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Abstract
It is well known that discriminative sparse representation can significantly improve the performance of image classification.
However, there remain several tricky issues to be addressed due to the unsatisfied performance and high time consumption. In
this paper, a novel classification framework called weighted extreme learning machine exponential regularized discriminative
dictionary learning (WELM-ERDDL) is proposed to address these issues. The main contributions of this paper include (1) the
WELM is embedded with ERDDL via exponential regularized linear discriminative analysis (ERLDA) for feature mappings
while enabling nonlinear and diverse feature representation; (2) in the ELM learning process, the elastic net regularization is
utilized to optimize more robust and meaningful output weights; (3) an effective weight update rule is designed for WELM.
To verify the effectiveness of the proposed method, several experiments are conducted on real-world image classification
databases. The results show that the proposed WELM-ERDDL framework is even more efficient than other state-of-the-art
algorithms in general.

Keywords Weighted extreme leaning machine (WELM) · Discriminative dictionary learning · Elastic net regularization ·
Exponential regularized · Image classification

Introduction

For the attractive growth of image data in the real com-
puter vision field, feature extraction is becoming the central
research topic in image classification. Come with the various
changes of light condition, background and viewpoint that
make the task become more challenge [1]. In the meanwhile,
to single out more efficient and robust representative features
to deal with such variation is of great important to image clas-
sification, in which feature extraction plays a crucial role.
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By extraction means, feature extraction methods can be
divided into the ones for handcrafted features and automati-
cally learned features. Among the former feature extraction
methods, the successful methods are scale invariant fea-
ture transform (SIFT) [2] and histogram of oriented gradient
(HOG) [3]. They have always been used with geometric and
statistical methods for some special tasks, and their limita-
tions have been exposed in different real-world applications.
On the other hand, although the latter feature extractionmeth-
ods such as sparse representation and deep learning methods
have been widely used in past decade and have achieved
dramatic progress in the real-world application of computer
vision [4], they are still facing some troubles. For spare rep-
resentation methods, the performance of dictionary learning
has an influence on the sparse coding vectors. For the deep
learning approaches [5–7], they have always suffered from
the complicated parameter tuning process and local minima.

Although sparse representation is susceptible to dictionary
learning performance [8], it is very efficient in feature learn-
ing given no prior information and it has proven particularly
robust in solving image processing problems owing to the
following two incomparable merits [9–11]: (1) the receptive

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01065-9&domain=pdf
http://orcid.org/0000-0002-2588-3001


6330 Complex & Intelligent Systems (2023) 9:6329–6342

fields of cell can bemodeled using sparse coding in the visual
cortex; (2) the rich representation can recover the subspace
of image patches, leading to sparse representations naturally.

Among all the essential components of high-performing
deep learning approaches, feed forward neural networks
(FNNs) [12], especially the convolutional neural networks
(CNNs) [13] and neural response (NR) [14] have achieved
an excellent performance in various real-world tasks, such
as face recognition, object tracking, and speech recogni-
tion [15], based on the multilayer perceptron. During the
parameter optimization and tuning processes, the existing
FNNs deeply rely on the backward propagation algorithm
and always have lower convergence [16]. Although the tun-
ing time is reduced to some extent, the CNNs are still in
need of the tedious weights and bias optimization process,
which virtually prolongs the run time and local minimum
phenomenon. The performance of the NR methods is influ-
enced by the design and selection of the template.

To overcome these unavoidable drawbacks of sparse rep-
resentation and deep learning methods, Huang et al. [17]
proposed the extreme learning machine (ELM), in which the
hidden layer neurons are generated randomly without tuning
process and the output weights can be determined analyt-
ically. The ELM is wide used in various computer vision
applications such as object recognition and image classifica-
tion. Typically, the original ELM is in a singer-layer structure
and can be extended to multilayer framework called multi-
layer ELM [18] (ML-ELM) to improve its generalization
performance. The ML-ELM can be constructed using the
ELM-based autoencoders through stacking ideas, but it will
lose the full universal approximation merit of ELM. Huang
et al. [19] proposed the local receptive fields-basedELMaim-
ing to solve the universal approximation problem, but it has
only one feature mapping layer and one pooling layer which
fail to extract the sufficient representative features. So further
research is counted upon to focus on the topic of improving
the classification performance and learning efficiency.

