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Abstract
Linear local tangent space alignment (LLTSA) is a classical dimensionality reduction method based on manifold. However,
LLTSA and all its variants only consider the one-way mapping from high-dimensional space to low-dimensional space. The
projected low-dimensional data may not accurately and effectively “represent” the original samples. This paper proposes a
novel LLTSAmethod based on the linear autoencoder called LLTSA-AE (LLTSA with Autoencoder). The proposed LLTSA-
AE is divided into two stages. The conventional process of LLTSA is viewed as the encoding stage, and the additional and
important decoding stage is used to reconstruct the original data. Thus, LLTSA-AE makes the low-dimensional embedding
data “represent” the original data more accurately and effectively. LLTSA-AE gets the recognition rates of 85.10, 67.45, 75.40
and 86.67% on handwritten Alphadigits, FERET, Georgia Tech. and Yale datasets, which are 9.4, 14.03, 7.35 and 12.39%
higher than that of the original LLTSA respectively. Compared with some improved methods of LLTSA, it also obtains better
performance. For example, on Handwritten Alphadigits dataset, compared with ALLTSA, OLLTSA, PLLTSA andWLLTSA,
the recognition rates of LLTSA-AE are improved by 4.77, 3.96, 7.8 and 8.6% respectively. It shows that LLTSA-AE is an
effective dimensionality reduction method.
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Introduction

The information era, a large amount of data has been gener-
ated every moment in many fields such as education, medical
care, social media, business, etc. However, most of these data
cannot be directly applied to the real situation as impurities
and redundancy. Thus, data preprocessing such as data clean-
ing and data transformation is paid more and more attention.
The raw data always contains many noises and unnecessary
background and the extra information may affect the data
usage such as classification, regression, etc. Dimensional-
ity reduction (DR) [1, 2] is a part of data preprocessing
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technique. Some important fields are also closely related to
data dimension reduction. For example, in the field of object
detection [3], the pictures taken by it often have the ultra-high
resolution, so DR is needed to reduce the data dimension,
which makes the following algorithm more smooth [4].
And in the field of iterative learning control domain which
is related to robot field [5], the DR algorithms are also
used in the preprocessing stage to reduce the computational
complexity and computational time in the iterative learning
algorithm [6]. The main goal of DR is to find out the optimal
representative features or extract the low-dimensional fea-
tures from the high-dimensional space to address the curse
of dimensionality [7, 8]. Up to now, a variety of DRmethods
have been proposed to remove the redundant, insignificant, or
noisy information from the raw data. For example, the super-
visedDRs represented by linear discriminant analysis (LDA)
[9], the semi-supervisedDRs represented by semi-supervised
discriminant analysis (SDA) [10], and the unsupervised DRs
represented by principal component analysis (PCA) [11].

TheDRmethods are generally divided into twocategories:
linear and nonlinearmethods [12]. Principal component anal-
ysis (PCA) and linear discriminant analysis (LDA) are two
of the most representative linear dimensionality reduction
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techniques. PCA is proposed by Turk and Pentland in 1991,
which is also called Eigenface [11] in face recognition. The
mathematical foundations of PCA are the properties of the
covariance matrix and the special meaning of eigenvectors.
And PCA has many different implement algorithms, such
as eigenvalues, latent variable analysis, factor analysis etc.
[13–15]. LDA is proposed by Fisher in 1936, which is also
called Fisherface in face recognition. And its main idea is
to maximize the ratio of the between-class scatter to the
within-class scatter, thereby maximizing the separability of
between-class.However, both PCAandLDAare linearmeth-
ods.

To address the non-linear problem, a large number ofman-
ifold learning algorithms have been proposed [16], such as
Laplacian eigenmap (LE) [17], and locally linear embed-
ding (LLE) [18], Isomap [19], local tangent space alignment
(LTSA) [20].All thesemethods canobtain a low-dimensional
embedding which is regarded as the best representative sub-
space from the high-dimensional non-linear structure of the
data. The idea of LE is to use the Laplacian of graphs to find
the optimal low-dimensional representation that preserves
local neighborhood information of the original manifold.
LLE is based on the idea that each data point and its closest
certain number of neighbors are viewed as a locally linear
patch of the manifold and then reconstruct each data point
from its neighbors in the corresponding subspace. The main
objective of Isomap is to preserve the best similarity or dis-
similarity on the manifold between any pairs of data points
and it improves the computation method based on multi-
dimensional scaling (MDS) [21, 22]. The idea of LTSA is to
represent the local geometry of the high-dimensional man-
ifold by using the tangent space in the neighborhood of a
data point and then align those tangent spaces to construct
the global coordinate system for the nonlinear manifold.

However, those DRmethods mentioned above all face the
“out-of-sample” problem [23] which means they are only
defined on the training set and do not apply to the test set.
To solve the problem, many linearization methods of mani-
fold learning are proposed. For example, Isomap Projection
(IsoP) [24] is the linearization of Isomap, locality preserving
projection (LPP) [25] is the linearization of LE, neighbor-
hood preserving embedding (NPE) [26] is the linearization
of LE, and linear local tangent space alignment (LLTSA) [27]
is the linearization of LTSA. Specially, LLTSA first projects
the data set into PCA subspace to avoid the singularity of
the matrix and throw away the redundancy information. Sec-
ondly, it denotes a set k nearest neighbors (KNN) by a matrix
for every point. And thirdly, it finds out a low-dimensional
embedding of high-dimensional data with a linear mapping.
This mapping keeps the structure of the original manifold
data points. LLTSA not only uses the tangent space to pre-
serve manifold structure as LTSA does but also solves the

“out-of-sample” problem by providing the linear mapping
available on both the training set and test set.

