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Abstract
Lattice structures created using additive manufacturing technology inevitably produce inherent defects that seriously affect
their mechanical properties. Predicting and analysing the effect of defects on the maximum stress is very important for
improving the lattice structure design and process. This study mainly used the finite element method to calculate the lattice
structure constitutive equation. The increase in defect type and quantity leads to difficulty inmodelling and reduces calculation
accuracy.We established a data-driven extreme gradient enhancement (XGBoost) with hyperparameter optimization to predict
the maximum stress of the lattice structure in additive manufacturing. We used four types of defect characteristics that affect
the mechanical properties—the number of layers, thick-dominated struts (oversize), thin-dominated struts (undersizing), and
bend-dominated struts (waviness)—as the input parameters of the model. The hyperparameters of the basic XGBoost model
were optimised according to the diversity of the inherent defect characteristics of the lattice structure, while the parameters
selected by experience were replaced using the Gaussian process method in Bayesian optimization to improve the model’s
generalisation ability. The prediction datasets included the type and number of defects obtained via computer tomography
and the calculation results of the finite element model with the corresponding defects implanted. The root mean square error
and R-squared error of the maximum stress prediction were 17.40 and 0.82, respectively, indicating the effectiveness of the
model proposed in this paper. Furthermore, we discussed the influence of the four types of defects on the maximum stress,
among which the thick strut defect had the greatest influence.

Keywords Additive manufacturing · Lattice structure · Inherent defects · Maximum stress prediction · XGBoost

Introduction

Metal lattice structures produced by additive manufacturing
(AM) have attracted extensive attention owing to their advan-
tages such as light weight, complex structure, and integrated
structure function [1–3]. AM technology creates geometri-
cally complex parts by connecting materials layer-by-layer
with 3Dmodel data drawn by computer-aided design (CAD)
[4]. Selective lasermelting (SLM) iswidely used in the prepa-
ration ofmetal lattice structures owing to its short preparation
cycle and wide application range [5]. SLM selectively melts
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a metal powder by scanning it with a laser [4]. Kagome,
cone, octagonal truss, the body-centered cubic (BCC), and
composite lattice structures are commonly used in existing
research [6, 7]. AM can be used to fabricate these structures
using stainless steel [8], titanium [9], and aluminium [10].
Inherent defects occur duringmanufacturing processes using
additive manufacturing technology [11]. Furthermore, the
threemain types of inherent defects inmetal lattice structures
include oversizing, undersizing, and waviness [12–15]. Such
defects affect themechanical properties and failure response,
resulting in the unavailability of certain special functions
[12, 16–18]. Therefore, the relationship between the inher-
ent defects and mechanical properties of lattice structures is
crucial.

Most studies on lattice structure defects and mechanical
properties use computer tomography (CT) scanning to clas-
sify defects and then combine the finite element (FE) model
for further analysis. Campoli et al. [18] proposed a method
to transform CT-reconstructed struts into a FE model. Lei et
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al. [7] equivalently incorporated inherent defects (oversizing
and waviness) into an FE model and performed mechan-
ical performance simulations. We concluded that the FE
modelwith defectswas closer to the actualmechanical exper-
iment. Liu et al. [12] investigated the elastic and failure
responses of inherent defects using nonlinear FE analysis
of detailed imperfect models of regular octet and rhom-
bicuboctahedron structures. Furthermore, oversizing struts
is considered an important parameter affecting the lattice
structure. Liu et al. [12] proposed the number of defects
in a two-dimensional honeycomb structure and verified it
in a three-dimensional metal lattice structure. This study
provides a basis for future research. Baxter et al. [6] inves-
tigated the mechanical properties of lattice structures with
hybrid topologies using an FE model. The majority of stud-
ies on the mechanical properties of lattice structures are
based on FE models, which suggest that defects influence
the structural quality. Additionally, the establishment of the
corresponding FEmodel has limitationswhen the defect type
or number of lattice structures increases [19, 20]. Therefore,
the modelling process and accuracy become more difficult.
Therefore, the law of the influence of various defects on
performance is still not perfect. As a result, it is neces-
sary to carry out in-depth theoretical and methodological
research.

