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Abstract
Deep learning models are easily deceived by adversarial examples, and transferable attacks are crucial because of the inac-
cessibility of model information. Existing SOTA attack approaches tend to destroy important features of objects to generate
adversarial examples. This paper proposes the split grid mask attack (SGMA), which reduces the intensity of model-specific
features by split grid mask transformation, effectively highlighting the important features of the input image. Perturbing
these important features can guide the development of adversarial examples in a more transferable direction. Specifically, we
introduce the split grid mask transformation into the input image. Due to the vulnerability of model-specific features to image
transformations, the intensity of model-specific features decreases after aggregation while the intensities of important features
remain. The generated adversarial examples guided by destroying important features have excellent transferability. Extensive
experimental results demonstrate the effectiveness of the proposed SGMA. Compared to the SOTA attack approaches, our
method improves the black-box attack success rates by an average of 6.4% and 8.2% against the normally trained models and
the defense ones respectively.
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Introduction

The last decade has witnessed the rapid development of
deep neural networks (DNN), convolutional neural networks
(CNN), and their applications in various vision-related tasks
such as pedestrian trajectory prediction, image restoration,
face recognition, and so forth [1–6]. Despite the impres-
sive progress, prior studies show that deep learning systems
are not always reliable and can be easily misled by care-
fully designed perturbations. Such malicious perturbations
are referred to as adversarial noise, and the resulting data (raw
data plus perturbation noise) are called adversarial examples
or adversarial attacks [7, 8]. The discovery of adversarial
examples poses a huge threat to various security- and safety-
sensitive applications [9–12].

Adversarial attacks are usually categorized into two types:
white-box attacks and black-box attacks, depending on the
access of the target model. Briefly, in the white-box attacks,
adversaries obtain knowledge of the target model and fabri-
cate adversarial examples accordingly. Therefore, the attack
success rates can be very high. By contrast, in black-box
attacks where adversaries have partial or no information
regarding the target model, we utilize a surrogate model
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with known information to generate adversarial examples.
However, since model structures vary, adversarial examples
generated by the surrogate model may be low in transferabil-
ity [13] and thus have poor attack success rates on the target
model [14]. Note that the black-box attack scenario is more
common in practice, and thus the investigation of high trans-
ferable attacks attracts much attention. In literature, methods
to generate adversarial examples with high transferability
can be categorized into three paradigms: (1) gradient opti-
mization [15, 16]; (2) input transformation [17–20]; and (3)
ensemble-model attack [13, 21, 22]. On the other hand, there
are also many researches on methods to combat adversarial
attacks, such as studying the stability of neural network sys-
tems [23–25] or using methods such as adversarial training
[26] to improve the robustness of models. In addition, knowl-
edge distillation, denoising, and random smoothing are also
explored to promote deep model’s robustness against adver-
sarial attacks [27–30].

In adversarial examples generation, perturbing the intrin-
sic features in raw data usually leads to adversarial exam-
ples with high transferability. Such intrinsic features are
model-agnostic and contribute to the final decision-making,
regardless of the specific model structure. However, such
model-agnostic features usually mingle with model-specific
patterns in model optimization; thus, identifying these
model-agnostic features is non-trivial. Prior studies show that
many adversarial attacks are likely to overfit the surrogate
model in adversary generation andmodify themodel-specific
features instead of model-agnostic features, reducing the
transferability of adversarial examples. To differentiate the
intrinsic features from “noisy” model-specific patterns in
adversary generation, Wang et al. [31] introduced a feature
importance-aware (FIA) strategy where a random pixel-
dropping transformation followed by gradient aggregation
is employed. The FIA approach then destroys the intrin-
sic, model-agnostic features, and thus the transferability of
the resulting adversarial examples is significantly improved.
Nevertheless, there still exists a drawback in FIA. We find
that these noisy, model-specific features are not well filtered
out because of the high correlations among adjacent image
pixels.

To address the afore-mentioned issues, we propose a
novel adversarial attack approach, i.e., Split Grid Mask
Attack (being referred to as SGMA for simplicity). To gen-
erate adversarial examples with improved transferability, we
introduce the split grid masks to identify model-agnostic
important features in images; thus, we can significantly
improve the transferability of adversarial examples by sup-
pressing these important features. During the recognition
process, different models tend to focus on diverse discrimi-
native regions; hence, through removing partial information
from the image, CNN can learn information that was not sen-
sitive or important. Thus, the problem of overfitting to the

source model can be effectively alleviated through aggre-
gating a number of transformed images. Furthermore, the
SGM-transformed images preserve spatial structural and tex-
tural information that is related with the principal part of the
figure. This ensures the model to fluctuate on noise features
while simultaneously learn the important features. Specifi-
cally, we divide the image into grids of the same size; then
in each grid, we generate masks with random positions and
random side lengths. While the important features are iden-
tified by computing the aggregate gradient of features in the
intermediate layers for a set of transformed images. Then, we
are anticipated to suppress the influence of important features
on the decision of a model; this can be implemented through
adding perturbations which can significantly improve the
transferability of adversarial examples.

