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Abstract
Analyzing highly individual-specific genomic data to understand genetic interactions in cancer development is still challeng-
ing, with significant implications for the discovery of individual biomarkers as well as personalized medicine. With the rapid
development of deep learning, graph neural networks (GNNs) have been employed to analyze a wide range of biomolecular
networks. However, many neural networks are limited to black boxmodels, which are only capable of making predictions, and
they are often challenged to provide reliable biological and clinical insights. In this research, for sample-specific networks, a
novel end-to-end hierarchical graph neural network with interpretable modules is proposed, which learns structural features at
multiple scales and incorporates a soft mask layer in extracting subgraphs that contribute to classification. The perturbations
caused by the input graphs’ deductions are used to evaluate key gene clusters, and the samples are then grouped into classes to
produce both sample- and stage-level explanations. Experiments on four gene expression datasets from The Cancer Genome
Atlas (TCGA) show that the proposed model not only rivals the advanced GNN methods in cancer staging but also identifies
key gene clusters that have a great impact on classification confidence, providing potential targets for personalized medicine.
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Introduction

Cancer is a complex, dynamic, and progressive process
involving a variety of gene-environment interactions, and
it is largely driven by genetic changes. According to recent
statistics, the global burden of cancer incidence andmortality
is rapidly growing; for some highly frequent malignancies,
such as lung cancer, patients’ 5-year survival after diagnosis
is barely 10% to 20% in most countries [1]. Unfortunately, it
is still difficult to comprehend how cancer develops, partic-
ularly in its early stages. The tumor/node/metastasis (TNM)
system, the most common cancer staging system which
classifies and characterizes cancer development into several
stages, has been widely utilized to guide further investigation
and understanding of cancer development at both molecular
and clinical levels [2, 3].

Personalized medicine is a promising and rapidly devel-
oping therapy option, thanks to the novel bioinformatics tools
and a better understanding of tumor biology [4–6]. The pro-
cesses of gene expression and gene regulatory networks, as
complex systems in the real world, can be well described and
modeled using mathematical equations [7]. The practice of
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treating lung cancer, for instance, has changed to a hallmark
of personalized medicine, with subsets of patients treated
according to the genetic alterations of their tumor and the
status of programmed death ligand-1 (PD-L1) instead of the
empirical application of cytotoxic therapy based on a doctor’s
preference [5]. However, due to the vast genetic heterogene-
ity of tumor cells between individuals with the same type
of cancer and even within individual tumors, the discovery
of both more biomarkers for personalized treatment of indi-
vidual tumors and commonalities among tumors of the same
type and stage has become more critical and necessary [6].

A single-sample network or sample-specific network
(SSN) is a biomolecular network constructed from single-
sample data and a reference dataset, and it is used to
characterize an individual’s specific disease state [8–10].
In contrast to analyzing individual molecular markers (e.g.,
genes, metabolites, or proteins), biomolecular networks can
capture andmodel complex biological processes andmolecu-
lar interactions. In addition, unlike other biological networks
that focus on large cohorts, such as gene regulatory networks
or co-expression networks, SSNs focus on the information at
the individual level and generate feedback on the subject-
specific response to pathophysiological stimuli caused by
the dysfunction of individual-specific systems [9]. A par-
tial correlation-based single-sample network (P-SSN) is a
single-sample network that uses partial correlation coeffi-
cients (PTCCs) rather than Pearson’s correlation coefficients
(PCCs) [11]. The P-SSN approach distinguishes itself by
excluding indirect/cascading gene interactions from net-
work construction, hence highlighting direct interactions.
Although P-SSN has shown feasibility and practicality in
some downstream tasks such as predicting potential driver
mutation genes, tumor/normal sample classification, and
tumor sample clustering, further extensive applications and
analysis of P-SSN still need to be undertaken.

With the development of deep learning methods, deep
neural networks have been widely employed in bioinfor-
matics with remarkable success. In particular, graph neural
networks (GNNs) have become a promising tool for analyz-
ing biomolecular networks [12, 13]. A graph convolutional
network (GCN) is a generalization of convolutional opera-
tions from grid data to graph data, and its basic principle is
to update node representations by aggregating features from
nodes and their neighbors. Because these GCNs are inher-
ently flat, they perform well in node classification and link
prediction but fail to handle graph classification directly. As
a result, either a global operation for obtaining graph-level
representations (readout) or a network structure capable of
aggregating information hierarchically is required, the lat-
ter being commonly referred to as graph pooling operators.
Lastly, a Multilayer Perceptron (MLP) is frequently used to
accept graph representations as input and produce classifica-
tion results. However, interpretability is a common challenge

in current deep learning algorithms in biology and medicine.
Furthermore, when modeling another complicated system
of gene regulatory networks, neural networks, as complex
systems, are unavoidably challenged by disturbances, mod-
eling errors, and various uncertainties in the real systems [7,
14–16]. These systems frequently work as "black boxes",
preventing practitioners from understanding useful patterns
and motifs in data detected by models that reach break-
through performance [12].

It is still challenging to apply graph neural networks to
stage cancer patients and identify the genes that are signif-
icant in the classification. First, because there is no natural
graph structure in the tabular gene expression data of can-
cer patients, it is necessary to manually extract the links
between the genes. Second, the existing differentiable graph
pooling operators consume a significant amount of comput-
ing resources, limiting their performance on large and dense
networks. Existing graph classification networks are also
unsuitable for graph classification and community detection
simultaneously. Finally, despite tremendous research into
key genes in cancer, it is still not ready to conclude that there
is credible supervised information in this problem, which
greatly hampers training and interpreting models.

Considering the above, in this research, we proposed a
complete workflow and a novel end-to-end graph neural net-
work architecture for classifying early- and late-stage cancers
and discovering contributing gene clusters. To address the
key challenges discussed above, we introduce novel net-
work construction approaches and improve existing graph
neural architectures and graph pooling operators to perform
classification and community detection. Figure 1 depicts the
overall process. We used the P-SSN method to convert the
patients’ gene expression data into graphs as input to the
graph neural network for retaining the individual specificity
of the data and results. A graph classification network with
hierarchical pooling serves as the backbone of the proposed
graph neural network, with an additional differentiable soft
mask layer for learning the contributing subgraph struc-
tures. Based on the perturbation, we anticipate a reliable
interpretation, i.e., the process of re-passing the classifica-
tion after removing the significant subgraphs to confirm the
impact of the learned structure on the prediction. Then, we
investigated the potential biological functions and connec-
tions of these structures and observed clues with practical
applications. Through the interpretability of cancer staging
classification models, we provide a feasible supervised solu-
tion to the unsupervised problem of discovering key gene
clusters. We conducted systematic experiments on several
real-world datasets and compared our proposed model with
several state-of-the-art graph neural networks, and the results
show that our model outperforms state-of-the-art approaches
on real-world datasets selected.

