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Abstract
Deep convolutional neural network (CNN) has made great progress in medical image classification. However, it is difficult
to establish effective spatial associations, and always extracts similar low-level features, resulting in redundancy of infor-
mation. To solve these limitations, we propose a stereo spatial discoupling network (TSDNets), which can leverage the
multi-dimensional spatial details of medical images. Then, we use an attention mechanism to progressively extract the most
discriminative features from three directions: horizontal, vertical, and depth. Moreover, a cross feature screening strategy is
used to divide the original feature maps into three levels: important, secondary and redundant. Specifically, we design a cross
feature screening module (CFSM) and a semantic guided decoupling module (SGDM) to model multi-dimension spatial
relationships, thereby enhancing the feature representation capabilities. The extensive experiments conducted on multiple
open source baseline datasets demonstrate that our TSDNets outperforms previous state-of-the-art models.

Keywords Feature screening strategy · Multi-dimensional spatial attention · Neural networks

Introduction

Deep learning has always been the top priority of research in
the field ofmedical image analysis, which effectively relieves
the pressure ofmedical experts. In recent years, convolutional
neural network (CNN) has been proposed and widely used
in many real-world medical image analysis scenarios due
its outstanding performance in classifying medical images,
such as skin cancer image classification, and X-ray classi-
fication, etc. Recently, some variants of CNN model (e.g.,
DCNN, Resnet, Densenet, and multi-scale CNN [10, 18,
25]) have been attracting increasing attention to capture and
exploit high-level discriminative images features. To better
optimize the learning ability of the convolutional neural net-
work, Khan M A et al. [9] fused the features of AlexNet and
VGG16 in parallel and realized optimization at the same time
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to obtain the optimal features. To better detect the focus area
of breast cancer, Irfan et al. [8] used DenseNet201 as the
basic model, and fused 24 sets of convolutional feature vec-
tors to obtain various semantic information of migration, and
evaluated the proposed method through 10 fold cross valida-
tion. The accuracy of the proposed algorithm in breast cancer
has reached 98. 9%, which proves the feasibility of fea-
ture fusion. Although these methods have powerful feature
representation capabilities, their efficiency and prediction
accuracy are hindered by a large number of redundant fea-
tures generated duringmodel learning, while they are usually
over-parameterized and computationally expensive. Figure 1
shows the parameters and running time of some representa-
tive models. Furthermore, attention mechanism has become
an important research hotspot for medical image segmen-
tation tasks. The concept of feature screening also plays a
positive role in other fields [7, 29].

Many existing studies [26, 30] have shown that the atten-
tion mechanism can effectively enhance the representational
ability of key features in the featuremap by ignoring the irrel-
evant redundant information. However, for medical images,
a specific disease object often appears in different imaging
directions. When the pixel intensity of similar target objects
changes slightly, it is difficult for the attention mechanism
to distinguish the differences between pixels from a sin-
gle direction. Therefore, it is necessary to conduct effective
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exploration from different directions. Some studies [4, 6,
16] have shown that use attention to automatically extract
the appropriate feature from two directions, thereby better
capturing the dependencies between features. However, they
ignore the problem of redundant features, which may cause
the model to fail to learn useful information, increasing the
difficulty of model learning.

In previous studies [21], the shallow features are directly
introduced into the deep features. Although the introduc-
tion of shallow features can bringmore semantic information
to the deep features, the introduction of too much informa-
tion with weak correlation tends to reduce the quality of the
deep featuremaps. Therefore, reasonable selection of feature
points can not only improve the sparsity of feature maps, but
also avoid feature reuse and improve model efficiency.

In this paper, we propose a stereo spatial decoupling net-
work (TSDNets) formedical image classification that utilizes
three sets of attention mechanisms to assign three sets of
weights to each feature point. Moreover, we adopt a feature
screening strategy to suppress redundant features and build
gating strategies to improve the quality of features.

– We propose a stereo spatial decoupling network (TSD-
Nets) to explore the spatial guidance relationship of the
object from three directions of horizontal, vertical, and
depth of the medical image. Specifically, the attention in
this paper is more accurate than the traditional one-way
attentionmechanism screening features frommultiple per-
spectives. At the same time, the attention mechanism in
this paper plays a role in filtering features, and it is not
a feature fusion directly, so compared with the traditional
attention mechanism [27, 33], the parameter operation is
less.