In the learning process of ELM, the output weights are
crucial and normally computed using the Moore–Penrose
generalized inverse method by minimizing the classification
error of the training data. Recent studies have shown this
method tends to fail due to data distributions. Several studies
have tried to address this unavoidable problem in the real-
world application using different technologies. Huang et al.
[20] used the l2 norm (Ridge regression) regularization to
address the minimum problem. Tang et al. [21] used the l1
norm (Lasso) regularization to derive the sparse solutions in
order to restrict the output weights. While in the real appli-
cation, the hidden nodes usually outnumber the label data so
the traditional Lasso method could fail to realize the group
selection.

In summarizing the existing learned feature extraction
methods, it is found that they all have some drawbacks and
suffer from either low classification performance or high
time consumption. In this paper, inspired by the sparse rep-
resentation and ELM, our panel proposes a novel nonlinear
feature extraction approach calledweighted extreme learning
machine exponential regularized discriminative dictionary
learning (WELM-ERDDL). The proposed WELM-ERDDL
consists of two stages: the WELM-ERDDL feature map-
ping stage and the WELM learning stage. In the feature
mapping stage, the WELM is embedded with exponential
regularized discriminative dictionary learning via exponen-
tial regularized linear discriminative learning (ERLDA) and
sparse coding, so the input features can be transformed via
nonlinear feature mapping. In the WELM learning stage,
elastic net regularization is used to update the output weights
comprising the l1 norm and l2 norm to obtain more compact
and meaningful features. Finally, a flexible weight update
criterion is designed for the WELM.

Overall, the main contributions of this paper are outlined
as follows:

1. A nonlinear WELM embedded feature projection strat-
egy via Exponential Regularized Discriminative Dic-
tionary Learning is given for feature diversity and low
computational efficiency.

2. During the ELM learning stage, the output weights are
updated through elastic net regularization to enhance its
compactness and meaningfulness.

3. An effective adaptive online weight update criterion is
designed for the WELM.

The rest of this paper is organized as follows: section
“Preliminaries” provides some prior knowledges related to
this paper. In section “The proposed WELM-ERDDL”, the
proposed WELM-ERDDL feature extraction framework is
given in detail. In section “The ELM Learning”, the efficient
ELM learning process is discussed. In section “Classification
with theWELM-ERDDL”, the classification schemewith the
proposed WELM-ERDDL is presented. In section “Exper-
imental results and analysis”, the experimental results are
shown and analyzed. Finally, in section “Conclusion”, the
conclusion is shown, and some potential directions of future
work are indicated.

Preliminaries

In this section, a brief introduction of some preliminar-
ies is presented, including the concepts of extreme learn-
ing machine (ELM) and weight extreme learning machine
(WELM), dictionary discriminative learning (DDL), and
elastic net regularization.
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Extreme learningmachine (ELM)

Suppose the training set {xi , ti }Ni�1 is composed of N training
samples; the input is xi whose dimension is d; ti is the label
of the output. Then the output of the ELM is [22]:

L∑

j�1

β j h(xi ) �
L∑

j�1

β j g
(
xi · w j + b j

) � ti , (1)

where the parameterw j �
[
w j1, w j2, . . . w jn

]
is the input

weight of the j th hidden node; b j is the deviation of the j th
hidden node; β j is the output weight of the j th hidden node.
Equation (1) can be simplified into

Hβ � T , (2)

where H is the hidden layer output matrix:

H �
⎡

⎢⎣
h(xi )
. . .

h(xN )

⎤

⎥⎦ �

⎡

⎢⎢⎣

g(x1 · w1 + b1) . . . g(x1 · wL + bL )

...
. . .

...
g(xN · w1 + b1) . . . g(xN · wL + bL )

⎤

⎥⎥⎦.

(3)

To improve the generalization ability of ELM, a penalty
factor C is introduced into (3), and the output weight matrix
β is

β � HT
(
1

C
+ HHT

)(−1)

T . (4)

ELM aims to minimize the training error and the l2 norm
of the output weights, namely

min : LELM � 1

2
‖β‖2 + C · 1

2
·

N∑

i�1

‖ξi‖
2

. (5)

Then the output of the extreme learning machine can be
expressed as

f (x) � h(x)β � h(x)HT
(
1

C
+ HHT

)(−1)

T . (6)

Weighted extreme learningmachine (WELM)

The main viewpoint of WELM is to assign penalties to dif-
ferent classes, and it can be view as a cost sensitive version of
ELM in handling the troublesome imbalanced data problem.
In theWELM, the penalty factorC is added to the ELMwhile
the minority class has a greater value of C . Then a weighted
matrix W is used to regulate C , so (5) can be modified as
[23]

min : LELM � 1

2
‖β‖

2

+
CW

2

N∑

i�1

‖ξi‖2. (7)

