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Abstract

It has been proved that the two-branch network architecture for real-time semantic segmentation is effectiveness. However,
existing methods still can not obtain sufficient context information and sufficient detailed information, which limits the
improvement of the accuracy of existed two-branch methods. In this paper, we proposed a real-time high-precision semantic
segmentation network based on a novel multi-resolution feature fusion module, an auxiliary feature extracting module, an
upsampling module and multi-ASPP(atrous spatial pyramid pooling) module. We designed a feature fusion module, which
is integrated with sufficient features of different resolutions to help the network get both sufficient semantic information
and sufficient detailed information. We also studied the effect of the side-branch architecture on the network, and made new
discoveries that the role of the side-branch is more than regularization, it may either slow down the convergence or accelerate
the convergence by influencing the gradient of different layers of the network, which is dependent on the parameters of
the network and the input data. Based on the new discoveries about the side-branch architecture, we used a side-branch
auxiliary feature extraction layer in the network to improve the performance of the network. We also designed an upsampling
module, which can get better detailed information than the original upsampling module. In addition, we also re-considered the
locations and number of atrous spatial pyramid pooling (ASPP) modules, and modified the network architecture according to
the experimental results to further improve the performance of the network. We proposed a network based on the above study.
We named this network Deep Multiple-resolution Bilateral Network for Real-time, referred to as DMBR-Net. The network
proposed in the paper achieved 81.3% mloU(Mean Intersection over Union) at 110FPS on the Cityscapes validation dataset,
80.7% mloU at 104FPS on the CamVid test dataset, 32.2% mloU at 78FPS on the COCO-Stuff test dataset.

Keywords Multi-resolution feature - Auxiliary feature extraction - ASPP - Upsample

Introduction

Accurate understanding of traffic scenes is very important
for automatic driving. Based on the understanding of the
traffic scene, automatic driving vehicles predict the track of
vehicles or pedestrians. Understanding traffic scenes deter-
mines the accuracy of the predicted track, then determines the
safety performance of automatic driving vehicle. Compared
with the object detection of laser radar, using RGB images
can complete object detection in severe weather conditions
such as fog, snow, sandstorm, and the cost is low. However,
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object detection lose the relative position information of the
scene, so accurate image semantic segmentation is very help-
ful for understanding traffic scenes. Semantic segmentation
of the elements such as lane marks, road arrows, vehicles,
pedestrians, buildings and sidewalks is a key technique to
realize automatic driving and automatic high-precision map
making. Since fully convolutional networks (FCN) [20] used
deep learning to deal with semantic segmentation problems
firstly, a series of deep learning networks have been pro-
posed, including U-Net [27], SegNet [1], DeepLab series
[4-7], RefineNet [18], PSPNet [41], DeepMask [36], OCR-
Net [39] and HMS [32]. These methods indicate that semantic
segmentation networks must be able to obtain both sufficient
semantic information and sufficient detailed information.
Even though these models achieved encouraging segmen-
tation accuracy, these networks are too complex to meet the
real-time requirements.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01046-y&domain=pdf

6428

Complex & Intelligent Systems (2023) 9:6427-6436

For the semantic segmentation of road scenes or street
scenes, we don’t want to spend too much inference time, and
at the same time we want to obtain high accuracy to meet the
instantaneity requirements such as automatic driving, real-
time high-precision map making. To satisfy the requirements
of real-time or running on mobile devices, many effective net-
works have been proposed. ENet [23] achieved great speed
improvement using a lightweight decoder and downsampling
in the early stages of the network. ICNet [42] proposed an
image cascade network for semantic segmentation, which
used semantic information with low resolution and detailed
information with high resolution. MobileNetv2 [28] reduced
the complexity of the overall model using depthwise separa-
ble convolution. Bisenetv2 [37] used two branches to obtain
semantic information and detailed information respectively.
Although these networks have used some methods to obtain
semantic information and detailed information, the problem
of insufficient semantic information or detailed information
has not been completely solved. These works significantly
reduced the delay and memory usage of segmentation mod-
els, but their low accuracy limits their real-world application.