Summing up, the contributions of our manuscript can be
elucidated as:

• We propose an adversarial attack method called SGMA
that destroys important features of an image by ran-
domly removing some regions of the image. This method
distorts the discriminative region of the model, thereby
facilitating the transferability of derived adversarial
examples.

• We propose a new image processing method based
on information removal—Split Grid Mask, the SGM
transformation enables DNN to extract more features
to alleviate the overfitting of adversarial examples to
the source model. Furthermore, the aggregated gradient
of the SGM-transformed images effectively highlights
important features, which can lead to higher attack suc-
cess rates of black-box attacks.

• Extensive experiments are performed on different clas-
sification models. Compared with SOTA transferable
attack methods, our proposed SGMA is demonstrated
to be superior while the derived adversarial examples are
of excellent transferability.

The schematic of this manuscript is provided as follows.
The “Related works” section reviews related works. In the
“Methodology” section, we illustrate the proposed approach,
i.e., SGMA, in detail. Extensive experiments and the corre-
sponding results are provided in the “Experimental analysis”
section. “Conclusion” concludes this paper and discusses
some future works.

Related works

In [32], Szegedy et al. first proposed the concept of adver-
sarial examples and demonstrated the security issues of deep
learning models. Since then, derivation of adversarial exam-
ples has received numerous attention. Under the black-box
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attack setting, inaccessibility of information of the target
model encourages investigating transfer-based attacks. In this
regard, many methods are proposed for adversarial attacks
with high transferability [33–35].

Among these methods, gradient-based black-box attacks
is of great importance. They first adopted a well-trained
model as the surrogate source model for adversarial exam-
ples generation. Then, these adversarial examples are applied
to the targeted model for attacks. In [14], Goodfellow et al.
introduced the Fast Gradient Sign Method (FGSM), where
perturbations overlay onto the original images along the
converse direction of the gradient for adversarial examples
generation. Later, Kurakin et al. utilize the FGSM itera-
tively (I-FGSM for short) to promote the success rates of
white-box attacks. Nevertheless, as illustrated in [36], the
transferability of derived adversarial examples might be lim-
ited as these methods are prone to perturbing model-specific
features and thus falling into local optimization and low trans-
ferable adversarial examples.

To improve the transferability of adversarial attacks, Dong
et al. proposed to integrate I-FGSM and the momentum
method (MI-FGSM for short) in adversary generation [16].
In this method, the gradient vector from previous iterations
is accumulated to guide the calculation of the next gradient,
helping escape from the local optimal in adversary optimiza-
tion and thus improving their transferability. Later, Lin et al.
proposed a new approach through replacing momentumwith
Nesterov Accelerated Gradient, i.e., NI-FGSM [15]. Before
calculating the gradient in each iteration, NI-FGSM makes
a prediction in the direction of the previously accumulated
gradient. Thanks to this looking ahead property, it is much
easier and faster to escape from the local optimum. Then,
Wang et al. proposed VMI-FGSM through adjusting the iter-
ative gradient according to the gradient variance [37]. When
computing the gradient at each iteration, the current gradient
is no longer directly used for momentum accumulation. In
addition, the gradient variance of previous iteration is also
considered for the adjustment of the current gradient.

Input transformation are also explored to promote the
transferability of adversarial examples. Inspired by the fact
that data augmentation can alleviate the overfitting problem
in model optimization, Xie et al. proposed Diverse Input
Method (DIM) to improve the transferability through using
input transformation [17]. Briefly, gradient are computed
on data crafted from random resizing and random padding
of the clean image with a certain probability. Later, Dong
et al. presented the Translation-Invariant Method (TIM) in
which the gradient of the original image is replaced with the
average gradient of a set of translated images [18]. Later,
Lin et al. considered the scale invariance of CNN and then
proposed an adversarial example generation algorithm, i.e.,
Scale-Invariant Method (SIM) [15]. In SIM, the generation
of perturbations is guided by computing the average gradient

of a set of scaled images. Moreover, Zhang et al. proposed
the Admix Attack Method (Admix) to introduce informa-
tion from other categories of images [19]. Specifically, this
approach first randomly selects images of other classes and
then mixes them with the original images; thus, the aver-
age gradient of the mixed images is utilized to update the
perturbation. On the basis of information deletion, Hong et
al. developed an adversarial example algorithm, named Grid
Mask Attack (GM-Attack) [38]. Here, proper information
removal can ensure the CNN to extract more features; thus,
the problem of adversarial examples overfitting the source
model can be effectively alleviated by GM-Attack.