In (7), the critical problem is to determine the appropriate
weight matrix. Zong et al. gave two different versions of
computing methods:

WELM1 � 1

num(ti )
, (8)

WELM2 �
{

0.618
num(ti )

if num(ti ) > AVG(ti )
1

num(ti )
if num(ti ) ≤ AVG(ti )

, (9)

num(ti ) it is the number of samples belonging to the ith class.
Finally, (6) can be modified as

f (x) � h(x)β � h(x)HT
(
1

C
+ HWHT

)(−1)

WT . (10)

Dictionary discriminative learning (DDL)

For the sparse coding problem, a classical dictionary learning
problem is shown as follows [24–26]:

min
D, A

1

2
‖X − DA‖2 + Fs(A)2 + Fd(A)2, (11)

where Fs stands for the sparsity inducing term; Fd stands for
the discriminative term. The research has proven that adding
discriminative information to the sparse coding can signif-
icantly enhance the classification performance. Liu et al.
proposed a specific l1, 2 norm to learn the discriminative infor-
mation Fd:

Fd(A) �
C∑

c�1

‖Ac‖1, 2, (12)

where Ac represents the coding vectors from class c, while
the coding vector from the same class will have the same
saprse pattern achieved simultaneously by the sparsity and
discriminative encoding.

Elastic net regularization

Elastic net regularization can solve the variable selection
problem effectively by combining the l1 norm and l2 norm
to obtain a better solution. Therefore, the elastic net regular-
ization problem can be expressed as follows [27, 28]:

P(x ; ω) � ω‖x‖1 + (1 − ω)
1

2
‖x‖22, (13)
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where the parameter ω controls the proportion between the
l1 norm and l2 norm. Evidently, there are two special cases: if
ω � 0, the elastic net regularization becomes associatedwith
the l2 norm; if ω � 1, the elastic net regularization becomes
associated with the l1 norm.

The proposedWELM-ERDDL

In this section, the proposed WELM-ERDDL is to be
deduced in detail. As known, the whole structure of the
proposedWELM-ERDDL consists of two parts: the discrim-
inative projection term and the discriminative sparse regular-
ization term. In the discriminative projection, the exponential
regularized linear discriminative analysis (ERLDA) is con-
ducted for the discriminative projection term. Therefore, the
proposed approach can not only acquire high-dimensional
features for high performance without parameter turning
process but also perform dictionary-learning process in a
low-dimensional subspace.

Inspired by the dictionary learning problem given in (11),
our panel formulates the following objective function of the
proposed WELM-ERDDL approach:

min
D, A

1

2
‖βHW − DA‖2 + F1(β)2 + F2(A)2, (14)

where H is the nonlinear transform of the original input X ;
F1 stands for the discriminative projection termand F2 stands
for the discriminative sparse regularization term, which are
regularizations for β and A, respectively. From (14), one
may find that the proposed WELM-ERDDL has two merits:

1. Using the nonlinear transform, the original input is
mapped into high-dimensional features H without
parameter tuning process so that the universal approx-
imation capability can be guaranteed.

2. The dictionary learning is performed solely in a lower
dimensional space.

The discriminative projection term F1

In this part, the discriminative projection term is to be
explained comprehensively. From the objective function
given in (14), it can be seen that the discriminative subspace
βWH is crutial for dictionary learning and its determined
by the discriminative projection term F1. Formally, the LDA
approach is utilized for regularization, but it is always con-
fronted with small sample size problem. In this paper, the
ERLDA is conducted for the discriminative projection term.
For the ERLDA approach, the discriminant criterion is given
by:

J (W , α)ERLDA �
∣∣WT exp(Sb)W

∣∣
∣∣WT exp(Sw + α I )W

∣∣ . (15)

Then the orientation matrix is computed by EVD as[
exp(Sw + α I )

]−1[exp(Sb)
]
. While the discriminative pro-

jection term F1 is computed as follows:

F1(β) � λ1

2
tr
[
β(exp(Sw + α I ) − exp(Sb))β

T
]
, (16)

where λ1 is a hyperparameter; Sw and Sb are the intraclass
scatter matrix and the interclass scatter matrix based on the
hidden space, respectively. The effect of (16) is to minimize
the intraclass scatter and maximize the interclass scatter to
separate the classes of features alongside dictionary learning.