In summary, our novel contributions are as follows:
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Fig. 1 The workflow of our approach

First, we propose a novel hierarchical graph neural net-
work (HGNN) architecture for cancer staging and the discov-
ery of significant gene clusters with improved graph pooling
operators and a soft mask layer. The proposed pooling opera-
tor could generate clusters with partially overlapping nodes,
thereby avoiding the issue of dense graphs with complete
overlap that plagues the standard differentiable graph pool-
ing operator.

Second, we developed a subgraph perturbation strategy
and conducted experiments to reconstruct the graphs and
annotate the biological functions of genes, and revealed that
removing significant subgraphs discovered by the network
decreases the confidence of classifier in correct classifica-
tion, demonstrating the feasibility of the key node discovery
strategy.

The rest of the paper is organized as follows: the next
section briefly describes relatedwork; the subsequent section
presents the process of data collection and pre-processing
followed by which the proposed method is formalized;the
penultimate section reports and discusses the experimental
results; the final section presents our conclusions.

Related work

Graph neural network

As a complex data structure, a graph is made up of nodes
and edges (or links) that can be utilized to describe complex
systems, such as social networks, protein–protein interac-
tion networks, gene networks, and so on. Graph neural

networks have grown into a popular and powerful frame-
work for dealing with graphs. As a typical spatial graph
convolution operator, Hamilton et al. present GraphSAGE
(SAmple and aggreGatE), a generic framework for obtain-
ing node embeddings that trains a set of aggregator functions
that learn to aggregate feature information from a node’s
local neighborhood [17]. The aggregation functions that are
offered include Mean aggregator, LSTM (Long Short-Term
Memory) aggregator, and Pooling aggregator. Graph Atten-
tionNetworks (GATs) introduce an attentionmechanism that
leverages self-attentive layers to implicitly assign different
weights to different nodes in the neighborhood during aggre-
gation [18]. Although these graph convolution approaches
have shown good results for node-level tasks, the majority
of them cannot be straightforwardly applied to graph-level
tasks.

For graph-level tasks such as graph classification, pooling
operators are important and useful modules. Global graph
pooling (also known as readout) and hierarchical graph pool-
ing are the two graph pooling operators: the former tries to
obtain a universal representation of the input graph, while
the latter aims to capture enough structural information for
node representation [19]. The recent hierarchical graph pool-
ing approaches either coarsen the graph by clustering the
nodes [20–23] or sample the nodes after evaluation to reduce
the number of nodes [24–27]. Early clustering-based graph
pooling often invoked existing graph clustering algorithms
like spectral clustering. For example, EigenPooling adopts
spectral clustering to obtain the subgraphs with no over-
lapping nodes to complete the coarsening process, where a
subgraph is treated as a supernode and the original graph sig-
nal information is translated into the graph signal defined on
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the coarsened graph [20]. DiffPool is a differentiable graph
pooling operator that can generate hierarchical graph rep-
resentations by GNNs, learning a soft cluster assignment
matrix between nodes and supernodes. GSAPool is a typ-
ical top-k pooling operator that evaluates the importance of
nodes in multiple ways based on their local structure and
feature information and employs the feature fusion method,
overcoming the limitation of selecting nodes from a single
perspective while improving the pooled graph’s feature rep-
resentation ability [28].

Interpretability in the GNN can be defined as the pre-
diction to the input graph and then sampling a significant
subgraph as the explanation of the model prediction [29].
Aiming to answer the question “How does a GNN make a
certain decision? Which nodes or features are essential? ”,
researchers have attempted to explain GNNs via gradient-
like importance scores obtained by backpropagating the
model outcome to the graph structure, masks or attention
scores derived from the masking functions or attention lay-
ers, or prediction changes after perturbation of input graphs
[30–32]. Wang et al. put forward the concept of multi-
grained explainability and proposed ReFine, an explainer
with pre-training and fine-tuning techniques for global and
local explainability [29].Yanget al.designed soft-maskGNN
layers that identify and remove irrelevant (or noisy) parts of
the input graph that are unrelated to the task goal, resulting
in subgraphs of arbitrary size and structure and hierarchical
graph representations, and the masks can also visualize the
structure learned by the model [33].

Detection of cancer driver genes

It has been demonstrated that gene mutations are related to
cancer, and cancer is assumed to be caused by an accumu-
lation of genetic mutations. However, only a few genes are
identified as cancer driver genes (CDGs), and mutations in
these genes contribute to cancer development and progress.
Therefore, understanding the molecular mechanism of can-
cer and designing targetedmedicines and diagnostics depend
greatly on discovering CDGs. Numerous computational
methods, primarily of two types: those based on mutation
frequency and those based on networks, have been devel-
oped in recent years to unravel CDGs [34, 35]. Somatic
mutation is so productive and easy to get that it is practi-
cally an essential type of data for identifying driver genes
[36–47]. Frequency/recurrence, clustering, functional impact
(FI), etc., are all often used features for methods that only
utilize mutation data [35, 36, 38, 40, 44, 46]. The mutation
frequency-basedmethods primarily employ statistical signif-
icance of higher than the backgroundmutation rate (BMR) to
find significantly mutated genes or use ratio metric to detect
cancer-driver genes based on the composition of mutation

types normalized by the total number of mutations in a gene
[44, 46].

Many novel network-based methods for discovering
CDGs have been successfully implemented by merging gene
network data with various omics data, such as mutations,
gene expression, pathways, gene function information, DNA
methylation, and so on [36, 47–50]. Most network-based
methods include the following stages: (1) building or opti-
mizing gene expression networks, (2) discovering critical
nodes/node communities in the constructed networks, and (3)
scoring or ranking to identify driver genes [49–52]. NIBNA
(node importance-based biological network analysis) con-
structs a gene network by augmenting gene expression
data with knowledge from existing databases, detects com-
munities from the input gene network using the Louvain
community detection algorithm, and uses the community
structure to compute the importance of nodes in the network
[50]. Pham et al. used the network control method to identify
cancer drivers as influential nodes in a network that are criti-
cal to the control of the system’sworking, such that removing
such a node will require more nodes to control the network
[52]. Wei et al. proposed a novel method based on random
walk methods to calculate scores for candidate genes and to
filter candidate driver genes using mutation data as posterior
information [49].