The afore-mentioned methods mainly focus on attacking
the last layer of CNN. It is intuitive to ask the question:
Whether it is also effective to attack the features of mid-
dle layers? Various scholars devote their efforts to tackling
this question [39, 40]. Zhou et al. presented the Transferable
Adversarial Perturbations (TAP) to improve the transfer-
ability through increasing the feature distances between the
original image and its adversarial example in the intermediate
layers [41]. Later, Ganeshan et al. proposed the Feature Dis-
ruptive Attack (FDA) [42]. In FDA, the features of each layer
in the model are corrupted which eventually leads to wrong
classification results. Inkawhich et al. modifies the features
of the original image such that the resulting middle layer rep-
resentation is closer to an image from another class, thereby
improving the transferability of adversarial examples [43].
To further promote the transferability, Huang et al. proposed
the Intermediate Level Attack (ILA), aiming to fine-tune the
previously generated adversarial examples through increas-
ing their perturbations to pre-specified layers in the source
model [44].

Recently, differentiation of model-agnostic features and
model-specific features in adversarial robustness is pro-
posed. Specifically, a deep learning model might extract
noisy features that adapt to its structure. However, these
model-specific patterns may not be utilized by other models
with different structures. Hence, perturbing these features
is of limited significance in improving the transferability
of adversarial examples. Therefore, it is very important to
identify and attack the important features that can dominate
the decisions of different models. For instance, Wang et al.
presented the Feature Importance-aware Attack (FIA) [31].
Different from previous methods that modify all features
indiscriminately, FIA distinguishes the model-specific and
model-agnostic, intrinsic features through gradient aggregat-
ing and focuses on perturbation of those important features,
which improve adversarial examples’ transferability. Similar
toFIA,Zhang et al. proposes theRandomPatchAttack (RPA)
[45], where random patch transformation is used to identify
model-agnostic features for enhancing attack transferability.
To further improve the transferability of adversarial attacks,
this study proposes a novel method namely SGMA. It uti-

123



6054 Complex & Intelligent Systems (2023) 9:6051–6063

lizes aggregate gradient to differentiate features and selects
important features to attack. Details of the proposed SGMA
will be illustrated explicitly later.

Methodology

In this section, we illustrate the proposed SGMA explicitly
with the overall architecture being provided in Fig. 1. Firstly,
we propose the SGM-transformed approach to handle the
pre-processing of initial input images while a variant, i.e.,
SGMR-transformed approach, is also provided. Then, details
of the adopted gradient aggregating model are provided.
After that, we present the overall architecture to illustrate
the process of our SGMA.

SGM-transformed image-processing approach

Given an input image m, we randomly generate some grid
areas and then remove the corresponding pixels inside the
grids similar as in [38]. Specifically, we first specify a matrix
M with the elements being filled with 1. The size of M is
the same as the input image m. Then, the matrix M will be
divided into a number of grids , where the side length of each
grid is d. In each grid, we generate a square mask with a side
length of d ∗ r where r denotes the side length keep-ratio of
the mask; and we set the value of pixels inside the mask to
0. Let the relative positions of each mask to the upper left
corner of the grid be represented as ψx and ψy respectively.
Then, the generated masked image can be expressed as:

m̃ = m � Mask
(
d, r , ψx , ψy

)
(1)

where � denotes the element-wise product.

SGM-transformed approach

In this study, we introduce a novel input-transformation
approach, i.e., Split Grid Mask-transformed (being referred
to as SGM-transformed for simplicity), to incorporate ran-
domness in adversarial example generationprocess to improve
its transferability. Different from the GM-Attack [38] where
the derived masks are uniformly distributed, we propose to
assign a randomoffset (sx , sy) to themask in each grid. sx and
sy follow the uniform distribution between (−S, S), where S
represents the maximum offset. Furthermore, the side length
of each mask also changes randomly, following the uniform
distribution between (−C , C), where C denotes the maxi-
mum varying of the side length. Thus, the final generated
masked image can be represented as:

m̃ = m � Mask
(
d, r , ψx , ψy, S,C, p

)
, (2)

where p represents the occurrence probability of side length
varying.