The performance prediction of lattice structures mainly
focuses on fatigue life [21, 22]. Few studies exist on the pre-
diction of maximum stress in metal lattice structures. The
maximum stress can be a good reflection of the load-bearing
capacity of a structure. Studying performance prediction
methodologies based on data-driven lattice structures based
on the distribution pattern and different characteristics of
defects is required, and requires in-depth research because
of the randomness or diversity of defects. Machine learning
(ML) provides a new approach for lattice structure perfor-
mance prediction. Therefore, a fast prediction model was
established based on the known measured data of the sample
using ML, and the prediction of the maximum stress of the
lattice structure was carried out with full consideration of
the random distribution pattern and diverse characteristics of
defects. Furthermore, it was closer to the actual situation of
the sample and more suitable for the randomness and diver-
sity of lattice structure defects, with stronger generalisation
compared to the FE model.

ML is a type of artificial intelligence that relies on a
set of algorithms that learn from data without direct pro-
gramming [23]. Jin et al. [24] summarised the application
of machine learning in AM in detail. The main applica-
tions are geometric design, process parameter configuration,
and in-situ anomaly detection [25–27]. There are few stud-
ies on the prediction of maximum stresses in metal lattice
structures. The maximum stress can be a good reflection
of the load-bearing capacity of the structure and can sim-

plify the complexity of the prediction model when combined
with machine learning. Malakar et al. [28] designed a hier-
archical feature selection (HFS) model based on a genetic
algorithm to optimise the local and global features extracted
from each handwritten image. Bacanin et al. [29] proposed
an improved version of the Firefly algorithm, which corrects
the defects of the original algorithm through explicit explo-
ration mechanisms and a chaotic local search strategy and
is verified in the deep learning subdomain of convolutional
neural networks. We used five standard reference datasets in
the image processing: MNIST, Fashion-MNIST, Semeion,
USPS, and CIFAR-10. The aforementioned studies are char-
acterised by a novel and promising research field, namely,
a hybrid approach between meta-heuristics and machine
learning. This new field of research successfully combines
machine learning and swarm intelligence methods and has
proven capable of obtaining excellent results in different
fields.

A data-driven XGBoost-BGP maximum stress prediction
model is proposed in this study based on the aforemen-
tioned research. We used a Bayesian hyperparameter opti-
misation method to optimise the hyperparameters and to
further improve the prediction and generalisation abilities
of the model. Furthermore, we also analysed the relationship
between the four input parameters and the maximum stress.
The significant contributions of this study are as follows:

– We proposed a data-driven prediction model of the AM
lattice structure with inherent defects based on improved
XGBoost.

– We used the Gaussian process to optimise the super
parameters of the XGBoost model instead of selecting
them based on experience.

– We presented the relationship between the four types of
input parameters of the model and the maximum stress
prediction results.

The remainder of this paper is organised as follows:
“Relatedworks” introducesmachine learning research on the
prediction of lattice structures. “Methodology” introduces
the predictionmodel used in this study. The analysis and find-
ings of the experiment are presented in “Experimental results
and analysis”. The discussions are presented in “Discussion”.
Conclusions and future work are discussed in “Conclusion
and future work”.

Related works

Machine learning has advanced and is now used in various
sectors [30]. Nasiri and Khosravani [31] focused on the use
of ML to forecast the fracture and mechanical behaviour of
AMitems. Investigations, reviews, anddiscussions have been
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conducted on the use of ML in the characterisation of poly-
mers and AM components. The research and analysis also
highlight the constraints, difficulties, and potential of com-
mercial ML applications in AM.We consider the advantages
of ML for predicting mechanical qualities, improving AM
parameters, and assessing 3D-printed objects. Furthermore,
Jin et al. [32] presented a three-layer neural-network structure
to predict the mechanical characteristics of an ultra-fine-
grained Fe-C alloy. Experiments on samples prepared from
metal AM often require repeated experiments, which are
time-consuming and expensive. If themodel is simulated, the
simplified assumptions made during the simulation process
may differ from the experimental defects because of the com-
plex inherent defect characteristics of the lattice structure.
Therefore, predicting the mechanical properties of metal lat-
tice structural parts fabricated using additive manufacturing
is challenging. Many studies have demonstrated the feasibil-
ity of ML methods to address the aforementioned metal AM
process optimisation challenges. Furthermore, they have also
introduced ML methods to solve process optimisation prob-
lems in metal additive manufacturing. However, the majority
of the research objects in the existing literature are fatigue
life predictions of metal lattice structures based on machine
learning and there are fewprediction studies on themaximum
stress.

