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Abstract
The traditional complete dual-branch structure is effective for semantic segmentation tasks. However, it is redundant in some
sense.Moreover, the simple additive fusion of the features from the two branchesmay not achieve the satisfactory performance.
To alleviate these two problems, in this paper we propose an efficient compact interactive dual-branch network (CIDNet)
for real-time semantic segmentation. Specifically, we first build a compact interactive dual-branch structure by constructing
a compact detail branch and a semantic branch. Furthermore, we build a detail-semantic interactive module to fuse several
specific stages of the two branches in the backbone network with the corresponding stages of the detail resolution branch.
Finally, we propose a dual-branch contextual attention fusion module to deeply fuse the extracted features and predict the
final segmentation result. Extensive experiments on Cityscapes and CamVid dataset demonstrate that the proposed CIDNet
achieve satisfactory trade-off between segmentation accuracy and inference speed, and outperforms 20 representative real-time
semantic segmentation methods.

Keywords Semantic segmentation · Dual-branch network · Real-time · Deep learning

Introduction

Deep learning and related theories have been developing in
recent years in the research of transfer learning [1], object
detection [2, 3], style transfer [4], nonlinear systems [5, 6] and
so on. Semantic segmentation, as one of the most fundamen-
tal tasks in the computer vision community, aims to assign a
semantic class label to each pixel in the given image. It has
been extensively and deeply studied and applied in a variety
of fields, such as augmented reality [7, 8], autonomous driv-
ing [9, 10], medical images [11, 12], satellite imagery [13],
video surveillance [14, 15] and so on. Many mobile terminal
tasks have great demand for segmentation speed, so the real-
time semantic segmentation [16] method comes into being.
Real-time semantic segmentation tasks require speed while
ensuring accuracy, So themost challenge of real-time seman-
tic segmentation is to achieve the optimal balance between
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accuracy and efficiency. That is, it is urgent and important to
build a real-time semantic segmentationmethod that achieves
a good balance between accuracy and efficiency.

In recent years, with the development of convolutional
neural networks and the proposal of fully convolutional
network (FCN) [17], a series of real-time semantic segmen-
tation methods [18–20] have been proposed. These methods
have low-latency and considerable segmentation accuracy.
To capture details information and semantic information,
two bilateral segmentation networks were proposed by con-
struct a dual-branch architecture [21, 22]. One pathway is
designed to capture the spatial details, the other pathway
is introduced to extract the categorical semantics. It’s worth
thinking about, complete dual-branch design has brought bet-
ter segmentation accuracy at the same time also broughtmore
computational cost. However, it is not enough to completely
restore the lost spatial information by only relying on upsam-
pling, so it is necessary to introduce high-resolution feature
maps.

Some typical real-time semantic segmentation networks
have recently proposed by choosing the lightweight back-
bones to improve real-time inference while using feature
fusion or aggregation modules to compensate for the drop of
accuracy [21, 23, 24]. However, Short-Term Dense Concate-
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nate (STDC) network (STDCNet) [25] believes that these
lightweight backbones borrowed from image classification
task may not be be the best choice for solving image seg-
mentation problem. And it uses the characteristics of high
resolution featuremap as auxiliary, shown inFig. 1a.Besides,
the real-time semantic segmentation demands for an effi-
cient inference speed. In fact, two types of methods can
be used to promote the inference speed: (i) Restricting the
input image size, smaller input size results in less compu-
tation cost with the same network architecture; (ii) Channel
Pruning, pruning channels in early stages can improve infer-
ence speed. Although these two manners can improve the
inference speed to a certain extent, they may also lead to
a decrease in accuracy. To tackle this problem, as shown
in Fig. 1a, BiSeNet [21] adopt dual-branch architecture to
fuse the low-level details and high-level semantics. How-
ever, complete dual-branch maybe is time-consuming, and
the auxiliary path is not effective enough due to the loss of
detail information guidance. The method we propose is dif-
ferent from the method a and b in Fig. 1. The method of
Fig. 1a guides the fusion of semantic information and spatial
information by extracting spatial information from the low-
level stage of semantic branch. Compared with Fig. 1a, our
method has one more short-term spatial detail branch, which
can make the network extract richer spatial detail features.
Compared with Fig. 1b, our method reduces the redundant
parts of the spatial detail branches, and transmits informa-
tion between the two branches, so that the spatial information
and semantic information can form a stepwise fusion, which
makes the fusion effect better.

Inspired by the Short-Term Dense Concatenate module
(STDC[25]module),wepropose a real-time anddual-branch
architecture named CIDNet. As illustrated in Fig. 2, CIDNet
adopts the encode-decoder architecture. The compact inter-
active dual-branch not only maintains the high resolution of
the features but also ensures a certain speed. The last and
most critical step is the fast and efficient integration of the
two branches of semantic information and spatial detail. We
use pyramid pooling to further extend high-level semantics,
while using the idea of self-attention to fuse the two branches
quickly and effectively.

Our main contributions are summarized as follows:

1. We propose an efficient and effective two-pathway archi-
tecture, termed the Compact Interactive Dual-Branch
network, for real-time semantic segmentation. Due to its
special structure, it saves a certain number of parameters
and computation, and it is faster and more accurate than
common two-pathway networks.

2. Wepropose aDetail-Semantic InteractiveModule (DSIM)
to reduce the loss of two branches during fusion. It enables
effective interaction between the semantic branch and
the detail branch. Meanwhile, it can effectively guide the

fusion of semantic and spatial information between high
resolution and low resolution.

3. We propose a Dual-Branch Contextual Attention Fusion
Module (DBCAFM). It combines pyramid pooling and
self-attention mechanism to integrate semantic branch
and spatial branch deeply.