SGMR-transformed approach

Wefurther improve theproposedSGM-transformedapproach
by incorporating mask random rotation. In this variant of
SGM-transformed approach, after the generation of masks in
each grid, we introduce a rotating operation to the obtained
masks, i.e., rotating all masks clockwise by the same angle
of θ . We assume the rotation angle follows a pre-defined
distribution such as the uniform distribution between 0 and
90◦. The proposed variant is denoted as SGMR-transformed
approach with the overall formula being represented as:

m̃ = m � Mask
(
d, r , ψx , ψy, S,C, p, θ

)
. (3)

Fig. 1 The overall architecture of our SGMA approach. The input
image is pre-processed by our proposed SGM transformation. The set
of transformed images are fed to the surrogate model and image fea-

tures are weighted by the resulting aggregated gradients. The proposed
SGMA is able to perturb features with higher weights
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Fig. 2 An illustrative example of the SGM-transformed and SGMR-transformed approaches to pre-process the images. Meanings of the parameters
are provided in the main text

After generating masks using Eq. (2) or Eq. (3), the input
images are pre-processed, generating a set of masked images
for downstreamgradient aggregating and feature significance
estimation. For better interpretation, an illustrative example
of the mask generation process is provided in Fig. 2.

Gradient aggregating

Aggregate gradient upon the SGM- and SGMR- transformed
images is capable of highlighting the object-related features
meanwhile attenuating the noisy, model-specific features.
From this perspective, it facilitates to boost the transferability
of generated adversarial examples. We illustrate the gradient
aggregating process adopted in this work in Fig. 3.

Let f denote the source/surrogatemodel. For a given input
m, the corresponding feature maps of the kth layer can be
denoted as fk(m). Here, we can adopt the gradient to reflect
the relative importance of features:

Δm
k = ∂l

(
m, yreal

)

∂ fk(m)
, (4)

where l(., .) represents the logit output corresponding to the
true label yreal.

Note that the gradient on the original image usually does
not highlight the object-related features verywell. To identify
and highlight significant features, we propose to calculate
the aggregate gradient from the set of masked images by the
proposed SGM-transformed/SGMR-transformed approach.
The corresponding aggregate gradient is calculated as

Δk = 1

D

ens∑

n=1

∂l
(
m̃, yreal

)

∂ fk (m̃)
, (5)

where ens represents the number of masked images,
m̃ denotes the masked image generated by the SGM-

Fig. 3 Presentation of the gradient aggregating process

transformed/SGMR-transformation, and D indicates the l2-
norm of the corresponding summation term.

Proposed SGMA approach

As illustrated inFig. 1, after obtaining the aggregate gradients
from the masked images, we obtain the weighted feature
maps of the input image.Based on theweighted featuremaps,
important features can be highlighted accordingly. During
adversarial example generating process, the following loss
function is used to represent the important features:

L
(
madv

)
= Δk � fk

(
madv

)
, (6)

where madv represents the adversarial example correspond-
ing to the input image m. In Eq. (6), the important features
towards the decision-making are highlighted by larger aggre-
gate gradients. Thus, through decreasing the higher intensi-
ties, we can effectively suppress the influence of important
features on the final decision of a model, thus leading the
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generation of adversarial examples in a much more transfer-
able direction. The optimization objective of our proposed
SGMA can be formulated as:

argmin
madv

L
(
madv

)
(7)

s.t.,
∥∥∥madv − m

∥∥∥∞ ≤ ε, (8)

where ε represents a pre-specified threshold while the term∥∥madv − m
∥∥∞ ≤ ε indicates that the difference between

madv and m must be smaller than ε.
We utilize the momentum optimization to solve Eq. (7)

and the detailed processes of the proposed SGMA approach
are specified in Algorithm 1 (lines 10–13). Furthermore, a
variant SGMRA can be derived accordingly by replacing
the SGM-transformed image processing approach with the
SGMR-transformed one [i.e., utilizing Eq. (3) instead of Eq.
(2) at the 4-th step].

Experimental analysis

Experimental setup

Dataset description

In this manuscript, without loss of generality, we also select
the dataset from a widely adopted ImageNet-compatible
dataset [46]. The surrogate models are well trained with high
classification accuracy.

Models for evaluation

Tovalidate the transferability of adversarial examples derived
by different methods, several vanilla trained models are
regarded as the target to be attacked including Inception-v3
[47], Inception-v4 [48], Inception-Resnet-v2 [48], ResNet-
V1-50 [49], ResNet-v1-152 [49], VGG16 [50], VGG19 [50];
for simplicity, the afore-mentioned models are abbreviated
as Inc-v3, Inc-v4, IncRes-v2, Res-50, Res-152, Vgg-16 and
Vgg-19 respectively. Moreover, we also consider five adver-
sarially trained models, i.e., Adv-Inc-v3, Adv-IncRes-v2,
Inc-v3ens3, Inc-v3ens4 and IncRes-v2ens [26].

