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Abstract
This article presents the circular Pythagorean fuzzy set (C-PFS) model, a generalization of the circular intuitionistic fuzzy
set model that improves its performance thanks to the acclaimed extension of intuitionistic fuzzy sets to Pythagorean fuzzy
sets. Then, we generalize C-PFSs to produce the novel disc Pythagorean fuzzy sets (D-PFSs). The constituent elements of
both C-PFSs and D-PFSs are circular Pythagorean fuzzy values, either with a common or a distinctive radius. We lay out
some fundamental algebraic and arithmetic operations on D-PFSs (hence on C-PFSs), namely union, intersection, addition,
multiplication, and scalar multiplication, and we explore the main features of these operations. We propose and investigate
the properties of the novel circular Pythagorean fuzzy weighted average/geometric aggregation operators. The “COmbinative
Distance based ASsesment" approach, which is based on the Hamming and Euclidean distances, is expanded to the D-PFS
framework. To justify its implementability, we apply the new methodology to a case study (selection of the best supermarkets
to buy fresh fruit for a hotel) and then we compare it to related solutions.
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Introduction

Thenotion of fuzzy setswas developed as away tomathemat-
ically represent the ambiguity we often observe in relation
with concepts or events that do not have clearly defined
boundaries. The items that can be the subject of scientific
research are many more when we employ the idea of par-
tial degrees of membership. This position creates both a
mathematical description of fuzzy sets [1] and a semantic
interpretation for them. However, there is no denying that
actions in many real-life scenarios produce both positive and
negative independent effects. Undesirability of an action can-
not always be retrieved from its desirability. For instance,
the use of antibiotics is beneficial in the treatment of various
diseases; however, it has some adverse side effects on the
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body, and they happen independently of its positive results.
In formal terms, positive and harmful aspects can be cap-
tured by membership (MD) and non-membership (NMD)
degrees, respectively. Each such pair of evaluations is nowa-
days known as an orthopair [2]. Atanassov pioneered the
idea of incorporating both figures into a model, and thus
conceived the notion of intuitionistic fuzzy set (IFS) [3].
AlthoughNMDs are not derived from the correspondingMD
anymore, both evaluations are still linked by the idea that they
apportion a sort of “totalmembership” between desirable and
undesirable belongingness, possibly with some slackness.
This prompted Atanassov to declare that the total of MDs
and NMDs should be universally bound by 1. At any rate,
IFSs have been employed to solve several daily-life issues
which includes decision making [4], concept selection [5],
figure skating [6], and image fusion [7]. Their theoretical
basis has been expanded considerably too [8].

Yager [9] launched Pythagorean fuzzy sets (PFSs) to alle-
viate the constraint on the total of MDs and NMDs in IFSs
(see [10] for its early development). Zhang and Xu [12]
defined the term Pythagorean fuzzy value (PFV). Superior-
ity and inferiority ranking approach for PFSs was explored in
[13]. Complex PFSs and their applications to pattern recog-
nition were discussed by Ullah et al. [14]. PF graphs, PF
indiscernibility relation, and their applications to protein–
protein interaction networks were discussed by Nawaz et
al. [15]. Naeem et al. [16] designed aggregation operators
based on TOPSIS and VIKOR methods for PFS. Garg [17],
Ashraf et al. [18] and Khan et al. [19], respectively, proposed
Einstein operations-based, sine trigonometric, and Dombi
aggregation operators for PFSs. The MABAC method for
PFS based on Choquet integral was given in [20]. Akram et
al. [21] extended the ELECTRE-II approach for PFS. Khan
et al. [22] provided a refined VIKOR method with the help
of dissimilarity measures.

Other important research directions to handle the uncer-
tainty in different forms include soft sets by Molodtsov [23],
bipolar-valued fuzzy sets by Zhang [24], bipolar-valued soft
sets by Mahmood [25], complex fuzzy sets [26], and bipolar
complex fuzzy sets [27]. The list is not exhaustive.

Independently of the discussion above, in many genuine
decision-making situations, it may be challenging for experts
to precisely calibrate their judgments by a number (e.g., due
tomeasurement errors, or variety of sources). They can, how-
ever, declare that the evaluations lie in an interval (in our
setting, the unit interval). The integration of this feature into
the IFS approach produced the model called interval-valued
IFS (IV-IFS) by Atanassov [28]. The interval-valued PFS
(IV-PFS) model given by Peng and Yang [29] expands PFSs
with interval evaluations. These authors discussed basic oper-
ations and aggregation operators for IV-PFS, and extended
the ELECTRE method to this framework. Figure1 repre-
sents an IV-PFS.We can observe that its constituent elements

Fig. 1 A geometrical presentation of the basic ingredient (the evalua-
tion of an alternative) of an IV-PFS

are represented by suitably placed rectangles (instead of the
isolated pairs of numbers that characterize the evaluations
pertaining to PFSs).

A similar motivation produced another extension of IFSs,
whereby a circular region (rather than a rectangle) with a
given radius is allocated estimate the value of every option.
This modification produces a representation that is less
challenging than the space of orthopairs allowed in the afore-
mentioned IV-IFS. The spirit, however, is similar: whereas
IV-IFS allow for separate looseness in the production ofMDs
andNMDs, the newmodel permits a certain slacknessaround
the orthopair formed by the MDs and NMDs. Slackness is
given by the radius associated with themodel, whose name is
Circular IFS (C-IFS) after Atanassov [30]. Recently, Khan et
al. [31] have discussed the divergence measures for C-IFSs
and their applications to decision making, pattern recogni-
tion, and multi-period medical diagnosis. Even though, this
extension of IFSs suffers from the setback that it cannot oper-
ate in cases where the total of MD and NMD exceeds one
for the reasons presented above. A more important criticism
is that situations exist for which some alternatives can be
evaluated with almost certain values (i.e., near to zero slack-
ness) but other alternatives are hard to evaluate unless a large
looseness is allowed.

To overcomeboth the difficulty of the representation in IV-
PFSs and the restrictive domain of C-IFSs, in this paper, we
propose the ideas of Circular PFSs (C-PFSs) and Disc PFSs
(D-PFSs). These are legitimate extensions of all IFSs, C-
IFSs, and PFSs, whose geometrical visualizations are given
in Figs. 2 and 3, respectively. The new frameworks enlarge
the domain of qualified MDs and NMDs of the aforesaid
models. Observe that in Fig. 2, circle 1 is allowed by the C-

123



Complex & Intelligent Systems (2023) 9:7037–7054 7039

Fig. 2 A geometrical comparison: the basic ingredients (the evaluation
of each alternative) of C-IFSs versus C-PFSs

Fig. 3 A geometrical presentation of the basic ingredients (the evalua-
tion of each alternative) of a D-PFS

IFS modelization, but circle 2 is not. Nevertheless it belongs
to the novel C-PFS model. Figure3 illustrates the difference
with the D-PFS model, where the evaluations are allowed to
have their own distinctive girths.

Therefore, the aim of this study is to formalize the idea
of C-PFS and D-PFS and establish algebraic (union, inter-
section) and arithmetic (addition, multiplication, and scalar
multiplication) operations for D-PFSs, the largest of these
two models. Their semantic interpretations will be pre-
sented too. We shall also be concerned with aggregation
operators. The circular Pythagorean fuzzy weighted average
(CPFWA) and circular Pythagorean fuzzy weighted geomet-

ric (CPFWG) aggregation operators will be defined, and their
properties will be investigated. With these tools, the Ham-
ming and Euclidean distances based CODASmethod will be
extended to the newmodel. It will be used to address practical
decision-making problems.

The rest of the manuscript is structured as follows. Funda-
mentals concerning C-IFSs are covered in “Preliminaries”.
“Circular versus disc Pythagorean fuzzy sets” introduces the
concepts of C-PFS and D-PFS and their essential princi-
ples. “Operating with D-PFSs: aggregation and distances”
is devoted to the study of technical tools that are neces-
sary for subsequent applications. Specifically, the analysis of
aggregation operators for D-PFSs and their main character-
istics are included in “D-PF aggregation operators”, and then
“Distance measures for D-PFSs” puts forward and examines
the Hamming and Euclidean distances between D-PFSs. The
CODAS approach is covered in “Disc Pythagorean fuzzy
CODAS method”. “Illustrative example: selection of super-
market for fresh fruits” is concernedwith howD-PFSs can be
applied to CODAS-based decision making. The comparison
and concluding notes of the article are presented in “Com-
parative analysis” and “Conclusion”, respectively.

Preliminaries

Throughout the entire article, L is a finite and non-empty
set, and we refer to L as the universal set (of alternatives).
Besides, the unit interval [0, 1] is represented by I.

We proceed to recall the fundamental definitions of fuzzy
set, IFS, IV-IFS, PFS, and C-IFS over L . In this section, we
also mention some basic facts about C-IFSs that have been
established in existing literature.

Definition 1 [1] A fuzzy set A over a universal set L is
defined as

A = {(h̄, μA(h̄)) | h̄ ∈ L},

where μA : L → I is the MD.

Definition 2 [3] An IFS A over a universal set L is defined
as

A = {(h̄, μA(h̄), νA(h̄)) | h̄ ∈ L},

where μA : L → I and νA : L → I, with the constraint
μA(h̄) + νA(h̄) ≤ 1, are the MD and NMDs, respectively.
The expression πA(h̄) = 1 − (μA(h̄) + νA(h̄)) gives the
hesitancy degree of an element h̄ ∈ L .

Definition 3 [28] An IV-IFS A over a universal set L is
defined as

A = {(h̄, IμA (h̄), IνA (h̄)) | h̄ ∈ L},
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where IμA (h̄) and IμA (h̄), with the constraint Sup{IμA (h̄)}+
Sup{IνA(h̄)} ≤ 1, are the MD and NMD intervals, respec-
tively.