4. Weconduct extensive experiments to investigate the effec-
tiveness of ourmethods.Ourmethods achieves impressive
results benchmarks of Cityscapes, CamVid. Specifically,
our CID1-50 achieves 75.1%mIoU on the Ctiyscapes val
set at a speed of 164.1 FPS on Tesla V100 card. Under the
same experiment setting, our CID2-75 achieves 77.7%
mIoU at a speed of 92.9 FPS. At the same input image
resolution, our params is 1.8M and 5.2M less than STD-
CNet, respectively.

Related work

BiSeNetV2 [22] consists of a Detail Branch and a Seman-
tic Branch, which are merged by an Aggregation Lyer
(BGA Module). Each layer of the detail branch consists by
a convolution layer followed by batch normalization and
activation function, the semantic branch consists by sev-
eral Inverted Bottleneck and Gather-and-Expansion Layers,
which inspired by the lightweight recognition model, e.g.,
Xception [26], Mobilenet [27], ShuffleNet [28]. However,
the complete dual-branch architecture may be inefficient due
to repeated processing in the initial stage. STDCNet [25] is a
single-stream method, which backbone consist by the Short-
Term Dense Concatenate module (STDC Module). But the
channel number of each stage output may be redundancy.

In this chapter, our discussion mainly focuses on the four
groups of methods most relevant to our work, i.e., generic
semantic segmentationmethods, real-time semantic segmen-
tation methods, and feature fusion modules.

Generic semantic segmentation

After traditional segmentationmethods, e.g., threshold selec-
tion [29], region growing [30], super-pixel [31–33] and graph
algorithms [34, 35], many CNN-based methods have been
proposed [36]. Recently, With the development of computer
hardware and deep learning, semantic segmentation has also
made remarkable leap-forwards. A series methods base on
FCN [17] keep improving state-of-the-art performance on
various benchmarks. The Deeplabv3 [19] abandoned CRFs
[37] post-processing and devises an atrous spatial pyramid
pooling to capture multi-scale context. The DeepLabv3plus
[38] introduce the decoder to fuse upsample feature maps
with low-level feature maps. The Segnet [39] utilized the
indices of max-pooling operation in encoder to upsampling
operation in decoder. The PSPNet [40] adopts a pyramid
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Fig. 1 Illustration of architectures of STDCNet, BiSeNet and our pro-
posed approach. aShort-TermDenseConcatenate network (STDCNet),
which use a Detail Guidance module to encode spatial information
in one low-level features stage. b Bilateral Segmentation Network

(BiSeNet), which use an extra Spatial Path to encode spatial informa-
tion. c Our proposed method, which use a interactive module to fuse
high-level semantics information with low-level detail features

pooling module on the dilation backbone to capture local
and global context information. Both dilation backbone and
encoder–decoder structure aremainstream semantic segmen-
tation architectures.Meanwhile, somemethods introduce the
attention mechanisms, e.g., OCNet [41] and DFANet [24]
use self-attention, PSANet [42] use spatial attention and
EncNet [20] use channel attention, to capture long-range
dependencies. In this paper, we propose a novel and effi-
cient architecture to achieves good trad-off between speed
and accuracy. In this paper, we propose a novel and effi-
cient architecture to achieves good trad-off between speed
and accuracy.

Real-time semantic segmentation

Many scene parsing tasks require real-time inference and its
semantic segmentation algorithms attract increasing atten-
tion. In this situation, there are two mainstream efficient and
effective semantic segmentation methods, and most of them
adopt a lightweight backbone. (i) encoder–decoder archi-
tecture. The encoder–decoder structure is a good paradigm
to effectively utilize the multi-level image feature infor-
mation extracted by the backbone network. The encoder
usually uses a deep network to extract contextual informa-
tion through convolution and downsampling operations. The
decoder gradually recovers the resolution and fuses themulti-
level feature maps extracted by the backbone network to
guarantee dense predictions. STDCNet [25] adopts a pre-
trained STDC networks as the encoder and use the context

path of BiSeNetV1 [21] to encode the context information,
meanwhile, the decoder fused the learned detail features
and the context features. SwiftNet [43] use lightweight lat-
eral connections to assist with upsampling. (ii) multi-branch
architecture. The encoder–decoder architecture saving com-
putation cost to a certain extent, but this greatly impairs
the long-range dependency information lost due to multi-
ple downsampling processes, which cannot be recovered by
upsampling or deconvolution, and it will whittle down the
accuracy of semantic segmentation. To alleviate the prob-
lem, the multi-branch architecture is proposed. BiSeNetV1
[21] and BiSeNetV2 [22] proposed a dual-branch network,
the two paths are used to extract spatial information and
context information respectively. ICNet [44] fused multi-
scale feature map in a cascaded manner to achieve a good
speed-accuracy trade-off. DDRNet [45] used a deep bilat-
eral networks and multiple bilateral fusions to improve
segmentation efficiency. (iii) lightweight encoder. Some
semantic segmentation networks used the encoder from
image classification task as the backbone. But they are not
specifically designed for segmentation tasks. Therefore, the
channels of these encoders may be redundant or insufficient.
MobileNetV1 [27] use depthwise separable convolutions
to reduce parameters and computation. MobileNetV2 [46]
introduced bottleneck structure, and it has very few channels.
MobileNetV3 [47] combines network architecture search
(NAS) andNetAdopt algorithms, and apply theSqueeze-and-
Excite (SE) in the residual layer. ShuffleNet [28] utilizes the
compactness of grouped convolutions and proposes a chan-
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nel shuffle operation to stimulate information fusion between
different groups.

Feature fusionmodule

The feature fusion is an important and common operation
of semantic segmentation network, which can strengthen the
representation of the features extracted by the encoder. The
basic fusion operation is the element-wise summation or
concatenation. BiSeNetV1 [21] uses the Attention Refine-
ment Module (ARM) to facilitate multi-scale fusion in the
context path, and Feature Fusion Module (FFM) fuses the
features in spatial path and context path. Although STDC-
Net [25]uses the same fusion method as BiSeNetV1 [21],
it has only a detail path, and the spatial path is one of the
stages. In BiSeNetV2 [22], the Bilateral Guided Aggregation
(BGA) Layer fuse the complementary information from the
detail branch (the low-level) and semantic branch (the high-
level). DFANet [24] fuses features in sub-network aggregate
and sub-stage aggregate ways. DDRNet [45] has two parallel
deep branches with different resolutions, and features fusion
through multiple bilateral fusion operations.