Zhang et al. [21] proposed a fatigue process assessment
method based on an adaptive network fuzzy inference sys-
tem. A high-cycle fatigue life was successfully predicted
using the fatigue data of 139 SS316L components from the
same SLM machine. However, when they used data from
the published literature for evaluation, the results were less
than ideal. Therefore, the composition of the data during
model training is important for the generalisation ability of
the model. Chen and Liu [22] proposed using a probabilistic
physics-guided neural network to study the effects of dif-
ferent parameters on probabilistic fatigue life. However, the
initial model parameters were not selected.

Taking the inherent defects ofmetal BCCprepared byAM
as the research object, a data-driven XGBoost-BGP maxi-
mum stress prediction model is proposed. The model con-
tained four parameters (number of layers, thick-dominated
struts, thin-dominated struts, and bend-dominated struts) as
the input and one structural feature (maximum stress) as
the output. We used a Bayesian hyperparameter optimisa-
tion method to optimise the hyperparameters of the model to
further improve the prediction and generalisation abilities of
the model. The experimental results show that the proposed
prediction model can accurately predict the maximum stress
of structural samples containing defects. The analysis results
of the relationship between the four input parameters and the
maximum stress show that the maximum stress of the lattice
structure specimen is most affected by the thick-dominated
strut.

Fig. 1 Framediagramof theXGBoost-BGPmaximumstress prediction
model

Fig. 2 Dataset preparation flowchart

Methodology

Themaximum stress predictionmodel proposed in this paper
is mainly divided into two parts: the construction of the
dataset and the training of the XGBoost-BGP model, as
shown in Fig. 1.

In the first part, defects were counted, and the dataset was
constructed as illustrated in Fig. 2 and Table 1. The dataset’s
creation can be divided into four steps: scanning the samples,
segmentation of the scanned images according to the edge
detection method, defect detection, and defect statistics. The
details are presented in “Dataset”.

The second part is about the training of theXGBoost-BGP
maximum stress model, which is mainly divided into three
steps.

The first step was to initialise the parameters of the
XGBoostmodel. TheXGBoostmodel is described indetail in
“XGBoost model”. The second step is to define the Bayesian
optimisation function and determine the hyperparameter
search space, as described in “Bayesian hyperparameter
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Table 1 Metrics chosen as
features

The Specimen The number The number The number The
specimen size of thick of thin of bend maximum
number dominated dominated dominated stress

struts struts struts (MPa)

No. 1 1 1 0 2 203.1

No. 2 2 0 0 0 180

No. 3 3 27 27 0 130.78

No. 4 4 128 64 128 87.68

.. .. .. .. .. ..

Table 2 Data statistics Label Average Standard Median Minimum Maximum
deviation

Maximum stress (MPa) 267.10 44.17 263.34 176.64 389.75

The number of thick struts 44.03 29.89 9 0 150

The number of thin struts 15.19 22.48 4 0 92

The number of bend struts 21.77 31.18 8 0 150

Specimen size 3.04 0.95 3 1 4

optimization method”. The third step was to obtain the max-
imum value of the acquisition function of the Bayesian
optimisation function using a Gaussian process and a 5-
fold cross-validation in this process. The Gaussian process
method is described in “Gaussian process”, and the acqui-
sition function is described in “Acquisition function”. The
definition of root mean square error (RMSE) is shown in
“Evaluation measures”. These details are described in the
following sections.