The discriminative sparse regularization term F2

The traditional l1, 2 norms in (12) are inspired by multitask
learning with similar tasks sharing similar sparse patterns,
which means the row sparse structure in (12) must select the
same dictionary atoms within the same class. The drawback
of this scheme is that it is hard to optimize; meanwhile, it is
sensitive to the optimization method. In this section, a simple
and novel sparse regulation strategy is to be presented for
dictionary learning. Then F2 can be expressed as follows:

F2 �
C∑

c�1

(
λ2 + λ3‖a(i)

−c‖2
)
‖a(i)

c ‖2, (17)

where a(i)
c and a(i)

−c are the rows of Ac and A−c, respec-
tively, which stand for the coding vectors belonging to and
not belonging to the class c;λ2 and λ3 are two hyperparam-
eters. In this part, define [WC ]i i � λ2 + λ3‖a(i)

−c‖2, and thus,
(17) can be transformed into

F2 �
C∑

c�1

WC AC1, 2.. (18)

Formulation

In this part, after the discriminative projection term F1 and the
discriminative sparse regularization term F2 are determined,
the final formula for the proposed WELM-ERDDL is given
as follows:

min
D, A

1

2
βHW − DA2 + F1(β)2 + F2(A)2 � min

D, A

1

2
βHW − DA2

+
λ1

2
tr
[
β(exp(Sw + α I ) − exp(Sb))β

T
]
+

C∑

c�1

WC AC1, 2.

(19)
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Remarks In (19), F1 and F2 are both designed as discrim-
inative regularization terms, but they are serve for different
purposes: the discriminative projection term F1 is used to
learn a suitable projection for feature representations, while
the discriminative sparse regularization term F2 is designed
for discriminative dictionary learning by regularizing the
sparse coding vectors.

The ELM learning

In this section, the parameter learning process of the proposed
WELM-ERDDL framework is to be explained in detail.
Firstly, the output weights β are deduced with a more effec-
tive strategy using the elastic net regulation method. Next, a
more robust adaptive online learning weight update rule for
WELM is given.

Update ofˇ

Normally, the output weights β are always computed bymin-
imizing the approximation error of the training data, but it
suffers from the Moore–Penrose generalized inverse of H .
In order to solve this troublesome problem, Huang et al.,
added an l2 norm regularization term in (5), while Tang et al.
used the l1 norm to restrict β to obtain a more meaningful
and sparser value. However, the feature maps may outnum-
ber the training data and the pairwise columns of H may
have strong correlations. Fortunately, the elastic net regu-
lation combining the l1 norm and the l2 norm provides an
appropriate solution to the valuable selection problem. In
this part, β is determined through elastic net regularization.

In the output weight learning problem, the elastic net reg-
ularization can be expressed as

P(β; ω) � ω‖β‖1 + (1 − ω)
1

2
‖β‖22, (20)

Combined with (20), the final formula for the proposed
WELM-ERDDLgiven in (19) can be transformed as follows:

min
D, A

1

2
βHW − DA2 + F1(β)2 + F2(A)2 + λ4P(β; ω)

� min
D, A

1

2
βHW − DA2

+
λ1

2
tr
[
β(exp(Sw + α I ) − exp(Sb))β

T
]

+
C∑

c�1

WC AC1, 2 + λ4

[
ωβ1 + (1 − ω)

1

2
β2
2

]
, (21)

where λ4 is the regularization parameter for elastic net
penalty. According to Lagrangian multiplier strategy, assum-
ing that D and A are constant, we have

min
γ ,β, u

1

2
γ HW − DA2 +

λ1

2
tr
[
γ (exp(Sw + α I ) − exp(Sb))γ

T
]

+ λ4

[
ωγ1 + (1 − ω)

1

2
γ 2
2

]
+

ρ

2
γ − β + u2, (22)

Furthermore, the problem in (22) can be decomposed into
three subproblems:

γ k+1 � min
γ

1

2
γ HW − DA2 +

λ1

2
tr
[
γ (exp(Sw + α I ) − exp(Sb))γ

T
]

+ λ4

[
ωγ1 + (1 − ω)

1

2
γ 2
2

]
+

ρ

2
γ − βk + uk22 , (23)

βk+1 � argmin‖γ k+1 − β + uk‖22, (24)

uk+1 � uk + γ k+1 − βk+1. (25)

Consequently, among these three subproblems, the first
subproblem in (23) is a sparse coding problemwith the Lasso
regularizationwhich can be computed by shrinkage function.

The second subproblem in (24) is a quadratic optimization
problem whose close form solution is given as follows|:

(26)

βk+1 � (2HT HW + 2λ4(1 − μ)I

+λ1(exp(Sw + α I ) − exp(Sb))

+ρ I )−1(2HT HT + ργ k+1 − uk).