Our proposedmethod

In this section, we first introduce the architecture of our pro-
posed Compact Interactive Dual-Branch Network (CIDNet).
We then describe our proposed Spatial-Channel Interactive
Module (SCIM) used for reducing the loss of two branches
of CIDNet during fusion, and further give the Dual-Branch
Contextual Attention Fusion Module (DBCAFM) used to
fuse the two branches for semantic segmentation.

The architecture of compact interactive dual-branch
network (CIDNet)

Due to that the detail branch is time-consuming, the current
complete dual-branch network has a large computational cost
and is not easily trained [22]. In this work, we propose a
novel Compact Interactive Dual-branch Network (CIDNet),
The architecture of our proposed CIDNet consists of a com-
pact interactive detail branch and a semantic branch, shown
in Fig. 2. The compact interactive detail branch shares the
first three stages with the backbone network and merges with
the semantic branch at the S3 stage. Our compact interactive
detail branch has two stages (D4 and D5), and each stage
has two layer. Each layer of the detail branch is a convo-
lution layer followed by batch normalization and activation
function. Each convolution layer has a stride s = 1, which
can maintain high resolution. High resolution and high chan-
nel capacity make detail branch encode rich spatial location
information.

Note that, an appropriate resolution size is important for
segmentation. due to that the operation of downsamplingwill
change the relative position between pixel–pixel. That is,
maintaining a certain resolution to extract position informa-
tion can make the segmentation effect better. In fact, if a
larger resolution is selected for the detail branch, the amount
of calculation will increase sharply, and the inference speed
will be reduced at the same time. If a smaller resolution is
selected, the function of keeping position information will
be lost. As used in a large number of segmentation net-
works (e.g., [21, 22, 25]), 1/8 of the original input is the best
choice for resolution, and width channels can retain more
location details information. On the other hand, to achieve
a trade-off between inference speed and efficiency, we fol-
low the BiSeNetV2 [22] philosophy of using wide channel
dimensions and shallow layers.We choose the 1/8 of the orig-
inal input image resolution and 128 channels as the detail
branch layers. Meanwhile, it should also be noted that our
constructed detail branch is different from BiSeNetV2 [22]
because our detail branch are short-term.

The semantic branch consists of six stages, stem is com-
posed of S1–S2 stages, S3–S5 stages are stacked by group
short-term dense concatenate modules (GSTDC modules),
and finally S6 stage is composed of two 1 × 1 convolu-
tion and a 3 × 3 groups of convolution. To alleviate channel
redundancy problem and reduce the parameters, we construct
a Group-Short-Term Dense Concatenate module (GSTDC
module). It is an extension of Short-Term Dense Concate-
nate module (STDC module) [25]. As in previous work [22,
45, 48], the number of channels in the backbone network is
selected as [32, 64, 128, 256, 512]. In our GSTDC module,
we use a stepped group convolution instead of the standard
3 × 3 convolution, add residual connections, and halve the
number of input channels.

For clarity, we plot the CatBlock, GSTDC Module, and
STDC module in Fig. 3. Each GSTDC module has four
blocks and a fusion layer as in the STDC Module. The first
block has one convolutional layer with kernel = 1 × 1, one
batch normalization layer and a ReLU activation function.
The last three blocks are the group convolution with ker-
nel 3 × 3, and the number of groups is [4, 2, 1], and all of
them have one batch normalization layer and a ReLU activa-
tion function. The output channels of these four blocks are
respectively 1/2, 1/4, 1/8, and 1/8 of the entire module output
channels. The last fusion layer is used to fuse the outputs of
the previous four blocks in a concatenation manner. Finally,
The input is added to the concatenation fusion result, which
is the idea of skip connect. It can be seen from Fig. 3b, c that
different from the STDC module, our two GSTDC modules
adopt residual connection, andwe use depthwise convolution
in the downsampling module, so that the number of channels
can be matched and the diversity between channels can be
retained as much as possible.
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Fig. 2 Overview of the compact interactive dual-branch network.
The CID network contains a compact interactive detail branch (the
blue cubes) and a semantics branch (the green cubes). DSIM denotes
the Detail-Semantic Interactive Module. DBCAFM denotes the Dual-
Branch Contextual Attention Fusion Module. Meanwhile, the number
below the cube is the ratio of the featuremap size to the input resolution.

In addition, in the accelerated training part, we design three auxiliary
segmentation heads to improve the segmentation performance without
additional inference cost. The auxiliary segmentation header includes
two CrossEntropyLoss and one DetailAggregateLoss [25]. Seg Head
denotes the segmentation head, Detail Head denotes the Detail head
[25]

Fig. 3 The GSTDC module and
CatBlock in the semantic
branch. a Is the catblock, which
adopts a keep-resolution
strategy. This block can enlarge
the receptive field. b Short-Term
Dense Concatenate module with
groups (GSTDC module) used
in our network. c The GSTDC
module with stride = 2.
Notation: Conv is convolutional
operation. BN is the batch
normalization. ReLU is the
ReLU activation function. G
denotes the group convolution.
AVGPool is the average pooling.
S denotes the stride.
DWConvBN is depthwise
convolution operation with
batch normalization. Conact
means concatenation. “+”
represents element-wise adding.
Meanwhile, 1 × 1, 3 × 3 denote
the kernel size, H × W × C
means the tensor shape (height,
width, depth)
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Note that, to improve the inference speed and make the
network more lightweight, our GSTDC module uses half of
the output channels in the STDC module. Table 1 show the
detailed structure of our compact interactive dual-branch. In
the first two stages, we adopt a wide number of channels
to maintain rich detail information, use max pooling for fast
downsampling, and then use a CatBlock to expand the recep-
tive field. In stages S3–S5 phase, we only use the GSTDC
basic block stacking. In S6 stage adopts the bottleneck of

flexible structure, which can flexibly adjust output channels,
also can consider whether to continue downsampling feature
maps, and we call the S6 stage for the Context Expanding
Module.