Although IFSs are very effective (and expand fuzzy sets
in a sensible manner), a difficulty evolved when practical
explorations produced separate MDs and NMDs whose sum
exceeded one. This issue should in fact come as no surprise,
in view of the independent occurrence of positive and nega-
tive effects that justifies the semantic interpretation of IFSs.
Yager [9] launched a strategy to escape this problem (see [10]
for its early development), which first produced Pythagorean
fuzzy sets (PFSs) and ultimately led toq-rung orthopair fuzzy
sets [11]. These generalizations allowed ampler autonomy
for orthopair selection. In a q-rung orthopair fuzzy set, the
MDs and NMDs of each orthopair are only required to sat-
isfy that the sum of their q powers is less than or equal to
one. The case q = 2 reduces to PFSs, whose success was
immediate.

Definition 4 [9, 10] A PFS A over a universal set L is defined
as

A = {(h̄, μA(h̄), νA(h̄)) | h̄ ∈ L},

where μA : L → I and νA : L → I, with the constraint
μ2

A(h̄) + ν2A(h̄) ≤ 1, are the MDs and NMDs, respectively.

The expression πA(h̄) =
√
1 − (μ2

A(h̄) + ν2A(h̄)) gives the
hesitancy degree of an element h̄ ∈ L .

Definition 5 [30] A C-IFS A over a universal set L is defined
as

A = {(h̄, μA(h̄), νA(h̄) ; r) | h̄ ∈ L},

where μA : L → I and νA : L → I, with the con-
straint μA(h̄) + νA(h̄) ≤ 1, are the MDs and NMDs,
respectively. Here, r is the radius of the circle having cen-
ter (μA(h̄), νA(h̄)). The expression πA(h̄) = 1 − (μA(h̄) +
νA(h̄)) gives the hesitancy degree of an element h̄ ∈ L .

C-IFSs offer a nested family of models, which means that
if r < r ′ are non-negative radii, then a C-IFS of radius r can
be regarded as a C-IFS of radius r ′.

Circular versus disc Pythagorean fuzzy sets

In this section, we extend the idea of C-IFSs to C-PFSs.
The extension provides more space to choose orthopairs with
similar characteristics (they are allowed as long as they are
not “too far away” from a given orthopair, as prescribed by
a fixed radius). Importantly, to provide yet more flexibility,
C-PFSs will then be extended to D-PFSs or disc PFSs by

allowing the radius to vary with the characteristics of each
alternative. We shall explain the semantic interpretation of
the newmodel and then we shall design suitable set-theoretic
and arithmetic operations in this framework. Although this
part is essentially technical, it is necessary for a founding
work on the topic.

Definition 6 A C-PFS A of radius r over a universal set L is
defined as

A = {(h̄, μA(h̄), νA(h̄) ; r) | h̄ ∈ L},

where μA : L → I and νA : L → I, with the constraint
μ2

A(h̄) + ν2A(h̄) ≤ 1, are the MDs and NMDs associ-
ated with h̄, respectively, and r is the radius of a circle
having center (μA(h̄), νA(h̄)). The expression πA(h̄) =√
1 − (μ2

A(h̄) + ν2A(h̄)) gives the hesitancy degree of an ele-
ment h̄ ∈ L .

The evaluation for h̄, a = (h̄, μa(h̄), νa(h̄); r), symbol-
izes a circle with radius r at center (μa(h̄), νa(h̄)) called
circular Pythagorean fuzzy value (C-PFV). In an abstract
setting, a C-PFV is written as (μa, νa; r) rather than the
(h̄, μa(h̄), νa(h̄); r) expression associated with an alterna-
tive h̄.

As in the case of C-IFSs, C-PFSs offer a nested family of
models, in the following sense: when r < r ′ are non-negative
radii, a C-PFS of radius r is also a C-PFS of radius r ′.

Let T = {(s, t) | s, t ∈ I & s2 + t2 ≤ 1}. In order to
fully grasp the idea of C-IFSs, a C-PFS A will be spelled as

A = {Cr (μA(h̄), νA(h̄)) | h̄ ∈ L} ,

where

Cr (μA(h̄), νA(h̄)) =
{
(s, t) | s, t ∈ I

&
√

(μA(h̄) − s)2 + (νA(h̄) − t)2 ≤ r

}
∩ T

=
{
(s, t) | s, t ∈ I,

√
(μA(h̄) − s)2 + (νA(h̄) − t)2 ≤ r

& s2 + t2 ≤ 1

}
. (1)

Definition 7 A D-PFS (for disc PFS) A over a universal set
L is defined as

A = {(h̄, μA(h̄), νA(h̄) ; r(h̄)) | h̄ ∈ L},

where μA : L → I and νA : L → I satisfy the constraint
μ2

A(h̄) + ν2A(h̄) ≤ 1 for all h̄ ∈ L . They are the MDs and
NMDs associated with h̄, respectively, whereas r(h̄) is the
radius of a circle having center (μA(h̄), νA(h̄)). The expres-

sion πA(h̄) =
√
1 − (μ2

A(h̄) + ν2A(h̄)) gives the hesitancy
degree of h̄ ∈ L .
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C-PFSs are D-PFSs with r(h̄) = r(h̄′) for all h̄, h̄′ ∈ L . In
a D-PFS, the evaluation for h̄ is a = (h̄, μa(h̄), νa(h̄); r(h̄)).
Now it is a circle with a distinctive radius r(h̄), which
may be different for each alternative, and whose center is
(μa(h̄), νa(h̄)). So this evaluation is a circular Pythagorean
fuzzy value too. We insist that in contrast with C-PFSs, these
C-PFVs have possibly different radii when the alternative
varies. At any rate, operations that depend upon C-PFVs will
be valid to operate with both C-PFSs and D-PFSs. We shall
use this feature in subsequent sections, where we only need
to take care of the D-PFS case.

Proposition 1 below will prove another relationship
between C-PFSs and D-PFSs.

Semantic interpretation

It is well known that at each alternative, an IV-IFS allows for
some looseness both in the definition of MDs and NMDs.
Instead of an orthopair, a pair of intervals characterizes the
alternative. These intervals may have very different dimen-
sions. And their lengths may vary with the alternatives in
order to account for measurement errors, indeterminacy, et
cetera.

In a C-PFS, for the description of h̄ ∈ L , there
is a fixed slackness r around the orthopair formed by
(μa(h̄), νa(h̄)). All permitted orthopairs whose separation
from (μa(h̄), νa(h̄)) is lower than this radius are admissi-
ble evaluations of h̄. But in a D-PFS, for the description of
h̄ ∈ L there is a distinctive slackness r(h̄), so that permitted
orthopairs whose separation from (μa(h̄), νa(h̄)) is under
r(h̄) are admissible evaluations of h̄. Both in C-PFSs and D-
PFSs, it is apparent that the radii represent a margin of error
in terms of the description of the orthopairs. This margin of
error is common to all the alternatives in a C-PFS. Wher-
ever we feel that some alternatives must be associated with
smaller margins of error (e.g., because they have been evalu-
ated with more precise instruments, or better statistical tools,
or more reliable samples), we should resort to a D-PFS.

Notation. We shall abuse notation to avoid cumbersome
expressions. Wherever the notation implicitly gives the
element h̄, we shall avoid explicitly mentioning it. For exam-
ple, we henceforth replace (h̄, μA(h̄), νA(h̄) ; r(h̄)) with the
shorter (μA(h̄), νA(h̄) ; r(h̄)). Consequently, a D-PFV asso-
ciated with h̄ will be simply written as (μa(h̄), νa(h̄); r(h̄)),
which is indicative of the alternative it refers to.

Theoretically, Eq. (1) generates five different types of cir-
cles, which can be seen in Fig. 4. In addition, Eq. (1) and
Fig. 4 assist us in defining the domain of radius r , which can
be any real value between 0 and

√
2. The C-PFS functions

become a standard PFS when r is equal to zero.

Fig. 4 Geometrical visualization of the types of evaluations allowed
by a C-PFS (for each h̄ ∈ L). The case of a D-PFS is similar, but with
variable radii for the circles

Set-theoretic and arithmetic operations on D-PFSs

The following definitions pertain to the analog of set-
theoretic complement, union, and intersection. Their spirit is
inspired by similar definitions in the fundamental IFS frame-
work.

Definition 8 Let three D-PFSs A, A1, and A2 be defined
as follows: A = {(μA(h̄), νA(h̄); r(h̄)) | h̄ ∈ L},
A1 = {(μA1(h̄), νA1(h̄); r1(h̄)

) | h̄ ∈ L} and A2 =
{(μA2(h̄), νA2(h̄); r2(h̄)

) | h̄ ∈ L}. Then, the following
operations are defined:

• The complement operation is defined as: Ac =
{(νA(h̄), μA(h̄); r(h̄)) | h̄ ∈ L}.

• The set containment is defined as: A1 ⊆ A2 ⇐⇒
r1(h̄) ≤ r2(h̄), μA1(h̄) ≤ μA2(h̄) & νA1(h̄) ≥ νA2(h̄).

• The union operations are defined as

A1 ∪max A2 =
{(

max{μA1(h̄), μA2 (h̄)},min{νA1(h̄),

νA2 (h̄)};max{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}

A1 ∪min A2 =
{(

max{μA1(h̄), μA2 (h̄)},min{νA1(h̄),

νA2 (h̄)};min{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}
.
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• The intersection operations are defined as

A1 ∩max A2 =
{(

min{μA1(h̄), μA2 (h̄)},max{νA1(h̄),

νA2 (h̄)};max{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}

A1 ∩min A2 =
{(

min{μA1(h̄), μA2 (h̄)},max{νA1

(h̄), νA2 (h̄)};min{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}
.

With respect to arithmetics, addition, multiplication and
power operations for D-PFS can be defined as follows:

Definition 9 In the situation of Definition 8, the following
operations are defined:

• The addition operations are defined as

A1 ⊕max A2 =
{(√

μ2
A1

(h̄) + μ2
A2

(h̄) − μ2
A1

(h̄).μ2
A2

(h̄) ,

νA1(h̄).νA2 (h̄);max{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}
,

A1 ⊕min A2 =
{(√

μ2
A1

(h̄) + μ2
A2

(h̄) − μ2
A1

(h̄).μ2
A2

(h̄) ,

νA1(h̄).νA2 (h̄);min{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}
.