Dataset

The data used in this study consisted of 115 FE models. The
type and number of inherent defects in each model were cal-
culated based on the models created using the CT sections.
The statistical content included the number of layers, thick-
dominated struts, thin-dominated struts, and bent-dominated
struts. A stepwise flowchart showing the automated metrol-
ogy and analysis is shown in Fig. 2. In step 1, the scanning
data of the part obtained by the CT scanner are subjected to
noise filtering and threshold function processing to obtain a
binary image of the lattice structure. In step 2, strut edges
were identified using the Canny edge detection function, and
the image segments for each strut were extracted using this
method. In step 3, the extracted image segment of each strut
was compared with the standard strut image to confirm the
defect type of each strut. In step 4, we counted the num-
ber of various types of defects according to the classification
method in step 3.

FE models were established for the mechanical perfor-
mance simulation based on the above statistics, and the

maximum stresses were taken as the label of the dataset.
The metrics chosen as features are listed in Table 1.

Table 2 lists the data statistics. Figure3 shows a histogram
of the frequency distribution and a quantile-quantile (Q-Q) of
the maximum stress. Furthermore, the maximum stress can
be approximately regarded as a normal distribution, as seen
in the figure, which is conducive to the training of machine
learning models. Figure4 shows the box and whisker dia-
grams of features. There are outliers in the data set. However,
they were not eliminated during the training process of this
study to improve the robustness of the model. In addition,
Fig. 5 shows a correlation matrix diagram.

XGBoost model

Chen and Guestrin [33] proposed extreme gradient boosting
(XGBoost), which is an improved machine learning method
based on tree boosting with a strong learning ability [34–
36]. XGBoost employs the second derivative (Hessian) to
determine the direction and amount of the greatest descent
more accurately than simply calculating and following the
gradient [37, 38]. A range of regularisation techniques are
also supported by XGBoost to improve model generalisation
[39].

The dataset (D) in this paper consists of n samples. D =
{(Fi , si )}(i = 1, 2, 3...n), where Fi are the the defect feature
of the input and si is the maximum stress.

In this paper, XGBoost is a model consisting of K regres-
sion trees and ŝi is the sum of all scores predicted by K trees.
The formula is described as follows:
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Fig. 3 The frequency distribution histogram and Q-Q plots of maxi-
mum stress

Fig. 4 The box and whisker diagram of features

Fig. 5 The feature correlation matrix diagram

ŝi = φ(Fi ) =
K∑

k=1

fk(Fi ), fk ∈ H , (1)

where fk(Fi ) is prediction scores of a regression tree and H
is the hypothesis space of fk(Fi ).

H = f (F) = νI (F), (2)

where ν is the leaf score, one of the parameters used to mea-
sure the complexity of the model. I (F) is the F th sample’s
leaf node. Equation (3) shows the result of the t-th iteration
prediction.

ŝti = ŝt−1
i + ft (Fi ). (3)

In this paper, the objective function of themaximum stress
prediction model is defined as follows:

J ( ft ) =
n∑

i=1

L(si , ŝi
t−1 + ft (Fi ) + Ω( ft )), (4)

where L is the loss function and Ω( ft ) is the model’s com-
plexity.

Ω( ft ) = γ T + 1

2
λ

T∑

j=1

ν2j , (5)

where γ and λ are hyperparameters, also known as the coef-
ficients of the penalty term. T represents the total number of
leaf nodes.

In order to generalise Eq. (4) without specifying the spe-
cific formulation of the objective function, a second-order
Taylor expansion is used to simplify. The simplified formula
is as follows:

J ( ft ) =
n∑

i=1

[L(si , ŝi
t−1

)+gi ft (Fi ) + 1

2
hi f

2
t (Fi )]+Ω( ft )

(6)
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Table 3 The range of
hyperparameters

Hyperparameter Description Range Step

K Number of trees [1, 200] 1

Subsample Denotes the fraction of observations [0, 1] 0.01

to be randomly samples for each tree

Eta Analogous to learning rate [0, 1] 0.01

Max depth Maximum depth of a tree [1, 10] 1

Gamma Gamma specifies the minimum loss [1, 10] 1

reduction required to make a split

Colsample bytree Denotes the fraction of columns [0, 1] 0.01

to be randomly samples for each tree

Colsample bylevel Denotes the subsample ratio of columns [0, 1] 0.01

for each split, in each level

gi = ∂L(si , ŝi
t−1

)

∂ ŝi
t−1 (7)

hi = ∂2L(si , ŝi
t−1

)

∂ ŝi
t−1 . (8)

Finally, the objective function of the prediction model is
obtained.