Cancer driver module identification and personalized can-
cer driver identification have emerged as two further trends
in cancer driver identification methods, owing to the hetero-
geneity of cancer and the complex regulatory interactions
between genes [34, 40–43, 45, 51, 52]. Pham et al. define
a ’driver gene group’ as a group of genes that cooper-
ate to regulate cancer or cancer markers [51]. Zhang et al.
develop two mathematical programming models (ComMDP
and SpeMDP) to newly identify cancer common and specific
driver gene sets from mutation data without relying on prior
knowledge [40]. Using individual-based omics data, a novel
network integration approach called Bayesian network inte-
gration (BNI) is proposed to prioritize personalized driver
genes and the corresponding controlled downstream mod-
ules [43]. With the advancement of machine learning, more
powerful computational techniques for discovering driver
genes have been available, and promising progress has been
made [37–39, 42–44]. Deep neural networks, particularly
graph neural networks applied to network data, have yet to
find broad applications. Several studies have been conducted
to investigate the feasibility of using graph convolutional
networks for node classification in the detection of CDGs
[47, 48]. However, there is currently a lack of comprehen-
sive integration of graph neural networks with the general
processes of network-based methods for discovering cancer
driver genes, such as identifying node communities, evalu-
ating nodes as well as ranking the importance of nodes.
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Table 1 A summary of four TCGA cohorts

Cohort Normal Early-stage Late-stage

BRCA 99 823 278

STAD 31 164 188

LUAD 57 422 110

COAD 40 267 154

Data preparation

Data collection

In this study, we used cancer cohorts from The Cancer
Genome Atlas (TCGA) project to calculate P-SSN for early-
stage and late-stage cancer classification. The cohorts we
used include Breast Invasive Carcinoma (BRCA), Stomach
Adenocarcinoma (STAD), Lung Adenocarcinoma (LUAD),
and Colon Adenocarcinoma (COAD). We downloaded the
RNA-seq files and the clinical data for each cohort, where
RNA-seq are gene expression data and clinical data provide
possible patient cancer staging information. These data are
available at https://portal.gdc.cancer.gov.

In total, we obtained 2,633RNA sequencing files and clin-
ical information for 2,587 patients, and this information is
summarized in Table 1. Tumors with Stage I or II annota-
tionswere regarded as early-stage cancers (positive samples),
whereas those with Stage III or IV annotations were con-
sidered late-stage cancers (negative samples). Even though
their gene expression profiles were accessible, the patients
annotated with Stage X (i.e., 13 patients in BRCA) were not
included in our analyses. Furthermore, not all patients have
both clinical and gene expression data, thus these instances
were also excluded.

Partial correlation-based single-sample networks

The P-SSN algorithm generates graphs from all labeled gene
expression data. To construct the reference networks, all nor-
mal samples in each cohort are used as reference datasets
[11]. The P-SSN calculating procedure is divided into the
following steps: (1) building a background network by cal-
culating the PCCs between any two genes based on gene
expression in reference samples and keeping significantly
correlated (PCC > 0.7) gene pairs as edges, (2) building a ref-
erence network by keeping significant edges and excluding
non-significant edges from the background network based on
the PTCCs of reference samples, (3) combining a new sam-
ple with the reference samples, recalculating the PTCCs, and
building the perturbed network, (4) calculating the sample-
specific PTCCs (sPTCCs) and constructing final P-SSN for

a single sample by keeping significant edges and eliminat-
ing nonsignificant edges of the sample from the background
network based on sPTCCs. By analyzing tumor data from
TCGA and single cell data, the effectiveness of P-SSN in
predicting DMGs, identifying subtypes, and further classify-
ing single cells was validated [11]. P-SSN, in particular, has
great potential in predicting DMGs and biological network
biomarkers from single sample data [11, 53].

Furthermore, to keep the P-SSN graphs from becom-
ing too huge and redundant, we used Cancer Gene Census
(CGC, http://cancer.sanger.ac.uk/cosmic/census) to filter out
some of the genes before calculating the P-SSNs. The CGC
comprises evidence-based, manually-curated summaries of
719 genes and describes genes characterized by somatic or
germlinemutations in their coding regions inmost cases [54].
After significance tests during the construction of P-SSNs,
the remaining 710 genes comprised the list of candidate
nodes for the P-SSNs. A patient’s P-SSN is originally an
undirected graph with no weights or node features, and we
add the gene expression of this patient to each node as a
feature. To ensure that the expressions of different genes are
comparable, we normalized the expressions of each gene to
ensure that their values are in the range of [0,1]. Table 2
summarizes the P-SSNs of the four TCGA cohorts.

Methodology

Hierarchical graph neural network

Preliminaries

Problem statement Let G(V , E , X) be a graph with N �
|V | nodes and |E | edges, where V is the set of nodes, E
is the set of edges. Each node v ∈ V has a d dimensional
feature represented by x ∈ X . The node feature matrix of
G is denoted by X ∈ RN×d , and its adjacency matrix is
denoted by A ∈ RN×N . Given a dataset (G1, y1), (G2, y2),
· · · , (GT , yT ) of size T , where yi is the label of Sample i , the
task of graph classification is to learn a mapping F from the
graph setG to the label setY .When there are several layers in
theGNN, the graph can be represented asG

(
V l , El , Hl

)
and

Al of layer l, where H is the matrix of node representation,
assuming that H0 � X and the maximum number of layers
is L .