• The multiplication operations are defined as

A1 ⊗max A2 =
{(

μA1(h̄).μA2(h̄) ,

√
ν2A1

(h̄) + ν2A2
(h̄) − ν2A1

(h̄) · ν2A2
(h̄) ;

max{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}

A1 ⊗min A2 =
{(

μA1(h̄).μA2(h̄) ,

√
ν2A1

(h̄) + ν2A2
(h̄) − ν2A1

(h̄) · ν2A2
(h̄) ;

min{r1(h̄), r2(h̄)}
)

| h̄ ∈ L

}
.

• The scalar multiplication operations are defined as: for
λ > 0

λA =
{(√

1 − (1 − μ2
A(h̄))λ , νλ

A(h̄) ; r(h̄)

)
| h̄ ∈ L

}

Aλ =
{(

μλ
A(h̄) ,

√
1 − (1 − ν2A(h̄))λ ; r(h̄)

)
| h̄ ∈ L

}
.

The sets resulting from the complement, union, inter-
section, addition, multiplication, and scalar multiplication
operations of D-PFSs are D-PFSs. The proofs are similar to

the proofs given in [9, 10, 13] which also inspired the tech-
nical definitions and at the same time, validate them.

The difference between C-PFSs and D-PFSs dilutes in a
finite environment:

Proposition 1 Any D-PFS A over a finite universal set L is
contained in a C-PFS over L.

Proof We just need to use the radius r = max{r(h̄) | h̄ ∈ L}
to justify this relationship between the two models. ��

We can easily prove the following properties related to the
operations mentioned above:

Theorem 1 Let β = (μ, ν; r), β1 = (μ1, ν1; r1), and β2 =
(μ2, ν2; r2) be three D-PFVs, and λ, λ1, λ2 > 0. Then,

1. β1 ⊕max β2 = β2 ⊕max β1;
2. β1 ⊕min β2 = β2 ⊕min β1;
3. β1 ⊗max β2 = β2 ⊗max β1;
4. β1 ⊗min β2 = β2 ⊗min β1;
5. λ(β1 ⊕max β2) = λβ1 ⊕max λβ2;
6. λ(β1 ⊕min β2) = λβ1 ⊕min λβ2;
7. λ1 p ⊕max λ2 p = (λ1 + λ2)p;
8. λ1 p ⊕min λ2 p = (λ1 + λ2)p;
9. (β1 ⊗max β2)

λ = βλ
1 ⊗max βλ

2 ;
10. (β1 ⊗min β2)

λ = βλ
1 ⊗min βλ

2 ;
11. βλ1 ⊗max βλ2 = βλ1+λ2 ;
12. βλ1 ⊗min βλ2 = βλ1+λ2 ;

Theorem 2 Let β = (μ, ν; r), β1 = (μ1, ν1; r1), and β2 =
(μ2, ν2; r2) be three D-PFVs, and λ, λ1, λ2 > 0. Then,

1. (βc)λ = (λp)c;
2. λ(βc) = (βλ)c;
3. β1 ∪max β2 = β2 ∪max β1;
4. β1 ∪min β2 = β2 ∪min β1;
5. β1 ∩max β2 = β2 ∩max β1;
6. β1 ∩min β2 = β2 ∩min β1;
7. λ(β1 ∪max β2) = λβ1 ∪max λβ2;
8. λ(β1 ∪min β2) = λβ1 ∪min λβ2;
9. (β1 ∪max β2)

λ = βλ
1 ∪max βλ

2 ;
10. (β1 ∪min β2)

λ = βλ
1 ∪min βλ

2 ;

Proof Here, we will demonstrate parts 1, 3, and 7. The
remaining components can be demonstrated similarly.

1. (βc)λ = (ν, μ; r)λ =
(
νλ,

√
1 − (1 − μ2)λ ; r

)

(λβ)c =
(√

1 − (1 − μ2)λ, νλ ; r
)c

= (νλ,
√
1 − (1 − μ2)λ ; r) = (βc)λ.

3. β1 ∪max β2 = (max{μ1, μ2},min{ν1, ν2};max{r1, r2})
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= (max{μ2, μ1},min{ν2, ν1};max{r2, r1})
= β2 ∪max β1

7. λ(β1 ∪max β2)

= λ (max{μ1, μ2},min{ν1, ν2};max{r1, r2})
=
(√

1 − (1 − max{μ2
1, μ

2
2})λ,min{νλ

1 , νλ
2 } ; max{r1, r2}

)

λβ1 ∪max λβ2

=
(√

1 − (1 − μ2
1)

λ, νλ
1 ; r1

)
∪max

(√
1 − (1 − μ2

2)
λ, νλ

2 ; r2

)

=
(
max

{√
1 − (1 − μ2

1)
λ,

√
1 − (1 − μ2

2)
λ

}
,min

{
νλ
1 , νλ

2

} ;

max{r1, r2}
)

=
(√

1 − (1 − max{μ2
1, μ

2
2})λ,min{νλ

1 , νλ
2 } ;max{r1, r2}

)

= λ(β1 ∪max β2).

��
Theorem 3 Let β1 = (μ1, ν1; r1), and β2 = (μ2, ν2; r2) be
two D-PFVs. Then,

1. βc
1 ∪max βc

2 = (β1 ∩max β2)
c;

2. βc
1 ∪min βc

2 = (β1 ∩min β2)
c;

3. βc
1 ∩max βc

2 = (β1 ∪max β2)
c;

4. βc
1 ∩min βc

2 = (β1 ∪min β2)
c;

5. βc
1 ⊕max βc

2 = (β1 ⊗max β2)
c;

6. βc
1 ⊕min βc

2 = (β1 ⊗min β2)
c;

7. βc
1 ⊗max βc

2 = (β1 ⊕max β2)
c;

8. βc
1 ⊗min βc

2 = (β1 ⊕min β2)
c.

Proof The first and fifth portions will be proved and the
remaining components can be demonstrated similarly.

1. βc
1 ∪max βc

2 = (ν1, μ1; r1) ∪max (ν2, μ2; r2)
= (max{ν1, ν2},min{μ1, μ2} ; max{r1, r2})

(β1 ∩max β2)
c = (min{μ1, μ2},max{ν1, ν2}; max{r1, r2})c

= (max{ν1, ν2},min{μ1, μ2} ; max{r1, r2})
= βc

1 ∪max βc
2 .

5. βc
1 ⊕max βc

2 = (ν1, μ1; r1) ∪max (ν2, μ2; r2)
=
(√

ν21 + ν22 − ν21ν
2
2 , μ1μ2 ; max{r1, r2}

)

(β1 ⊗max β2)
c =

(
μ1μ2,

√
ν21 + ν22 − ν21ν

2
2 ;max{r1, r2}

)c

=
(√

ν21 + ν22 − ν21ν
2
2 , μ1μ2 ; max{r1, r2}

)

= βc
1 ⊕max βc

2 .

��
Theorem 4 Let β1 = (μ1, ν1; r1), and β2 = (μ2, ν2; r2) be
two D-PFVs. Then,

1. (β1 ∪max β2) ⊕max (β1 ∩max β2) = β1 ⊕max β2;
2. (β1 ∪min β2) ⊕min (β1 ∩min β2) = β1 ⊕min β2;
3. (β1 ∪max β2) ⊕min (β1 ∩max β2) = β1 ⊕max β2;
4. (β1 ∪min β2) ⊕max (β1 ∩min β2) = β1 ⊕min β2;
5. (β1 ∪max β2) ⊕min (β1 ∩min β2) = β1 ⊕min β2;
6. (β1 ∪min β2) ⊕max (β1 ∩max β2) = β1 ⊕max β2;
7. (β1 ∪max β2) ⊗max (β1 ∩max β2) = β1 ⊗max β2;
8. (β1 ∪min β2) ⊗min (β1 ∩min β2) = β1 ⊗min β2;
9. (β1 ∪max β2) ⊗min (β1 ∩max β2) = β1 ⊗max β2;

10. (β1 ∪min β2) ⊗max (β1 ∩min β2) = β1 ⊗min β2;
11. (β1 ∪max β2) ⊗min (β1 ∩min β2) = β1 ⊗min β2;
12. (β1 ∪min β2) ⊗max (β1 ∩max β2) = β1 ⊗max β2.

Proof In the following, we shall prove parts first, fifth, and
seventh. The remaining statements can be proven in a similar
manner.

1. (β1 ∪max β2) ⊕max (β1 ∩max β2)

= (max{μ1, μ2},min{ν1, ν2} ;max{r1, r2})⊕max

(min{μ1, μ2},max{ν1, ν2} ;max{r1, r2})
=
(√

μ2
1 + μ2

2 − μ2
1μ

2
2, ν1ν2 ;

max{r1, r2})
= β1 ⊕max β2.

5. (β1 ∪max β2) ⊕min (β1 ∩min β2)

= (max{μ1, μ2},min{ν1, ν2} ;max{r1, r2})⊕min

(min{μ1, μ2},max{ν1, ν2} ;min{r1, r2})
=
(√

μ2
1 + μ2

2 − μ2
1μ

2
2, ν1ν2 ;min{r1, r2}

)

= β1 ⊕min β2.

7. (β1 ∪max β2) ⊗max (β1 ∩max β2)

= (max{μ1, μ2},min{ν1, ν2} ;max{r1, r2})⊗max

(min{μ1, μ2},max{ν1, ν2} ;max{r1, r2})
=
(

μ1μ2,

√
ν21 + ν22 − ν21ν

2
2 ;max{r1, r2}

)

= β1 ⊗max β2.

��

Theorem 5 Let β1 = (μ1, ν1; r1), and β2 = (μ2, ν2; r2) be
two D-PFVs. Then,

1. (β1 ∪max β2) ∩min β2 = β2;
2. (β1 ∪min β2) ∩max β2 = β2;
3. (β1 ∩max β2) ∪min β2 = β2;
4. (β1 ∩min β2) ∪max β2 = β2.
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Proof It suffices to prove the first part, the others being sim-
ilar.

