previous GECCO’20 Companion, SASS ranked
first. It is undeniable that SASS is an excellent constrained
optimization algorithm, but it will be unstable when dealing
with some real-world problems, resulting in a low score on
the optimal value. Attach SQOBL to the SASS algorithm to
solve engineering and mathematical problems, and observe
the impact of the combination of the twoon the overall perfor-
mance of SASS. SQOBL acts on the population initialization
phase and local update strategy of the SASS algorithm, and
evaluates the current solution and the reverse solution at the
same time to accelerate the search process. The SASS, COL-
SHADE, sCMAgES, and SASS-SQOBL algorithmswere all
run 25 times, and the results were expressed in mean, stan-
dard deviation, median, worst value, and optimal value.

Hydro-static Thrust Bearing Design Problem

Hydrostatic bearing is a kind of sliding bearing,which has the
advantages of high load capacity and long working life and is
widely used in precision manufacturing and aerospace, and
other fields. The main optimization objective of this design

problem is to optimize the bearing power loss using the four
design variables of oil viscosity μ, bearing radius R, flow
Q, and recess radius R0, which contain seven nonlinear con-
straints in total. The problem is defined as follows:

Minimize:

f (x̄) = QP0
0.7

+ E f (58)

Subject to:

g1 (x̄) = 1000 − P0 ≤ 0

g2 (x̄) = W − 101000 ≤ 0

g3 (x̄) = 5000 − W

π
(
R2 − R2

0

) ≤ 0

g4 (x̄) = 50 − P0 ≤ 0

g5 (x̄) = 0.001 − 0.0307

386.4P0

(
Q

2πRh

)
≤ 0

g6 (x̄) = R − R0 ≤ 0

g7 (x̄) = h − 0.001 ≤ 0

(59)
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Table 11 Mean and standard deviation of PSO of various intelligent optimization algorithms of 20-D F1–F12 in CEC2022

PSO GNDO SCSO GJO TSO NGO DMO SSA SQOPSO

F1 Mean 2.52E+03 6.82E−13 6.43E+02 4.65E+03 4.72E−02 1.87E+03 1.01E+04 6.97E+02 1.20E−02

Std 4.56E+04 3.27E−08 3.34E+03 3.55E+03 1.68E+02 2.12E+04 2.95E+03 2.10E+03 7.78E+02

F2 Mean 4.92E+01 4.91E+01 5.95E+01 8.77E+01 1.94E−01 2.89E+01 4.65E+01 5.39E+01 4.29E−03

Std 2.21E+03 1.31E+01 5.93E+01 6.91E+01 2.17E+01 2.86E+01 6.46E−01 4.48E+01 1.25E+01

F3 Mean 8.61E+00 3.89E+00 1.99E+01 7.56E+00 4.35E+00 2.14E−05 5.58E−04 4.15E+01 1.61E+01

Std 2.61E+01 7.90E+00 1.35E+01 7.62E+00 1.03E+01 1.01E+01 2.93E−04 7.66E+00 3.03E−01

F4 Mean 4.77E+01 3.28E+01 5.91E+01 5.59E+01 3.18E+01 3.13E+01 7.41E+01 5.97E+01 3.78E+01

Std 1.20E+01 1.17E+01 1.88E+01 2.63E+01 1.57E+01 2.17E+01 1.02E+01 1.15E+01 7.59E+00

F5 Mean 7.82E+01 1.46E+01 5.67E+02 2.70E+02 2.25E+02 1.12E+00 3.19E−02 7.99E+02 2.60E−09

Std 4.07E+02 1.64E+02 3.64E+02 3.59E+02 2.62E+02 3.79E+02 1.14E−01 1.58E+02 1.86E+02

F6 Mean 1.09E+04 5.29E+01 3.98E+02 6.49E+03 9.84E+01 1.51E+02 2.58E+05 1.66E+02 7.40E+01

Std 1.85E+09 1.04E+03 3.87E+06 1.06E+07 3.57E+03 1.90E+06 5.40E+05 4.23E+03 7.02E+02

F7 Mean 5.31E+01 2.93E+01 7.92E+01 4.16E+01 3.69E+01 5.32E+01 5.38E+01 1.20E+02 3.64E+01