Graph convolution networks We use GraphSAGE [17] to
update the representation of the nodes, learn the cluster
assignment matrix, and the soft masks. GraphSAGE can be
described as follows:

hlv � σ
(
Wl · CONCAT

(
h(l−1)

v , hN (v)l
))

, (1)
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Table 2 A Summary of P-SSNs
of Four TCGA cohorts BRCA STAD LUAD COAD

# Graphs 1101 352 532 421

# Nodes 517,339 208,678 218,773 210,044

# Edges 13,621,278 5,340,408 3,250,282 2,647,694

Avg. # of nodes per graph 469.88 592.84 411.23 498.92

Avg. # of edges per graph 12,371.73 15,171.61 6109.55 6289.06

hlN (v)
� f lAGG

({
hl−1
u , ∀u ∈ N (v)

})
, (2)

where σ(·) is a non-linearity function,W is theweight vector,
f AGG(·) is an aggregation function andN (v) is the node v’s
neighbors. As the most commonly used aggregation function
and the default option of Python libraries forGCNs, theMean
aggregation function is used for GraphSAGE in our model
[21].

Hierarchical pooling A GNN learns the mapping between
nodes at the current level and nodes at the next level in the
structure of a standard differentiable graph pooling module.
This node-to-node assignment correlation can be thought of
as soft cluster assignment matrix learning for all nodes [21,
23]. Similarly, the embedding representation of the mapped
clusters also relies on the input nodes and the cluster assign-
ment matrix. When the connection relationships between
clusters are obtained, the coarsened graph of the next layer
is formed. This process can be described by (3–5), in which
S is the soft cluster assignment matrix for nodes:

Sl � so f tmax
(
GraphSAGEl, pool

×
(
Al , Hl

))
, Sl ∈ RNl×Nl+1, (3)

Al+1 � (
Sl

)T
Al Sl , Al+1 ∈ RNl+1×Nl+1 , (4)

Hl+1 �
(
Sl

)T
GraphSAGEl, emd

×
(
Al , Hl

)
, Hl+1 ∈ RNl+1×dl+1. (5)

Network architecture

The architecture of the HGNN for classification and sig-
nificant subgraph detection is shown in Fig. 1. The P-SSN
approach converts gene expression data into graphs, which
are then utilized as input to the hierarchical pooling and graph
classification pipeline. We use a soft mask layer after the
first pooling module to evaluate a factor for each supernode,
which is used to deflate the node representation. There are
L−1stacked graph poolingmodules in the hierarchical pool-
ing phase, where the original input and soft mask-trimmed

data form two channels that flow in parallel. Due to the prob-
lem of over-smoothing in GCNs, the depth of the network
L , i.e., the total number of convolution-pooling modules
combined, is set to 3; the last convolutional layer is not fol-
lowed by the pooling operator and is therefore regarded the
L + 1layer. In addition to concatenating the outputs of each
layer at the end and processing them using the last MLP as in
other graph pooling frameworks, each convolution-pooling
module in our model is followed by a readout module and
an additional supervised learner. Finally, the results of the
original input and the learned masks are used for subsequent
perturbation and verification.

One obvious disadvantage of standard differentiable graph
pooling operators is that differentiable pooling produces
dense graphs, which increases computational complexity.
It is difficult to compute and store these data in a scalable
manner for large graphs. In this case, the supernodes are not
regular communities of nodes; the nodes covered by the com-
munities are identical, and only the assignment coefficients
differ. As a result, the model is unable to identify genes that
are more closely related to one another and thus classify such
genes into different gene clusters; it is also unable to com-
pletely separate a gene cluster to be evaluated from other
gene clusters and thus, it cannot evaluate the impact of a
gene cluster on classification independently. In addition, sev-
eral auxiliary objectives, such as link prediction and cluster
assignment entropy regularization, are required for training,
which are frequently unrelated to the original objectives as
well as time-consuming.

To address these issues, we propose a novel differentiable
pooling module to sparsity the learned cluster assignment
matrix and reduce the size of graphs and subgraphs. After
computing the cluster assignment matrix via GNN, we add
a truncation function to the differentiable pooling operator.
This function restricts each gene cluster to a set number of
genes, avoiding redundant gene interrelationships with other
gene clusters. Additional supervised classifiers and elabo-
rate loss functions are used to facilitate training. In addition,
we propose an attention-based readout module to obtain the
graph representation. Figure 2 depicts the architecture of
our proposed graph pooling. Two separate graph convolu-
tions are conducted between input and pooling for learning
the representation and the cluster assignment matrix, respec-
tively. The truncation function in pooling removes any excess
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Fig. 2 The architecture of hierarchical pooling

cluster assignments from each node or cluster. To obtain a
representation of the graph, the readout module weights and
sums the representations of all nodes based on the learned
attention scores.

Truncation To reduce the density of the graphs after repeated
pooling, we truncate the matrix Sbefore the SoftMax func-
tion, only preserving the largest K assignment coefficients
for each node or each cluster and the other values will be
truncated to zeros, resulting in a sparse graph structure. In
general, a dense cluster assignment matrix will result in
coefficients between any node and any cluster, leading to
a complete bipartite graph of the set of nodes and the set
of clusters. Horizontal truncation allows each node to par-
ticipate in the representation of up to K clusters, whereas
vertical truncation reserves up to Knodes for each cluster.
The information of each node can be assured to converge
to some supernodes in the following layer in the horizon-
tal truncation, which generally maintains the highly relevant
assignment connections and more information and is more
appropriate for classification tasks. Although it is guaran-
teed that different clusters no longer cover exactly the same
nodes, the number of nodes contained in different clusters
in the horizontally truncated assignment matrix also varies
greatly. Vertical truncation, on the other hand, may manage
the size of supernodes so that each supernode has a compara-
ble amount of information and partially overlapping nodes,
allowing for more reliable evaluation and making it more
ideal for the task of detection key node clusters. To summa-
rize, truncation is a regular sparsification that reserves a fixed
number of cluster assignments to ensure that the graph after
pooling is not so dense that it cannot be saved or computed
for large graphs, while forming several clusters with partial
rather than complete overlap.

Additional supervised learners To improve model training
and convergence, we add MLPs as extra supervised learners
after each readout operation [24]. These MLPs use a three-
layer structure that generates classification losses that add
up to the overall loss, and their predictions vote to produce
the final predictions during testing. Furthermore, with the
addition of the mask layer, the loss caused by the masked
data input to these classifiers is incorporated into the total

loss in (6) and used to guide the learning of a mask that
retains more information.

loss � CE
(
yi , p

L+1
i

)
+

L∑

l�1

(
CE

(
yi , p

l
i

)

+ CE
(
yi , p

l
i ,mask

))
, (6)

where CE(·) is the cross entropy loss function, pliand
pli ,mask is the prediction value of sample i for original input

and masked input of layer l, and pL+1i is the prediction value
of last MLP.