– We developed a cross-feature screening module (CFSM)
that uses a two-gate threshold screening strategy to gen-
erate three types of features, namely important features,
secondary features, and redundant features, and targets
them for deep feature fusion.

– We constructs a semantic guided decoupling module
(SGDM), which implements feature selection by setting
different gate thresholds for shallow features and deep fea-
tures respectively, thereby extracting more discriminative
features.

Related work

In recent years, deep learning has received significant
research attention fromacademia and industry.Awidely used
method in medical image classification is the convolution

neural network (CNN) [2, 12]. However, traditional medi-
cal image datasets are usually small and complex, especially
when there are specific targets or specific regions in the image
that are similar to the surrounding background. Directly
applying traditional CNN to medical image classification
may be difficult to establish effective spatial associations
between features or similar images. To improve the feature
representation, various solutions [4, 6, 21] have recently been
proposed to force CNN to focus on specific regions, and rely
on domain knowledge to obtain information [12, 20]. For
example, in [17, 32], authors obtain important relevant area
information according to the gray value of themedical image.
However, in most cases, domain knowledge is limited (only
suitable for specific tasks). Moreover, to describe the tar-
gets from multiple levels with rich feature representations,
[12, 20] designed a multi-scale feature extractor to describe
the classification objects from multiple aspects using differ-
ent scale convolution kernels, and then used a simple linear
fusionmethod to represent the features.Although thesemeth-
ods demonstrate the effectiveness of multi-scale features in
medical image classification, the extracted redundant infor-
mation can easily reduce the expression of key features when
multi-scale information flows are transferred between layers.

To reduce irrelevant redundant information, the attention
mechanism has been widely used in medical image classi-
fication, which can suppress redundant features through the
weights generated by attention mechanism. There have been
several attempts to improve the feature representation ability
of model using local or global based attention mechanism [6,
13, 26, 30, 35], which allows the network to focus on themost
key features or areas, thereby suppressing redundant features.
Moreover, the disease regions in a medical image are similar
to the surrounding background, which makes it difficult to
describe the key regions by a single-direction attentionmech-
anism and establish effective spatial relationships. To address
this limitation, various attention-based methods [6, 16] have
been proposed to locate key features to better establish the
relationship between features. Although these methods [24,
28] can improve the quality of feature maps, they ignore the
relationship between spatial semantic information and fea-
ture map semantic information, and lack in-depth analysis
of redundant information. In this paper, we reconstruct the
connection between redundant features to assist important
semantic establishment and enhance spatial semantic infor-
mation.

In medical image analysis, introducing shallow features
into high-order feature maps is an important fusion method,
where shallow features can assist higher-order features to
capture finer semantic information. However, most of exist-
ing studies ignore the influence of redundant features on
key features, which weakens the representation ability of
key features. Feature selection methods [15, 19] have been
widely used in many areas, which can be used to improve the
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Fig. 1 The parameters and running time of some representative models. The y-axis represents the number of parameters of a given model, while
the x-axis represents the running time

model performance effectively. Some simple linear or filter-
ing methods can also be used to filter features [3, 11, 15],
such as point mutual information (PMI), PCA, Gaussian fil-
tering, etc. These methods are mainly applied in the image
pre-processing. To solve this limitation, Dropout [31, 34]
and regularization techniques have been used to prevent the
neural network from falling into a local optimum. Moreover,
although the attention mechanisms can suppress the redun-
dant features in the feature selection process, most attention
based methods do not directly discard these feature points,
which weakens the representation ability of key features. In
this paper, we propose a spatial decoupling and cross-feature
screening strategy based feature selection scheme to mini-
mize the influence of redundant information on key features.

TSDNets

The proposed TSDNets primarily consists of a cross-feature
screeningmodule (CFSM) and a semantic guided decoupling
module (SGDM). The TSDNets first captures the shallow
features of the objects by the convolutional operations, and
then uses three different attention mechanisms to decompose
the shallow features into three corresponding weight matri-
ces aH , aV , and aD from the horizontal, vertical, and depth
directions. Three new matrices of aHV , aHD , and aV D are
generated by combining the three weight matrices of aH ,
aV , and aD in pairs. Based on the dual-gating threshold,
CFSM divides each of weight matrices, aHV , aHD , and aV D ,
into three levels: important, secondary and redundant. Then,
three new feature matrices ( f1, f2, and f3) are obtained by

fusing the feature information of the corresponding levels.
Meanwhile, the SGDM extracts the optimal shallow global
semantic features fcg of f1, as well as the optimal deep
local semantic features f ′

cg of the secondary features f2.
Considering that redundant features only contain less useful
semantic information. We compress the redundant features
into a one-dimensional dense vector to reconstruct the rela-
tionship between them. The overall flow of the proposed
algorithm is shown in Fig. 2.