The objective of LLTSA is to seek out a low-dimensional
embedding that keeps the structure of the local geometry
from the original manifold data points. More specifically,
LLTSA constructs a neighbor graph for each data point
by k nearest neighbors (KNN), and then, by using tan-
gent space, it computes a local linear approximation for
the data set. Last, LLTSA obtains the optimal mapping by
minimizing the error from high-dimensional manifold to the
low-dimensional feature space. Besides, the eigenproblem of
molecular alignment [28] is related to LLTSA. LLTSA aims
to align the local tangent spaces in low-dimensional spaces,
and eigenproblem translated for alignment ofmolecules aims
to distinguish different molecular arrangements. Their goal
is to align the items in the proper position in space. Further-
more, There are already several improved methods based
on LLTSA. For example, adaptive linear local tangent space
alignment (ALLTSA) [29] is aimed at solving the problem
that it is always hard to choose the best k in the neighborhood
selection. Orthogonal linear local tangent space alignment
(OLLTSA) [30] eliminates the redundant information by tak-
ing the constraint of the basis vector on the orthogonal form.
Thewarp linear local tangent space alignment [31] constructs
a curved local tangent space measure to improve the perfor-
mance. An improved linear local tangent space alignment
algorithm based on principal component analysis (PLLTSA)
[32] improves LLTSA by considering not only the local geo-
metric structure of the data set but also the global structure of
the samples. Weighted linear local tangent space alignment
(WLLTSA) [33] is a recently proposed improved method of
LLTSA, which uses the weighted version of PCA to approx-
imate local tangent space in each neighborhood instead of
conventional PCA.

As the conventionalLLTSAmethod is unsupervised, some
supervised improved methods are proposed to exert the
label information to obtain more accurate low-dimensional
embedding. By taking the label information into considera-
tion and redefining the distance matrix, discriminant linear
local tangent space alignment algorithm (DLLTSA) [34] and
supervised-linear local tangent space alignment (S-LLTSA)
[35] are proposed. And based on the above idea, many
modified algorithms are proposed. For example, adaptive dis-
criminant linear local tangent space alignment (ADLLTSA)
[36] is proposed byLv,whosemain idea is to add the adaptive
neighborhood selection to DLLTSA. And orthogonal dis-
criminant linear local tangent space alignment (ODLLTSA)
[37] orthogonalizes the subspace generated by DLLTSA.
Marginal discriminant linear local tangent space alignment
(MDLLTSA) [38] improves LLTSA by considering the mar-
gin of intraclass and interclass.

However, the LLTSAmethod and all its extended versions
obtain the embedding only by considering the one-way map-
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ping from high-dimensional space to low-dimensional space.
This mapping enables the embedded low-dimensional data
points to preserve the local neighborhood information of the
original samples partly. At the same time, the information
about the original high-dimensional space may lose. So it
may not “represent” the original sample very accurately and
effectively.

To address the above problems, in this paper, based on
the encoder–decoder paradigm, we present a novel LLTSA
method named LLTSA-AE (LLTSA with autoencoder).
Specifically, under the condition of maintaining the neigh-
borhood structure information of the samples, the data points
in high-dimensional manifold space are encoded into data
points in low-dimensional space by using the conventional
LLTSA projection model. Furthermore, we also use the
decoder to reconstruct the original high-dimensional data
points from the low-dimensional data points and minimize
the error between the original space and the reconstructed
space. However, the original LLTSA algorithm only con-
siders one-way mapping from high-dimensional space to
low-dimensional space, and themodifiedmethods of LLTSA
all focus on enhancing the one-way mapping to improve per-
formance. That is, compared with the conventional LLTSA
and themodifiedmethods ofLLTSA, the newLLTSAmethod
has an additional reconstruction stage. This stage enables
the low-dimensional data to retain as much information as
possible about the original high-dimensional data, so the
embedded low-dimensional data “represent” the original
samples more accurately and effectively.

The rest of this paper proceeds as follows: in “The related
works”, we review the LLTSA method and autoencoder. In
“Linear local tangent space alignment with autoencoder”, we
propose the novel LLTSA method with the encoder–decoder
paradigm. In “Experimental results”, we make experiments
to evaluate the new method. The conclusion and future work
are given in “Conclusion”.

The related works

Local tangent space alignment

LLTSA is the linearization version of LTSA, so the algorithm
of LTSA is demonstrated as follows. Suppose there are l
original samples x1, x2, ..., xl . in Rn space and denote X =
[x1, x2, · · · , xl ].

1. Construct neighborhoods: to construct a neighborhood for
each point. In the original high-dimensional input space,
the k nearest neighbors of each point are found based on
Euclidean distance.