In the following subsection, wewill describe our proposed
spatial-channel interactive module for reducing the loss of
two branches during the branch fusion.

123



6182 Complex & Intelligent Systems (2023) 9:6177–6190

Ta
bl
e
1

In
st
an
tia

tio
n
of

th
e
co
m
pa
ct
in
te
ra
ct
iv
e
de
ta
il
br
an
ch

an
d
th
e
se
m
an
tic

s
br
an
ch

St
ag
e

O
ut
pu
ts
iz
e

C
ID

1
C
ID

2

In
pu
t

51
2

×
10

24
C
om

pa
ct
de
ta
il

Se
m
an
tic

C
om

pa
ct
de
ta
il

Se
m
an
tic

S1
25
6

×
51
2

C
on
v,
3

×
3,
32
,s

=
2
C
on
v,
3

×
3,

32
,s

=
1
C
on
v,
3

×
3,
64
,s

=
1

C
on
v,
3

×
3,
32
,s

=
2
C
on
v,
3

×
3,

32
,s

=
1
C
on
v,
3

×
3,

64
,s

=
1

S2
12
8

×
25
6

M
ax
Po

ol
,3

×3
,6
4,
s

=
2
C
at
B
lo
ck
,

3
×

3,
64
,s

=
1

M
ax
Po

ol
,3

×3
,6
4,
s

=
2
C
at
B
lo
ck
,

3
×

3,
64
,s

=
1

S3
64

×
12
8

G
ST

D
C
,1

28
,s

=
2
G
ST

D
C
,1

28
,

s
=

1
G
ST

D
C
,1

28
,s

=
2
G
ST

D
C
,1

28
,

s
=

1
G
ST

D
C
,1
28
,s

=
1
G
ST

D
C
,

12
8,

s
=

1

S4
32

×
64

C
on
v,
3

×
3,
12
8,

s
=

1
C
on
v,
3

×
3,

12
8,

s
=

1
G
ST

D
C
,2

56
,s

=
2
G
ST

D
C
,2

56
,

s
=

1
C
on
v,
3
×3

,1
28
,s

=
1
C
on
v,
3
×3

,
12
8,

s
=

1
G
ST

D
C
,2

56
,s

=
2
G
ST

D
C
,2

56
,

s
=

1
G
ST

D
C
,2
56
,s

=
1
G
ST

D
C
,

25
6,

s
=

1
G
ST

D
C
,2

56
,s

=
1

D
et
ai
l-
se
m
an
tic

in
te
ra
ct
iv
e

D
et
ai
l-
se
m
an
tic

in
te
ra
ct
iv
e

S5
16

×
32

C
on
v,
3

×
3,
12
8,

s
=

1
C
on
v,
3

×
3,

12
8,

s
=

1
G
ST

D
C
,5

12
,s

=
2
G
ST

D
C
,5

12
,

s
=

1
C
on
v,
3
×3

,1
28
,s

=
1
C
on
v,
3
×3

,
12
8,

s
=

1
G
ST

D
C
,5

12
,s

=
2
G
ST

D
C
,5

12
,

s
=

1
G
ST

D
C
,5
12
,s

=
1

D
et
ai
l-
se
m
an
tic

in
te
ra
ct
iv
e

D
et
ai
l-
se
m
an
tic

in
te
ra
ct
iv
e

S6
16

×
32

C
on
v,
1
×1

,5
12
,s

=
1
C
on
v,
3
×3

,
51
2,
s

=
1
C
on
v,
1
×1

,1
02
4,
s

=
1

C
on
v,
1
×1

,5
12
,s

=
1
C
on
v,
3
×3

,
51
2,
s

=
1
C
on
v,
1
×1

,1
02
4,
s

=
1

T
he

tw
o
ve
rs
io
ns

in
th
e
ta
bl
e
ar
e
C
ID

1
an
d
C
ID

2.
N
ot
e
th
at
C
on
v,
3

×
3
sh
ow

n
in

th
e
ta
bl
e
re
fe
rs
to

th
e
C
on
v-
B
N
-R

eL
U
w
ith

ke
rn
el
3

×
3.
T
he

nu
m
be
r
af
te
r
th
e
co
nv
ol
ut
io
n
op
er
at
io
n
re
pr
es
en
ts

th
e
nu
m
be
r
of

ou
tp
ut

ch
an
ne
ls
.s

de
no

te
st
ri
de
,M

ax
Po

ol
is
th
e
m
ax

po
ol
in
g
op
er
at
io
n.

C
at
B
lo
ck

de
no
te
ou
r
C
at
B
lo
ck
.G

ST
D
C
de
no
te
ou
r
ba
si
c
bl
oc
k

123



Complex & Intelligent Systems (2023) 9:6177–6190 6183

Detail-semantic interactive module

For dual-branch networks, it is important to effectively fuse
the feature information extracted from both two branches.
Current complete dual-branch structures [21, 22] have no
interaction between the two ways, and thus the accuracy
is not satisfactory. Although there is also have dual-branch
with interaction structure [45], but the fusion method is to
add the feature maps on both sides directly. This fusion
method may have the phenomenon of “fusion loss”, because
the semantic branch contains rich and accurate semantic
information, and the feature map from details branch may
not match the information on its corresponding position.
To alleviate the above problems, in this work we propose
a spatial-channel interactive module to guide the informa-
tion exchange between the two branches. In this way, the
resulting two branches can have certain common features at
different scales. Our spatial-channel interactive module con-
tains two paths: (i) high-resolution maps in the detail branch
are integrated into low-resolution feature maps in the seman-
tic branch.(called high-low path) (ii) low-resolution maps in
the semantic branch are integrated into high resolution fea-
ture maps in the detail branch.(called low-high path)