1. (β1 ∪max β2) ∩min β2

= (max{μ1, μ2},min{ν1, ν2} ;max{r1, r2})
∩min (μ2, ν2; r2)

= (min{max{μ1, μ2}, μ2},max{min{ν1, ν2}, ν2} ;
min{max{r1, r2}, r2})

= (μ2, ν2; r2) = β2.

��
Theorem 6 Let β1 = (μ1, ν1; r1), β2 = (μ2, ν2; r2) and
β3 = (μ3, ν3; r3) be three D-PFVs. Then,

1. (β1 ∪max β2) ∩min β3 = (β1 ∩min β3) ∪max (β2 ∩min β3);
2. (β1 ∪min β2)∩max β3 = (β1 ∩max β3)∪min (β2 ∩max β3);
3. (β1 ∩max β2) ∪min β3 = (β1 ∪min β3) ∩max (β2 ∪min β3);
4. (β1 ∩min β2)∪max β3 = (β1 ∪max β3)∩min (β2 ∪max β3);

5. (β1∪maxβ2)⊕maxβ3 = (β1⊕maxβ3)∪max (β2⊕maxβ3);
6. (β1∪min β2)⊕max β3 = (β1⊕max β3)∪min (β2⊕max β3);
7. (β1 ∪max β2)⊕min β3 = (β1 ⊕min β3)∪max (β2 ⊕min β3);
8. (β1 ∪min β2)⊕min β3 = (β1 ⊕min β3)∪min (β2 ⊕min β3);

9. (β1∩maxβ2)⊕maxβ3 = (β1⊕maxβ3)∩max (β2⊕maxβ3);
10. (β1∩min β2)⊕max β3 = (β1⊕max β3)∩min (β2⊕max β3);
11. (β1 ∩max β2)⊕min β3 = (β1 ⊕min β3)∩max (β2 ⊕min β3);
12. (β1 ∩min β2)⊕min β3 = (β1 ⊕min β3)∩min (β2 ⊕min β3);

13. (β1∪maxβ2)⊗maxβ3 = (β1⊗maxβ3)∪max (β2⊗maxβ3);
14. (β1∪min β2)⊗max β3 = (β1⊗max β3)∪min (β2⊗max β3);
15. (β1 ∪max β2)⊗min β3 = (β1 ⊗min β3)∪max (β2 ⊗min β3);
16. (β1 ∪min β2)⊗min β3 = (β1 ⊗min β3)∪min (β2 ⊗min β3);

17. (β1∩maxβ2)⊗maxβ3 = (β1⊗maxβ3)∩max (β2⊗maxβ3);
18. (β1∩min β2)⊗max β3 = (β1⊗max β3)∩min (β2⊗max β3);
19. (β1 ∩max β2)⊗min β3 = (β1 ⊗min β3)∩max (β2 ⊗min β3);
20. (β1 ∩min β2)⊗min β3 = (β1 ⊗min β3)∩min (β2 ⊗min β3);

Proof In the following, we shall prove the 1st, 6th, 10th, and
14th parts:

1. (β1 ∪max β2) ∩min β3

= (max{μ1, μ2},min{ν1, ν2} ;max{r1, r2})
∩min (μ3, ν3 ; r3)

= (min{max{μ1, μ2}, μ3},max{min{ν1, ν2}, ν3} ;
min{max{r1, r2}, r3})

= (max{min{μ1, μ3},min{μ2, μ3}},min{max{ν1, ν3},
max{ν2, ν3}} ;max{min{r1, r3},min{r2, r3}})

= (min{μ1, μ3},max{ν1, ν3} ;min{r1, r3})∪max

(min{μ2, μ3},max{ν2, ν3} ;min{r2, r3})

= (β1 ∩min β3) ∪max (β2 ∩min β3).

6. (β1 ∪min β2) ⊕max β3

= (max{μ1, μ2},min{ν1, ν2} ;min{r1, r2})
⊕max (μ3, ν3; r3)

=
(√

max

{
μ2
1, μ

2
2

}
+ μ2

3 − max

{
μ2
1, μ

2
2

}
μ2
3,

min{ν1, ν2}ν3;
max{min{r1, r2}, r3}

)

=
(√(

1 − μ2
3

)
max

{
μ2
1, μ

2
2

}
+ μ2

3,min{ν1ν3, ν2ν3};

min{max{r1, r2},max{r1, r3}}
)

(
β1 ⊕max β3

)
∪min

(
β2 ⊕max β3

)

=
(√

μ2
1 + μ2

3 − μ2
1μ

2
3, ν1ν3 ;max{r1, r3}

)
∪min

(√
μ2
2 + μ2

3 − μ2
2μ

2
3, ν2ν3 ;max{r2, r3}

)

=
(
max

{√
μ2
1 + μ2

3 − μ2
1μ

2
3,

√
μ2
2 + μ2

3 − μ2
2μ

2
3

}
,

min{ν1ν3, ν2ν3};
min{max{r1, r3},max{r2, r3}}

)

=
(
max

{√(
1 − μ2

3

)
μ2
1 + μ2

3,

√(
1 − μ2

3

)
μ2
2 + μ2

3

}
,

min{ν1ν3, ν2ν3};
min{max{r1, r3},max{r2, r3}}

)

=
(√(

1 − μ2
3

)
max

{
μ2
1, μ

2
2

}
+ μ2

3,min{ν1ν3, ν2ν3};

min

{
max{r1, r2},max

{
r1, r3

}})

= (β1 ∪min β2) ⊕max β3

10. (β1 ∩max β2) ⊕min β3

= (min

{
μ1, μ2},max{ν1, ν2} ;max{r1, r2})

⊕min (μ3, ν3; r3)

=
(√

min

{
μ2
1, μ

2
2

}
+ μ2

3 − min

{
μ2
1, μ

2
2

}
μ2
3,

max{ν1, ν2}ν3;min{max{r1, r2}, r3}
)

=
(√(

1 − μ2
3

)
min

{
μ2
1, μ

2
2

}
+ μ2

3,max{ν1ν3, ν2ν3};

max{min{r1, r2},min{r1, r3}}
)
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(β1 ⊕min β3) ∩max (β2 ⊕min β3)

=
(√

μ2
1 + μ2

3 − μ2
1μ

2
3, ν1ν3 ;

min{r1, r3}
)

∩max

(√
μ2
2 + μ2

3 − μ2
2μ

2
3, ν2ν3 ;min{r2, r3}

)

=
(
min

{√
μ2
1 + μ2

3 − μ2
1μ

2
3,

√
μ2
2 + μ2

3 − μ2
2μ

2
3

}
,

max{ν1ν3, ν2ν3}
;max{min{r1, r3},min{r2, r3}}

)

=
(
min

{√(
1 − μ2

3

)
μ2
1 + μ2

3,

√(
1 − μ2

3

)
μ2
2 + μ2

3

}
,

max{ν1ν3, ν2ν3};
max{min{r1, r3},min{r2, r3}}

)

=
(√(

1 − μ2
3

)
min

{
μ2
1, μ

2
2

}
+ μ2

3,max{ν1ν3, ν2ν3};

max{min{r1, r2},min{r1, r3}}
)

= (β1 ∩max β2) ⊕min β3

14. (β1 ∪min β2) ⊗max β3

= (max{μ1, μ2},min{ν1, ν2} ;min{r1, r2})
⊗max (μ3, ν3; r3)

=
(
max{μ1, μ2}μ3,

√
min

{
ν21 , ν

2
2

}
+ ν23 − min

{
ν21 , ν

2
2

}
ν23 ;

max{min{r1, r2}, r3}
)

=
(
max{μ1μ3, μ2μ3},

√(
1 − ν23

)
min

{
ν21 , ν

2
2

}
+ ν23 ;

min{max{r1, r2},max{r1, r3}}
)

(β1 ⊗max β3) ∪min (β2 ⊗max β3)

=
(

μ1μ3,

√
ν21 + ν23 − ν21ν

2
3 ;max{r1, r3}

)
∪min

(
μ2μ3,

√
ν22 + ν23 − ν22ν

2
3 ;max{r2, r3}

)

=
(
max{μ1μ3, μ2μ3},min

{√
ν21 + ν23 − ν21ν

2
3 ,

√
ν22 + ν23 − ν22ν

2
3

}
;

min{max{r1, r3},max{r2, r3}}
)

=
(
max{μ1μ3, μ2μ3},min

{√(
1 − ν23

)
ν21 + ν23 ,

√
(1 − ν23 )ν

2
2 + ν23

}
;

min{max{r1, r3},max{r2, r3}}
)

=
(
max{μ1μ3, μ2μ3},

√(
1 − ν23

)
min

{
ν21 , ν

2
2

}
+ ν23 ;

min{max{r1, r2},
max{r1, r3}}

)

= (β1 ∪min β2) ⊗max β3

��

Operating with D-PFSs: aggregation and
distances

An operational theory of D-PFSs requires some numerical
tools that supplement the basic set-theoretic approach to the
topic. This section is devoted to supply two such fundamental
tools. First, we shall be concerned with aggregations opera-
tors. Then, we shall focus on measuring how far apart two
D-PFSs are with the help of distance measures.

D-PF aggregation operators

The mappings that are used to combine data are called
aggregation operators. They are used in a wide range of sci-
entific and engineering fields. We proceed to define C-PFVs
aggregating operations in this section, which will be called
CPFWAmax, CPFWAmin, CPFWGmax, and CPFWGmin. All
of them aggregate C-PFVs with varying radii. Hence with
their assistance we will be able to define D-PF aggregation
operators trivially.