2. Extracting local coordinates: to preserve the local struc-
ture of the data points, the local coordinates are computed
by solving the optimal linear problem Eq. (1).

ki∑

j=1

∥∥∥xi j −
(
xi + Qiθ

(i)
j

)∥∥∥
2

= min
x,{θ j},QT Q=I

∥∥∥xi j −
(
xi + Qiθ

(i)
j

)∥∥∥
2

(1)

where Q is an orthonormal basis matrix of tangent space,
and the solution of Eq. (1) is xi = 1

ki

∑ki
j=1 xi j and

θ j
(i) = Qi

T (xi j − xi ), which are the local coordinates
of xi j . The above procedure is actually a local principal
component analysis.

3. Aligning local coordinates: to preserve more geometry in
low-dimensional feature space as possible. The error of
reconstruction from high-dimensional manifold space to
low-dimensional feature space is minimized, i.e.

min
T ,TT=I

I∑

i=1

min
ci∈Rd

L∈Rd×d

1

ki
‖ti j − (ci + Liθ

(i)
J )‖2 (2)

where T = [t1, ..., tI ] ∈ Rd×I is the objective global
coordinates. Furthermore, Eq. (2) can be transformed into
the following eigenvalue problem with algebra process-
ing.

min
TT T =I

tr
(
φT

)
(3)

where the alignment matrix φ = ∑I
i=1

1
ki
Siφi S

T
i is sym-

metric semidefinite. Si is the 0–1 selection matrix which
computed by T Si = [

ti1, ..., tiki
] = Ti . φi is an orthog-

onal projection.

Linear local tangent space alignment

Although LTSA can learn from the manifold space, it faces
the problem that it is only available on the training set. Thus,
the LLTSA method is proposed to solve the problem.

LLTSA is aimed at finding out a dimensionality reduction
mapping available on both the training set and test set.

yi = AT xi (4)

Considering the mapping (4), the objective function of
LLTSA can be computed by the following problem:

Aopt = argmin
AT XHXT A=I

tr
(
AT XHBHXT A

)
(5)

where AT XHXT A = I is a constraint, B = SWWT ST ,
S = [S1, S2, ..., SI ], Si is the 0–1 selection matrix which
computed by Y S = Yi , Y = [

y1, ..., yI
]
and yi is the

global coordinates. AndW = diag (W1, ...,WI )withWi =
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Hk
(
I − ViV T

i

)
. Hk = I − eeT /k represents the centering

matrix, and Vi is the matrix of d right singular vector of
XiHK corresponding to its d largest singular values.

The object function (5) is easy to resolve by applying
Lagrangemultipliermethods, and the function is transformed
into a generalized eigenvalue problem:

XHBHXT a = λXHXT a (6)

Then, the solution of (6) a1, ..., ad ordered corresponding
to the size of the eigenvalues, λ1, ...,λd ,so themapping com-
puted by the above process can be expressed as ALLTSA =
(α1, ...,αd). But because the PCA is used to avoid singular-
ity, the ultimate transformation matrix is:

A = APCAALLTSA (7)

Autoencoder

The standard autoencoder is a two-layer fully connected
neural network, including the input layer, hidden layer, and
output layer. The input layer and the hidden layer constitute
the encoder, and the hidden layer and the output layer con-
stitute the decoder. The encoder encodes the input data into
a new feature representation, and the decoder decodes the
feature expression to obtain the reconstruction of the input
data. The autoencoder trains the weight parameters by mini-
mizing the error between the reconstruction and the original
input data, to get the optimal feature representation of the
input data.

Thus, there are many improvements for autoencoder,
which include StackedAutoencoder [39, 40], SparseAutoen-
coder [41], Convolutional Autoencoder [42], Variational
Autoencoder [43], etc.

For autoencoder, if the number of hidden layer nodes is
less than the number of input layer nodes, it is called the
undercomplete model; otherwise, it is called the overcom-
plete model. If the activation function of the hidden layer is
linear, the autoencoder is called linear autoencoder. In this
paper, the proposedmethod is based on the linear, undercom-
plete autoencoder with only one hidden layer.

Linear local tangent space alignment with
autoencoder

Framework

In his section, the framework of the new LLTSA is demon-
strated as follows. The new LLTSA method can be divided
into two stages based on the structure of the encoder–decoder
paradigm.

The first stage is the encoding stage by using the con-
ventional projection model of LLTSA. The model maps the
high-dimension data point xi to the low-dimensional data
point yi with the linear mapping yi = AT xi . From the
perspective of the linear autoencoder, this mapping can be
regarded as encoding each high-dimensional data point into
a low-dimensional data point. And, the mapping simulta-
neously preserves local neighborhood information of the
original samples, i.e., if the original samples xi and x j are
“close”, then the embedded points yi and y j are also “close”.

The second stage is to decode the low-dimensional embed-
ded point yi to the original data with the linear autoencoder.
Let x̂i be the reconstruction of the original data point xi ,
A∗ be the weight matrix of the decoder. Mathematically, the
decoding process may be formulated as:

x̂i = A∗ yi

To simplify themodel, theweights of encoder and decoder
in autoencoder can be tied as introduced in Ref. [44], i.e.,
A∗ = (

AT
)T = A. Thus, the decoding process may be

rewritten as:

x̂i = Ayi

Above all, the reconstruction error between original
manifold data xi and the reconstruction data x̂i built by
autoencoder is supposed to be minimized, which makes the
low-dimensional embedded point “represents” the original
sample more accurately and effectively. Figure1 shows the
architecture of the proposed LLTSA-AE method.