Finally, the optimization problem of (21) can be summa-
rized in Algorithm 1.

Algorithm 1: The pseudocode of the output weights  

update method with the elastic-net regularization 

Inputs: hidden layer matrix   , label matrix   ,  

and 4 

Initialization: ,  ,   

For =  to  , do 
1. Update  according to (23); 

2. Update  according to (26); 

3. Update  according to (25); 

4. End for  
Output: the output weights   
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Adaptive online weight update for theWELM

This part focuses on the weight setting problem for the novel
WELM proposed in this paper. Formally, in the previous
work of Zong et al., the weights are computed in terms of
the number of samples belonging to each class. The draw-
back of this method is obvious. According to this strategy, as
the labeled samples increase, the weights used to punish the
newly added samples tend to decrease sharply, leading to the
final classificationmodel beingmore focused on the previous
model irrespective of the newly added samples. So, in this
paper, the adaptive online weight learning rule for WELM
is given. For the newly added samples, the weights can be
taken as follows:

wi �
{

N+

N++N− if xi belongs to the majority class
N−

N++N− if xi belongs to the minority class
, (27)

where N+ and N− denote the number of samples belonging
to the positive class (majority class) and to the negative class
(minority class), respectively. During the adaptive online
weight update procedure, the weight mainly depends on the
ratioN+: N− (or N−:N+).

Classification with theWELM-ERDDL

In this section, after the learning of β and w on the training
set, each test sample xtest is set withWELM-ERDDL and the
label can be predicted as

Y � Hβ∗. (28)

Then, the class number ci of the unlabeled sample data can
be determined by finding the maximum in the corresponding
row:

ci � argmax Yi j . (29)

Finally, the whole process of the proposed WELM-
ERDDL method is summarized in Algorithm 2.

Algorithm 2: The pseudocode of the proposed 

WELM-ERDDL 

Inputs: input samples  , random matrix  , output 

dimension , hyperparameters 1, 2, 3, 4

1. For = 1 to , do

ℎ = ( + )

2. Compute the scatter matrices and ;

3. Update the weight of WELM according to (27);

4. Compute 1 as follows:

1( ) = 1

2
[ ( ( + ) − ( )) ]

5. Compute 2 as follows:

2 = ∑ ( 2 + 3 ‖ −
( )
‖
2
)

=1

‖
( )
‖
2

6. Solve the following problem given in (21) using 

Algorithm 1:

,

1

2
‖ − ‖2 + 1( )2 + 2( )2

+ 4 ( ; )

=
,

1

2
‖ − ‖2 +

1

2
[ ( ( + ) − ( )) ]

+ ∑ ‖ ‖1,2
=1

+ 4 [ ‖ ‖1 + (1 − )
1

2
‖ ‖2

2]

7. Obtain the unlabeled data label according (29).

Experimental results and analysis

In this section, several experiments are provided in diverse
ways to demonstrate the effectiveness of the proposed
WELM-ERDDL approach.

Each experiment is tested on a PC with Intel Core I7-
8700 at 3.40 GHz and 16 GB RAM. The proposed method is
implemented using Matlab2013a, with the code for the other
models inherited directly from the code published by the
respective authors. To verify the effectiveness and robustness
of the WELM-ERDDL algorithm, the experiment is divided
into four parts:
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Fig. 1 The four benchmark databases

1. In Section A, the database used in this experiment and
corresponding parameter setting are declared.

2. In Section B, the performance of the proposed WELM-
ERDDL approach is evaluated using the following four
different classical image classification databases: the AR
face and the Extended Yale B for face recognition, the
Fashion-MNIST dataset andCOIL-100 dataset for object
classification. Specifically, the proposed new method
is compared with SRC, K-SVD, D-KSVD, FDDL,
SVGDL, SDDL, ELM, WELM, and HI-DKIELM.

3. In Section C, the learned representation βHW is com-
pared with the original data and the classical ELM output
βH to test its effectiveness.

4. In Section D, the importance of the choice of λ2 and λ3
of the discriminative sparse regularization term F2 of
the given WELM-ERDDL method is validated. In the
meantime, the effect of the sparse representation classi-
fier (SRC) is also tested for image classification.

5. In Section E, the performance of the WELM-ERDDL in
practical application learning tasks is verified and com-
pared with other baseline methods.

Database and experiment parameter setting

In these experiments, four different classical image classifi-
cation databases are used: the AR and the Extended Yale B
for face recognition, the Fashion- MNIST and COIL-100 for
object classification.