Under the inspiration of weighted arithmetic and geo-
metric averages, the next two Definitions produce natural
extensions of the versions that havebeen adapted to IFSs [28]:

Definition 10 Fixω = (ω1, ω2, . . . , ωn), a vector of weights
(i.e.,

∑n
i=1 ωi = 1 with ωi > 0 for all i). Then, the

CPFWAmax and CPFWAmin operators are the mappings
CPFWAmax : βn → β and CPFWAmin : βn → β, such that
when βi = (μi , νi ; ri ) is a C-PFVS, for each i = 1, . . . , n:

CPFWAmax(β1, β2, . . . , βn)

= ω1β1 ⊕max ω2β2 ⊕max · · · ⊕max ωnβn (2)

CPFWAmin(β1, β2, . . . , βn)

= ω1β1 ⊕min ω2β2 ⊕min · · · ⊕min ωnβn . (3)

Definition 11 In the conditions of Definition 10, we define
the mappings CPFWGmax : βn → β and CPFWGmin :
βn → β, such that when βi = (μi , νi ; ri ) is a C-PFVS,
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for each i = 1, . . . , n:

CPFWGmax(β1, β2, . . . , βn)

= ω1β1 ⊗max ω2β2 ⊗max · · · ⊗max ωnβn (4)

CPFWGmin(β1, β2, . . . , βn)

= ω1β1 ⊗min ω2β2 ⊗min · · · ⊗min ωnβn . (5)

We can take advantage of the expressions of the arith-
metic operations on C-PFVs in order to produce operational
formulas for the aggregation operators defined above. We
prove these facts in Theorems 7 and 8 below:

Theorem 7 In the conditions ofDefinition10, theCPFWAmax

and CPFWAmin operators can also be written as

CPFWAmax(β1, . . . , βn)

=
⎛
⎝
√√√√1 −

n∏
i

(
1 − μ2

i

)ωi

,

n∏
i

ν
ωi
i ;max{r1, . . . , rn}

⎞
⎠

(6)

CPFWAmin(β1, . . . , βn)

=
⎛
⎝
√√√√1 −

n∏
i

(
1 − μ2

i

)ωi

,

n∏
i

ν
ωi
i ;min{r1, . . . , rn}

⎞
⎠ .

(7)

Proof This result can be demonstrated using mathematical
induction. For n = 2, we have

CPFWAmax(β1, β2) = ω1β1 ⊕max ω2β2

=
(√

1 − (1 − μ2
1)

ω1 , ν
ω1
1 ; r1

)
⊕max

(√
1 − (1 − μ2

2)
ω2 , ν

ω2
2 ; r2

)

=
(√

1−(1−μ2
1)

ω1+1−(1−μ2
2)

ω2−(1−(1−μ2
1)

ω1 )(1−(1−μ2
2)

ω2 ),

ν
ω1
1 ν

ω2
2 ;max{r1, r2}

)

=
⎛
⎝
√√√√1 −

2∏
i

(1 − μ2
i )

ωi ,

2∏
i

ν
ωi
i ;max{r1, r2}

⎞
⎠

Suppose (6) is true for n = k, that is,

CPFWAmax(β1, . . . , βk)

=
⎛
⎝
√√√√1 −

k∏
i

(
1 − μ2

i

)ωi

,

k∏
i

ν
ωi
i ;max{r1, . . . , rk}

⎞
⎠

We need to prove true for n = k + 1,

⎛
⎝
√√√√1 −

k∏
i

(
1 − μ2

i

)ωi

,

k∏
i

ν
ωi
i ;max{r1, . . . , rk}

⎞
⎠

⊕max

⎛
⎝
√
1 −

(
1 − μ2

k+1

)ωk+1

, ν
ωk+1
k+1 ; rk+1

⎞
⎠

=
⎛
⎝
√√√√1 −

k+1∏
i

(
1 − μ2

i

)ωi

,

k+1∏
i

ν
ωi
i ;max{r1, r2, . . . , rk+1}

⎞
⎠

This implies (6) is true. Similarly, we can prove (7). ��
Theorem 8 In the conditions ofDefinition11, theCPFWGmax

and CPFWGmin operators can also be written as

CPFWGmax(β1, . . . , βn)

=
⎛
⎝

n∏
i

μ
ωi
i ,

√√√√1 −
n∏
i

(
1 − ν2i

)ωi

;max{r1, . . . , rn}
⎞
⎠

(8)

CPFWGmin(β1, . . . , βn)

=
⎛
⎝

n∏
i

μ
ωi
i ,

√√√√1 −
n∏
i

(
1 − ν2i

)ωi

;min{r1, . . . , rn}
⎞
⎠ .

(9)

Proof The demonstration resembles the demonstration of
Theorem 7. ��

The next three Theorems are devoted to prove three
standard requirements of aggregation operators in this con-
text, namely, monotonicity, boundedness, and idempotency.
Hence these technical results guarantee an adequate perfor-
mance of the new operators. In fact, both monotonicity and
idempotency are straightforward properties whose proofs are
therefore omitted.

Theorem 9 (Monotonicity) Let {βi = (μi , νi ; ri )}i=1,...,n

and {qi = (μqi , νqi ; rqi )}i=1,...,n be two lists of n C-PFVSs.
If μβi ≤ μqi , νβi ≥ νqi , and rβi ≤ rqi , then

1. CPFWAmax(β1, . . . , βn) ≤ CPFWAmax(q1, . . . , qn)

2. CPFWAmin(β1, . . . , βn) ≤ CPFWAmin(q1, . . . , qn)

3. CPFWGmax(β1, . . . , βn) ≤ CPFWGmax(q1, . . . , qn)

4. CPFWGmin(β1, . . . , βn) ≤ CPFWGmin(q1, . . . , qn).

Theorem 10 (Boundedness) Let {βi = (μi , νi ; ri )}i=1,...,n

be a list of n C-PFVSs. If p and p̄ are two C-PFVs such
that p = (μ, ν̄; r) = (min(μi ),max(νi ) min(ri )) and p̄ =
(μ̄, ν, r̄) = (max(μi ),min(νi ) max(ri )), then

1. (μ, ν̄; r) ≤ CPFWAmax(β1, . . . , βn) ≤ (μ̄, ν, r̄);
2. (μ, ν̄; r) ≤ CPFWAmin(β1, . . . , βn) ≤ (μ̄, ν, r̄);
3. (μ, ν̄; r) ≤ CPFWGmax(β1, . . . , βn) ≤ (μ̄, ν, r̄);
4. (μ, ν̄; r) ≤ CPFWGmin(β1, . . . , βn) ≤ (μ̄, ν, r̄).

Proof We prove the first part of the theorem. The remain-
ing parts can be proven similarly. To complete the first part,
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we need to show that μ ≤
√
1 −∏n

i (1 − μ2
i )

ωi ≤ μ̄,

ν̄ ≥ ∏n
i ν

ωi
i ≥ ν, and r ≤ max{r1, . . . , rn} ≤ r̄ .

Since μ2 ≤ μ2
i ≤ μ̄2, we have

n∏
i

(
1 − μ2

)ωi

≥
n∏
i

(
1 − μ2

i

)ωi

≥
n∏
i

(1 − μ̄2)ωi

(
1 − μ2

)∑n
i ωi

≥
n∏
i

(
1 − μ2

i

)ωi

≥ (1 − μ̄2
)∑n

i ωi

μ ≤
√√√√1 −

n∏
i

(
1 − μ2

i

)ωi

≤ μ̄.

Similarly, we can prove ν̄ ≥ ∏n
i ν

ωi
i ≥ ν, and r ≤

max{r1, . . . , rn} ≤ r̄ . ��
Theorem 11 (Idempotency) Let {βi = (μi , νi ; ri )}i=1,...,n

be a list of n C-PFVSs such that βi = β = (μ, ν; r). If
ω = (ω1, ω2, . . . , ωn) is a weight vector with

∑n
i=1 ωi = 1,

then

1. CPFWAmax(β1, . . . , βn) = β;
2. CPFWAmin(β1, . . . , βn) = β;
3. CPFWGmax(β1, . . . , βn) = β;
4. CPFWGmin(β1, . . . , βn) = β.

Theorem 12 Let {βi = (μi , νi ; ri )}i=1,...,n be a list of n C-
PFVSsandβ = (μ, ν; r)beanyC-PFV. Ifω = (ω1, . . . , ωn)

is a weight vector with
∑n

i=1 ωi = 1, then

1. CPFWAM (β1 ⊕M β, . . . , βn ⊕M β)

≥ CPFWAM (β1 ⊗M β, . . . , βn ⊗M β);
2. CPFWAN (β1 ⊕N β, . . . , βn ⊕N β)

≥ CPFWAN (β1 ⊗N β, . . . , βn ⊗N β);
3. CPFWAN (β1 ⊕M β, . . . , βn ⊕M β)

≥ CPFWAN (β1 ⊗M β, . . . , βn ⊗M β);
4. CPFWAN (β1 ⊕N β, . . . , βn ⊕N β)

≥ CPFWAN (β1 ⊗N β, . . . , βn ⊗N β);
5. CPFWGM (β1 ⊕M β, . . . , βn ⊕M β)

≥ CPFWGM (β1 ⊗M β, . . . , βn ⊗M β);
6. CPFWGN (β1 ⊕N β, . . . , βn ⊕N β)

≥ CPFWGN (β1 ⊗N β, . . . , βn ⊗N β);
7. CPFWGN (β1 ⊕M β, . . . , βn ⊕M β)

≥ CPFWGN (β1 ⊗M β, . . . , βn ⊗M β);
8. CPFWGN (β1 ⊕N β, . . . , βn ⊕N β)

≥ CPFWGN (β1 ⊗N β, . . . , βn ⊗N β),

where the subscripts M and N have been substituted formax
and min, respectively.