As described above, the proposed LLTSA-AE method is
divided into two stages. The conventional LLTSA is regarded
as the first stage. The second stage is to decode the low-
dimensional data to the high-dimensional data space. And
the reconstruction error between the original data and the
reconstruction data is supposed to be minimized.

Compared with the LLTSA and other modified methods
of LLTSA such as ALLTSA, OLLTSA, and WLLTSA, the
proposed LLTSA-AE not only consider the error from high-
dimensional space to low-dimensional space but also the
reconstruction error between reconstructed space and orig-
inal space, which is regarded as the decoding stage of the
autoencoder. That is, our method obtains low-dimensional
data by considering two-way mapping, rather than one-way
mapping like traditional LLTSA algorithm and other mod-
ified methods of LLTSA. Thus, the proposed LLTSA-AE
can “represent” the original samples more accurately and
effectively. However, the original LLTSA algorithm obtains
the low-dimensional embedding by considering minimizing
the error from high-dimensional space to low-dimensional
space. Besides, other modified methods of LLTSA also only
concentrate on optimizing the process of the mapping from
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Fig. 1 The architecture of the proposed LLTSA-AE method

high-dimensional space to low-dimensional space. For exam-
ple, ALLTSA tries to obtain better neighborhood number k
to compute the better mapping by minimizing the error from
high-dimensional space to low-dimensional space. OLLTSA
is to eliminate the redundant information of the original
manifold by taking the constraint of the basis vector on
the orthogonal form. And WLLTSA enhances the mapping
from high-dimensional space to low-dimensional space by
repaceing the original PCA algorithm with the weight PCA
algorithm. Thus, the proposed LLTSA-AE is superior to the
conventional LLTSA and other modified algorithms.

Based on such idea, the newmethod is named LLTSA-AE
(Linear Local Tangent Space Alignment with Autoencoder).

The objective function

To implement the LLTSA-AE algorithm, the objective func-
tion of the LLTSA-AE is proposed in this section.

The first stage of LLTSA-AE is the conventional projec-
tion model of LLTSA and preserves the local neighborhood
information of the samples. It can be formulated as minimiz-
ing Eq. (5). In this paper, Eq. (5) is used as the first item of
the objective function of the new method, i.e.,

L1 st(A) = tr
(
AT XHBHXT A

)
(8)

And the original constraint is also imposed on Eq. (8), i.e.,
AT XHXT A = I can be relaxed as:

L2 nd(A) = tr
(
AT XHXT A

)
− d (9)

where, the parameter d is the dimensionality number of the
target low-dimensional space, and the description is pre-
sented in “Local tangent space alignment”.

The second stage of LLTSA-AE is to reconstruct the orig-
inal data and minimize the error between the original data
and the reconstructed data. And the objective function of
this stage denotes as follows:

L3 rd(A) = tr

((
I − AAT

)
XXT

(
I − AAT

)T
)

(10)

Finally, combine Eqs. (8), (9), and (10), the objective
function of LLTSA-AE algorithm is obtained. And the new
method is to find the optimal projection matrix A by mini-
mizing the objective function:

L(A) = L1 st(A) + λL2 nd(A) + γL3 rd(A)

= tr
(
AT XHBHXT A

)
+ λ

(
tr

(
AT XHXT A

)
− d

)

+γ tr

((
I − AAT

)
XXT

(
I − AAT

)T)
(11)

where λ and γ are the balance parameters, reflecting the
importance of the corresponding item.

Justification

As the first stage is the conventional LLTSA algorithm, the
justification of Eqs. (8) and (9) is not discussed here and it
can be viewed in detail in [27].

The second stage of LLTSA-AE is to reconstruct the orig-
inal data and minimize the error between the input data point
xi and its reconstruction data point x̂i . It can be formulated
as:

l∑

i=1

∥∥xi − x̂i
∥∥2
2 (12)
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The reconstruction point x̂i can be further expressed as
follows by consideringEq. (4), the linearmapping ofLLTSA:

x̂i = Ayi = AAT xi (13)

Besides, Eq. (12) is the third part of the objective function
of LLTSA-AE and it can be rewritten as:

L3 rd(A) =
l∑

i=1

∥∥∥xi − AAT xi
∥∥∥
2

2

=
l∑

i=1

∥∥∥
(
I − AAT

)
xi

∥∥∥
2

2

= tr

((
I − AAT

)
XXT

(
I − AAT

)T
)

(14)

It is worth mentioning that ‖A‖2F regularization has not
been considered in our model. It is unnecessary because the
weights of the encoder and decoder are tied, i.e., A∗ = A. If
the norm ‖A‖2F is large, the low-dimensional projection pro-
duced by the encoder will have large values; and then, in the
decoding stage, after the low-dimensional projection is mul-
tiplied by the matrix A, bad reconstruction will be produced.
That is, the ‖A‖2F regularization has been automatically han-
dled by the reconstruction constraints [44].

Optimization

The formulation of LLTSA is linear and can be transformed
into a generalized eigenvalue problem. However, the objec-
tive function of LLTSA-AE is non-linear and hard to solve
directly. Thus, the stochastic gradient descent with momen-
tum algorithm is employed to obtain the optimal matrix A.