Std 8.50E+01 2.73E+01 3.04E+01 3.85E+01 3.01E+01 4.82E+01 1.01E+01 7.38E+01 8.93E+00

F8 Mean 3.07E+01 2.20E+01 2.53E+01 2.52E+01 2.16E+01 2.46E+01 3.68E+01 3.93E+01 2.04E+01

Std 7.98E+02 2.25E+01 3.58E+01 3.83E+01 6.53E+00 6.08E+01 2.16E+00 1.68E+02 9.83E−01

F9 Mean 1.81E+02 1.81E+02 1.82E+02 1.98E+02 1.81E+02 1.81E+02 1.81E+02 1.82E+02 1.81E+02

Std 3.14E+02 2.34E−06 2.60E+01 2.35E+01 4.01E−05 6.40E+01 1.46E−02 3.64E+01 2.37E−06

F10 Mean 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.01E+02 1.00E+02 1.00E+02 1.01E+02 1.00E+02

Std 1.49E+03 5.73E+02 6.73E+02 1.50E+03 9.54E+01 9.87E+02 1.88E−01 1.21E+03 2.52E+01

F11 Mean 3.76E+02 3.00E+02 3.25E+02 6.90E+02 6.14E−10 3.00E+02 3.00E+02 3.00E+02 3.73E−06

Std 1.31E+02 4.51E+01 3.19E+02 4.41E+02 9.58E+01 5.28E+02 1.46E−02 1.10E+03 3.67E+01

F12 Mean 2.57E+02 2.48E+02 2.54E+02 2.47E+02 2.45E+02 2.33E+02 2.45E+02 3.84E+02 2.89E+02

Std 4.89E+02 2.07E+01 2.98E+01 2.52E+01 3.02E+01 1.14E+02 5.69E+00 2.18E+02 4.04E+00

The optimal value under the current index is in bold

Table 12 Results of SASS, SASS-SQOBL, COLSHADE and
sCMAgES in hydrostatic thrust bearing design problems

RC25 SASS-SQOBL SASS COLSHADE sCMAgES

Best 1616.119765 1616.12 1616.11977 2284.5

Median 1616.119765 1616.12 1616.12 3174.5

Mean 1616.12245 1624.59 1626.09957 3022.14

Worst 1616.163148 1821.19 1778.05667 3530.1

Std 0.008971372 40.9731 33.8 387.5561

The optimal value under the current index is in bold

With bounds:

1 ≤ R ≤16, 1 ≤ R0 ≤ 16,

1 × 10−6 ≤μ ≤ 16 × 10−6,

1 ≤Q ≤ 16

(60)

The results of all algorithms on the design of hydrostatic
thrust bearings are given in Table 12. The best fitness val-
ues obtained by SASS-SQOBL and COLSHADE are both
1616.119765. The standard deviation of SASS-SPOBL cal-
culation results is smaller than that of other constrained

optimization methods. The performance of the SASS algo-
rithm without embedding SQOBL is lower than that of
COLSHADE in terms of worst value and standard devia-
tion, and COLSHADE has the best performance in dealing
with this problem. However, the result obtained by combin-
ing SQOBL and SASS not only achieves the optimal value
but also is very stable, as can be seen from the standard devi-
ation of only 0.00897.

Optimal Sizing of Distributed Generation for Active Power
Loss Minimization

Optimizing the capacity of distributed generation can effec-
tively improve system performance and meet the needs of
users, and the economic operation of distribution network.
The purpose of this optimization constrained problem is to
determine the size of the distributed generation in the distri-
bution network so that its power loss is minimized.