In this part, we propose a stereo decoupling attention
mechanism, which can extract the key features by assign-
ing weights to each feature, and decompose shallow features
from three directions of horizontal, vertical, and depth. As a
result, we can obtain the horizontal attention weight matrix
aH , the vertical attention weight matrix aV , and the depth
attention weight matrix aD . The horizontal attention weight
matrix aH can be described by

⎧
⎪⎨

⎪⎩

ai =
n∑

i=1

exp
(
ei , j

)

∑n
k=1 exp(eik)

h j

aH = {a1, . . . , ai−1, ai }
(1)

where ei , j is the weight coefficient assigned by the atten-
tionmechanism; h j represents the hidden layer; ai represents
the horizontal attention weight coefficient of the i-th feature.
Similarly, we can get aV and aD .

Cross feature screeningmodule (CFSM)

This cross-feature screening module (CFSM) is mainly
divided into two parts: the dual gate threshold screening and
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Fig. 2 The overall architecture of the proposed TSDNets. aH , aV , aD
represent the horizontal weight matrix, vertical weight matrix and depth
weight matrix, respectively; ςHV D(•) is the intersection threshold filter
function; ζHV (•), ςHD(•), ςV D(•) represent the cross filtering func-
tion of horizontal and vertical, the cross filtering function of horizontal

and depth, the cross filtering function of vertical and depth direc-
tions, respectively; fcg represents the optimal low-level global semantic
feature; f ′

cg represents the optimal high-order local semantic feature;

fx ∈ RH×W×C is the initial features in the input layer, where H ,W , C
represent the height, width, and channel respectively

the feature aggregation. In the dual gate threshold screening,
the above threeweightmatrix aH , aV , and aD are divided into
three levels: important, secondary, and redundant, according
to two thresholds T1 and T2. After that, we can obtain three
new weight matrices aHV , aHD , and aV D by reconstructing
aH , aV , and aD in pairs. Then, we average the three weight
matrices aHV , aHD , and aV D to obtain three mean matri-
ces aHV +aHD

2 , aHD+aV D
2 , and aV D+aHV

2 , where each weight
value in the three mean matrices is compared to T1 and T2.
When the feature points are graded, they are more stable if
the mean of any two groups of weights is calculated. If the
value is greater than T1, it means that the feature i contains the
important semantic information. Analogously, if the value is
less than T2, it means that the feature i only contains redun-
dant information. Next, we divide the weight matrix aH , V

into three 0-1 matrices (where 0 represents eliminating the
feature i and 1 represents retaining the feature i), namely
important matrix âHV1 , secondary matrix âHV2 and redun-
dant matrix âHV3 .

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

âiHV1
=

(

ς i
HV (1),

aHV + aHD

2
> T1‖ς i

HV (0),
aHV + aHD

2
< T1

)

âiHV2
=

(

ς i
HV (1), T2 <

aHV + aHD

2
< T1‖ς i

HV (0),
{
aHV + aHD

2
< T2, T1 <

aHV + aHD

2

})

âiHV3
=

(

ς i
HV (0),

aHV + aHD

2
> T2‖ς i

HV (1),
aHV + aHD

2
< T2

)

(2)

Analogously, we can obtain the corresponding reconstructed
0-1 matrices, âHD1 , âHD2 , âHD3 , âV D1 , âV D2 , âV D3 . Then,
wemultiply the feature matrix with three sets of 0-1 matrices
to get a new three sets of featurematrices, fHV1 , fHV2 , fHV3 .

⎧
⎪⎨

⎪⎩

fH , V1 = ϕ(̂aH , V1 · fx )
fH , V2 = ϕ(̂aH , V2 · fx )
fH , V3 = ϕ(̂aH , V3 · fx )

(3)

For aHD and aV D , we can obtain the corresponding feature
matrices fHD1 , fHD2 , fHD3 , fV D1 , fV D2 , fV D3 . Next, we
compute the middle-level feature f1, f2, f3 as follows.