J ( ft ) =
n∑

i=1

[giνI (Fi ) + 1

2
hiν

2
I (Fi )]+γ T+1

2
λ.

T∑

j=1

ν2j (9)

The prediction results and generalisation ability of XG-
Boost’s prediction model are affected bymodel hyperparam-
eters [33]. Table 3 shows the range of hyperparameters to be
optimised for the XGBoost-BGP prediction model.

Bayesian hyperparameter optimizationmethod

The hyperparameter-tuning problem of the XGBoost predic-
tion model cannot be solved using traditional optimisation
methods [40]. However, Bayesian optimisation methods can
effectively solve these problems. The Bayesian optimisation
process is illustrated in Fig. 6.

Equation (10) shows the purpose of Bayesian optimisa-
tion, which is to find a function that maximises the value of
this function at the sampling point.

y = argmax
z∈M f (z), (10)

where M represents the x search space.
The principle of Bayesian optimisation (BO) is to infer

the posterior information of the function through the prior
distribution of the function and the information of the sam-
ple points. Subsequently, the optimal solution to the function
is obtained using posterior information and a criterion. This
criterion is also known as the acquisition function (AC). Con-
sidering that the hyperparameter search space in this study

Fig. 6 Bayesian optimization process

is a continuous numerical value, a Gaussian process (GP) is
used to obtain the posterior information.

Gaussian process

The prior distribution of the Bayesian optimisation in this
study is GP. The GP function is expressed as follows:

f (z) ∼ GP(μ(z), c(z, z′)). (11)

The μ(z) = 0. c(x, z′) = exp(− 1
2θ ‖z − z′‖2),where θ is

a parameter of the kernel width. x and x′ represent samples.
The posterior distribution of f (z) is mainly divided into

two steps. The first step is to find a new training set S1:i−1 =
{zi , f (zi )}i−1

1 . The new training set consists of i − 1 obser-
vations.
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The value of f follows a multivariate normal distribution
f ∼ N (0,C), where

C =

⎡

⎢⎢⎢⎣

c(z1, z1) c(z1, z2) · · · c(z1, zi−1)

c(z2, z1) c(z2, z2) · · · c(z2, zi−1)
...

... · · · ...

c(zi−1, z1) c(zi−1, z2) · · · c(zi−1, zi−1)

⎤

⎥⎥⎥⎦ . (12)

Finding the function value of the new sampling point xt
in accordance with f is the second step. Given the assump-
tion of the Gaussian process, [f1:i−1 fi ]T still follows the
i-dimensional normal distribution:

[
f1:i−1

fi

]
∼ N

(
0,

[
C c
cT c(zi, zi)

])
, (13)

where f1:i t−1 = [ f1, f2, · · · , fi−1]T, c = [c(zi, z1)c(zi, z2)
· · · c(zi, zi−1)] and fi follow one-dimensional normal distri-
bution i.e. ft ∼ N (μi , σ

2
i ). It can be seen from the joint

normal distribution property that μi (zi) = cTC−1f1:i−1,
σi (zi)2 = c(zi, zi) − cTC−1c.

Acquisition function

As aforementioned, the acquisition function expresses the
epistemic measure computed in accordance with the GP
to seek the next place to evaluate the function [41]. The
Expected Improvement (EI) acquisition function was used
in this study because of its utility and simplicity. EI is a type
of acquisition function based on improvement criteria. The
EI function estimates the degree of improvement a point can
experience when examining the area around its current ideal
value. The EI formula is as follows:

E I (y) = (μ(y − f (y+))Φ(Q)) + σ(y)ϕ(Q), (14)

where Q = μ(y)− f (y+)
σ (y) . μ(y) is the mean of the probabil-

ity density function, σ 2(y) is the variance of the probability
density function.