And the algorithm mainly includes three steps:

1. Calculate the gradient of the objective function (15)

∇L(At ) = ∇L1 st(At ) + λ∇L2 nd(At ) + γ∇L3 rd(At ).

(15)

Where t is the number of iterations,

∇L1 st(At ) = 2Xit Hit Bit Hit Xit
T At ,

∇L2 nd(At ) = 2Xit Hit Xit
T At ,

∇L3 rd(At ) = −4
(
I − At At

T
)
Xit Xit

T At .

Where it ∈ [1, n] represents the sample number randomly
selected according to uniform distribution in the iteration.

2. Calculate the gradient of historical accumulation by the
following formula:

vt = ρvt + α∇Lit (At ) (16)

Where ρ ∈ (0, 1) is the coefficient of momentum, and
its default value is 0.9 in the experiment. α is the learning
rate, which is default set to 5∗10−3 in the next experiment.

3. With the historical accumulation gradient, update the
matrix A using the following formula until the optimal
matrix A is found:

At+1 = At − vt (17)

The algorithm of LLTSA-AE is summarized in Algorithm
1.

Algorithm1 the stochastic gradient descent withmomentum
method for training the optimal matrix A
1: Input: The data matrix X , the parameters λ, γ .
2: Initialization: Initialize A randomly, v as 0. Set the coefficient of

momentum ρ to 0.9, set the threshold ε to 0.01 for the change of
loss function, and set learning rate α to 5 ∗ 10−3 .

3: Pre − calculation: Calculate the weight matrix B, the matrix H .
4: repeat
5: Select the training sample Xit and the matrix Bit , Hit of this

iteration.
6: Calculate the gradient ∇L(At ) using Eq. (15)
7: Calculate the gradient of historical accumulation vt using Eq.

(16)
8: Update the matrix At+1 using Eq. (17)
9: Calculate the objective function L(At+1) using Eq. (11)
10: until the change of objective function < ε

11: Output: the optimal projection matrix A.

After the above algorithm, the optimal projection matrix
A is obtained. And the solution matrix A not only satisfies
the formula of conventional LLTSA but also takes the recon-
struction stage into consideration. Thus, the low-dimensional
data point yi computed by the linear mapping yi = AT xi
can “represent” the original high-dimensional data point xi
accurately.

The parameter analysis

Two free parameters λ and γ (see Eq. (11)) are contained in
the proposed LLTSA-AE algorithm.

In Eq. (11), if γ = 0, Eq. (11) is reduced to

L = tr
(
AT XHBHXT A

)
+ λ

(
tr

(
AT XHXT A

)
− d

)

(18)

Equation (18) is actually anotherway to solve the objective
function of conventional LLTSA, because the reconstruction
formula is no longer considered in it. And the aim of LLTSA
is to find out the eigenvectors corresponding to the minimum
eigenvalues. Therefore, the parameter λ is taken smaller val-
ues and it is validated by our next experiments.
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In Eq. (11), the first item L1 st can be regarded as local
structure information preserving item and its coefficient can
be regarded as 1. The third item L3 rd can be regarded as
the reconstruction item and the parameter γ reflects the pro-
portion of reconstruction. If 0 < γ < 1, the proportion of
the reconstruction item is less than that of the local structure
information preserving item.

Experimental results

In this Section, we make experiments on the Handwritten
Alphadigits dataset, FERET (Face Recognition Technol-
ogy) dataset, GT (Georgia Tech) face dataset, and Yale face
dataset. The proposed LLTSA-AE is compared with LPP,
NPE, LLTSA, ALLTSA, OLLTSA, PLLTSA, andWLLTSA
respectively.

For the LPP, NPE, LLTSA, and the improved methods of
LLTSA, PCA needs to be used to reduce the dimension of
the original samples. For all datasets, 98% of the principal
components are retained inLPPandNPE, and70% inLLTSA
and other improved methods of LLTSA in this step.

The accuracy in the experiment can be described as:

ACC = NCC

N

Where N is the total number of classified subjects, NCC

is the total number of correctly classified subjects, and ACC
is the accuracy [45]. Accuracy is widely used in scientific
research. The advantage of the index is intuitive and clear,
and the performance of the model can be viewed at a glance.
Its disadvantage is that itmaynot performwell on unbalanced
data sets. However, the data sets used in this paper are all
balanceddata sets, so the accuracy is the optimal index,which
can not onlywell represent the performance of themodel, but
also make the performance more intuitive and clearer.

WithMatlab’s powerful matrix computing power and rich
toolbox resources, we program on Intel i7-8750H CPU and
16GB RAM computer based onMatlabR2021a. Besides, the
optimization techniques of our algorithm refer to an easy-to-
use optimization library: SGDLibrary [46]. The SGDLibrary
is a pure-MATLAB library or toolbox of a collection of
stochastic optimization algorithms. The library contains
many optimization algorithms, for example, the traditional
SGDandSGDwith classicalmomentum.Besides, other opti-
mization algorithms such as Adam and RMSProp are also
implemented in the library.

Experimental datasets

Handwritten Alphadigits dataset. This dataset consists of 10
digits of “0” through “9” and 26 capital letters “A” through

“Z”, with 39 examples of each class. Each sample is a hand-
written image. In the experiment, the image size is 20×16
pixels.