Table 13 reports the results of all algorithms on the opti-
mal size problem for the minimization of active losses in
distributed power generation problems. It can be seen that
the SASS-SPOBL algorithm is superior to other algorithms
in the selection of the optimal value. Although the results
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Table 13 The results of SASS, SASS-SQOBL, COLSHADE and
sCMAgES in the optimal size problem of distributed power genera-
tion active loss minimization

RC42 SASS-SQOBL SASS COLSHADE sCMAgES

Best 0.0832 0.08655 − 7.7259 0.1026

Median 0.0873 0.08753 − 1.6089 0.1553

Mean 0.0874 0.08745 − 2.613796 8.280324

Worst 0.0946 0.08893 − 0.9228 46.3443

Std 0.002 0.00047 2.21724602 15.01552

The optimal value under the current index is in bold

of COLSHADE are obviously the lowest, under the premise
of practical problems, negative numbers are obviously unac-
ceptable. Therefore, the COLSHADE column is ignored for
the analysis of the results. The top three the average fitness
value are 0.0873, 0.0875, and 0.1553, which are SASS-
SQOBL, SASS, and sCMAgES, respectively. Considering
comprehensively, SASS-SQOBL has achieved good results
on this issue.

SOPWM for 13-level inverters

SOPWM for 13-level inverters Synchronous Optimal Pulse
Width Modulation (SOPWM) is an analog control method.
On the premise of ensuring that the distortion is not affected,
the switching frequency can be significantly reduced, thereby
reducing the loss of the switch. For different levels of invert-
ers, the SOPWM problem can be expressed in the following
way:

Minimize:

f =
√

Σk
(
k−4

) (
ΣN

i=1s (i) cos (kαi )
)2

6
√

ΣK k−4
(61)

Where k = 5, 7, 11, 13, . . . , 97, N = � 6, fs,max
f ,m �, and s =

[1, 1, 1,−1, 1,−1, 1,−1, 1, 1, 1, 1].
Subject to:

gi = αi+1 − αi − 10−5 > 0,

i = 1, 2, . . . , N − 1,

h1 = 6m −
N∑

i=1

s (i) cos (αi ) = 0

(62)

With bounds:

0 < αi <
π

2
, i = 1, 2, . . . , N (63)

The results of all algorithms on the SOPWM problem on
a class 13 frequency converter are reported in Table 14. The
four statistical values obtained by SASS-SQOBL are bet-
ter than other algorithms except the worst value. Although

Table 14 Results of the SOPWM problem for SASS, SASS-SQOBL,
COLSHADE and sCMAgES on a class 13 frequency converter

RC50 SASS-SQOBL SASS COLSHADE sCMAgES

Best 0.014682222 0.01519 0.0205 0.018

Median 0.017035917 0.02932 0.0395 0.0807

Mean 0.023679744 0.02789 0.065092 0.08385

Worst 0.064545237 0.06038 0.2387 0.1503

Std 0.012480069 0.00981 0.0481876 0.02638

The optimal value under the current index is in bold

slightly lower than SASS in standard deviation, it is better
than both COLSHADE and sCMAgES and finds the opti-
mal fitness value. Therefore, comprehensive consideration,
the performance of SASS-SQOBL is better than other algo-
rithms. This result proves that SQOBL can be attached to the
optimization algorithm to speed up the search process and
improve the overall performance of the algorithm.

Statistical analysis

In this subsection, statistical methods are applied to system-
atically analyze the statistical significance of all experimental
results. Friedman’s test was used to judge whether there was
a significant difference between the performance of all algo-
rithms. The Friedman test [86] is represented by

χ2
F = 12T

s (s + 1)

(
s∑

a=1

R2
a − s (s + 1)2

4

)

(64)

FF = (T − 1) χ2
F

T (s − 1) − χ2
F

(65)

In the formula, T represents the total number of test func-
tions under different test sets, s represents the number of
algorithms, and Ra represents the average ranking of the a-
th algorithm on the test set. If the F distribution subject to
s − 1 and (T − 1)(s − 1) degrees of freedom is less than
χ2
F , the null hypothesis is rejected, indicating that there are

significant differences between the algorithms, then we can
continue to use the Nemenyi test [87] to draw. There is a sta-
tistical difference between which algorithms perform. The
critical distance of the Nemenyi test is expressed as:

CDa = qα

√
s (s + 1)