Evaluationmeasures

In this study, the model assessment indicators were R-square
(R2) and RMSE. Assume that s1, s2, · · ·, sn are the actual
values, ŝ1, ŝ2, · · ·, ŝn are the predicted values, and s̄ is the
mean of si ; these indices can be calculated as

R2 = 1 −
∑n

i=1(ŝi − yi )2∑n
i=1(si − s̄)

(15)

RMSE =
√√√√1

n

n∑

i=1

(ŝi − s̄)2. (16)

Fig. 7 The mean RMSE values of the default hyperparameters and the
hyperparameters optimized by the three hyperparameter optimization
methods on the training and validation sets

Fig. 8 The RMSE differences difference of four groups of hyperpa-
rameters

Experimental results and analysis

Training the predictionmodel

The environment configured in this study was Ubuntu 16.04
LTS, Anaconda 3, XGBoost 0.4.1, and Bayesian Optimisa-
tion 1.2.0.

The training and test sets were split in a ratio of 7:3. The
initial number of GP points was six, and the number of opti-
misation iterations was 30. The number of training iterations
was 100, and 5-fold cross-validation was used to record the
optimal results. Optimal results were obtained after multi-
ple trainings, and the corresponding hyperparameters were
recorded.

Training results and prediction results

Themean values of RMSE for the training and test sets based
on the default hyperparameters, the grid search (GS), the
Harris Hawks optimisation algorithm (HHO) and the BO-
GP methods are shown in Fig. 7. The prediction model is
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Table 4 R2 of typical methods Model Catboost [42] LightGBM [43] XGBoost-BGP GBR [44] RF [45] SVR [45]

R2 0.817 0.811 0.820 0.807 0.805 0.483

Bold values suggest that the proposed model predicts the best results

Table 5 Hyperparameter optimization comparison

Hyperparameter GS HHO BO-GP

Subsample 0.5 0.88 0.9

Eta 0.1 0.15 0.1

Max depth 4 3 3

Gamma 4.0 7.6 7.6

colsample bytree 0.50 0.90 0.93

colsample bylevel 0.5 0.80 1.0

R2 0.809 0.812 0.820

Bold values suggest that the proposed model predicts the best results

assumed to be more stable if the difference between the two
is smaller and stable. The RMSE differences for the three
hyperparameter optimisation methods are shown in Fig. 8.
The generalisation ability of theXGBoost-BGPmodel is bet-
ter; the difference between the training and validation sets is
approximately 12.33. Therefore, the R2 value was 0.82 and
the RMSE was 17.40. The R2 and the RMSE of the model
trained with the default hyperparameters of XGBoost are
only 0.78 and 19.19, respectively, before tuning the hyper-
parameters.

Table 4 shows a comparison of the prediction results of
other typical methods. Furthermore, the method proposed in
this study yields the best prediction results. Additionally, we
used the same hyperparameter optimisation method.

Hyperparameter optimization comparison

To demonstrate that the BO-GP method is better suited for
the prediction model proposed in this study, the GS hyper-
parameter optimisation method and the HHO are used for
comparison. GS is widely used in hyperparametric optimisa-
tion, and HHO is a state-of-the-art (SOTA) baseline method.
Experiments show that BO is more effective than GS in
terms of data volume and parameter dimensions. In addition,
the proposed BO-GP hyperparameter optimisation method
is slightly better than HHO, but inferior to HHO in terms
of convergence speed. The comparison results are presented
in Table 5. The final proposed model was built using the
hyperparameters obtained by BO-GP. Furthermore, the cho-
sen parameters can be regarded as optimal after numerous
interactions of optimisation, with the RMSE serving as the
observation basis. The final hyperparameters are listed in
Table 6.

Table 6 Hyperparameters Hyperparameter Value

Subsample 0.9

Eta 0.1

Max depth 3

Gamma 7.6

colsample bytree 0.93

colsample bylevel 1

Table 7 The sign test results

BO-GP GS HHO

Wins 24 22

Loses 11 13

Detected differences α = 0.05 α = 0.05

The sign test results are shown in Table 7 to further illus-
trate that the BO-GP hyperparameter optimisation algorithm
used in this study is applicable to the XGBoost model. The
sign method calculates the total number of winning cases,
and the winning times are distributed according to a binomial
distribution. Figure9 shows the comparison of deviation of
three optimization methods based on XGBoost. According
to the test criterion, if the calculated result is greater than
n
2 + √

n, the algorithm is better, with p < 0.05 [46]. There-
fore, the hyperparameter optimisation algorithm used in this
study is slightly better than the other two methods.