⎧
⎪⎨

⎪⎩

f1 = Cat( fHV1 , fHD1 , fV D1)

f2 = Cat( fHV2 , fHD2 , fV D2)

f3 = Cat( fHV3 , fHD3 , fV D3)

(4)

where Cat represents the concatenate operation.

Semantic guided decouplingmodule(SGDM)

To improve the quality of features, we develop a semantic
guided decoupling module (SGDM), which introduce high-
quality shallow features in deep feature fusion. By taking the
square root of the sum of the squares of the weight matrices
in each direction (aH , aV and aD), we can get two new sets
of shallow global semantic feature’s weight matrices SHV D
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and deep local semantic feature’s weight matrices DHV D .
The purpose is that when the weight of any direction of the
feature point is greater than the set threshold, it has stronger
discriminability, so that the model retains richer semantic
information.
⎧
⎪⎨

⎪⎩

SHV D = √
(aH )2 + (aV )2 + (aD)2

DHV D = √
(aH )2 + (aV )2 + (aD)2

(5)

Then, SGDM performs feature screening for the shallow
global features fx and deep local features fy . For the shal-
low global features fx (as shown in Fig. 2), we compare the
weight value in SHV D with the threshold T1 to generate the
corresponding shallow global 0–1 matrix ŜHV D . Similarly,
for deep local features fy (as shown in Fig. 2), the corre-
sponding deep local 0–1 matrix D̂HV D can be generated by
comparing the DHV D with the threshold T3. Specifically,
the feature screening is the same as in Sect. “Cross feature
screening module (CFSM)”, which can be described as fol-
lows.

⎧
⎪⎨

⎪⎩

ŜiHV D = (SiHV D(1), SHV D > T1‖SiHV D(0), SHV D < T1)

D̂i
HV D = (Di

HV D(1), DHV D > T3‖Di
HV D(0), DHV D < T3)

(6)

Finally, a set of optimal shallow global semantic features fcg
and a set of optimal deep local semantic features f ′

cg are
generated.

{
fcg = ϕ(ŜHV D · fx )
f ′
cg = ϕ(D̂HV D · fy)

(7)

where ϕ() represents the matrix multiplication operation.

Feature fusion

Feature fusion can improve the accuracy of medical image
classification. To improve the feature representation ability
of redundant features f3, we project the two-dimensional
features f3 into a one-dimensional vector space to reconstruct
the feature relationships. Then, the shallow global features
and important features are fused to obtain fused features fm .
This process can be described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′
3 = Flatten(Dense( f3))

f ′
1 = Flatten(Dense(Conv2D( f1)))

fm = Add( f ′
3, f ′

1, Dense(Flatten( fcg))

(8)

After that, we fuse fcg , fm and the high-order features f ′
cg

to obtain the deep features. This process can be described as

follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

f ′′
cg = Reshape(Dense(Flatten( fcg)))

f ′
m = Conv1D(Reshepe( fm))

f̂cg = Reshape( f ′
cg)

fi = Cat( f ′′
cg′ , f ′

m , f̂cg)

(9)

Next, we can get the final output feature O, as follows.

O = Dense(Conv1 D( fi )) (10)

Finally, the SoftMax classifier is used to output the classifi-
cation probability.

Feature visualization for CFSM and SGDM

In this part, we validates the correctness on theoretical deduc-
tion as well as obtains some important conclusions by case
study and visualization analysis. Figure 3 shows the visual
analysis results of 5× 5 deep features with their weight coef-
ficients, where color denotes to the weight of the attention
matrix. The red cell indicates that the feature point contains
more semantic information, and the blue cell indicates that
the feature point has a greater weight. Figure 3a is the orig-
inal image. Figure 3b represents the deep feature; Fig. 3c–e
represent the weight coefficients generated by vertical atten-
tion, horizontal attention, and deep attention, respectively;
Fig. 3f represents the weight coefficients generated by the
horizontal attention and vertical attention in CFSM module;
Fig. 3g represents the weight coefficients generated by the
horizontal attention and the depth attention in CFSM mod-
ule; Fig. 3h represents the weight coefficients generated by
the vertical attention and the depth attention in CFSM mod-
ule; Fig. 3i represents the weight coefficients generated by
these three attention mechanisms in the SGDM module.