We next describe the detailed structure of the detail-
semantic interactive module, shown in Fig. 4. Firstly, the
high-resolution featuremap retains a lot of position and detail
information. In the high-lowpath,we adopt themethodof fast
downsampling and expanding the number of channels, and
directly fuse by additive the feature map after downsampling
and the low-resolution feature map. In the low-high path,
we used the attention guided strategy (AGS), low-resolution
features contain abundant semantic information. To effec-
tively integrate them with high-resolution feature maps, we
draw on the self-attention mechanism, and first upsample the
low-resolution feature maps by bilinear interpolation. Then,
the upsampled feature map is element-wise multiplication
with the high-resolution feature map, and the high-level fea-
ture map is obtained by fusing the channel-wise direction.
The obtained high-level feature map is input into the sig-
moid function, and finally the relative attention mask α is
obtained. After obtaining the two attention maps, we further
perform pixel-level product between mask and prediction,
and then perform pixel-level sum between them to obtain the
final result.

We can formulate the above procedure as follow:

{
F ′
s = Downsample(Fd) + Fs,

F ′
d = AGS(Fd , Fs) + Fd ,

(1)

where AGS is the attention guided strategy, Fs is the output
of before stage of the semantic branch, and F ′

s is the input
to the next stage of the semantic branch. Fd is the output
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Fig. 4 Detailed design of the detail-semantic interactive module. Nota-
tion: Conv is convolutional operation. BN is the batch normalization.
Sigmoid is the Sigmoid activation function. sum denotes the channel-
wise summation operation. unsqueeze denotes inserts a dimension of
size 1 at the specified location. α denotes the weight output of Sig-
moid function. Up is the standard bilinear interpolation operation. “+”
represents element-wise adding. “×” represents element-wise product.
Meanwhile, 1 × 1, 3 × 3 denote the kernel size. “×n” represents the
number of times, and the value of “n” is determined according to the
feature map downsampling size

of before stage of the compact interactive detail branch, and
F ′
d is the input to the next stage of the compact interactive

detail branch. In short, the procedures of the attention guided
strategy (AGS) can be formulated as follow:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FM = Multiply(Fd ,Upsample(Fs)),

Fsum = Sum(FM ),

α = Sigmoid(Fsum),

FAGS = Fd · (1 − α) + Fs · α,

F ′
d = FAGS + Fd ,

(2)

where Multiply is element-wise multiplication operation,
Sum is the channel-wise summation operation, Upsample is
the standard bilinear interpolation operation, FAGS is the out-
put of the AGS. Fd is the output of the compact interactive
detail branch. α is the relative attention mask with Fd and
Fs.

Dual-branch contextual attention fusionmodule

Large receptive fields can capture higher-level semantic
information. Large convolution kernels and dilated convo-
lutions are often used to expand the receptive field, but
these operations bring large delay and high computational
complexity. Pyramid pooling has been shown to be an effec-
tive method for extracting high-level semantics [19, 43] for
semantic segmentation [45]. Furthermore, Deep Aggrega-
tion Pyramid Pooling Module (DAPPM) was proposed and
effectively used in real-time semantic segmentation [45].
However, the structure of DAPPM is somewhat complex.
In this work, we propose a simplified DAPPM used to
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Fig. 5 The detailed architecture of dual-branch contextual attention
fusion module. Notation: Conv is convolutional operation, and 1 × 1,
3× 3 denote the kernel size. Pool is global-average-pooling operation,
and 5×5, 9×9, 17×17, H ×W means pooling kernel (“H” indicates
the height of the input feature and “W” indicates the width of the input
feature). Up is bilinear upsampling operation. “+” represents element-
wise addition

extract contextual information more efficiently from low-
resolution images in the semantic branch before fusing the
two branches.

Due to the different sampling methods of the compact
interactive detail branch and the semantic branch, the two
branches have different depths and widths. To better inte-
grate high-level semantic features extracted from semantic
branches and spatial details extracted from detail branches,
we propose a Dual-Branch Contextual Attention Fusion
Module (DBCAFM), which is inspired by attention fusion
module of AttanNet [49].

For clarity, we plot the detailed structure of the dual-
branch contextual attention fusion module in Fig. 5. Assume
Fd and Fs respectively denote the output feature maps from
the compact detail branch and semantic branch. The input
feature maps Fs are the 1/32 image resolution. The input fea-
ture maps Fs is first processed by the pyramid pooling. In
the pyramid pooling procedure, we use different large pool-

ing kernels to generate feature maps. The pyramid pooling
procedure has four glob-average-pooling operations and the
pooling kernels size are 5×5, 9×9, 17×17, and H×W (“H”
indicates the height of the input feature and “W” indicates the
width of the input feature) respectively. Afterwards, the out-
put features are followed by the convolution with kernel size
1×1 and batch normalization. Then, all the four features are
processed by upsampling operations to the same resolution
size as the input resolution size. Finally, we can obtain the
high-level semantics Fsp by fusing these four features with
one without pooling feature (only have 1 × 1 convolution
operation). The output Fsp of the pyramid pooling is input
one 3 × 3 convolution layer and further add with Fs (after
adjusting the channel). We get the resulting(Fp) of pyramid
pooling. Then upsample the Fp to the same size as Fd and
then concatenated with Fd , and then input into the atten-
tion layer. The attention layer consists of a convolution layer
(kernel size is 1×1 with BN and ReLU activation function),
a global average pooling layer (the size of the pooling kernel
is the same as the size of the feature map), a convolution
layer (kernel size is 1×1 with BN), and a sigmoid activa-
tion function. After the attention layer, mask α is obtained,
and the attention map is obtained by multiplying α with Fp.
and then add this attention map with Fp to get F ′

p. Similarly,
multiply (1-α) with Fd to get an attention map, and then add
this attention map with Fd to get F ′

d . Finally, F
′
p and F ′

d are
fused by element-wise addition. This operation is defined as
follows:

{
Fp = Pyramid Pooling(Fs),

Foutput = Sum[Upsample(Fp · α + Fp), Fd · (1 − α) + Fd ],
(3)

where Foutput denotes the dual-branch contextual attention
fusion module output, Sum is the element-wise addition
operation, Upsample is the standard bilinear interpolation
operation, Fs is the output of the semantic branch. Fd is the
output of the compact interactive detail branch. Fp is the out-
put of the pyramid pooling. α is the relative attention mask
with Fp and Fs.