To improve the accuracy of the model while maintaining
speed of the model, we analyzed the dual branch networks
again in this paper. To solve the problem that sufficient con-
text information and sufficient detailed information cannot
be obtained in real-time semantic segmentation networks,
this paper proposed a feature fusion module. In addition to
feature fusion module, we also did some other research on
this issue. In a word, this paper proposed a network based
on a multi-resolution feature fusion module, an auxiliary
feature extraction module, an upsampling module and multi-
ASPP(atrous spatial pyramid pooling) module. Compared
with other lightweight real-time semantic segmentation net-
works, our network achieved the highest accuracy at an
appropriate speed. For this paper, the main contributions are
as follows:

(1) A novel multi-resolution feature fusion module that can
be flexibly embedded into any network.

(2) An upsampling module that goes beyond deconvolution
and it is very easy to use.

(3) A method of using multi ASPP to improve network per-
formance.

Related work

Since the design concept of real-time networks is very dif-
ferent from that of ordinary networks, we group the related
works into two categories, i.e., high-performance semantic
segmentation and real-time semantic segmentation.
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High-accuracy semantic segmentation

The early semantic segmentation networks usually used the
encoder—decoder architecture [1,20,27]. The encoder grad-
ually expands its receptive field through convolution or
pooling and the decoder uses deconvolution or upsampling
to recover the resolution from the outputs of the encoder.
However, it is difficult to retain sufficient details during
the downsampling process of the encoder—decoder network.
A strategy is to utilize dilated convolutions, which could
enlarge field-of-view without reducing the spatial resolu-
tion. Based on this idea, DeepLab series [4—7] achieved
great improvement by using dilated convolutions with dif-
ferent expansion rates in the network. However, DeepLabs
only used this method after the last downsampling in the
network, and did not further explore this method. PSPNet
[43] proposed a Pyramid Pooling Module (PPM) to process
multi-scale context information. HRNet [34] adopts multi-
path and bilateral connection to learn and integrate features
of different scales. Inspired by the self-attention mechanism
[33] used in machine translation to obtain context infor-
mation, many meaningful works for semantic segmentation
[10,14,34] introduced non-local operation [35] into computer
vision. A critical problem for the above methods are that they
are very time-consuming in the inference stage and can not
meet the real-time requirements.

Real-time semantic segmentation

Real-time semantic segmentation networks generally adopts
two methods: encoder—decoder method and two pathway
method.

SwiftNet [22] used a lightweight decoder that used a
low-resolution input to obtain semantic information and
another high-resolution input to obtain detailed information.
DFANet [16] used a light-weight backbone based on depth-
wise separable convolution, and reduced input size to speed
up inference. ShuffleSeg [11] used ShuffleNet [40] as its
backbone. ShuffleNet combined channel shuffling and group
convolution, which can significantly reduce computing cost.
However, these networks still adopted the encoder—decoder
architecture, the encoder extracted contextual information
by a deep network and the decoder restored the resolution by
interpolation or transposed convolution to complete dense
predictions. The encoder—decoder architecture loses some
details during repeated downsampling, and these lost infor-
mation cannot be completely recovered through upsampling,
which will impairs the accuracy of semantic segmenta-
tion. With this consideration, BiSeNet [37,38] proposed a
two-branch network architecture, which uses one pathway
for extracting semantic information, and the other shallow
pathway for extracting detailed information as a supple-
ment. Then several works based on the two-branch network
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Fig.1 The network architecture proposed in this paper, M and N represent the length and width of the image respectively

architecture were proposed to improve their presentation
capability or reduce the model complexity [12,25,26,37].
However, the problem that the network cannot obtain suffi-
cient context information or detailed information still exists.
These networks only weaken the phenomenon of information
loss in the process of feature extraction. To further allevi-
ate this problem, this paper proposed a network based on a
novel multi-resolution feature fusion module, an auxiliary
feature extraction module, an upsampling module and multi-
ASPP(atrous spatial pyramid pooling) module.