As can be seen from Fig. 3c–e, the weight visualization
results show that if using only one attention mechanism, the
effect of weight assignment performs the worst. As shown
in Fig. 3f–h, when we further use two attention mechanisms
in CFSMmodule, this obviously produces information gain.
From Fig. 3i, we use three attention mechanisms in SGDM
module, the generated features contain more semantic infor-
mation. This shows the proposed TSDNets is effective at
guiding the attention weights to select the useful features.
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Fig. 3 The weighting process of different attention mechanisms. The first row is the visualization of COVID deep feature weights; the second row
is the visualization of CXR deep feature weights; the third row is the visualization of ISIC deep feature weights

Experiments and results

Datasets

We verify the MAS-Net on three datasets which are briefly
described in the following paragraphs.

Shenzhen dataset—Chest X-ray database [5]. This dataset
was constructed by the National Library of Medicine of
Maryland, USA, and the Third People’s Hospital of Shen-
zhen, China. This dataset consists of 662 chest X-rays
images, including 336 tuberculosis disease images (TB) and
326 normal medical images (Nor). The size of each image is
3000 × 2900 ∼ 3000.

COVID-19 radiography database [1]. This dataset was
jointly produced by researchers from Qatar University and
Dhaka University. There are only 219 COVID-19 images
in the original dataset. To balance this dataset, the number
of images reached 1200 through post-supplementation. The
data consist of three types of medical chest X-ray images:
viral pneumonia (VP, 1345 images), normal (Nor, 1341
images), and COVID (COVID, 1200 images). The size of
each image is 1024 × 1024.

ISIC2018 dataset [22]. This dataset is the largest public
dataset of skin diseases, consisting of 10,015 skin dis-
ease images. Different types of skin disease images in
this dataset were acquired using different types of imaging
equipments. The dataset contains 7 types of skin diseases:
E MELANOMA (MEL, 1113), MELANOCYTIC NEVUS
(NV, 6705), BASAL CELL CARCINOMA (BCC, 514),
ACTINICKERATOSIS (AKIEC, 327), BENIGNKERATO-
SIS (BKL, 1099), DERMATO FIBROMA (DF, 115) and

VASCULAR LESIONS (VASC, 142). The size of each
image is 600 × 450.

For training and testing purposes for our model, we have
our data broken down into three distinct datasets with a ratio
of 7:1:2, i.e, the training set, the validation set and the test set.
All medical images are compressed to 256 × 256. We train
our model using the deep learning framework Keras on the
desktop computer (Tesla V100 with 16 G of RAM). We set
the learning rate as 0.0001, and use Adam as the optimizer.

Evaluationmetrics

We evaluate each model and perform various ablation exper-
iments using the average accuracy (AA), overall accuracy
(OA) and Kappa coefficient (Kappa) metrics.

AA = 1

S

(
n1
m1

+ n2
m2

+ · · · + ns
ms

)

(11)

OA = n1 + n2 + . . . + ns
m1 + m2 + · · · + ms

(12)

Kappa = OA − (n1×m1+n2×m2+···+ns×ms )
S×S

1−− (n1×m1+n2×m2+···+ns×ms )
S×S

(13)

where ni represents the number of samples belonging to the
ith class, which are perfectly classified; mi represents the
total number of ith class; and S represents the number of
classes.
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Table 1 Experimental results of different classification models

Model ChinaSet COVID-19 ISIC ChinaSet

OA AA Kappa OA AA Kappa OA AA Kappa Parameters FLOPs

DenseNet-121 0.8863 0.8902 0.7730 0.9818 0.9822 0.9726 0.7540 0.6008 0.5059 7.2 M 14.9 M

ResNet-50 0.8566 0.8655 0.7122 0.9870 0.9874 0.9804 0.7605 0.6190 0.4929 23.5 M 47.4 M

VGG-16 0.8712 0.8730 0.7426 0.9779 0.9783 0.9668 0.7202 0.5146 0.3863 14.8 M 29.6 M

Xception 0.8787 0.8870 0.7580 0.9844 0.9847 0.9765 0.7404 0.5044 0.4424 21.2 M 42.8 M