Analysis of prediction results

To better demonstrate the prediction effect of the XGBoost-
BGP model, actual and predicted scatterplots on the test set
are generated, as shown in Fig. 10a–c show the deviation
of the predicted value from the actual value. The overall
deviation results are acceptable and the fitting effect of the
XGBoost-BGP model is good.

To demonstrate the generality of the model in this study,
we also refer to the data in Ref. [15]. According to the liter-
ature, three sets of data are equivalently obtained, including
only typical defects. The predicted results are shown in Table
8. The test results show that the XGBoost-BGP model has
good generality.
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Fig. 9 Comparisons of deviation

Analysis of factors affectingmechanical properties
of structures

XGBoost can determine the relationship between variables
and output values [47]. This study considered the relationship
between the four input variables and themaximumstress. The
principle is to count the number of times the input feature
appears in all the trees. The greater the frequency with which
the input feature appears, the more obvious the effect of the
input feature onmaximumstress. The individual input feature
scores are shown in Fig. 11. ’Oversize’ (the thick-dominated
struts) has the greatest effect on the maximum stress. The
influence of ’undersizing’ (the thin-dominated struts) on the
maximum stress is second only to that of ’oversize’. The
effect of these two features on the maximum stress is mainly
because of the residual stress concentration caused by the
irregular strut size, which changes the maximum stress. This
fully reveals the relationship between the strut andmaximum
stress. In addition, ’waviness’ (the bend-dominated struts) is
also one of the main factors affecting the maximum stress.
However, there is a certain uncertainty in themaximum stress
influence because of its complex characteristics. The effect
of ’number of layers’ on the maximum stress is the least
among the four features, but this does not mean that the fea-
ture of ’number of layers’ can be ignored. In addition, by
making appropriate changes to the input features for differ-

Fig. 10 Comparison of predicted and actual values

Table 8 Prediction with other data

Number of Ground Our method’s Bias
oversize truth (MPa) Prediction (MPa)

1 227.75 230.35 2.6

2 238.85 241.45 2.65

4 254.17 246.77 −7.4

RMSE 4.76

Bolded values are considered as the minimum deviation between the
predicted results of the proposed model and the real results

ent structures, prediction of the maximum stress of different
structures can still be achieved.
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Fig. 11 The importance of each
variable

Discussion

The XGBoost-BGP prediction model proposed in this study
can accurately predict themaximumstress ofSLM-fabricated
BCC structural samples. This study only selected the most
important features as training features because of the com-
plex representation of inherent defects in lattice structures
and the limited available data. Furthermore, given sufficient
data, the training features can be extended to include the type
of powder prepared, powder diameter, powder composition,
standard radius of the struts, angle between struts, and angle
between struts and the ground.

The prediction model proposed in this study had some
limitations. The main factor-limiting models are features of
the lattice structure. Features of datasets commonly have an

impact on the upper bound of the model. This study selected
four typical features based on the actual sample. Addition-
ally, the accuracy of the model can be improved by adjusting
hyperparameters if features are added.

Conclusion and future work

In this study, we proposed an XGBoost model based on
the Gaussian process method in Bayesian hyperparame-
ter optimisation to achieve maximum stress prediction of
SLM-fabricated BBC structures. The model contained four
parameters (number of layers, thick-dominated struts, thin-
dominated struts, and bend-dominated struts) as the input and
one structural feature (maximum stress) as the output. The
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datasets were derived from the actual prototypes and simu-
lations. According to the experimental results, the maximum
stress prediction model of XGBoost-BGP proposed in this
study optimises R2 and RMSE to 0.82 and 17.40, respec-
tively. In addition, we discussed the relationship between the
four input parameters and maximum stress. The thick domi-
nant strut had the greatest influence on the maximum stress
of the lattice structure sample.

Future work will focus on three areas. The first direction
is to consider samples with more complex structural features
to raise the upper limit of the model. The second direction is
to improve XGBoost parameter optimisation using a meta-
inspired learning hyperparameter optimisation method. The
third direction is to carry out the analysis of other perfor-
mance parameters to reveal the influence of defects on other
performance parameters.
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