6T
(66)

where qα is the critical list value of the test andα is the impor-
tance of theNemenyi test. Comparing the difference between
the average rankings of each algorithm with the critical dis-
tance CDa , if it is greater than the threshold, it means that
the algorithm with a higher average ranking is statistically
better than the algorithm with a lower average ranking.
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Table 15 Friedman ranking of 9 algorithms in CEC2015, CEC2017 and CEC2022

Datasets OPSO QOPSO QROPSO COOPSO COPSO GOPSO EOPSO REOPSO SQOPSO

CEC2015-30D 6.6 4.47 4.87 7 4.8 5.13 5.4 4.93 1.8

CEC2015-50D 5.27 7.2 5 6.6 4.6 6.07 4.73 4.4 1.13

CEC2017-30D 4.24 6.76 5.69 4.9 5.24 5.28 5.62 5.59 1.69

CEC2017-50D 4.69 6.59 5.28 4.79 5.52 6.41 4.17 5.72 1.83

CEC2022-10D 3.58 6 4.92 7 5.92 4.67 5.58 5.67 1.67

CEC2022-20D 5.58 5.58 4.42 5.33 5.17 6.25 5.25 5.75 1.67

Mean 4.9 6.03 5.02 5.86 5.19 5.6 5.1 5.32 1.61

The optimal value under the current index is in bold

Fig. 13 Nemenyi test results of nine OBL algorithms

By comparing the fitness values of the nine algorithms
in Tables 4, 5, 6, 7, 8 and 9 in different dimensions on
the CEC2015, CEC2017, and CEC2022 test sets, the Fried-
man rankings are shown in Table 15. When the importance
is α = 0.1, F(8, 112) = 1.726 is less than 5.6834 and
9.4317; F(8, 224) = 1.698 is less than 10.1612 and 10.4185;
F(8, 88) = 1.741 is less than 5.4429 and 3.4922. It can be
seen that there are significant differences in the performance
of the nine algorithmson all test sets. If the performanceof the
nine algorithms is equivalent, the statistical values in Table
12 will not exceed the critical value under the importance
α = 0.1. To further obtain specific difference information,
the Nemenyi follow-up test is used to distinguish each algo-
rithm, and the correspondingCDdiagram is shown in Fig. 13.
The position of each algorithm on the horizontal axis in the
CD graph represents the average rank. If the critical distance
CD is less than thedifference inmean rank, thatmeans there is
a significant difference in performance between algorithms.

As shown in Fig. 13, on the 30-dimensional CEC2015 test
set, there is no significant difference in performance between
SQOPSO and QOPSO, but they are significantly better than
eight algorithms including COPSO, QROPSO, REOPSO,
and GOPSO. On the 10-dimensional CEC2022 test set, there
is no significant difference between SQOPSO andQROPSO.
On the 20-dimensional CEC2022 test set, the performance

of SQOPSO, OPSO, and GOPSO is similar. On the three
test sets of 50-dimensional CEC2015, 30-dimensional and
50-dimensional CEC2017, there are significant differences
between the SQOPSO algorithm and the other nine algo-
rithms.

Next, the Friedman test was carried out on the fitness val-
ues of the nine new swarm optimization algorithms in Tables
10 and 11 under the CEC2022 test set. Tables 16 and 17
respectively list the average rankings of these nine methods
in different dimensions, and at the same time give the num-
ber of times that different algorithms obtain the top four in
multiple test functions. FF is 9.8604 and 9.3512. After cal-
culation, when the importance is α = 0.1, F(8, 88) = 1.741
is smaller than 9.8604 and 9.3512. This shows that there are
significant differences in the performance of the nine algo-
rithms on the test set. The results of Nemenyi test are shown
in Fig. 14a, b, respectively. It can be seen from Fig. 14 that on
the 10-dimensional CEC2022 test set, NGO, GNDO, TSO,
SQOPSO, DMO, and SCSO have little difference in perfor-
mance, but are significantly better than SSA, GJO, and PSO.
On the 20-dimensional CEC2022 test set, SQOPSO, TSO,
NGO, GNDO and DMO perform similarly, but far outper-
form PSO, SCSO, GJO and SSA.