InceptionV3 0.8712 0.8750 0.7427 0.9831 0.9837 0.9746 0.7852 0.6053 0.5670 22.0 M 44.2 M

AlexNet 0.8787 0.8870 0.7580 0.9792 0.9795 0.9687 0.7973 0.6533 0.5835 4.3 M 8.7 M

ReLSNet 0.8787 0.8870 0.7580 0.9870 0.9874 0.9804 0.7888 0.6418 0.5878 18.6 M 37.1 M

SRC-MT 0.8939 0.8892 0.7882 0.9870 0.9874 0.9804 0.7958 0.6795 0.5792 25.9 M 52.1 M

Transformer 0.8712 0.8750 0.7427 0.9870 0.9874 0.9804 0.7864 0.6506 0.5824 16.8 M 33.7 M

Swin-Transformer 0.8787 0.8870 0.7580 0.9883 0.9889 0.9824 0.8012 0.6931 0.5903 28.9 M 57.4 M

TSDNets 0.9167 0.9238 0.8336 0.9883 0.9889 0.9824 0.8044 0.7144 0.6005 32.3 M 65.2 M

Fig. 4 The confusionmatrix of TSDNets on the three datasets, COVID-19, ChinaSet, and ISIC. “TL” represent the group truth labels; “PL” represent
the predictions

Comparison to other state-of-the-art methods

For fair comparison, in this experiment, we compare the
proposedTSDNets classification frameworkwith other state-
of-the-art medical image classification models. Table 1 lists
the experimental results on different data sets. We can see
that the proposed TSDNets achieves the best performance
on the three benchmark datasets. Compared with SRC-MT,
the Kappa value on the three datasets is increased by 4.54%,
0.02% and 2.13%, respectively. This may be because the pro-
posed TSDNets can enrich the shallow global semantics of
the target objects by the semantic guided decoupling module
(SGDM), while providing the effective prior information for
feature extraction. Moreover, CFSM can capture more favor-
able local features, making the network paymore attention to
subtle changes in the objects. Overall, the proposed TSDNets
method is effective for medical image classification.

Due to the large number of categories in ISIC and the
small differences between the target categories, all the base-
line methods have achieved poor classification performance
on the ISICdataset. For example, the kappavalues ofAlexNet
and ReLSNet are only 0.5835 and 0.5878, which are 1.7%
and 1.26% lower than TSDNets, respectively. Transformer
[14] Tand Swin Transformer [23] Tdo not work well in small
data ChinaSet, but their effects are significantly improved
when the number of data set samples is increased. Our pro-
posed model TSDNets is better applicable to all data sets.

When the category and data size are small (i.e., the
ChinaSet dataset has 662 images in 2 categories), the pro-
posed TSDNets gives the best performance under all metrics.
This further demonstrates that TSDNets has good robustness
and generalization. Specifically, Fig. 4 shows the confusion
matrix of TSDNets on the three datasets.
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Table 2 Experimental results of
different features comparisons Dataset Model OA AA Kappa

COVID-19 Model_nofcg 0.9850 0.9844 0.9766

Model_nof1 0.9825 0.9818 0.9727

Model_nof2 0.9810 0.9805 0.9707

Model_nof3 0.9733 0.9727 0.9590

TSDNets 0.9889 0.9883 0.9824

ChinaSet Model_nofcg 0.9084 0.9015 0.8034

Model_nof1 0.8623 0.8560 0.7126

Model_nof2 0.8966 0.8864 0.7732

Model_nof3 0.8715 0.8636 0.7278

TSDNets 0.9238 0.9167 0.8336

ISIC Model_nofcg 0.7962 0.6850 0.5927

Model_nof1 0.7903 0.6605 0.5641

Model_nof2 0.7913 0.6492 0.5833

Model_nof3 0.7686 0.5553 0.5314

TSDNets 0.8044 0.7144 0.6006

Table 3 Experimental results of
different gated thresholds
comparisons. T1, T2, and T3
indicate different gated
thresholds respectively