The AR face database consists of 4000 color images from
126 people which have high brightness and wide pose vari-
ations. The sub-datasets are shown in Fig. 1a. Following the
experiment setting, a commonly used subset is used which
includes 2600 images from 50 males and 50 females, each of
whomhas 26 facial imageswith size 165×120. 20 images are
selected at random for training and the 6 images are remained
for testing.

The Extended Yale B face database has 2414 frontal face
images collected from 38 people, each of whom has about 64
images.This face database is challengeable for the reason that
all the images are captured with different facial expressions,
occlusions, and lighting variations. The specific illustrations
of the database are shown in Fig. 1b. Following the common
experiment parameter setting, each image is normalized into
192 × 168 pixels. Half of the images are selected at random
for training, with the rest for testing.

The performance of the proposedmethod on object recog-
nition is also evaluated with the Fashion MNIST database in
substitution for the classical MNIST database. This database
contains 70,000 images, 60,000 of which serve for training
and others for testing. Especially, each image is a 28 × 28
gray scale image belonging to each class. The illustrations
of the data are shown in Fig. 1c.

Another dataset for object recognition is the COIL-100
dataset which contains almost 7200 images associated with
100 objects, and each image is captured from different views
against a clear background. The examples of the dataset can
be found in Fig. 1d. Generally, 10 images are selected at

123



6336 Complex & Intelligent Systems (2023) 9:6329–6342

Fig. 2 Classification accuracy at varying λ1 and number of neurons on the four benchmark databases

Table 1 Parameter settings of
each database Dataset AR Face Extended Yale B Fashion MNIST COIL-100

Samples 2600 2414 70,000 7200

Image size 165 × 120 192 × 168 28 × 28 32 × 32

n 540 504 512 512

m 540 570 300 1000

λ1 0.9 0.9 0.9 0.9

λ2 0.001 0.01 0.05 0.002

λ3 0.06 0.01 0.5 0.03

λ4 0.01 0.001 0.01 0.4

random from each object for training and the rest for testing,
and each image is resized to 32 × 32 pixels.

For the proposed method, for each database, the optimal
parameter is selected using the cross validation method. The
hidden dimension of ELM is set as L � 2000, while the
output dimension is set as n. The number of dictionary atoms
m and the regularization parameters λ1 − λ4 of each dataset
are shown in Table 1.

For the ELM, the parameter involves the number of hid-
den neurons. We select the optimal λ1 and the number of
hidden neurons through contrast experiment, parameters is
set as follows: λ1 � [0.3, 0.5, 0.7, 0.9], the number of hid-
den neurons between 1 and 100. Figure 2 shows the classify
accuracy of different λ1 and the number of hidden neurons
on four graph data sets. In the following experiments, we
choose λ1 � 0.9 and 40 neurons when apply our method on
PTC, because it has higher accuracy on all the four data sets.
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Fig. 3 Recognition accuracy of the four benchmark databases

Evaluation of the performance of the proposed
WELM-ERDDL

In this part, the focus is laid on evaluating the performance
of the proposed WELM-ERDDL method on the four bench-
mark databases. Specifically, the proposed new method is
compared with SRC, K-SVD, D-KSVD, FDDL, SVGDL,
SDDL, ELM,WELM, and HI-DKIELM. Among these com-
pared methods, SRC is nonparametric with the training
samples used as the dictionary directly; D-KSVD is based on
the K-SVD method with different discriminative regulariza-
tions; FDDL employs Fisher discrimination while SVGDL

further extends thismethod using support vector formulation,
and thus SDDL applies the l12 norms in the regularizations
to constrain the supports of the coding vectors; WELM is
the weighted version of ELM with the weights computed in
terms of the number of samples belonging to each class; HI-
DKIELM is covered in our former works given in [29]. The
experimental results of the proposedWELM-ERDDLaswell
as those of the compared methods are summarized in Fig. 3.
For each method, all experimental results are measured with
the optimal hyperparameter settings and averaged almost 10
runs. In the meanwhile, the detailed analysis is made with
respect to each database.

The detailed analysis on the experimental results is per-
formed in the following:

1. For the Extended Yale B database, it can be deemed that
the proposed WELM-ERDDL method achieves the best
recognition result among all the compared methods. A
scrutiny into the data reveals that the margin between the
proposed method and SDDL is not large, almost 0.82%.
The proposed approach avoids l0 minimization and is
more stable for multiple runs with std of 0.24% over
10 runs. However, for the SDDL method, for the reason
that it suppresses the overlapping support of different
classes via l0 minimization which is approximate to the
l2 minimization, it is unstable and sensitive to the regula-
tion factor. On the other hand, it can be seen that SDDL,
SVGDL, and HI-DKIELM achieve high accuracy com-
paredwith othermethods.Moreover, ourmethodhas over
2.11% accuracy gain compared with SRC, which means
the proposedmethod can achieve effective discriminative
sparse representation.