The above experimental analysis results show that the
SQOPSO algorithm is significantly better than other algo-
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Fig. 14 Nemenyi test results of
9 algorithms

Table 16 Ranking of SQOPSO algorithm and other 8 algorithms on
10-dimensional CEC2022

Algorithms 1st 2nd 3rd 4th Rank

SQOPSO 5 4 0 1 3.42

GNDO 3 0 4 2 3.33

SCSO 0 0 0 1 5.75

GJO 0 0 0 1 7.17

TSO 1 3 5 1 3.33

NGO 2 3 2 3 2.67

DMO 1 2 1 2 5

SSA 0 0 0 0 6.83

PSO 0 0 0 1 7.5

Table 17 Ranking of SQOPSO algorithm and other 8 algorithms on
20-dimensional CEC2022

Algorithms 1st 2nd 3rd 4th Rank

SQOPSO 3 5 0 2 2.92

GNDO 4 0 3 1 3.42

SCSO 0 0 0 0 6.75

GJO 1 0 0 2 6.83

TSO 1 3 4 1 3.08

NGO 3 1 5 1 3.17

DMO 0 3 0 3 5.25

SSA 0 0 0 2 7.42

PSO 0 0 0 0 6.17

rithms in dealing with test sets of different dimensions. In
summary, through theFriedman test and subsequent tests, our
algorithm can achieve better results than other algorithms.

Conclusion and future work

Inspired by the principle of refraction imaging, this paper
constructs a new adversarial learning strategy and embeds it
into an intelligent optimization algorithm to further improve
exploration and development capability. The mathematical
properties of density are used to redefine the value center
point in the OBL strategy and accelerate the convergence
speed at the beginning of particle convergence. When diver-
sity falls below a set threshold, this means that the current
level of particle exploration is inadequate, and reverse strate-
gies have been changed to improve population diversity and
avoid local extremes and premature maturation. Theoreti-
cal analysis and experimental results show that the SQOBL

learning strategy makes full use of search information in
the population iteration process and has strong convergence.
Population diversity is also increasing. Compared with other
opposite learning particle swarm optimization algorithms
and various advanced intelligent optimization algorithms,
this algorithm has high convergence accuracy. As an intel-
ligent technology, the SQOBL learning strategy can be
embedded in an intelligent optimization algorithm, which is
helpful to improve the performance of the algorithm. Statis-
tical test results also prove that the SQOBL learning strategy
has advantages in dealing with high dimensional optimiza-
tion problems.

In the future,wewill further optimize the strategy, focus of
the adaptive operation of parameters, automatically select the
optimal value and improve the performance of the algorithm.
Multi-objective optimization is a very challenging research
direction, and combining SQOBL as an intelligent technol-
ogy with other algorithms in the multi-objective domain has
some research value. Common OBL variants are usually cal-
culated based on the uniform distribution of corresponding
individuals. If you add other probability distributions to your
SQOBL strategy, this is also an improvement worth consid-
ering.
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Appendix

The adjustable parameters in the experiment, as well as the
specific values and descriptions of the parameters are pre-
sented in Table 18 of the Appendix.
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Table 18 Algorithm parameter settings

Parameter category Parameters Parameter description Parameter value

Public parameters N Population size 100

FE_max Maximum number of function evaluations 100000

c1, c2 Cognitive factor 2

D Problem dimension 30, 50 (CEC2015, 2017)

10,20(CEC2022)

OBL variant parameters J R Jump rate 0.05, 0.3

Optimization algorithm parameters ST Early warning value 0.6 [5]

PD Proportion of discoverers 0.7 [5]

SD Awareness of the weight of dangerous sparrows 0.2 [5]

bs Number of babysitters 3 [6]

peep Alpha female vocalization 2 [6]

a The degree of following the optimal value 0.7 [8]

c1, β Constants 1.5 [9]

SM Auditory characteristics of sand cats 2 [10]

SQOBL parameters T Diversity threshold 0.1

θ Angle between chopsticks and water surface 30◦

k Initial stage scaling factor 0.75

n Refractive index 4/3
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