FERET face dataset [47] was constructed by the Army
Research Laboratory. There are up to 200 human subjects
and each person contains 7 images. Notably, the photos of
the same person vary in expression, lighting, posture, and
age. In the experiment, the size of the images is also adjusted
to 32×32 pixels.

GT face dataset [48] contains 50 persons‘ face images
taken between 06/01/99 and 11/15/99. And there are 15
images of each people. The images contain frontal and tilted
faces with different facial expressions, lighting conditions,
and scales. In the experiment, the images are resized to
32×32 pixels.

Yale face dataset [49] was made at the Yale Center for
Computational Vision and Control. And it contains 165
grayscale images of 15 individuals, with 11 samples of each
individual. The images contain variations in facial expres-
sions, lighting, and with/without glasses. In this experiment,
all images are aligned based on eye coordinates and are
cropped and scaled to 24×24.

Some sample images of the Handwritten Alphadigits,
FERET, GT, and Yale are shown in the following Fig. 2.

Parameter settings

In this section, on four datasets, for the LLTSA-AE method,
we make experiments to find the optimal configuration of
the parameters λ and γ . The range of the parameters λ and
γ depends on experience and the algorithm is an iterative
process. At the beginning of the iteration, the values of each
item in the objective function are larger, and after multiple
iterations, the values of each item in the objective function
are getting smaller. Therefore, after comprehensive consider-
ation, we have taken a relative compromise range of [0, 50].
This range (described as the long range) is used to find the
trend of the parameters, and then an optimal short range is
found. I.e.,λ and γ are separately found on the short-range [0,
4] and [0, 6] to obtain the optimal values. In the experiment,
the training samples of 4 datasets, Handwritten Alphadig-
its, FERET, GT, and Yale, are 9, 5, 11, and 8, respectively.
The neighborhood size parameter k = 10, and the subspace
dimension is 40.

When the parameter γ is fixed, the recognition rate curves
w.r.t the parameter λ in the four datasets are shown in Figs. 3a
and 4a. When the parameter λ is fixed, the recognition rate
curves w.r.t the parameter γ in the four datasets are shown
in Figs. 3b and 4b. According to Figs. 3 and 4, their man-
ifestations are as: (1) for parameter λ, the changing trend
of its recognition accuracy is weak in the range [0, 3], and
then it declined obviously after 3. (2) for parameter γ , the
recognition accuracy increases with the increase of γ within
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Fig. 2 Some samples in the experiments. The first line is the Handwritten Alphadigits dataset. The second line is the FERET dataset. The third
line is the GT dataset. The fourth line is the Yale dataset

Fig. 3 The recognition accuracy in four datasets w.r.t the parameter λ (γ ) while γ (λ) fixed within long ranges

the range of [0, 2]. And then the recognition accuracy keeps
steady after 2. Thus, We can conclude that: (1) the optimal
value of the parameter λ is usually within the smaller values
and begins to decline steadily and substantially after 3. (2)
the optimal value of parameter γ is usually greater than 2,
and its recognition rate tends to be stable after it is greater
than 2. Therefore, we choose to conduct a grid search for two
parameters between [0, 4] and [0, 6], which can completely

cover the optimal parameter values obtained in the experi-
ment and reduce meaningless search operations at the same
time.

According to the recognition rate curve in Fig. 4, we can
get the optimal configuration of the parameters λ and γ ,
which are listed in Table 1. The optimal parameter configu-
ration is used for the following experiments.
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Fig. 4 The recognition accuracy in four datasets w.r.t the parameter λ (γ ) while γ (λ) fixed within short ranges

Table 1 The parameter configuration of the LLTSA-AEmethod on four
experimental datasets

Method Handwritten Alphadigits FERET

λ γ λ γ

LLTSA-AE 0.6 2.6 1.2 1.2

GT Yale

λ γ λ γ

LLTSA-AE 0.2 2.6 0.4 2.8

The experiments are proceeded as follows: Firstly, p sam-
ples of each subject are selected randomly to form as the
training set, and the rest of the samples are used as the test
dataset. Secondly, fix p, the reduced dimensions are taken
from [10, 100] at the step size 5. Thirdly, fix p and the reduced
dimension value, the neighborhood size k is augmented from
5 to 25 with the interval of 5. Fourthly, the best recognition
rate corresponding to the best k value is used as the recog-
nition rate in the current p and reduced dimension. Finally,

for each of the reduced dimension and p, we can get the
corresponding recognition rate.

We regard the above process as a cycle. For a given p,
we calculate 10 cycles. In this way, there are 10 recognition
rates for each subspace dimension, and then we take their
average value as the recognition rate in the current p and
subspace dimensions. Finally, we take the best recognition
rate from the chosen reduced dimensions as the final result
of the training samples p.

Experimental results

In the four datasets, for the above eight methods, the best
recognition rates, standard deviation, and the optimal dimen-
sion are reported as follows.

We first evaluate the performance of LLTSA-AE on the
Handwritten Alphadigits dataset which contains 26 capital
letters “A” through “Z”. And the results is shown in Table 2
and Fig. 5.