Proof For any βi = (μβi , νβi ; rβi ) and p = (μ, ν; r), we
have βi ⊕M p ≥ βi ⊗M p and βi ⊕N p ≥ βi ⊗N p. The
proofs of all parts canbe easily derived from themonotonicity
of CPFWAmax, CPFWAmin, CPFWGmax, and CPFWGmin. ��
Theorem 13 Let {βi = (μi , νi ; ri )}i=1,...,n be a list of
n C-PFVSs and β = (μ, ν; r) be any C-PFV. If ω =
(ω1, ω2, . . . , ωn) is a weight vector with

∑n
i=1 ωi = 1, then

1. CPFWAmax(β1 ⊕max β, . . . , βn ⊕max β)

≥ CPFWAmax(β1, . . . , βn) ⊗max β;
2. CPFWAmin(β1 ⊕min β, . . . , βn ⊕min β)

≥ CPFWAmin(β1, . . . , βn) ⊗min β;
3. CPFWAmax(β1, . . . , βn) ⊕max β

≥ CPFWAmax(β1, . . . , βn) ⊗max β;
4. CPFWAmin(β1, . . . , βn) ⊕min β

≥ CPFWAmin(β1, . . . , βn) ⊗min β;
5. CPFWGmax(β1 ⊕max β, . . . , βn ⊕max β)

≥ CPFWGmax(β1, . . . , βn) ⊗max β;
6. CPFWGmin(β1 ⊕min β, . . . , βn ⊕min β)

≥ CPFWGmin(β1, . . . , βn) ⊗min β;
7. CPFWGmax(β1, . . . , βn) ⊕max β

≥ CPFWGmax(β1, . . . , βn) ⊗max β;
8. CPFWGmin(β1, . . . , βn) ⊕min β

≥ CPFWGmin(β1, . . . , βn) ⊗min β.

Proof In this theorem, we prove only the first part. The
remaining parts can be prove analogously.

Let βi ⊕max β = (Ti , Si , Ri ) =
(√

μ2
i + μ2 − μ2

i μ
2,

νiν ;max{ri , r}
)
. Then,

CPFWAmax(β1 ⊕max β, . . . , βn ⊕max β)

=
⎛
⎝
√√√√1 −

n∏
i

(1 − T 2
i )ωi ,

n∏
i

Sωi
i ;max{R1, . . . , Rn}

⎞
⎠

For the left hand side, we have

CPFWAmax(β1, β2, . . . , βn) ⊗max β

=
⎛
⎝
√√√√1 −

n∏
i

(1 − μ2
i )

ωi ,

n∏
i

ν
ωi
i ;max{r1, . . . , rn}

)
⊗max (μ, ν; r)

=
⎛
⎝μ

√√√√1 −
n∏
i

(1 − μ2
i )

ωi ,
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√√√√
( n∏

i

ν
ωi
i

)2

+ ν2 −
( n∏

i

ν
ωi
i

)2

ν2;max{R1, . . . , Rn}
⎞
⎠

We need to show that

√√√√1 −
n∏
i

(1 − T 2
i )ωi ≥ μ.

√√√√1 −
n∏
i

(1 − μ2
i )

ωi &

√√√√
(

n∏
i

ν
ωi
i

)2

+ ν2 −
(

n∏
i

ν
ωi
i

)2

ν2 ≥
n∏
i

Sωi
i .

We need to verify the above expressions.

1 −
n∏
i

(
1 −

(
μ2
i + μ2 − μ2

i μ
2
))ωi

≥ μ2

(
1 −

n∏
i

(
1 − μ2

i

)ωi
)

n∏
i

(
1 −

(
μ2
i + μ2 − μ2

i μ
2
))ωi

≤
n∏
i

(
1 − μ2

i

)ωi

1 −
(

μ2
i + μ2 − μ2

i μ
2
)

≤ 1 − μ2
i

μ2
i μ

2 ≤ μ2,

which is true in general. If
∏n

i ν
ωi
i = δ and

∏n
i S

ωi
i =∏n

i ν
ωi
i .ν, then

√√√√
(

n∏
i

ν
ωi
i

)2

+ ν2 −
(

n∏
i

ν
ωi
i

)2

ν2 ≥
n∏
i

Sωi
i

=
n∏
i

(νiν)ωi =
n∏
i

ν
ωi
i ν
√

δ2 + ν2 − δ2ν2 ≥ δν.

which is true and thus proves the first part. ��
Theorem 14 Let {βi = (μi , νi ; ri )}i=1,...,n be a list of n C-
PFVSs. If ω = (ω1, ω2, . . . , ωn) be the weight vector of βi
with

∑n
i=1 ωi = 1 and λ > 0, then

1. CPFWAmax(λβ1, . . . , λβn) ≥ CPFWAmax(β
λ
1 , . . . , βλ

n );
2. CPFWAmin(λβ1, . . . , λβn) ≥ CPFWAmin(β

λ
1 , . . . , βλ

n );
3. λCPFWAmax(β1, . . . , βn) ≥ (CPFWAmax(β1, . . . , βn)

λ;
4. λCPFWAmin(β1, . . . , βn) ≥ (CPFWAmin(β1, . . . , βn)

λ;
5. CPFWGmax(λβ1, . . . , λβn) ≥ CPFWGmax(β

λ
1 , . . . , βλ

n );
6. CPFWGmin(λβ1, . . . , λβn) ≥ CPFWGmin(β

λ
1 , . . . , βλ

n );
7. λCPFWGmax(β1, . . . , βn) ≥ (CPFWGmax(β1, . . . , βn)

λ;
8. λCPFWGmin(β1, . . . , βn) ≥ (CPFWGmin(β1, . . . , βn)

λ.

Proof The proof of this theorem is straightforward from the
fact λβi ≥ βλ

i . ��
Theorem 15 Let {βi = (μi , νi ; ri )}i=1,...,n and {qi =
(μqi , νqi ; rqi )}i=1,...,n be two lists of n C-PFVSs. If ω =
(ω1, . . . , ωn) is a weight vector with

∑n
i=1 ωi = 1, then

1. CPFWAmax(β1 ⊕max q1, . . . , βn ⊕max qn)

≥ CPFWAmax(β1 ⊗max q1, . . . , βn ⊗max q1);
2. CPFWAmax(β1 ⊕min q1, . . . , βn ⊕min qn)

≥ CPFWAmax(β1 ⊗min q1, . . . , βn ⊗min q1);
3. CPFWAmin(β1 ⊕max q1, . . . , βn ⊕max qn)

≥ CPFWAmin(β1 ⊗max q1, . . . , βn ⊗max q1);
4. CPFWAmin(β1 ⊕min q1, . . . , βn ⊕min qn)

≥ CPFWAmin(β1 ⊗min q1, . . . , βn ⊗min q1);
5. CPFWAmax(β1, . . . , βn) ⊕max CPFWAmax(q1, . . . , qn)

≥ CPFWAmax(β1, . . . , βn) ⊗max CPFWAmax(q1, . . . , qn);
(6) CPFWAmin(β1, . . . , βn) ⊕max CPFWAmin(q1, . . . , qn)

≥ CPFWAmin(β1, . . . , βn) ⊗max CPFWAmin(q1, . . . , qn);
7. CPFWGmax(β1 ⊕max q1, . . . , βn ⊕max qn)

≥ CPFWGmax(β1 ⊗max q1, . . . , βn ⊗max q1);
8. CPFWGmax(β1 ⊕min q1, . . . , βn ⊕min qn)

≥ CPFWGmax(β1 ⊗min q1, . . . , βn ⊗min q1);
9. CPFWGmin(β1 ⊕max q1, . . . , βn ⊕max qn)

≥ CPFWGmin(β1 ⊗max q1, . . . , βn ⊗max q1);
10. CPFWGmin(β1 ⊕min q1, . . . , βn ⊕min qn)

≥ CPFWGmin(β1 ⊗min q1, . . . , βn ⊗min q1);
11. CPFWGmax(β1, . . . , βn) ⊕max CPFWGmax(q1, . . . , qn)

≥ CPFWGmax(β1, . . . , βn) ⊗max CPFWGmax(q1, . . . , qn);
12. CPFWGmin(β1, . . . , βn) ⊕max CPFWGmin(q1, . . . , qn)

≥ CPFWGmin(β1, . . . , βn) ⊗max CPFWGmin(q1, . . . , qn);

Proof The proof of this theorem is straightforward from the
facts that for any C-PFVSs βi and qi , we have βi ⊕max qi ≥
βi ⊗max qi , βi ⊕min qi ≥ βi ⊗min qi , and monotonicity of
CPFWAmax, CPFWAmin, CPFWGmax, and CPFWGmin. ��
Theorem 16 Let {βi = (μi , νi ; ri )}i=1,...,n be a list of n C-
PFVSs. If ω = (ω1, ω2, . . . , ωn) is a weight vector with∑n

i=1 ωi = 1, then

1. CPFWAmax(β
c
1, . . . , β

c
n) = (CPFWGmax(β1, . . . , βn))

c ;
2. CPFWAmin(β

c
1, . . . , β

c
n) = (CPFWGmin(β1, . . . , βn))

c ;
3. CPFWGmax(β

c
1, . . . , β

c
n) = (CPFWAmax(β1, . . . , βn))

c ;
4. CPFWGmin(β

c
1, . . . , β

c
n) = (CPFWAmin(β1, . . . , βn))

c .

Proof Straightforward. ��
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Distancemeasures for D-PFSs

The distance metrics are used to determine how far apart two
fuzzy sets are from each other. One of the main topics in
fuzzy set theory that originated in metric theory is this one.
We expand the well-known distance measurements for C-
PFSs in this section. The CODAS approach will be expanded
for D-PFS in the very next section, where these metrics will
be applicable.