Method

As shown in the Fig. 1, the network architecture proposed in
this paper mainly includes two branches, the detail branch
and the semantic branch. The network module names begin-
ning with “loss” are side-branch auxiliary feature extraction
layers, which draw on the idea of the auxiliary classifier
mentioned in inception-v3 [31]. However, there are new dis-
coveries that are different from the said auxiliary classifier.
A detailed description about it will be provided in part 3.1.
In the feature fusion stage, we adopted hierarchical cascade
fusion base on the cascade feature fusion module(CFF), the
output of CFF module are further fused by cascade fusion.
A detailed description about CFF module will be provided
in part 3.2. Another one specific method is to use the multi
ASPP in the feature extraction stage of the semantic branch,
which will be described in part 3.4. The upsampling module
named UCBA will be described in part 3.3.

The auxiliary feature extraction layer

The Fig.?2 is the architecture of the auxiliary feature extrac-
tion layer used in the experiment. The parameters of the
first convolution operation are as follows: kernel_size =
3 x 3, out_channels = 2N, stride = 1, padding = 1,

Loss
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Fig. 2 The architecture of auxiliary feature extraction layer, N repre-
sents the number of channels, C represents the number of classes
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Fig. 3 Comparison of loss downward trend between using auxiliary
feature extraction module and not using auxiliary feature extraction
module

and the parameters of the second convolution operation are
as follows: kernel_size = 1 x 1, out_channels C,
stride = 1, padding = 0. Then we used an upsampling
module to upsample the feature map from H/n x W/n(n =
2,4,8,16,32) size to H x W size. The upsampling module
used here is UCBA, which is described in part 3.3. Finally,
we used the cross-entropy to calculate the loss value. Com-
pared with not using the auxiliary feature extraction layer,
using the auxiliary feature extraction layer can obtain higher
mloU. The experimental results as shown in Table 4 in the
following chapters has proved this. In the process of verify-
ing the effect of this layer, we made a new discovery that the
auxiliary feature extraction layer of the network has shown
its advantages in the early stage of the training process as
shown in Fig. 3. Compared with the network without any aux-
iliary feature extraction layer, the performance is improved
remarkably at the beginning of training.

@ Springer
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Fig.4 Cascade feature fusion module

We all know that the side-branch auxiliary feature extrac-
tion layer has a regularization effect, which is explained in
detail in Inception-v3. To be exact, it has a regularization
effect essentially because the auxiliary feature extraction
layer increases the gradient of the parameters of the shallow
layers, and the gradient of the parameters of the deep layers is
reduced relatively. The essence of training a model is to train
a function with a huge amount of parameters to fit the real
data. If this function is more closely related to the parameters
of the shallow layers of the network, the faster adjustment of
the parameters of the shallow layers will speed up the conver-
gence of the network. If this function is more closely related
to the parameters of the deep layers, the faster adjustment of
the parameters of the deep layers will speed up the conver-
gence of the network. The gradient descent method is used
to adjust the parameters of the deep learning network during
the training process, and the gradient descent method adjusts
the parameters according to the gradient of each parame-
ter of the network. The auxiliary feature extraction layers
can control the gradient of the parameters of the networks,
so it can control the adjustment speed of the parameters of
the shallow layers and the deep layers respectively to speed
up the convergence of the network. Therefore, the follow-
ing conclusions can be inferred: the side-branch auxiliary
layer may speed up the convergence of the network or slow
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down the convergence of the network, which is related to the
location of the side-branch auxiliary layer, the weight of the
side-branch auxiliary layer and the training data. The exper-
imental results of the inception networks and the experiment
of our study also further confirmed that.