Comparison baselines

To illustrate the performance, we consider the following
approaches, including DIM, TIM, PIM, FIA, RPA, as well
as their combinations, FIA+ PIDIM, FIA+ PIDITIM, RPA
+ PIDIM, RPA + PIDITIM.

Algorithm 1 The SGMA Algorithm.
Require: Input imagem, true label yreal, classifier f with loss function

L;
Perturbation size ε, number of iterations T , the decay factor μ;
Length of the grid d, side length keep-ratio r , maximum offset

S;
Maximum varying of the side length C , the number of masks

ens;
Ensure: An adversarial example madv;
1: Initialization α = ε/T ; madv

0 = m; g0 = 0; g̃0 = 0;
2: Calculate the aggregate gradients:
3: for i = 0 → ens do
4: Derive the masked image by adopting Eq. (2);
5: Determine the gradient of the masked image:

Δi = ∂l(m̃, yreal)

∂ fk(m̃)

6: Update Δ:

Δ = Δ + Δi

7: end for
8: Obtain the aggregate gradients:

Δk = Δ/ ‖Δ‖2
9: Derive the loss through utilizing Eq. (6);
10: for t = 0 → T − 1 do
11: Update gt :

gt+1 = μ · gt + ∇mL
(
madv

t

)
∥∥∇mL

(
madv

t
)∥∥

1

12: Update madv
t+1:

madv
t+1 = madv

t + α · sign (gt+1)

13: end for
14: return madv = madv

T .

Hyper-parameters

To be in consistent, we adopt the attack parameter settings
in [31]: the maximum perturbation ε is set to 16, the number
of iteration T is assigned to 10, and the step size α equals to
1.6. For DIM, the transformation probability p is 0.7. While
for TIM, the adopted kernel size is 15. For FIA, we assign
the ensemble number N to 30. As to the drop probability
pd , the value is set to 0.3 and 0.1 when attacking normally
trained models and defense ones respectively. For RPA, we
set the ensemble number N to 60, the modify probability pm
is set to 0.3 and 0.2 when attacking normally trained models
and defense ones respectively. For the proposed SGMA, the
ensemble number ens equals to 30, the length of the grid d
will be randomly selected in the range of [3, 105]. The side
length keep-ratio r is 0.5 and 0.6 for the normally training
model and defense one respectively, the maximum offset S
and the maximum varying of the side length C will vary
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Table 1 Performance (indicated by attack success rates) of different methods of attacking a normally trained model