Attention-based readout The readout is a global pooling
operation, and the three most commonly used aggregators
are Max, Mean, and Sum, which are theoretically ranked in
ascending order by expressive power over a multiset [55].
However, when concatenating multiple depths of readout
results, which are affected by the number of nodes, the
Sum aggregator is more likely to result in higher magni-
tude disparities, therefore Max and Mean concatenating is
an acceptable and practical alternative. We designed a read-
out module based on an attention mechanism that computes
scores for each node in the graph using a GNN and then sums
all nodes weighted by the scores to generate a graph-level
representation. When calculating several importance scores
for a node, the weight is set as the average of the scores, as
shown in (7):

scorelv � 1

R

R∑

r�1

GraphSAGEl, att

(
hlv

)
, (7)

where R denotes the dimension of the attention-based score
vector, a hyperparameter also called the number of attention
heads. This attention mechanism can be regarded as global
attention [56, 57]. We also design a variant structure based
on the local attention: a virtual node, denoted as g, is added
to represent the entire graph G, its representation is the con-
catenating of Max and Mean readout, and the virtual node is
directly connected to every node. The attention coefficients
between any one node and the virtual node are then calcu-
lated by concatenating the node representation and the virtual
node representation, as shown in (8) and (9):
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scorelv � 1

R

R∑

r�1

GraphSAGEl, att

(
hlv , h

l
g

)
, (8)

hlg � CONCAT
(
max

(
Hl

)
, mean

(
Hl

))
. (9)

Mask layer A GNN and an MLP learn a soft mask for each
node in themask layer.A sigmoid function guarantees a value
between 0 and 1 for soft masks [33]. We also add a max–min
normalization operation after the sigmoid to rearrange the
distribution of all masks on [0,1] to differentiate the masks
of different nodes. Soft-mask strategies offer a differentiable
and interpretable solution to the problem of task-relevant
structural information becoming mixed up with irrelevant
and noisy parts and becoming indistinguishable for down-
stream processing. The soft mask strategy, according to the
theoretical analysis, could extract any desired substructures
or hierarchical structures by learning the graph representa-
tion from a sequence of individual subgraphs of the original
graph [33]. Themask layer can be used after any combination
of embedding and pooling, or it can be applied directly to the
input graph. In practice, the mask layer is added after the first
pooling layer after the input graph. In this way, the supern-
odes filtered by soft masks are composed of gene nodes in
the input graph rather than supernodes at other levels and
can be interpreted as natural gene communities. The soft
mask and the node representation are multiplied to deflate
the node representation, and the deflated data are referred to
as the masked data. The masked graph is treated as another
channel of model input and participates in the subsequent
computation alongside the original graph. In the case where
the masked data produce a different classification than the
original data, we add an L1 penalty term to the loss as (10).
An important function of soft masks is to identify significant
subgraphs and mask unimportant nodes, even those that are
against correct classification [58].

lossmask � loss +
L∑

l�1

∣∣∣pli , p
l
i ,mask

∣∣∣, (10)

where |·| is the L1 distance.

Subgraph perturbation

The discovery of key gene clusters in cancer staging can be
viewed as the interpretability of GNNs in this work, with the
goal of finding and confirming which genes play important
roles in classifying early- and late-stage cancers. Because it
is hard to exhaust and evaluate all subgraphs, we conduct
the model explanation and significant subgraph extraction
as the following steps in our work: 1) create a graph neural
network with a mask layer and hierarchical pooling layers
which are described in the previous subsection and train the
network end-to-end to extract the significance subgraphs for

each instance; 2) reconstruct the datasets, deduct the sub-
graphs to generate perturbations, and assess the significance
of the subgraphs by the impact of perturbations on the clas-
sification; 3) group the instances into classes and observe
how the significance subgraphs are enriched and explore the
patterns or motifs that may be embedded in the subgraphs
using powerful bioinformatic tools. In this procedure,HGNN
predicts the classification of the input graph, the genes are
organized into subgraphs by the first poolingmodule, and the
soft mask layer measures the extent to which different sub-
graphs contribute to the subsequent computational process.
Finally, perturbation demonstrates that removing screened
subgraphs reduces confidence of the in properly classifying
samples, implying that the screened subgraphs, i.e. key gene
clusters, are more essential in determining cancer stage clas-
sification.

Perturbation

We sort the gene clusters based on the value of the mask
and choose a selection of the top-ranking gene clusters as
key gene clusters. We subtract the key gene clusters of each
P-SSN from the input graphs, reassemble the dataset, and
test the classification using the same trained model. This
process is similar to the experiments for quantitative eval-
uation of graph neural network interpretation methods [29,
31, 32, 59]. In these quantitative evaluations, one of the most
common evaluation metrics is fidelity, which is computed to
reflect the assumption that the exclusion of salient features
identified through explanations should decrease classifica-
tion accuracy [29, 31, 59]. More precisely, fidelity is defined
as the difference in accuracy obtained by masking the sig-
nificant nodes identified by the model. However, fidelity is
a measure of the impact of interpretation on classification in
terms of a category or global perspective and cannot be used
to quantify the impact of a significant subgraph in a single
sample on that sample’s classification. Two critical metrics
in classification for a single sample are the two dimensions of
the vector of the neural network’s last MLP output, and they
serve as the foundation for the model to evaluate whether
this sample is positive or negative. We refer to the two num-
bers as positive and negative classification values since they
do not exactly fit the definition of probability. Inspired by
the fidelity, we quantify the effect of removing significant
subgraphs on the classification of individual samples by cal-
culating the change in classification values. In contrast to
accuracy, the classification values of different samples are not
comparable and might vary greatly in value. To make the dif-
ferences in classification values comparable across samples,
we define this metric as the ratio of the difference in clas-
sification values to its original value. To quantify the effect
of perturbations on classification, we define the percentage
change in positive and negative classification values, i.e. the
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ratio of the difference between the classification values of
perturbed data and the classification values of original data
to the absolute value of the original classification values. For
two samples with positive classification values of 0.2 and
0.02, we can determine that if the positive classification val-
ues of both samples are reduced by 0.1 and 0.01 respectively,
the percentage changes of both samples are at a comparable
scale, around 50%, despite the tenfold difference in numer-
ical values. The output of the MLP in the last layer for the
original data is denoted as (clsvL+1

pos , clsv
L+1
neg ), the output for

perturbed data is denoted as
(
clsvL+1

per , pos , clsv
L+1
per , neg

)
, and

the percentage change (PC) in positive classification value
is defined as (11)

PC pos � clsvL+1per , pos−clsvL+1pos∣∣
∣clsvL+1pos

∣∣
∣

, (11)

where |·| signifies the absolute value function and the per-
centage change in negative classification value (PCneg) has
the same definition. After deleting the significant subgraphs
from positive samples, the model’s confidence in classifying
the sample as positive should diminish and the negative clas-
sification value may rise; the converse is true for negative
samples.