Experiments

In this section, we test our proposed CIDNet on two datasets:
Cityscapes [50] and CamVid [51] and compare it with 20
representative methods. First, we introduce the datasets and
implementation details.We then do a comparative test for our
backbone network to verify its effectiveness. Next, we inves-
tigate the validity of the compact interactive dual-branch
structure and the effect of each module of our proposed
method on the Cityscapes validation set with the ablation.
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Finally, we report our final accuracy and speed (FPS) results
on different benchmarks by comparing it with the other algo-
rithms.

Datasets and evaluationmetrics

Cityscapes

TheCityscapes [50]Dataset focuses on semantic understand-
ing of urban street scenes, which are road scenes taken from
the perspective of a car, and it is one of the most commonly
used datasets for segmentation tasks. This dataset provides
for a volume of 5000 images with high quality dense pixel
annotations and split into training, validation and test sets,
with 2975, 500 and 1525 images in our experiments to ver-
ify the effectiveness of our method. The annotated images
include 30 classes, 19 ofwhich are used for semantic segmen-
tation tsak, meanwhile the resolution of the images is high to
2048 × 1024. Due to the high resolution of this dataset, this
poses a great challenge to real-time semantic segmentation
methods.

CamVid

Cambridge-driving Labeled Video Database (CamVid) [51]
is a road scene segmentation dataset with small-scale. This
CamVid dataset is similar to the Cityscapes dataset, but
smaller in magnitude and resolution than Cityscapes. There
are 701 densely annotated frames extracted from the video
sequence, in which 367 images for training, 101 images for
validation and 233 images for testing. All images are at a
same 960 × 720 resolution and 32 semantic categories, of
which the subset of 11 classes are used for our segmentation
experiments. To increase the number of training samples, we
merge the training and validation sets for training meanwhile
evaluate our method on the test set.

Evaluation metrics

On all dataset we used, we adopt the standard metric of the
mean intersection of union (mIoU) and Frames Per Second
(FPS) as the evaluation metrics. The mIoU is defined as the
ratio of the intersection set and union set of the prediction and
the ground truth of the model is summed and then averaged.
The FPS is defined as: the number of frames of pictures pro-
cessed by the model per second. Let i denote the true value,
j denote the predicted value, pi j denote the prediction of i
as j , mIoU can be expressed as:

mIoU = 1

k + 1

k∑
i=0

pii∑k
j=0 pi j + ∑k

j=0 p ji − pii
. (4)

Implementation details

Training settings

We choose the Adam algorithm as optimizer, while utiliz-
ing the “polynomial decay” learning rate scheduler and the
warm-up strategy. Since we only use a single GPU card, we
use different batch sizes when training images of different
resolutions. For Cityscapes dataset, resolutions 768 × 1536
and 512 × 1024 correspond to batch sizes of 10 and 24,
respectively. The max iteration is 140,000, the initial learn-
ing rate is 0.005, and we set the warm-up strategy at the first
2000 iterations. For CamVid dataset, the batch size is 24 and
the input resolutions is 720 × 960. The max iteration is set
as 60,000, the initial learning rate is set as 0.01, and we set
the warm-up strategy at the first 400 iterations.

For data augmentation, we utilize random scaling, random
padding crop, random horizontal flipping, random color jit-
tering and normalization. The random scale ranges in [0.25,
2.0], [0.5, 2.5] for Cityscapes and CamVid respectively. The
training cropped resolution of Cityscapes is 512× 1024 and
768 × 1536, and the training cropped resolution of CamVid
is 720 × 960. In all training experiments, we conduct our
experiments use palddlepaddle [52] on NVIDIA GTX 3090
GPU, CUDA 11.2, CUDNN 8.1.

Inference settings

We do not use any speedup tricks or acceleration strategy,
e.g., sliding-window evaluation and TensorRT acceleration.
For Cityscapeswe use a resolution of 768×1536, 512×1024
for inference.We use the input of 1024×2048 resolution, the
time of resizing is included in the inference time measure-
ment.We first resize it to 768×1536 or 512×1024 resolution
for inference and then resize the prediction to the original
size of the input. For CamVid, the resolution of 960 × 720
is used for inference. We conduct all inference experiments
under CUDA 10.1, CUDNN 7.6 on Tesla V100GPU.We use
standard mtric of the mean intersection of union (mIoU) for
segmentation accuracy comparison and frames per second
(FPS) for inference speed comparison.