Model Method Inc-v3 Inc-v4 IncRes-v2 Vgg-16 Vgg-19 Res-50 Res-152

DIM 0.996* 0.646 0.596 0.476 0.464 0.407 0.363

PIM 0.979* 0.558 0.515 0.616 0.605 0.533 0.463

FIA 0.983* 0.835 0.806 0.714 0.733 0.704 0.649

RPA 0.986* 0.857 0.840 0.753 0.756 0.727 0.684

Inc-v3 SGMA 0.996* 0.929 0.908 0.871 0.875 0.846 0.797

PIDIM 0.981* 0.705 0.664 0.392 0.192 0.618 0.390

FIA + PIDIM 0.988* 0.878 0.857 0.824 0.841 0.797 0.744

RPA + PIDIM 0.985* 0.896 0.887 0.837 0.848 0.830 0.798

SGMA + PIDIM 0.997* 0.936 0.934 0.922 0.930 0.898 0.858

DIM 0.752 0.713 0.971* 0.515 0.514 0.509 0.437

PIM 0.668 0.629 0.996* 0.645 0.635 0.562 0.508

FIA 0.811 0.775 0.892* 0.714 0.714 0.718 0.689

RPA 0.705 0.668 0.792* 0.641 0.630 0.643 0.587

IncRes-v2 SGMA 0.932 0.892 0.988* 0.866 0.866 0.842 0.801

PIDIM 0.805 0.780 0.985* 0.625 0.626 0.566 0.501

FIA + PIDIM 0.842 0.797 0.916* 0.806 0.799 0.790 0.784

RPA + PIDIM 0.762 0.758 0.825* 0.762 0.753 0.758 0.729

SGMA + PIDIM 0.949 0.929 0.992* 0.914 0.937 0.913 0.882

DIM 0.803 0.722 0.726 0.884 0.880 0.950 0.999*

PIM 0.660 0.564 0.511 0.832 0.825 0.923 1.000*

FIA 0.853 0.811 0.778 0.915 0.915 0.968 0.995*

RPA 0.896 0.858 0.857 0.943 0.944 0.979 0.996*

Res-152 SGMA 0.932 0.873 0.881 0.954 0.961 0.991 1.000*

PIDIM 0.822 0.766 0.770 0.912 0.899 0.967 0.998*

FIA + PIDIM 0.903 0.859 0.856 0.958 0.957 0.982 0.995*

RPA + PIDIM 0.943 0.905 0.912 0.976 0.977 0.985 0.997*

SGMA + PIDIM 0.961 0.925 0.914 0.980 0.981 0.993 1.000*

DIM 0.872 0.870 0.809 0.998* 0.989 0.920 0.878

PIM 0.841 0.820 0.756 1.000* 0.989 0.911 0.859

FIA 0.957 0.956 0.923 0.998* 0.996 0.973 0.953

RPA 0.963 0.972 0.951 0.999* 0.999 0.976 0.960

Vgg-16 SGMA 0.981 0.979 0.955 1.000* 1.000 0.984 0.974

PIDIM 0.891 0.895 0.847 0.999* 0.988 0.938 0.908

FIA + PIDIM 0.976 0.975 0.938 0.998* 0.998 0.982 0.964

RPA + PIDIM 0.982 0.982 0.966 1.000* 0.999 0.991 0.980

SGMA + PIDIM 0.984 0.983 0.961 1.000* 1.000 0.987 0.983

Bold values represents the best performance
The first column illustrates source models, and the first row enumerates target models. Our methods are SGMA and SGMA + PIDIM. ∗ represents
the values obtained for white-box attacks

within d. Our choice of layers to be attacked is the same as
that in [31].

Comparison of transferability

In this section, aiming to illustrate the superiority of SGMA
approach, extensive experiments are conducted with the

transferability of the obtained adversarial examples being
compared with those derived by the considered baseline
approaches. Furthermore, we consider applying attacks
against two types of models, i.e., vanilla trained models and
adversarially trained ones.
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Table 2 Performance (indicated by attack success rates) of different methods of attacking a defense model

Model Method Adv-Inc-v3 Adv-IncRes-v2 Ens3-Inc-v3 Ens4-Inc-v3 Ens-IncRes-v2

TIM 0.320 0.264 0.301 0.325 0.224

PIM 0.343 0.302 0.333 0.384 0.262

FIA 0.545 0.549 0.439 0.420 0.235

RPA 0.590 0.595 0.455 0.443 0.263

Inc-v3 SGMA 0.617 0.660 0.482 0.483 0.278

PIDITIM 0.416 0.339 0.431 0.473 0.314

FIA + PIDITIM 0.648 0.590 0.625 0.632 0.509

RPA + PIDITIM 0.721 0.656 0.696 0.706 0.592

SGMA + PIDITIM 0.745 0.665 0.709 0.723 0.604

TIM 0.400 0.435 0.395 0.415 0.384

PIM 0.390 0.353 0.394 0.422 0.328

FIA 0.549 0.568 0.469 0.447 0.374

RPA 0.605 0.641 0.552 0.543 0.411

IncRes-v2 SGMA 0.690 0.746 0.623 0.551 0.457

PIDITIM 0.538 0.552 0.547 0.545 0.506

FIA + PIDITIM 0.551 0.529 0.549 0.562 0.506

RPA + PIDITIM 0.660 0.657 0.646 0.651 0.614

SGMA + PIDITIM 0.767 0.746 0.746 0.754 0.672

TIM 0.415 0.375 0.431 0.476 0.341

PIM 0.407 0.389 0.469 0.518 0.388

FIA 0.701 0.667 0.614 0.603 0.417

RPA 0.737 0.710 0.669 0.653 0.461

Res-152 SGMA 0.864 0.799 0.821 0.798 0.725

PIDITIM 0.519 0.490 0.586 0.648 0.479

FIA + PIDITIM 0.663 0.625 0.696 0.727 0.614

RPA + PIDITIM 0.711 0.695 0.744 0.756 0.672

SGMA + PIDITIM 0.721 0.649 0.732 0.768 0.653

TIM 0.528 0.462 0.551 0.553 0.416

PIM 0.519 0.432 0.502 0.563 0.399

FIA 0.878 0.863 0.856 0.860 0.708

RPA 0.903 0.879 0.877 0.864 0.733

Vgg-16 SGMA 0.959 0.928 0.941 0.942 0.902

PIDITIM 0.510 0.446 0.556 0.607 0.431

FIA + PIDITIM 0.747 0.714 0.773 0.801 0.670

RPA + PIDITIM 0.780 0.738 0.807 0.837 0.701

SGMA + PIDITIM 0.820 0.750 0.832 0.851 0.732

Bold values represents the best performance
The first column illustrates source models, and the first row enumerates target models. Our methods are SGMA and SGMA + PIDIM