Enrichment

To balance the generality of interpretability across individ-
ual samples and class collection [60], we group samples
into classes to obtain sets of genes that have some com-
monality in each class of data. We outline a certain range
of significant subgraphs for each sample, then calculate
the frequency of genes in all/positive/negative samples
respectively, and choose genes according to frequency. The
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID, https://david.ncifcrf.gov/) [61, 62], is then
employed to annotate for Gene Ontology (GO) and examine
these genes for biological process (BP), molecular func-
tion (MF), cellular component (CC) enrichment, and KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway
enrichment.

Results and discussion

The classification accuracy in cancer staging

We outline the baselines, several variants of our model,
and the experiment settings in this section. Classifica-
tion model performance is evaluated using accuracy and
training time. The best results are reported in Table
3, where each result is the best outcome following several
parameter tunings.

Table 3 Best accuracy for all datasets

Model BRCA STAD LUAD COAD

GraphConv 0.8420 0.7198 0.6390 0.8873

GIN 0.8665 0.8008 0.6461 0.9022

SAGpool 0.8329 0.6047 0.6461 0.8549

ASAP 0.8202 0.5801 0.6318 0.8289

DGCNN 0.8111 0.5344 0.6342 0.8363

Graph U Net 0.8511 0.5680 0.6248 0.8739

GMN 0.8647 0.5428 0.6393 0.8834

Diffpool 0.8856 0.7937 0.6604 0.9267

Ours (global_att) 0.9028 0.8402 0.6891 0.9436

Ours (local_att) 0.9010 0.8575 0.6822 0.9379

Ours (soft mask) 0.8955 0.7551 0.6508 0.9080

The best results on each dataset are indicated in bold

Baselines

We selected a list of recent GNNs and graph poolingmethods
as baselines, including: GraphConv [63], GIN [55], DGCNN
[25], Graph U-Net [26], SAGpool [27], ASAP [22], GMN
[64], and Diffpool [21]. GraphConv and GIN are mix of
GCNs and readout modules, while the others are GNNs with
pooling modules. These models were trained according to
the architecture and settings suggested in the literature, using
code provided by the authors or PyTorch Geometric [65].

Variants

By default, the classification model without a mask layer
employs horizontal truncation and global attention read-
out layers (global_att), while a variant for classification
employs horizontal truncation and local attention readout
layers (local_att). A network with a mask layer and verti-
cal truncation in each pooling layer (soft mask) is the option
for the discovery of key gene clusters.

Experimental settings

The tenfold cross-validation was used for all datasets. The
maximum number of epochs of training is 1000, and we use
an early stop technique (threshold set to 100). One-ninth of
the data from the training set is taken as the validation set for
the early stop. Using the Adam optimization approach, the
starting learning rate is 0.001. The batch size for training is
tuned in {8, 16, 32, 64}, and the size of GCN layers is also
searched in {8, 16, 32, 64}. The most essential parameter in
all pooling operators is the pooling ratio, which affects how
many supernodes are generated or how many nodes are kept
after pooling. On the one hand, a lower pooling ratio might
accelerate computation and fast reduce graph size, but it may
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eliminate a huge amount of information, reducing classifica-
tion performance. A higher pooling ratio, on the other hand,
may produce networks with complicated structures and pre-
serve more node information, but the cost of computation
and storage is higher. The pooling ratio is set to 0.4 for all
models for a trade-off between performance and computa-
tional requirement [22, 28]. All models were trained using
one NVIDIA GeForce RTX 3060 GPU.

Table 3 shows the experimental results. DiffPool outper-
forms all baselines, with GIN coming in a close second.
The former is a standard hierarchical pooling method for
learnable clustering strategies, whereas the latter is simply
a GCN-readout combination. On these four TCGA cohorts,
the average accuracy of the baselines was 0.8468 for BRCA,
0.6430 for STAD, 0.6402 for LUAD, and 0.8742 for COAD.
On the BRCA and STAD datasets, the DGCNN performs
the worst, and it also does poorly on other datasets. In part,
this is because its strategy, which only selects a small num-
ber of nodes and does not preserve the features of eliminated
nodes, does not learn the classification patternswell. Another
notable fact is that, while pooling is critical for the graph clas-
sification task and the pooling method DiffPool gets the best
results in the baselines, not all pooling methods always beat
the GCN-readout combination approaches in classification.
In other words, the introduction of graph pooling does not
always directly improve classification [66]. Graph pooling,
on the other hand, remains to have considerable advantages
and attractiveness inmulti-task algorithms such as node com-
munity partitioning and representation learning.

In addition, we have collected some relevant results
reported in the literature. ECMarker, a machine learning
approach, achieves a classification accuracy of 0.48 for
a classification task involving four phenotypes, including
early-/late- stage in LUAD and LUSC (Lung Squamous Cell
Carcinoma), compared to a baseline of 0.27 [67]. Roy et
al. focused on Invasive Ductal Carcinoma (IDC), a spe-
cific subtype of breast cancer, and experimented with 610
patients from the BRCA cohort, screening candidate genes
and utilizing various machine learning models for early/late
stage prediction, achieving the highest accuracy of 92%
[68]. Similarly, Ma et al. considered four TCGA cohorts
for early/late stage cancer classification, evaluating several
machine learning approaches such as extreme gradient boost-
ing (XGBoost), support vector machine (SVM), random
forest (RF), and others [69]. XGBoost obtained the highest
classification accuracies of 0.752 for KIRC (Kidney Renal
Clear Cell Carcinoma), 0.875 for KIRP (Kidney Renal Pap-
illary Cell Carcinoma), 0.602 for HNSC (Head and Neck
Squamous Cell Carcinoma), and 0.478 for LUSC. Among
these studies, traditional machine learning methods are the
most prevalent, whereas deep learning, particularly graph
neural networks, is infrequently exploited. And, as a result
of a lack of data volume, the curse of dimensionality, and

Diffpool

Ours (global_att)

Ours (local_att)

Ours (soft mask)

0 200 400 600 800 1000 1200 1400 1600

BRCA STAD LUAD COAD Training time (s)

Fig. 3 Average training time for models with differentiable pooling
operators

data imbalance, these approaches do not always yield partic-
ularly satisfying results and typically consist of a two-stage
analysis process: screening for genes and classification for
stages.