2. For the AR face database, the proposedWELM-ERDDL
method outperforms all other compared methods, while
the SDDL method achieves large margins than do other
dictionary learning methods, showing the better perfor-
mance in support discrimination.

3. For the COIL-100 database, our method also outper-
forms the other compared methods. From the results
in Fig. 2, the K-SVD method has the worst recog-
nition performance with recognition rate being only
71.50%;meanwhile, the D-KSVDmethod exhibits a sig-
nificantly superior performance that demonstrates the
importance of discrimination for dictionary learning.
From the detailed results in Fig. 3, it is also found that the
SRC method has a superior performance to SVD-based
methods probably because the COIL-100 database is set
up against a clear background and because of the regular
structure in which the images can be constructed nicely.

4. For the Fashion-MNIST database, specifically, the per-
formance is tested under a restricted experimental envi-
ronment with 600 images selected at random for training
and the whole test set for testing evaluation. From the
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Fig. 4 Visualizations of learned representations using t-SNE. Data points of the same color belong to the same class. a Corresponds to the original
data points. b Corresponds to the ELM outputs. c Corresponds to the sparse coding vectors

experimental results in Fig. 3, our proposed method
demonstrates the best accuracy. Specifically, the SDDL
method fails to yield a superior result to other compared
methods on previous three databases for the reason that
the support size is not large enough to describe the test
partition.

Testing of the effectiveness of the learned
representation

In this part, the learned representations βHW are visualized
to evaluate the effectiveness of the proposedWELM-ERDDL
method using the Extended Yale B database and compare its
results with the output results βH of traditional ELM.While
the output weights β are learned via (26) and original data
points, the weights W are learned via (27). Specifically, the
learned representations βHW given in this paper are further
used to compute the sparse representations A, while the orig-
inal samples, the traditional output results βH of ELM, and
the sparse coding vectors obtained in this paper are embed-
ded into two dimensions using t-SNE, with the experimental
results shown in Fig. 4.

From the results in Fig. 4a, it can be clearly found that
the original data points are cluttered with mixed structure.
However, when projected with learned output weights β via
(26), the representations become more separable. This phe-
nomenon shows that the learned projection is more able to
generate discriminate outputs. But Fig. 4b reminds that there
are still some data points that are far apart and that some
classes are even mixed with points of other classes. While
the outputs of sparse coding remedy these drawbacks and
exhibit clear clusters with better separate representations as
shown in Fig. 4c, which means the class weights learned via
(27) can effectively improve the discriminative learning and

empirically justify the designed WELM-ERDDL scheme in
this paper is meritorious for image classification.

Testing of the effectiveness of �2, �3, and SRC

This part begins with a test on the importance of the proper
choice of λ2 and λ3 which control the sparsity of the coding
vectors for the proposed WELM-ERDDL method. The sim-
ilar simple illustrations in the log scale for the four databases
are shown in Fig. 5.

From the results in Fig. 5, it can be clearly seen that the
algorithm ismore sensitive toλ2 which controls the intraclass
sparsity. On the other hand, when a suitable value of λ3 is
selected, the proposedmethod should be able to exhibit a rea-
sonable performance. It can also be noted that for Extended
Yale B, AR Face, and COIL-100, the parameters are more
stable to parameter choices, while for Fashion-MNIST the
parameters should be selected with greater care.

Finally, the effect of the sparse representation classi-
fier (SRC) for image classification is evaluated. In the
experiments, the SRC method is chosen since it uses the
nonparametric coding vectors from the training set learned
with the class specific weighted l1, 2 norm while computing
the test code using the l1 norm. In the experiments, it is com-
pared in other three cases: using no ELM embedding (also
called “w.o.ELM” for short), using no MMC, (abbreviated
as “ w.o.MMC”), and using a linear predictor for SRC dur-
ing test (abbreviated as “Lin Pred”). The detailed results are
shown in Fig. 6.

From the results in Fig. 6, the use of SRC improves per-
formance. For AR Face and COIL-100, SRC does not give
significant boost (only about 0.1%). On the other hand, SRC
is critical to the Fashion-MNIST database, which improves
the performance by almost 2.9%.
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Fig. 5 Average accuracy of WELM-ERDDL for different choices of λ2
and λ3 for each database
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Fig. 6 Average test accuracy of WELM-ERDDL under different exper-
imental settings

Real-world application learning tasks

In this section, the performance of the proposed WELM-
ERDDL is to be evaluated in the real-world application:
image classification task.