Attacking vanilla trainedmodels

Here, we incorporate Inc-v3, IncRes-v2, Res-152, Vgg-16 as
the source/surrogate models and then attacks are applied to
all vanilla trained models. We do not choose TIM for com-
parison because it is designed for the defense models. The
corresponding simulation results are presented in Table 1. As
indicated, the attack success rates of our method in the black-
box setting are increased by an average of 6.4%over the other

state-of-the-art methods. Especially for adversarial examples
generated on Inc-v3 and IncRes-v2, our method can improve
the transferability by over 10%. Furthermore, our attack
approach can also be effectively combined with other attack
approaches to further improve the transferability. When our
method is combined with PIDIM (i.e., SGMA + PIDIM)
craft adversarial examples on Res-152 and Vgg-16, the aver-
age attack success rates on all the models are above 95%.
Compared with other feature-level attack approaches, the
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Fig. 4 Effects of layer selection in the source model on the transferability of derived adversarial examples. Here, the generated adversarial examples
on Vgg-16 or Inc-v3 are utilized to attack different target models

performance of our method is superior in both white-box and
black-box scenarios. To improve the transferability, FIA and
RPA sacrifice certain level of performance regarding some
white-box attacks; especially in IncRes-v2 model, the corre-
sponding attack success rates are reduced to 89.2% and 80%
respectively. However, the white-box success rates of SGMA
approach are all higher than 99%.

Attacking adversarially trainedmodels

Then, we consider the attacks against defense models. The
corresponding results are provided in Table 2 which are also
comparedwith those obtained by considered baselines. Since
the defense models are usually robust to adversarial exam-
ples, the derived attack success rates are likely to decrease
compared with those obtained for normally trained ones.
However, as indicated, our approach still significantly out-
performs the other SOTA attack approaches.We find that our
approach is able to increase the black-box attack success rate
by an extent of 8.2%on average. Especiallywhen the adopted
source model is Res-152, the attack success rate of SGMA
approach on Ens-IncRes-v2 is approximately 26% higher
than the previous best result obtained byRPA.When generat-
ing adversarial examples on Vgg-16, the attack success rates
of SGMA exceed 90% on all the considered defense models;
specially, the success rate against Adv-Inc-v3 is increased to
95.9%. As to the combined methods, when attacking Inc-v3
and IncRes-v2, the SGMA + PIDITIM approach can fur-
ther improve the transferability by 18.52% and 12.36% on
average respectively.

Varying layer selection for the source model

The selection of feature layer is a key factor which plays
an important role in affecting the performance of feature-
level attacks. For DNNs, early layers usually extract only
low-level features while data-specific feature sets are still
under-constructing. Once enough features are extracted to
model the data, later layers will combine and optimize low-
level features to form high-level ones aiming to improve the
eventually classification accuracy [51]. Therefore, the early
layers have not learned the semantic information and impor-
tant features related with the object, whereas the later layers
are likely to extract too many noise features. Thus, we target
to find the layer that has learned the semantic information and
important features related with the object sufficiently while
not too many noise features are incorporated simultaneously.
In fact, the features of the middle layer can avoid the short-
comings of insufficient features and high correlation with
the model; hence, the selection of appropriate middle layer
might lead to promoted transferability.

For simplicity, we just adopt Vgg-16 and Inc-v3 for
illustration while the corresponding results are illustrated
in Fig. 4a, b, respectively. As revealed, our experiments on
Vgg-16 and Inc-v3 prove the afore-conclusion regarding
the selection of middle layers. We find that for the con-
sidered two models, while there usually exists an optimal
layer corresponding to a maximum attack success rate. This
indicates that adversarial examples obtained by attacking
the middle layer are likely to be of higher transferability
compared with those being generated by attacking other
layers.
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Fig. 5 Effect of varying the side length keep-ratio and the ensemble
number on the attacking performance. The adversarial examples are
generated by SGMA with different parameter setting and we choose

Inc-v3 as the source model. The side length keep-ratio varies from 0.3
to 0.7 with an increment of 0.1, while the ensemble number changes
from 10 to 70 with a step of 10

Effects of varying r and ens

In this section, we explore the effects of varying the other
hyper-parameters on the final performance of the proposed
SGMA approach. Here, we mainly consider two hyper-
parameters, i.e., the keep-ratio of the side length (r ) and the
ensemble number (ens); while the success rates under the
black-box attack for different scenarios are derived with the
corresponding results beingprovided inFig. 5. For simplicity,
we adopt the Inc-v3 as the source model and then adversarial
examples are derived by setting different r and ens. Here,

we suppose r varies from 0.3 to 0.7, and the increment is
0.1. For each r , ens is iterated from 10 to 70 with a step
size of 10. Four models, i.e., Res-152, Vgg-16, Ens3-Inc-
v3, and Ens-IncRes-v2, are considered as the target model to
be attacked by the generated adversarial examples while the
transferability is reflected by the attack success rate.