Experimental results show that our classification model
rivals advanced models in classification abilities and out-
performs them on several datasets, reaching over 90% in
BRCA and 94% in COAD. The variation used to extract sub-
graphs has somewhat worse classification performance than
the model used just for classification, but it still surpasses
the majority of baseline models. This fluctuation in the clas-
sification accuracy exemplifies soft masks’ ability to keep
the great majority of information and so have some but not
excessive impact on representation aggregation. In addition
to better classification performance, HGNNhas a lower com-
putational cost when compared to the standard differentiable
pooling operator. The average training time for models with
differentiable pooling operators on the four datasets is shown
in Fig. 3.When compared to the standard differentiable pool-
ing operator with an average total training time of 1420.71 s,
both the HGNN for classification and the HGNN with mask
have shorter training time, demonstrating the feasibility of
our method in terms of computational resources.

Most models perform poorly on STAD, whereas our
model and Diffpool perform better. This may be attributed
to the fact that the STAD dataset has fewer samples with
more nodes and edges, and the hierarchical pooling structure
can learn different levels of structure well without missing
important information. A similar issue exists with the COAD
dataset, and the imbalance in the COAD data is more severe
than in STAD, resulting in poorer model performance on this
dataset. Another important factor influencing classification
effectiveness is tumor heterogeneity: not only across indi-
viduals but also within each tumor, as evidenced by the fact
that cancers can be split into different subtypes based on the
mechanism at the pathophysiology and molecular level [70].
The model of Roy et al. performed better in part because it
focused on only one subtype and used the SyntheticMinority
Oversampling Technique (SMOTE) approach to handle data
imbalance and lessen the detrimental effects of heterogeneity
and data imbalance [68].
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Parameter analysis

We performed a grid search for two hyper-parameters, batch
size and GCN layer size, and employed the average accu-
racy among all four datasets as an evaluation metric. The
results suggested that 32 is the best option for both batch
size and GCN layer size. Fixing other parameters, we tested
the sensitivity for two crucial hyperparameters, the pooling
ratio and the number of genes retained in the truncation
function, K . The model’s training time is used to measure
the model’s computational efficiency and the computational
resources consumed. The pooling ratio is tuned in {0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8}, and Fig. 4 depicts the training time
and accuracy of the classificationmodelwith varying pooling
ratios. It can be shown that when the pooling ratio increases,
the training time increases significantly across all datasets,
and the classification accuracy increases and subsequently
decreases, with a maximum at pooling ratios of 0.4 and 0.5.
Given that the training time is also locally minimum with a
pooling ratio of 0.4 or 0.5, these two values are optimal for the
pooling ratio and consistent with prior literature reports. The
parameterK in the truncation function is tuned in {2,3,4,5,6},
and Fig. 5 depicts the classification model and variant with a
mask layer’s training time and accuracy. Because of its more

complex model architecture and more parameters, HGNN
with a soft mask layer obviously takes longer. In addition,
theHGNNwithmask layer achieves the highest classification
accuracy at K � 5 and will thus be employed for subsequent
analysis.

Discovery of key gene clusters

We calculated the average percentage change in positive and
negative classification values across the positive and negative
sample sets, with positive numbers representing an increase
and negative numbers representing a decrease, and plotted
them in Fig. 6. The vertical axis represents the ratio of
the difference between the perturbed classification value and
the original classification value to the absolute value of the
original classification value. The horizontal axis represents
the number of significant subplots removed. The truncation
parameter K in the model used to discover key gene clus-
ters is set to 5, implying that each subgraph contains up to
5 genes. When Kbecomes too small, or even approaches 1,
the model degenerates into a method for selecting node strat-
egy, and the capacity to discover node communities is lost.
When K is too large, interference occurs when conducting
experiments to reconstruct the data set, and it is possible that
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Fig. 6 Average percentage change in positive and negative classification values for the positive and negative samples

removing too many nodes rather than the key ones affects the
model’s judgment of the data.

The majority of the classes meet the expectation that tak-
ing out important elements reduces the model’s confidence
in the correct classification and thus affects the classifica-
tion results. The percentage changes in negative classification
values in negative samples and positive classification values
in positive samples are mostly less than 0. This shows that
the model’s confidence in classifying negative samples as
negative and positive samples as positive is dwindling. The
absolute value of the percentage change rises as the num-
ber of removed significant gene clusters rises, indicating that
the model’s confidence in correct classification decreases
progressively. And as the number of removed subgraphs
increases, the structure of the graph changes so dramatically
that the model has difficulties in recognizing it, and thus
cannot determine whether it is unrecognizable due to the
significant subgraphs. The imbalance of classes in datasets,
on the other hand, may cause the model to learn patterns
that are biased toward one class. It should also be noted that
the classification values of misclassifications just have the
opposite trend in some datasets, such as negative samples in
BRCA and COAD, and positive samples in STAD. The per-
centage changes in the other datasets are also negative and
generally steady, not fluctuating with the number of deleted
nodes. However, there is no universal rule that always applies

to the percentage change of positive classification values in
negative samples and negative classification values in posi-
tive samples. On the one hand, this is because positive and
negative classification values are not intrinsically constant
in total value, and there is no connection between them for
trading off and taking turns. Removing key structures for
accurate classification, on the other hand, causes the model
to fail to recognize the proper classification of a sample rather
than entices the model to misidentify it.