Experiments on cityscapes

Ablation study

In this section we perform ablation experiments to demon-
strate the performance of our proposed CIDNet versus other
network architectures, as well as the effectiveness of each
component in our proposed CIDNet. In the following exper-
iments, we train our methods on the Cityscapes [50] training
set and evaluate on the Cityscapes validation set.
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Table 2 Comparisons with
complete dual-branch and
compact interactive dual-branch
of CIDNet1 and CIDNet2 on
Cityscapes val set

Method Complete Compact interactive mIoU (%) FPS

CIDNet1-50 � 72.1 152.3

CIDNet1-50 � 75.1 164.1

CIDNet1-75 � 73.8 90.6

CIDNet1-75 � 76.4 104.4

CIDNet2-50 � 74.3 128.0

CIDNet2-50 � 75.3 139.0

CIDNet2-75 � 74.0 78.6

CIDNet2-75 � 77.7 92.9

Bold indicates the maximum value in the corresponding column

Table 3 Comparisons with different interactive module number of
CIDNet1 and different fusion methods on Cityscapes val set

Method Resolution Add DSIM mIOU (%)

× 1 × 2

CIDNet1-50 512 × 1024 � 74.3

CIDNet1-50 512 × 1024 � 75.0

CIDNet1-50 512 × 1024 � 75.1

CIDNet1-75 768 × 1536 � 76.1

CIDNet1-75 768 × 1536 � 75.7

CIDNet1-75 768 × 1536 � 76.4

Notation: Add means element-wise addition fusion method. DSIM
means detail-semantic interactive module, in which × 1, × 2 denotes
use the DSIM module once or twice

Effectiveness of compact interactive dual-branch

To demonstrate the effectiveness of our compact interactive
dual-branch architecture, we also compare it with the com-
plete dual-branch network [21, 22],wherewe divide the input
image into two paths from the beginning, such as BiSeNetV2
[22]. Experiments are performed on the same configuration
and platform. Table 2 reports their comparison results.

It can be seen from Table 2 that our compact interactive
dual-branch architecture outperforms the complete dual-
branch architecture in both speed and performance. So, our
compact interactive dual-branch architecture is effective.

Effectiveness of detail-semantic interactive module

To investigate the effectiveness of our proposed detail-
semantic interactive module (DSIM), we conduct compara-
tive trials using “Add” fusion and using “interactive” fusion,
and the results are shown in Table 3. It can be seen that
interactive operation has better segmentation effectiveness,
and the performance based on two interactive operations is
slightly better than one interactive operation.

Comparisons with state-of-the-arts

In this subsection,we demonstrate the capacity ofCIDNet for
semantic segmentation by comparing it with the 20 represen-
tative models on the Cityscapes dataset. For fair comparison,
we evaluate our model with resolution 512 × 1024 and
768 × 1536, respectively. For clarity, we use CIDNet1 and
CIDNet2 respectively to denote our proposed CIDNet based
on the CID1 and CID2 in Table 1. Furthermore, we denote
our proposed CIDNet1 on the two input sizes, 50% and
75% of the original images, respectively as CIDNet1-50 and
CIDNet1-75. Similarly, our proposed CIDNet2 on the two
input sizes respectively as CIDNet2-50 and CIDNet2-75.

Table 4 reports the comparison results of our proposed
CIDNet and the 20 models. It can be observed that from
Table 4 that we present the model name, the backbone
name, segmentation accuracy, speed (FPS), input resolution,
GFLPOs and parameters of various approaches. Specifically,
we can observe CIDNet1-50 achieves 164.1 FPS and 75.1 %
mIoU, and with the resolution of 768 × 1536, CIDNet2-75
achieves 92.6 FPS and 77.7% mIoU for the validation set.
Our method outperforms STDCNet on both GFLOPs and
Params, but is slightly inferior to STDCNet in terms of infer-
ence speed due to the presence of high-resolution branches.
As can be seen from Table 4, manymodels pre-trained on the
ImageNet, which can significantly improve the segmentation
accuracy, but it is a very time-consuming process. Our mod-
els chose to train from scratch. Moreover, our CIDNet2-75
model is loaded with the training weights of CIDNet1-50.
Due to the limitation of GPU memory, the training batch
size is limited to a small value, while the training batch size
of a small size model (such as 512 × 1024) is larger, and
its training gradient is more accurate. Therefore, we load
the training weight of CIDNet1-50 into the large size model
CIDNet2-75. As shown in Table 4, on Cityscapes val set,
our model speed is the fastest among the same performance,
so our network achieves the trade-off between speed and
performance. At the same input resolution, ourmodel param-
eters are smaller. For example, at 512 × 1024 resolution, our
CIDNet1-50 model parameters are 34.3% less than STDC1-