In practice, a small r will remove too much information
from the input image, which may result in the failure of
extracting object-related features; whereas a large r retains
too much information which might limit the performance
of the method. This can be reflected by the obtained results
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Fig. 6 Attack success rates (%)
derived when attacking eight
models with adversarial
examples being crafted by
GM-Attack, SGMA, and
SGMRA on IncRes-v2 model

being presented in Fig. 5. As reflected, the optimal r is around
0.5 when attacking the considered normally trained models
(Res-152 and Vgg-16 are considered for simplicity); while
the value is around 0.6 if attacking the considered defense
models (Ens3-Inc-v3 and Ens-IncRes-v2 are incorporated).
Generally speaking, the attack success rates increase with
the increase of ensemble number ens. Nevertheless, when
ens is large enough, the success rate tends to saturate and
may even decline. Hence, for the parameter setting for the
SGMA approach, we set ens = 30, while r is assigned to be
0.5 and 0.6 for the normally training model and defense one
respectively.

Comparison of GM-attack versus SGMA versus
SGMRA

The aggregate gradients reduce the intensity of the noise
feature by taking advantage of its vulnerability to image
transformation. Therefore, increasing the sampling space of
the transformed images can help highlight important fea-
tures. Similar asGM-Attack, SGMAandSGMRAare subject
to the image transformation category based on information
deletion. All these approaches are aiming to achieve a good
balance between deleting information and retaining infor-
mation, which can help DNNs to extract sufficient features.
Whereas the difference lies in that SGMA and SGMRA
can efficiently increase the randomness of image transfor-
mation; thus, we can efficiently expand the example space
of transformed images. Therefore, they further highlight the
important features of the image which plays an important
role in guiding the generation of adversarial examples.

Aiming to valid this inherently, we perform experiments
through attacking different models while the IncRes-v2 is
adopted as the source model; the corresponding results are
provided in Fig. 6. As indicated, we find that the attack
success rates of GM-Attack, SGMA and SGMRA increase
graduallywhile the performances of SGMAandSGMRAare
always much better than that of GM-Attack. For the majority

Fig. 7 Comparison of attention regions derived by FIA and SGMA.
Adversarial images are generated on the source model (VGG16 is
considered) and utilized to attack the target model (Inception-V3 is
adopted). Our SGMA reduces the model’s ability to capture important
features of objects and focuses on completely irrelevant regions instead;
whereas the model’s attention to adversarial example generated by FIA
partially overlaps with that on the clean image

of considered scenarios, the transferability of the adversar-
ial examples crafted by SGMRA is higher than that obtained
throughSGMAbeing indicated by larger attack success rates.

Capability of distorting attention region

To visualize the capability of adversarial examples generated
by our proposed SGMA in distorting the model’s attention,
we present the corresponding results in Fig. 7; while the cor-
responding results for the adversarial examples derived by
FIA are also provided.
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We find that the corresponding attention region of the
model given the adversarial example is completely differ-
ent from that on the clean image. In contrast, the model’s
attention to adversarial examples generated by FIA partially
overlaps with that on clean image. Whereas for the SGMA,
the two regions are totally different; this illustrates the effec-
tiveness of the split grid mask transform in capturing those
important features.

Conclusion

In this paper, we propose a novel Split Grid Mask attack
(SGMA), which can generate adversarial examples with
higher transferability. The SGM-transform can alleviate the
overfitting problem by randomly removing some discontin-
uous regions so that the model can extract more features.
Using the aggregate gradients of the SGM transformed
image can reduce the intensity of model-specific features
and effectively highlight important object-related features of
the input images. Perturbing these important features guides
the development of adversarial examples in a more transfer-
able direction. As demonstrated by the experimental results,
compared with the SOTA transfer-based attack approaches,
SGMAachieves higher success rateswhen attacking both the
normal training model and the defense model. Although our
algorithm improves the transferability of adversarial exam-
ples, there still exists some directions to be investigated in the
future. Under the constraints of the recognized modification
range, adversarial examples can still be found through care-
ful observation; the success rates of attacking models with
defense mechanisms are not high enough.We hope that these
problems can be resolved in future research.
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