Cascade feature fusion module

To obtain sufficient context information and sufficient
detailed information, we designed a cascade feature fusion
module, we named this module CFF (Cascade Feature Fusion
Module), the Fig. 4 is the architecture of the CFF module:

For the feature /; with a shape of H x W x C generated by
the detail branch (the detail branch in Fig. 1), the feature D
withashape of H/2x W /2x C is generated by the first down-
sampling, and then the second down-sampling performed, a
feature D, with a shape of H/4 x W /4 x C is generated.
For the feature I, with a shape of H/4 x W /4 x C gener-
ated by the semantic branch (the semantic branch in Fig. 1),
the feature U; with the shape of H/2 x W /2 x C is gen-
erated by the first upsampling, then the second upsampling
performed, the feature U, with the shape H x W x C is gen-
erated. We use F,, to represent the upsampling function, and
the feature O obtained after the fusion can be expressed as
Equation (1):
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For the obtained feature O, we perform another average
pooling operation to obtain the final feature fusion result.
This architecture can not only fully integrate features of dif-
ferent sizes, but also expand the receptive field of features by
downsampling, enabling the network to obtain richer contex-
tual information.

We used the CFF module mentioned above for feature
fusion. From Fig. 1, we can see that we used the CFF module
to fuse feature of 1/32 and 1/8, 1/16 and 1/4, 1/8 and 1/2
respectively. We denote the three fused features as O1, O2,
and O3 respectively. In order to fuse the features of shallow
layers and the features of deep layers, we fused O1, O2 and
03 in series. The specific architecture is shown in the Fig. 5.

CFF module not only produces high-resolution features
but also integrates the information of low-resolution fea-
tures into the high-resolution features, which reduced the
excessive influence of noise contained in high-resolution fea-
tures on the result. CFF module uses a parallel pooling layer
to strengthen important information during down-sampling,
and it integrates information of high-resolution features into
low-resolution features before upsampling as a supplement.
CFF module can obtain more richer context information and
detailed information than general methods.

More effective upsampling module

Instead of using the common deconvolution [29] or a sin-
gle bilinear interpolation as the upsampling module, we
redesigned an upsampling module with the bilinear, convo-
lution, batch normalization and relu. This module is named
UCBA. Then we verified the effectiveness of this upsampling
module through experiments. The following Fig. 6 illustrates
the architecture of this upsampling module:

Suppose we have a grayscale image with a shape of 4 x 4,
we use a convolution kernel of 3 x 3 size to perform convolu-
tion operations on the image, and finally get a single-channel
feature with a shape of 2 x 2. If we use matrix operations to
represent this convolution operation process, the following
operations will be performed:

Flatten the 4 x 4 grayscale image into a matrix X with a
shape of 16 x 1.

Sxel” 2)

X =[x1,x2,..

We flatten the single-channel feature with the shape of 2 x 2
obtained by the convolution operation into a matrix Y with a
shape of 4 x 1.

Y =[yl,y2,y3, y4]" A3)

@ Springer
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Suppose we use C to represent the convolution matrix, then
the convolution operation can be expressed by the mathemat-
ical Equation (4):

Y=CX 4

Just fill the 9 parameters corresponding to the convolution
kernel into the corresponding positions of the matrix C, and
fill the other positions with O to get the matrix C. Deconvo-
lution is the inverse operation of the above matrix operation
process. The process of deconvolution can be expressed by
the following Equation (5):

Xx=cly )

According to the above deconvolution calculation for-
mula, we can get x1, we use C IT to represent the first row
in the matrix C”, x| can be expressed as Equation (6):

x1=Cly (6)

Other elements in the X matrix are calculated in the same
way as xj. We can clearly find that each element of the
X matrix is related to all elements of the Y matrix. We
can infer that the deconvolution establishes a global rela-
tionship. Furthermore, we can consider that deconvolution
has a global receptive field. Many theories and facts have
proved that a large receptive field is friendly to semantic
information and not friendly to detailed information. For
the semantic segmentation task we want to do, the result
needs to contain more detailed information for obtaining
better segmentation results. The large receptive field can
not get detailed information very well, and deconvolution
has a global receptive field, so deconvolution for upsam-
pling is not very suitable for semantic segmentation tasks.
So the upsampling module in our network adopts the bilin-
ear+convolution+batchnormal+relu module. The subsequent
experiments also proved the effectiveness of our upsampling
method.