123



Complex & Intelligent Systems (2023) 9:6177–6190 6187

Table 4 Comparisons with other methods on Cityscapes

Model Backbone mIoU (%) Speed (FPS) GPU Resolution GFLOPs Params
val test

ENet [53] No – 58.3 135.4 TitanX 360 640 3.8 0.4M

ESPNet [54] ESPNet – 60.3 112.9 TitanX 512 × 1024 – 0.4M

ESPNetV2 [23] ESPNetV2 66.4 66.2 – – 512 × 1024 – –

ERFNet [55] No 70.0 68.0 41.7 TitanX M 512 × 1024 27.7 20M

ICNet [44] PSPNet50 – 69.5 30.3 TitanX M 1024 × 2048 28.3 26.5M

DFANet A [24] Xception A – 71.3 100 TitanX 1024 × 1024 3.4 7.8M

DFANet B [24] Xception B – 67.1 120 TitanX 1024 × 1024 2.1 4.8M

DFANet A′ [24] Xception A – 70.3 160 TitanX 512 × 1024 1.7 7.8M

Fast-SCNN [56] No 68.6 68.0 123.5 TitanXp 1024 × 2048 – 1.1M

SwiftNet [57] ResNet18 75.5 75.4 39.9 GTX 1080Ti 1024 × 2048 104.0 11.8M

BiSeNetV1 [21] Xception 39 69.0 68.4 105.8 GTX 1080Ti 786 × 1536 14.8 5.8M

BiSeNetV1 [21] ResNet18 74.8 74.7 65.5 GTX 1080Ti 786 × 1536 55.3 49M

BiSeNetV2† [22] No 73.4 72.6 156 GTX 1080Ti 512 × 1024 21.1 –

BiSeNetV2-L† [22] No 75.8 75.3 47.3 GTX 1080Ti 512 × 1024 118.5 –

SFNet [58] DF1 – 74.5 74 GTX 1080Ti 1024 × 2048 – 9M

SFNet [58] DF2 – 77.8 53 GTX 1080Ti 1024 × 2048 – 10.5M

STDC1-Seg50*† [25] STDC1 72.2 71.9 206.9 Tesla V100 512 × 1024 24.8 8.3M

STDC2-Seg50*† [25] STDC2 74.2 73.4 156.6 Tesla V100 512 × 1024 38.0 12.3M

STDC1-Seg75*† [25] STDC1 74.5 75.3 140.7 Tesla V100 786 × 1536 55.9 8.3M

STDC2-Seg75*† [25] STDC2 77.0 76.8 106.2 Tesla V100 786 × 1536 85.6 12.3M

CIDNet1-50 No 75.1 73.5 164.1 Tesla V100 512 × 1024 16.3 6.5M

CIDNet2-50 No 75.3 74.4 139.0 Tesla V100 512 × 1024 17.2 7.1M

CIDNet1-75 No 76.4 73.0 104.4 Tesla V100 786 × 1536 36.7 6.5M

CIDNet2-75 No 77.7 75.2 92.6 Tesla V100 786 × 1536 38.6 7.1M

Bold indicates the maximum value in the corresponding column
We train and evaluate our models with 1024×2048 resolution input that is resized into 768×1536, 512×1024 in the model. no indicates the method
do not have a backbone. Notation: backbone indicates the backbone models pre-trained on the ImageNet dataset. ∗ indicates that the inference
speeds for models are tested on our platform, and its GFLOPs and params are provided by our platform. The corresponding speed is measured
using TensorRT acceleration if the method is marked with †. “–” represents that the methods do not report the corresponding result. The DFANet
A and DFANet B are use the optimized depthwise convolutions to increase speed

(a) Image (b) BiSeNet V1 (c) BiSeNet V2 (d) STDCNet (e) CIDNet (f) Groundtruth

Fig. 6 Example results of the different methods on Cityscapes dataset. The first line is input images, and Lines 2–5 display the results of BiSeNet
V1, BiSeNet V2, STDCNet and CIDNet. The final line is the ground-truth
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Table 5 Comparisons with
state-of-the-art real-time
methods on CamVid test set

Model Backbone mIoU (%) Speed (FPS) GPU

ENet [53] No 51.3 61.2 TitanX

ICNet [44] PSPNet50 67.1 27.8 TitanX

DFANet A [24] Xception A 64.7 120 TitanX

DFANet B [24] Xception B 59.3 160 TitanX

SwiftNet [57] ResNet18 72.6 – GTX 1080Ti

BiSeNetV1 [21] Xception 39 65.6 175 GTX 1080Ti

BiSeNetV1 [21] ResNet18 68.7 116.3 GTX 1080Ti

BiSeNetV2 [22] No 72.4 124.5 GTX 1080Ti

BiSeNetV2-L [22] No 73.2 32.7 GTX 1080Ti

BiSeNetV2*† [22] No 76.7 124.5 GTX 1080Ti

BiSeNetV2-L*† [22] No 78.5 32.7 GTX 1080Ti

STDC1-Seg† [25] STDC1 73.0 197.6 GTX 1080Ti

STDC2-Seg† [25] STDC2 73.9 152.2 GTX 1080Ti

CIDNet1 No 71.3 130.7 Tesla V100

CIDNet2 No 71.5 109.6 Tesla V100

CIDNet1* No 76.3 130.7 Tesla V100

CIDNet2* No 77.8 109.6 Tesla V100

With 720 × 960 input, we evaluate the segmentation accuracy and corresponding inference speed. Notation:
backbone means that the backbone models pre-trained on the additional datasets, e.g., the ImageNet dataset
and the Cityscapes dataset. no indicates the method do not have a backbone. ∗ indicates that the models are
pre-trained on Cityscapes. The corresponding speed is measured using TensorRT acceleration if the method
is marked with †

Seg50, and at 1536×768 resolution, our CIDNet1-75 model
parameters are 73.2% less than STDC1-Seg75. In order to
further demonstrate the superiority of our proposed method,
we show the visualization results of several different meth-
ods on the cityscapes dataset in Fig. 6. From these figures,
it can be seen that our method is the closest to the ground
truth, that is, our method is superior to the three comparable
methods.

Experiments on CamVid

We also conduct experiments on the CamVid dataset to fur-
ther demonstrate the performance of CIDNet. Like other
works, the input resolution for training and inference is
720 × 960. Table 5 shows the comparison results with other
methods.

In Table 5 CIDNet1 and CIDNet2 respectively to denote
our proposedCIDNet based on theCID1andCID2 inTable 1.
In Table 5 CIDNet2* achieves the best performance, which is
77.8% mIoU with 109.6 FPS. This further demonstrates the
superior performance of our method. ‘*’ means the model is
loaded with the training weights of CIDNet2-75 (training in
citysacpes dataset).

Conclusion

In this paper, we propose an efficient compact interactive
dual-branch network (CIDNet) for real-time semantic seg-
mentation. Considering the complete dual-branch network
is time-consuming, we first refine the traditional dual-branch
network, and construct a compact detail branch and seman-
tic branch. To prevent the loss of information, we propose a
detail-semantic interactive fusion module. Finally, we con-
struct a dual-branch contextual attention fusion module to
deeply fuse the extracted features, and further predict the final
segmentation result. Experimental results on the Cityscapes
and CamVid datasets demonstrate that the proposed CIDNet
achieves satisfactory trade-off between segmentation accu-
racy and inference speed, and outperforms 16 representative
real-time semantic segmentation methods. Our network also
has shortcomings: how to make the spatial detail branch
occupy less computational resources, and how to improve
the fusion efficiency of the two branches. This will be
further improved in future work. In practical applications,
we are faced with marginal devices, mobile terminals and
other devices with relatively weak computing power, which
requires our algorithm to be light enough and the amount of
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computation should be as small as possible. Therefore, in the
future work, we will try to deploy our algorithm on mobile
terminals to improve the lightweight and efficient semantic
segmentation algorithm.
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