Definition 12 Let A1 and A2 be two D-PFSs over L . Then,
the Hamming distance between them is

H̄1(A1, A2) = 1

2NL
×
⎛
⎝∑

h̄∈L

[ | rA1(h̄) − rA2 (h̄) |√
2

+ | μ2
A1

(h̄) − μ2
A2

(h̄) | + | ν2A1
(h̄) − ν2A2

(h̄) |
2

])
, (10)

where NL is the cardinality of L .
If we consider the hesitancy index of D-PFVs while cal-

culating the distance between D-PFSs, then

H̄2(A1, A2) = 1

2NL

⎛
⎜⎜⎜⎝
∑
h̄∈L

⎡
⎢⎢⎢⎣

| rA1(h̄) − rA2(h̄) |√
2

+
| μ2

A1
(h̄) − μ2

A2
(h̄) | + | ν2A1

(h̄) − ν2A2
(h̄) |

+ | π2
A1

(h̄) − π2
A2

(h̄) |
2

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ . (11)

Definition 13 Let A1 and A2 be two D-PFSs over L . Then,
the Euclidean distance between them is

Ē1(A1, A2) = 1

2

(
1

NL

∑
h̄∈L

| rA1 (h̄) − rA2 (h̄) |√
2

+
√√√√ 1

2NL

∑
h̄∈L

[(
μ2

A1
(h̄) − μ2

A2
(h̄)
)2 +

(
ν2A1

(h̄) − ν2A2
(h̄)
)2])

,

(12)

where NL is the cardinality of L .
If we consider the hesitancy index of D-PFVs while cal-

culating the distance between D-PFSs, then

Ē2(A1, A2) = 1

2

⎛
⎝ 1

NL

∑
h̄∈L

| rA1 (h̄) − rA2 (h̄) |√
2

+
√√√√ 1

2NL

∑
h̄∈L

[(
μ2

A1
(h̄) − μ2

A2
(h̄)
)2 +

(
ν2A1

(h̄) − ν2A2
(h̄)
)2 +

(
π2
A1

(h̄) − π2
A2

(h̄)
)2]

⎞
⎠ .

(13)

Applications of D-PFSs in MCDM Problems

This section extends theCODASmethod forDiscPythagorean
fuzzy sets. The Euclidean and Hamming distance metrics are
employed to build this technique. It can take inputs in the
forms of linguistic variables, D-PFSs, C-PFSs, and PFS.

Disc Pythagorean fuzzy CODASmethod

Step 1: Let L = {h̄1, h̄2, . . . , h̄m}be the set ofm alternatives
and C = {C1,C2, . . . ,Cn} the set of n attributes.
Let E = {E1, E2, . . . , Ed} represents the set of
experts. Each alternative h̄i is assessed against each
attribute c j by every expert Ek and there evaluations
are saved as D-PFVs aki j . These judgments consti-
tutes the m × n decision matrix, that is,

Mk = [aki j ]m×n =

C1 C2 · · · Cn

⎛
⎜⎜⎝

⎞
⎟⎟⎠

h̄1 ak11 ak12 · · · ak1n
h̄2 ak21 ak22 · · · ak2n
.
.
.

.

.

.
.
.
.

. . .
.
.
.

h̄m akm1 akm2 · · · akmn

=

C1 C2 · · · Cn

⎛
⎜⎜⎝

⎞
⎟⎟⎠

h̄1 (μk
11, ν

k
11 ; rk11) (μk

12, ν
k
12 ; rk12) · · · (μk

1n, ν
k
1n ; rk1n)

h̄2 (μk
21, ν

k
21 ; rk21) (μk

22, ν
k
22 ; rk22) · · · (μk

2n, ν
k
2n ; rk2n)

.

.

.
.
.
.

. . .
.
.
.

h̄m (μk
m1, ν

k
m1 ; rkm1) (μk

m2, ν
k
m2 ; rkm2) · · · (μk

mn, ν
k
mn ; rkmn)

(14)
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Step 2: We have obtained k D-PF decision matrices in the
last steps. Let� = {�1,�2, . . . , �n} be the weight
vector of experts. The aggregation of these matrices
can be performed cell-by-cell using any aggregation
operators fromCPFWAmax,CPFWAmin,CPFWGmax,
and CPFWGmin. We represent the aggregated D-PF
decision matrix by M and its generic element by
ai j = (μi j , νi j ; ri j ), where i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n}.

Step 3: Normalize the decision matrix M with respect to the
benefit and cost criteria as follows:

ai j =
{

(μi j , νi j ; ri j ), for benefit criteria,

(νi j , μi j ; ri j ), for cost criteria.
(15)

Step 4: In real-life MCDM problems, the attributes are not
the same. For this reason the weight vector ω =
{ω1, ω2, . . . , ωn} is affirmed to the set of attributes,
where 0 ≤ ω j ≤ 1 and

∑n
j=1 ω j = 1.

Step 5: Formulate the weighted normalized D-PF matrix by
scalar multiplication of D-PFVs:

ω j ai j = (χi j , ψi j ; ri j ) =
(√

1 − (1 − μ2
i j )

ω j , ν
ω j
i j ; ri j

)
.

(16)

Step 6: For each attribute, find the negative ideal (NI) D-
PFVs as follows:

N I =
{(

χ̂ j , ψ̂ j ; r̂ j
)

| j = 1, . . . , n
}

=
{(

m
min
i=1

(μi j ),
m

max
i=1

(νi j );
m
min
i=1

(ri j )

)
| j = 1, . . . , n

}
.

(17)

Step 7: Compute the Euclidean and Hamming distances of
each alternative h̄i from N I . We can use either H̄1

and Ē1 or H̄2 and Ē2. That is,

H̄i = H̄1(N I , h̄i ) = 1

2n

n∑
j=1

( | ri j − r̂ j |√
2

+ 1

2

(
| χ2

i j − χ̂2
j | + | ψ2

i j − ψ̂2
j |
))

Ēi = Ē1(N I , h̄i ) = 1

2

(
1

n

n∑
j=1

| ri j − r̂ j |√
2

+
√√√√ 1

2n

n∑
j=1

[(
χ2
i j − χ̂2

j

)2

+
(

ψ2
i j − ψ̂2

j

)2])
.

Or

H̄i = H̄2(N I , h̄i ) = 1

2n

n∑
j=1

( | ri j − r̂ j |√
2

+ 1

2

(
| χ2

i j − χ̂2
j | + | ψ2

i j − ψ̂2
j | + | π2

i j − π̂2
j |
))

Ēi = Ē2(N I , h̄i ) = 1

2
×
(
1

n

n∑
j=1

| ri j − r̂ j |√
2

+
√√√√ 1

2n

n∑
j=1

[(
χ2
i j − χ̂2

j

)2

+
(

ψ2
i j − ψ̂2

j

)2

+
(

π2
i j − π̂2

j

)2])

where πi j and π̂ j are the hesitancy indexes of

(χi j , ψi j ; ri j ) and
(
χ̂ j , ψ̂ j ; r̂ j

)
, respectively.

Step 8: Compose the relative assessment matrix (RAM)
based on H̄i and Ēi calculated in previous step as
follows:

R = [Rik]m×m,

Rik = (Ēi − Ēk) + (
λik(Ēi − Ēk) × (H̄i − H̄k)

)
,

(18)

wheres λik stands for a threshold function that
can be used to determine whether two alternatives’
Euclidean distances are identical. Its definition is as
follows:

λik =
{
1 i f | (Ēi − Ēk) |≤ τ

0 i f | (Ēi − Ēk) |> τ
(19)

where τ is threshold criterion and ranges from 0.01
to 0.05 [32]. The reason to choose the threshold
parameter is to use the Hamming distance between
two alternatives when the Euclidean distance is very
small between them.

Step 9: Formulate the evaluation score value of each choice
using RAM, shown as follows:

Ri =
n∑

k=1

Rik .

Step 10: In order of decreasing evaluation score values, rank
the choices.

Illustrative example: selection of supermarket for
fresh fruits

A very well-known hotel in Bangkok has been steadily
expanding its branches and receiving praise for its entire
menu. However, the hotel has been in a deficit for fresh fruit
and vegetables. One of the main causes is the poor quality of
its fruits and vegetables, such as no uniform shape, unclean
surface, and insect damage. In order to resolve the manage-
ment problemwith fruits and vegetables, the hotel hasmade a
commitment to improving supplier management. In order to
supply fresh, high-quality fruits andvegetables that are green,
it aims to make use of standardized, clean, and orderly fresh
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produce. The hotel has been collaborating with a number of
local fruit and vegetable wholesalers to address issues with
insufficient supply, significant breakage, and lack of recy-
cling. The hotel now makes the decision to embrace green
supply chain management and form a long-term collabora-
tion with major supermarkets. It works to ensure fruits and
vegetable quality in order to capture the voice of customers
and lower expenses. The hotel has identified four feasible
supermarkets as h̄1, h̄2, h̄3, and h̄4. All four supermarkets
acknowledge giving the data needed for the hotel selection
process. Five evaluation criteria are chosen while taking the
standards for green supermarkets and it includes Quality C1,
DiversityC2, PriceC3,DeliverabilityC4, andRecycling abil-
ity C5.

This case is an MADM problem and aims to choose the
best supermarket from a group of four contenders based on
howwell they performacross fivedifferent attributes. In addi-
tion, the majority of the traits that were chosen are qualitative
in nature. As a result, the suggested approach is appropriate
for solving this issue. The hotel gathers relevant information
about four contenders.

Three experts, including amanager E1, a purchasingman-
ager E2, and a food and beverage director E3 were invited to
give evaluations based on the selected information and their
experience and knowledge. The weights of the three special-
ists have been divided according to their various tasks and
levels of experience. Let the weight vector for the experts is
W = {0.35, 0.40, 0.25}. Expert evaluates all supermarkets
concerning specified criteria and their assessments are saved
in the form of D-PFVs. In this regard, three D-PF decision
matrices are obtained, say M1, M2, and M3, and displayed
in Table 1.

To solve this problem, we use the D-PF CODAS method
discussed in Sect. 5.1. The D-PF decision matrices have
already given by the experts in Table 1. Now, we use
CPFWAmin to aggregate three D-PF decision matrices and

the resultant matrix is presented in Table 2. This complete
the second step. Since the attribute c3 is of cost type, there-
fore, the matrix M is normalized using (15). The normalized
decision matrix M ′ is displayed in Table 3.