As is shown in Table 2, LLTSA-AE achieves the highest
accuracy compared with other methods. To be specific, the
accuracy of LLTSA-AE exceeds that of the original LLTSA
by 10.68, 9.65, and 9.4%. And it can be seen that with the

Table 2 Best average
recognition accuracy (in
percent), standard deviation, and
the optimal dimension (in
parentheses) on the Handwritten
Alphadigits dataset

Method 5 trains 7 trains 9 trains

LPP 66.29 ± 3.13(15) 68.81 ± 2.03(15) 72.13 ± 2.13(25)

NPE 70.41 ± 2.01(55) 75.31 ± 2.78(35) 78.46 ± 2.90(35)

LLTSA 67.26 ± 3.36(10) 72.00 ± 2.16(15) 75.70 ± 2.30(15)

ALLTSA 71.47 ± 3.44(10) 76.88 ± 3.5(10) 80.33 ± 2.13(20)

OLLTSA 72.25 ± 2.60(20) 78.32 ± 2.99(30) 81.14 ± 2.42(25)

PLLTSA 70.51 ± 2.43(20) 75.53 ± 3.10(25) 77.30 ± 2.56(20)

WLLTSA 72.47 ± 2.90(10) 75.03 ± 2.32(10) 76.50 ± 1.51(20)

LLTSA-AE 77.94 ± 2.52(80) 81.65 ± 1.35(95) 85.10 ± 1.19(100)
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Fig. 5 The recognition rates versus the subspace dimension on the
Handwritten Alphadigits dataset (9 training samples)

dimension increases, the accuracy of LLTSA-AE goes up
steadily. While other methods such as LLTSA and LPP get
lower accuracy at higher dimensions.

Then the FERET dataset with 3, 4 and 5 training samples
are used to evaluate the algorithm.

According to the Table 3, LLTSA-AE also obtains the best
performance. The recognition rates of LLTSA-AE are 53.50,
65.13 and 67.45%,which are higher thanLLTSA10.2, 20.63,
and 14.03% separately. And Fig. 5 also shows that our pro-
posed method can extract more representative information at

Fig. 6 The recognition rates versus the subspace dimension on the
FERET dataset (5 training samples)

higher dimensions. It’s worth explaining that our proposed
method performs not so well at lower dimensions compared
with some other methods, and this mainly because the big-
ger encoding rate by LLTSA algorithm may influence the
reconstruction of the decoding stage.

And the experiment results on GT dataset is shown in
follwoing Table 4 and Fig. 7.

Based on the Table 4 and Fig. 7, the recognition rate of
LLTSA-AE is much higher than the conventional LLTSA
algorithm. As shown in the Fig. 6, the accuracy of LLTSA-

Table 3 Best average
recognition accuracy (in
percent), standard deviation, and
the optimal dimension (in
parentheses) on the FERET
dataset

Method 3 trains 4 trains 5 trains

LPP 43.94 ± 8.07(90) 49.58 ± 9.40(100) 55.17 ± 5.34(85)

NPE 25.18 ± 7.30(90) 29.94 ± 7.98(100) 34.02 ± 11.24(90)

LLTSA 43.30 ± 12.20(20) 44.50 ± 11.02(20) 53.42 ± 7.08(20)

ALLTSA 44.37 ± 8.35(25) 46.89 ± 6.83(20) 56.2 ± 10.37(25)

OLLTSA 37.24 ± 6.20(70) 39.91 ± 4.34(55) 45.15 ± 3.30(50)

PLLTSA 44.07 ± 5.17(25) 45.63 ± 2.73(55) 54.15 ± 3.31(65)

WLLTSA 44.40 ± 6.92(20) 46.63 ± 4.24(25) 54.83 ± 5.74(20)

LLTSA-AE 53.50 ± 6.28(95) 65.13 ± 5.35(100) 67.45 ± 2.94(90)

Table 4 Best average
recognition accuracy (in
percent), standard deviation, and
the optimal dimension (in
parentheses) on the GT dataset

Method 7 trains 9 trains 11 trains

LPP 53.97 ± 0.93(60) 59.03 ± 1.66(70) 65.45 ± 2.89(80)

NPE 51.55 ± 2.35(95) 54.23 ± 2.91(100) 56.95 ± 3.70(70)

LLTSA 62.25 ± 0.67(35) 67.73 ± 2.46(25) 68.05 ± 3.38(25)

ALLTSA 65.62 ± 2.45(55) 68.56 ± 3.60(60) 70.21 ± 2.18(30)

OLLTSA 64.87 ± 1.98(50) 68.59 ± 2.26(55) 69.90 ± 4.79(35)

PLLTSA 63.26 ± 1.98(50) 69.36 ± 1.68(50) 69.70 ± 2.43(60)

WLLTSA 63.92 ± 1.60(15) 68.50 ± 1.23(20) 70.00 ± 4.64(20)

LLTSA-AE 69.02 ± 2.38(90) 71.5 ± 1.1(100) 75.40 ± 2.15(90)
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Fig. 7 The recognition rates versus the subspace dimension on the GT
dataset (11 training samples)

AE is still steadily improved in high dimensions, while other
methods show a fluctuating trend.

Finally, the Yale face dataset is employed to test our pro-
posed algorithmand the result is shown in the followingTable
5 and Fig. 8.

On theYale face dataset, LLTSA-AE still obtains the high-
est recognition rate compared with all other methods. In
detail, the recognition rates of LLTSA-AE are 76.19, 83.02
and 86.67% which is higher than LLTSA 11.05, 10.89 and
12.39%.