The model’s classification of the data may alter when the
most significant subgraphs are eliminated, which is a spe-
cific situation.We specifically looked for instances where the
classification changed from correct to incorrect, and we dis-
covered a total of 56 instances.Anegative sample fromSTAD
is an intriguing example because the reduction in the nega-
tive classificationvalue is 315,417 times greater classification
value itself. This resulted in the sample being classed as pos-
itive by the classifier, whereas the classifier had previously
properly identified it; the percentage drop in the negative clas-
sification value of this sample is treated as an outlier which is
not truly shown in Fig. 6. Its significant subgraph includes the
genes SKI, XPO1, DDX5, KDSR, and DEK, three of which
are involved in the biological process of negative regulation
of transcription from RNA polymerase II promoter. These
genes show great individual specificity, occurring only five
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times in total in the most significant subgraphs of the other
samples, and XPO1 is even unique to this sample.

We also counted the frequency of the top 5 significant
subgraphs’ genes in each class of samples and noticed the
enrichment of significant genes in each class. The three
genes with the highest frequencies are RHOA (62.59%, late-
stage, BRCA), CTNNA2 (53.64%, late-stage, LUAD), and
SIX2 (52.73%, late-stage, LUAD). RHOA is a member of
the Ras superfamily of small GTPases, and it is one of
three RHO proteins (A, B, and C) that play important roles
in regulating cytoskeletal organization, directional migra-
tion, and tumor cell motility [71]. RHOA overexpression
is commonly described in breast cancer, and strong RHOA
expression and low RHOB expression are associated with
the basal-like subtype of breast cancer [71, 72]. It has also
been shown that reduced RHOA expression enhances breast
cancer metastasis with a concomitant increase in CCR5 and
CXCR4 chemokines signaling [73]. According to reports,
the CTNNA2 mutation is involved in the adhesion junction
pathway and has previously been identified as a tumor sup-
pressor in laryngeal cancer, and its inactivation in head and
neck squamous cells (HNSC) is related tomigration and inva-
sion advantages [74, 75]. CTNNA2 was identified as a new
mutated gene in LUAD, related with prolonged overall sur-
vival in LUAD patients, and can be connected with tumor
growth,maintenance, and progression in several experiments
based on somatic mutation data [74, 76]. In addition, SIX2
expression was significantly increased in non-small cell lung
cancer (NSCLC) tissues and Kaplan–Meier plotter analysis
showed that six2 expression was negatively correlated with
the survival of lung cancer patients [77]. And SIX2 expres-
sion was shown to be highly correlated with the TNM stage
of NSCLC, with higher expression in advanced tumor stages
[78]. It was discovered that SIX2 suppressed caspase-8medi-
ated cell death as a potential mechanistic explanation for
cancer cell resistance of NSCLC, whereas SIX2 knockdown
enhanced cisplatin sensitivity in parental NSCLC cells and
attenuated cisplatin resistance in cisplatin-resistant NSCLC
cells [77, 79]. In conclusion, there is considerable literature
supporting the association of genes RHOA, CTNNA2, and
SIX2 with the development and progress of cancer, particu-
larly in the late stages of cancer, which is consistent with our
findings [73, 74, 78].

Table 4 summarizes some processes with stage specificity
after querying the KEGG pathway, BP, MF, and CC enrich-
ment of the 20 most frequent genes. Stage-specificity has
two meanings: first, each enrichment result appears in only
one type of cancer, and results that appear inmultiple cancers
are removed; second, each result appears in only one specific
stage of the same cancer, and results that appear in both early
and late stages are also removed. The potential relationship
between some of these enrichment results and the corre-
sponding cancers has attracted the attention of researchers.

For example, the KEGG pathways hsa04722 “Neurotrophin
signaling pathway” and hsa04530 “Tight junction” are found
to be enriched in the late stages of BRCA, while other stud-
ies have found that neurotrophin expression and regulation
contribute to chemotherapeutic resistance in breast cancer
cells, and tight junctions may play an important role in the
intermediate link of metastasis in breast cancer [80, 81]. The
enrichment of GO:0,002,467 “germinal center (GC) forma-
tion” in the early-stage of LUAD is consistent with a survey
of immune cell infiltration phenomenon in NSCLC patients’
histologic sections: patients with stage I NSCLChad a higher
prevalence of intratumoral GCs than patients with other
stages, and intratumoral GCs are associated with early-stage
NSCLC [82]. ACKR3 (CXCR7) and CCR7 are common
genes involved in GO:0,016,493 “C–C chemokine recep-
tor activity” and GO:0,019,957 “C–C chemokine binding”,
and as chemokine receptor families, they are both thought to
play an important role in colorectal carcinomametastasis and
invasion [83, 84]. Furthermore, CXCR7 promotes colon can-
cer growth by targeting the vascular endothelial growth factor
via the AKT/ERK pathway to regulate angiogenesis in colon
cancer [85]. Enrichment of these two genes and products in
the early stages of COAD may indicate cancer development
as well as metastasis to more malignant cancers. Overall,
many of the enrichment results we observed are consistent
with previous studies and observations, and some of the new
findings we present may provide new insights as leads for
future biological exploration.

Conclusions

Early cancer screening and individual-specific discovery of
contributing gene sets play a significant role in cancer per-
sonalizedmedicine. This study presents a computational flow
and deep learning model for cancer stage classification and
extraction of important gene clusters end to end. Experi-
ments are carried out on four genuine datasets from TCGA
to acquire reliable prediction interpretation and identify rel-
evant biological insights by perturbing the datasets.

One limitation of our method for real-world applications
is the scarcity of available samples, although the method
has achieved state-of-the-art performance on small datasets.
The model’s efficacy could be improved when working with
larger datasets. Additionally, the key genes identified by
the model are significant genes that distinguish the gene
networks of cancer patients at different stages, equivalent
to network biomarkers. Further research into the biological
roles of candidate genes can facilitate the understanding of
how these genes drive cancer development, thus allowing the
model’s findings to be translated into credible CDGs.
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A potential expansion of our study would be to use a
more detailed stage division to identify potential biomark-
ers specific to each stage [86]. In addition, the fixed size and
number of learned subgraphs in our model are limited by
hyperparameters. Another possibility for future work is to
combine our framework with community detection based on
GNNs to achieve a more flexible way of subgraph segmen-
tation and assessment [87]. And more intriguing reference
gene sets for constructing the network would also stimu-
late fresh and diverse insights. WebTWAS, for example, is
a resource for candidate disease susceptibility genes identi-
fied by transcriptome-wide association study (TWAS), and
it contains many candidate genes obtained through com-
putational and statistical methods rather than biological or
medical experimental observations [88].
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