The original data are color images from the Corel dataset.
Each image is segmented, using the Blob world system, into
fragments that represent instances. The fragments containing
specific visual contents (e.g., elephant) are labeled positive,
while the remaining fragments are labeled negative. There-
fore, the fragments (i.e., instances) from the same kind of
images (e.g., elephant) create a binary learning problem.
Given the five different image datasets: Tiger, Elephant, Fox,
Bikes, andCars, the number of instances is 1096, 1259, 1474,
5215, and 5600, respectively. The instances in the datasets
Tiger, Elephant, and Fox are described by a 230-dimensional
feature vector which represents the color, texture, and shape
of the region, while the instances in the datasets Bikes and
Cars are represented by a 90-dimensional feature vector.

Visual content-based image retrieval is an important appli-
cation of image classification, for example, finding pictures
containing an elephant from a dataset. In this subsection,
sample images from the benchmark datasets are shown in
Fig.7.

The detailed experimental results are shown in Tables 2
and 3 for image classification tasks in terms of classification
accuracy (ACC) and area under the curve (AUC), respec-
tively. In both tables, the proposed WELM-ERDDL method
achieves the best ACC and AUC for all image datasets,
indicating that it is superior to other methods in perform-
ing content-based image retrieval tasks. The extraordinary
performance is owing to many local approximations created
by this proposed method. The results show that the naive
Bayes (NB) method on the datasets Tiger, Elephant, Bikes,
and Cars has the worst ACC and AUC performance. How-
ever, the SVM method has the worst performance for the
dataset Fox. For other baselines, more detailed experimental
results can be found in Tables 2 and 3.
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Fig. 7 Example images used in the experiments from the COREL image categorization database

Table 2 Experimental results on
image classification datasets
concerning classification
accuracy (ACC) % and
runtimes(S)

Dataset Proposed HI-DKILEM ELM EN-ELM W-ELM SVM KNN NB

Tiger 82.94 80.51 76.78 78.05 76.91 67.67 77.31 60.74

Elephant 85.23 82.29 79.03 80.42 78.87 73.85 78.56 65.55

Fox 68.87 67.85 64.46 65.18 64.11 52.19 64.83 57.15

Bikes 79.86 77.00 76.29 76.49 75.65 67.78 71.77 61.63

Cars 66.56 63.53 62.36 62.14 61.77 57.36 61.47 55.17

Runtime (s) 17.78 15.89 6.07 40.86 37.69 8.13 28.31 15.79

Table 3 Experimental results on
image classification datasets
concerning the area under the
curve (AUC) of ROC (%) and
runtimes (S).

Dataset Proposed HI-DKILEM ELM EN-ELM W-ELM SVM KNN NB

Tiger 92.62 88.43 84.00 86.59 84.46 65.07 77.15 61.05

Elephant 93.34 90.33 87.12 89.08 87.05 71.83 78.44 66.23

Fox 78.85 74.87 70.05 71.51 69.74 53.56 64.87 57.44

Bikes 87.55 83.65 82.59 82.43 82.35 67.85 71.73 61.64

Cars 73.55 69.20 67.41 67.26 66.83 56.23 61.26 55.93

Runtime (s) 15.62 13.76 7.29 36.51 34.74 7.86 24.15 16.23
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Conclusion

In this paper, a novel nonlinear feature extraction approach
called Weighted Extreme Learning Machine Exponential
Regularized Discriminative Dictionary Learning (WELM-
ERDDL) has been proposed. Evaluations on common bench-
mark datasets have shown that the proposed method has
achieved better results than state-of-the-art dictionary learn-
ing algorithms. The proposed method has several distinct
features from those of existing ELM-based methods.

1. A nonlinear WELM embedded feature projection strat-
egy via Exponential Regularized Discriminative Dictio-
nary Learning has been given to achieve feature diversity
and low computational efficiency.

2. During the ELM learning stage, the output weights
have been updated through elastic net regularization to
enhance their compactness and meaningfulness.

3. An effective adaptive online weight update criterion has
been designed for the WELM.

In future work, there is development space for exploring
the proposed method. First, it is still challengeable to bring
more insights into ELM to explore its deep learning capa-
bility. Second, the dropout technique or locality encoding
method may be considered to further improve the perfor-
mance of the algorithm, more effective approaches will be
needed to cope with large-scale image classification prob-
lems.
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