The convergence of the proposed LLTSA-AE is also
investigated. The convergence curves of LLTSA-AE on four
datasets are presented in Fig. 9. Where, the training samples
are 9, 5, 11 and 8 in the Handwritten Alphadigits, FERET,
GT, and YALE datasets respectively, the neighborhood size
parameter k = 10, and the subspace dimension is 40. As can
be seen from Fig. 9, LLTSA-AE can converge in only 30
steps on four datasets. Besides, we also simply investigate the
computation time of our algorithm. We compute the average
time 10 times under the same parameter settings as the above
experiment on the four datasets. The time for each compu-

Fig. 8 The recognition rates versus the subspace dimension on the Yale
dataset (8 training samples)

Fig. 9 The convergence curve of LLTSA-AE

tation and classification on the four datasets: Handwritten
Alphadigits, FERET, GT, and YALE datasets is 0.13, 2.13,
2.51, and 0.61 s separately. Since only one training process

Table 5 Best average
recognition accuracy (in
percent), standard deviation, and
the optimal dimension (in
parentheses) on the Yale dataset

Method 4 trains 6 trains 8 trains

LPP 71.23 ± 4.69(30) 75.86 ± 4.55(45) 81.44 ± 9.08(35)

NPE 73.04 ± 3.94(100) 78.13 ± 5.14(45) 82.44 ± 9.42(35)

LLTSA 65.14 ± 5.3(50) 72.13 ± 7.90(25) 74.28 ± 5.30(50)

ALLTSA 66.66 ± 8.21(20) 73.06 ± 8.01(15) 73.55 ± 6.20(35)

OLLTSA 65.23 ± 5.27(30) 66.93 ± 3.61(50) 68.88 ± 6.20(35)

PLLTSA 65.84 ± 7.96(30) 72.52 ± 5.99(20) 73.91 ± 5.10(35)

WLLTSA 66.47 ± 8.16(20) 73.60 ± 5.84(20) 74.44 ± 5.31(30)

LLTSA-AE 76.19 ± 3.75(90) 83.02 ± 4.51(75) 86.67 ± 5.30(75)
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is required to get the mapping in real-world applications, the
computation time is perfectly acceptable.

Analysis

From the above experiment, it can be concluded that: (1) as an
improvedmethod of LLTSA, the performance of LLTSA-AE
has a great improvement on all datasets. Specifically, com-
paredwith the conventional LLTSA, LLTSA-AEhas about 9,
14, 7, and 12% improvement in recognition rate on 4 datasets
(HandwrittenAlphadigits, FERET,GT,YALE), respectively.
(2) moreover, LLTSA-AE is also compared with LPP, NPE,
LLTSA, and the improved methods of LLTSA, for example,
ALLTSA and OLLTSA. Compared with them, LLTSA-AE
has different degrees of improvement, and the performance
of LLTSA-AE is the best. (3) LLTSA-AE performs better at
the high dimensions especially. And this is mainly because
lower dimensions mean higher encoding rates, which may
lose more information and it is hard to recover the original
information accurately. Besides, this influences the recon-
struction stage a lot which causes the lower recognition rate.
(4) as can be seen from Figs. 4, 5, 6 and 7, the recognition
rates of LLTSA-AE significantly outperform that of the other
methods, which shows that LLTSA-AE has the best perfor-
mance.

Conclusion

LLTSA and all its variants only consider one-way map-
ping from high-dimensional space to low-dimensional space,
which may result in that projected low-dimensional data
may not effectively “represent” the original data. In this
paper, a novel LLTSA method called LLTSA-AE (linear
local tangent space alignment with autoencoder) based on
the encoder–decoder paradigm is proposed. The proposed
LLTSA-AE is aiming at obtaining an optimal linear map-
ping from high-dimensional space to low-dimensional space
by considering two-waymapping between high-dimensional
space and low-dimensional space. And it makes the obtained
low-dimensional data represent the original samples accu-
rately and effectively. The main idea of LLTSA-AE is to
take the conventional projection of LLTSA as the encoding
stage and use the decoder to reconstruct the original data from
the projected low-dimensional data. Compared with LLTSA,
LLTSA-AE makes that the low-dimensional features more
accurately and effectively “represent” the original samples
with the reconstruction stage. The experiments on the Hand-
written Alphadigits, FERET, GT, andYale datasets show that
LLTSA-AE obtains the optimal performance rate compared
with other methods.

The idea of LLTSA-AE can be further extended to other
manifold learning methods, such as neighborhood preserv-

ing embedding (NPE). Besides, there is no conflict with
other promotion algorithms which means this idea can be
employed in other improved methods of LLTSA.

And the classical autoencoder is simple and easy to
implement, but in the face of a complex learning system,
its learning ability is limited. Thus, some improved algo-
rithms of autoencoder are proposed. For example, the stacked
autoencoder is proposed to improve the learning ability by
increasing the number of layers. And sparse autoencoder is
proposed to address the problem that the traditional autoen-
coder may lose the automatic learning ability when the node
number of the hidden layer is too many. Thus, the autoen-
coder used in our algorithm can further extend to these
improved autoencoders. Furthermore, extending the autoen-
coder to other neural networks and combined with LLTSA
algorithm is also a theoretically feasible direction.
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