Let the weight vector of attributes is ω = {0.30, 0.20,
0.15, 0.15, 0.20}, then the weighted normalized decision
matrix is obtained by (16). It is displayed in Table 4. In the
next step, the NI D-PFVs are calculated using (17):

N I = {(0.350, 0.766; 0.04), (0.316, 0.733; 0.01),
(0.039, 0.953; 0.05),
(0.262, 0.823; 0.05), (0.318, 0.804; 0.04)}

Now, we compute the Hamming and Euclidean distances
of each alternative h̄i from N I . We use H̄2 and Ē2 for dis-
tances and the results are

H̄2(h̄1) = 0.0294, H̄2(h̄2) = 0.0326,

H̄2(h̄3) = 0.0390, H̄2(h̄4) = 0.0349

Ē2(h̄1) = 0.0286, Ē2(h̄2) = 0.0313,

Ē2(h̄3) = 0.0364, Ē2(h̄4) = 0.0331.

The RAM is calculated using (18). If we take the value of
threshold criterion τ equal to 0.04, then the value of λik in
(18) remains 1. The RAM is displayed in (20):

⎛
⎜⎜⎝

0. −0.0027 −0.0077 −0.0045
0.0028 0. −0.0050 −0.0018
0.0079 0.0051 0. 0.0033
0.0045 0.0018 −0.0033 0.

⎞
⎟⎟⎠ (20)

The evaluation score value of each option is formulated using
RAM by adding the rows of Matrix (20), that is, R1 =
−0.0150, R2 = −0.0040, R3 = 0.0163, and R4 = 0.0030.
The final ranking of alternatives is

h̄3 � h̄4 � h̄2 � h̄1.

Remark 1 Using the aggregation operator CPFWAmin, we
have been able to address the aforementioned issue. Since we
suggestedmanyaggregationoperators, includingCPFWAmax,
CPFWGmin, andCPFWGmax.As a result,we use these aggre-
gation operations to find the optimal solution, and the results
are shown as follows:

⎛
⎝

CPFWAmax −0.0150 −0.0040 0.0163 0.0030 h̄3 � h̄4 � h̄2 � h̄1
CPFWGmax −0.0103 0.0236 −0.0083 −0.0046 h̄2 � h̄4 � h̄3 � h̄1
CPFWGmin −0.0103 0.0236 −0.0083 −0.0046 h̄2 � h̄4 � h̄3 � h̄1

⎞
⎠

Comparative analysis

Being a pioneerwork,we cannot yet compare our resultswith
alternative solutions under the pure D-PFS or even C-PFS
structure. Henceforth this section compares the suggested
methodologies to existing MCDM approaches, focusing on
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Table 1 D-PFSs in “Illustrative
example: selection of
supermarket for fresh fruits”

M1 C1 C2 C3 C4 C5

h̄1 (.75, .35; .04) (.70, .19; .01) (.75, .45; .05) (.60, .23; .05) (.75, .13; .05)

h̄2 (.45, .40; .07) (.80, .17; .06) (.63, .55; .05) (.70, .28; .06) (.66, .22; .04)

h̄3 (.60, .60; .09) (.60, .20; .04) (.67, .10; .06) (.80, .17; .09) (.76, .32; .05)

h̄4 (.50, .56; .05) (.70, .15; .02) (.55, .12; .07) (.73, .25; .07) (.80, .40; .06)

M2 C1 C2 C3 C4 C5

h̄1 (.55, .65; .04) (.60, .25; .01) (.55, .35; .05) (.70, .23; .05) (.55, .13; .05)

h̄2 (.65, .40; .07) (.80, .15; .06) (.63, .45; .05) (.40, .28; .06) (.65, .22; .04)

h̄3 (.70, .20; .09) (.70, .20; .04) (.67, .10; .06) (.80, .17; .09) (.85, .32; .05)

h̄4 (.65, .56; .05) (.70, .15; .02) (.65, .12; .07) (.75, .25; .07) (.80, .40; .06)

M3 C1 C2 C3 C4 C5

h̄1 (.65, .25; .04) (.60, .19; .01) (.85, .15; .05) (.80, .20; .05) (.65, .15; .05)

h̄2 (.65, .30; .07) (.80, .15; .06) (.65, .25; .05) (.70, .25; .06) (.60, .20; .04)

h̄3 (.50, .40; .09) (.70, .10; .04) (.60, .10; .06) (.80, .15; .09) (.55, .30; .05)

h̄4 (.80, .15; .05) (.70, .15; .02) (.50, .15; .07) (.75, .20; .07) (.80, .20; .06)

Table 2 Aggregate D-PF
decision matrix in “Illustrative
example: selection of
supermarket for fresh fruits”

M C1 C2 C3 C4 C5

h̄1 (.659, .412; .04) (.639, .212; .01) (.727, .309; .05) (.703, .222; .05) (.659, .135; .05)

h̄2 (.595, .372; .07) (.800, .157; .06) (.635, .417; .05) (.614, .272; .06) (.642, .215; .04)

h̄3 (.626, .349; .09) (.669, .168; .04) (.654, .100; .06) (.800, .165; .09) (.772, .315; .05)

h̄4 (.662, .403; .05) (.700, .150; .02) (.584, .127; .07) (.743, .236; .07) (.800, .336; .06)

Table 3 Normalized aggregate
D-PF decision matrix in
“Illustrative example: selection
of supermarket for fresh fruits”

M ′ C1 C2 C3 C4 C5

h̄1 (.659, .412; .04) (.639, .212; .01) (.309, .727; .05) (.703, .222; .05) (.659, .135; .05)

h̄2 (.595, .372; .07) (.800, .157; .06) (.417, .635; .05) (.614, .272; .06) (.642, .215; .04)

h̄3 (.626, .349; .09) (.669, .168; .04) (.100, .654; .06) (.800, .165; .09) (.772, .315; .05)

h̄4 (.662, .403; .05) (.700, .150; .02) (.127, .584; .07) (.743, .236; .07) (.800, .336; .06)

Table 4 Weighted normalized
aggregate D-PF decision matrix
in “Illustrative example:
selection of supermarket for
fresh fruits”

C1 C2 C3 C4 C5

h̄1 (.397, .767; .04) (.316, .733; .01) (.122, .953; .05) (.312, .798; .05) (.328, .670; .05)

h̄2 (.350, .743; .07) (.430, .690; .06) (.168, .934; .05) (.262, .823; .06) (.318, .735; .04)

h̄3 (.372, .729; .09) (.335, .700; .04) (.039, .938; .06) (.377, .763; .09) (.407, .794; .05)

h̄4 (.398, .761; .05) (.355, .684; .02) (.049, .923; .07) (.337, .805; .07) (.430, .804; .06)

the PF environment. Since both D-PFSs and C-PFSs gener-
alize ordinary PFSs, we can derive a PFS from any D-PFS
by inserting r(h̄) = 0 throughout.

When we do this with the data from our case study, we
obtain results that are summarized by Table 5. One observes
that the ranking of the alternatives changes, and that it is also
affected byMCDMmethod. But our methodologies have the
advantage that they make full utilization of the information
provided by the experts, because they operate with the more
general environment of D-PFSs. In fact, the D-PF CODAS

method is extended with the help of empirically successful
Hamming and Euclidean distance measures.

Conclusion

The concept of C-PFS, which is an extension of C-IFS, has
been defined and studied in this paper. This idea offers amore
straightforward mathematical way to express uncertain data
than IV-IFS, while keeping the advantages of PFSs in terms
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Table 5 Comparison of
rankings with existing methods
from the PFS literature

Authors Method Rankings

Zhang and Xu [12] TOPSIS method h̄2 � h̄4 � h̄3 � h̄1

Garg [17] PyFEWA operator h̄3 � h̄4 � h̄1 � h̄2

Ashraf et al. [18] ST-PFWA operator h̄4 � h̄3 � h̄1 � h̄2

Khan et al. [19] PFDWA operator h̄4 � h̄3 � h̄2 � h̄1

Peng and Yang [20] MABAC method h̄3 � h̄4 � h̄2 � h̄1

Akram et al. [21] ELECTRE-II method h̄2 � h̄4 � h̄3 � h̄1

Khan et al. [22] VIKOR method h̄2 � h̄4 � h̄3 � h̄1

Proposed CODAS and CPFWAmin h̄3 � h̄4 � h̄2 � h̄1

Proposed CODAS and CPFWAmax h̄3 � h̄4 � h̄2 � h̄1

Proposed CODAS and CPFWAmax h̄2 � h̄4 � h̄3 � h̄1

Proposed CODAS and CPFWAmin h̄2 � h̄4 � h̄3 � h̄1

of flexibility. Instead of a precise value (an orthopair within
the corresponding area of the unit square), a C-PFS describes
each element by a circle of fixed radius. When the radius is
zero, the model returns the successful PFS structure. When
all orthopairs have the property that the total of their MD
and NMD is at most 1, the model returns the recent C-IFS
structure. The coincidence of both restrictions produces IFSs.

Then,we further extended thismodel and definedD-PFSs,
which describe each element by a circle of variable radius. Of
course, when all radii coincide, the model returns a C-PFS.
Wehave expanded the basic operations of union, intersection,
addition,multiplication, and scalarmultiplication toD-PFSs.
Various qualities of these operations have been looked into.
These achievements establish their basic set-theoretic alge-
bra and arithmetics of D-PFSs.

The arithmetic and geometric aggregation operators forD-
PFS have been defined.We refer to CPFWAmax, CPFWAmin,
CPFWGmax, and CPFWGmin, whose underlying character-
istics have been investigated. As a way to compare D-PFS,
the Euclidean and Hamming distance metrics have been pre-
sented. With these tools we have been able to produce a
Hamming and Euclidean distances based CODAS technique
that has been illustrated with an application to the selection
of the best supermarkets to buy fresh fruit for a hotel.

In the future, we will define additional aggregation opera-
tors, and we will initiate the study of similarity, dissimilarity,
distance, divergence, entropy, and knowledge measures for
D-PFSs. All these notions will be applied to better deal with
uncertainty in daily life scenarios.

Also, other lines of research will explore combinations of
C-IFSs with soft sets [23], N-soft sets [33], bipolar-valued
fuzzy sets [24], complex fuzzy sets [26], q-rung orthopair
fuzzy sets [11], Fermatean fuzzy sets [34], spherical fuzzy
sets [35], T-spherical fuzzy sets [36], linear Diophantine
fuzzy sets [37], and temporal IFSs [38].
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