Dataset Model OA AA Kappa

COVID-19 T1 = 0.5, T2 = 0.3, T3 = 0.5 0.9876 0.9870 0.9805

T1 = 0.6, T2 = 0.2, T3 = 0.5 0.9813 0.9805 0.9707

T1 = 0.6, T2 = 0.2, T3 = 0.4 0.9863 0.9857 0.9785

T1 = 0.6, T2 = 0.3, T3 = 0.6 0.9848 0.9844 0.9766

T1 = 0.6, T2 = 0.4, T3 = 0.5 0.9850 0.9844 0.9766

T1 = 0.7, T2 = 0.5, T3 = 0.5 0.9812 0.9805 0.9707

ChinaSet T1 = 0.5, T2 = 0.3, T3 = 0.5 0.8931 0.8864 0.7731

T1 = 0.6, T2 = 0.2, T3 = 0.5 0.8804 0.8788 0.7573

T1 = 0.6, T2 = 0.2, T3 = 0.4 0.8968 0.8939 0.7881

T1 = 0.6, T2 = 0.3, T3 = 0.6 0.8968 0.8939 0.7881

T1 = 0.6, T2 = 0.4, T3 = 0.5 0.8903 0.8864 0.7730

T1 = 0.7, T2 = 0.5, T3 = 0.5 0.8799 0.8787 0.7577

ISIC T1 = 0.5, T2 = 0.3, T3 = 0.5 0.6174 0.7757 0.5371

T1 = 0.6, T2 = 0.2, T3 = 0.5 0.6134 0.7767 0.5563

T1 = 0.6, T2 = 0.2, T3 = 0.4 0.6398 0.8034 0.5883

T1 = 0.6, T2 = 0.3, T3 = 0.6 0.6533 0.8120 0.5933

T1 = 0.6, T2 = 0.4, T3 = 0.5 0.6189 0.7857 0.5703

T1 = 0.7, T2 = 0.5, T3 = 0.5 0.6573 0.7868 0.5512

Ablation study

Effects of features

In the experiment, the selection of features has an impor-
tant influence on the experimental results. We verified the
impact of the different features fcg , f1, f2, f3 (see Section
III for details) on the classification performance, as shown in
Table 2. We can see that the Model_nofcg) is closest to our

method in all metrics on the three benchmark datasets. The
performance ofModel_nofcg in the Kappa is 9.08%, 3.02%,
and 7.56% higher than the other threemethodsModel_nof1,
Model_nof2, and Model_nof3, respectively. This shows
that the shallow global features fcg have smaller advantages
compared to other features. We observe that the performance
of Model_nof3 was worse than that of other models. This
shows that although the redundant feature f3 contains only
a small amount of useful semantic information. Moreover,
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this also demonstrates that redundant features in a specific
dimensional space could improve the classification perfor-
mance.

Effects of gated thresholds

To verify the effectiveness of the gated threshold screen-
ing strategy, we conducted a large number of experiments.
Table 3 shows the results of the proposed TSDNets with dif-
ferent gated thresholds. In the COVID-19 dataset, when T2
and T3 are fixed, as the gated threshold T1 increases, the
classification performance increases, which then decreases
gradually. With the increase of T2, the classification perfor-
mance shows the same trend when T1 and T3 are fixed. The
reason may be that when the gating threshold is low, irrel-
evant redundant information cannot be effectively filtered,
thereby reducing the overall classification performance of
the model. Moreover, when the gating threshold increases to
a certain peak value, it can effectively filter irrelevant redun-
dant information while preserving spatial semantic details.
However, when the gating threshold continues to increase,
some useful features may be filtered out, resulting in insuf-
ficient feature representation. From Table 3, we can see that
when T1 = 0.5, T2 = 0.3, T3 = 0.5, the proposed TSDNets
achieves the best performance.

Conclusion

This paper proposes a stereo spatial decoupling network
(TSDNets) for medical image classification. We use the
semantic guided decouplingmodule (SGDM) to obtain effec-
tive shallow global features, which provides favorable prior
information for feature representation. Moreover, we use
the cross-feature screening module (CFSM) with the dual
gate control threshold strategy to enhance the interaction
between feature, which further improves the feature rep-
resentation. Finally, we evaluate the proposed TSDNets on
three benchmark datasets. The experimental results show that
our method achieves new state-of-the-art results in the clas-
sification performance with significant improvements over
existing approaches.

The proposed TSDNets can extract the semantics of spa-
tial details with high performance and efficiency. In the
future, we will consider reducing the number of model
parameters for a more concise and efficient spatial decou-
pling network. At the same time, feature screening is not
sufficient, so it is necessary to further classify features
according to importance: useful features, general features,
redundant features.
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