Improved ASPP module

The widely used ASPP module is proposed in the deeplab net-
work, which uses atrous convolution to expand the receptive
field of the convolution kernel without losing resolution. The
following is the calculation formula for the output size of the
atrous convolution. Input : (N, Ci,, Hip, Wiy), Output :
(Nv C()Ml’ H()Mf? WOLtt)

Hy =dilation[0] x (kernel_size[0] — 1) (7)
Hy = Hj, + 2 % padding[0] — H; 8)
H>

Hy,;,=—"—+1 9
out stride[0]+ ©
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Wi =dilation|0] % (kernel_size[0] — 1) (10)

Wy = Wi, 4+ 2 % padding[0] — Wy (11
W,

Wour 2 _ 11 (12)

- stride[0] +

ASPP performs feature extraction by setting different
atrous rates to generate convolution kernels for different
receptive fields. It also uses global average pooling to obtain
the global receptive field. Intuitively speaking, the purpose
of fusing features of different resolutions is to fuse features
of different receptive fields. To further integrate the features
of different receptive fields, we used the atrous spatial pyra-
mid pooling (ASPP) in the semantic branch, but we used the
ASPP module more than once, ASPP modules were used at
different locations in the semantic branch.

Many literatures have proved that fusing features of differ-
ent sizes or resolutions can improve the performance of the
network, such as the deeplab series, but the general method
is to use the ASPP module only in the last layer of the fea-
ture extraction network. Although fusing features of different
receptive fields or different sizes can improve the perfor-
mance of the network, which layer should fuse the features
of different receptive fields or different resolutions? There is
no such research to answer this question. We did some exper-
imental research on this issue. We added an ASPP layer to
the four stages of the semantic branch respectively, the dila-
tion rate of ASPP was set to [5,11,17]. And then we added
a shorted connection to add up the original features and the
features extracted by the ASPP layer. Thereby, we can fuse
the features of large receptive field extracted by ASPP mod-
ule and the relatively small receptive field features. Table
2 shows that the performance is best if ASPP module and
shorted connection are added in the last three stages of a
semantic branch. The following Fig.7 shows how we embed
the ASPP module:

Experiment
Datasets

We verified the effectiveness of our method in the public
dataset cityscapes [8], which is a semantic understanding
image dataset of urban street scenes. It mainly contains street
scenes from 50 different cities, and has 5000 high-quality
pixel-level annotated images of driving scenes in an urban
environment (2975 for train, 500 for val, 1525 for test, 19 cat-
egories in total). In addition, it has 20,000 coarsely annotated
images (gt coarse). Here we use only 5000 finely labeled data
to verify the effectiveness of our model, 2975 for training,
and 500 for verification. During training, we first scale the
2048 x 1024 resolution image to a resolution of 1024 x 512,
and then input it into the network for training.
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To further verify the effectiveness and wide applicability
of the proposed network in this paper, we also conduct exper-
iments on the Cambridge-driving Labeled Video Database
(CamVid) [2] and COCO-Stuff datasets [3], respectively.
Cambridge-driving Labeled Video Database (CamVid) is a
dataset of road scenes from the perspective of autonomous
vehicles. It contains 701 images with a resolution of 960 x
720. We use 367 of these images for training and 101 for val-
idation, 233 images were used for testing. We use only 11 of
the 32 candidate categories it provides, like other methods, to
facilitate comparisons with different methods. COCO-Stuff
is a popular coco dataset with pixel-level labeled. It contains
10K images, 91 things classes and 91 stuff classes. We use
9K of these images for training and 1K for testing like other
methods.

Super parameters

We use the stochastic gradient descent (SGD) algorithm with
0.9 momentum to train our model. We set a batchsize of 16
during training. When training with the cityscapes and Cam
Vid datasets, we set the weight decay to 0.0005. When train-
ing with the COCO-Stuff dataset, we set the weight decay
to 0.0001. We set the initial learning rate Ir to Se-2. The
learning rate is decayed using the “pol” strategy during train-
ing, and the learning rate for each iteration is calculated as:
(1 — ”gﬁ)l’”w” * [r. We train 20K iterations on each
dataset separately. The inference speed is measured on the
NVIDIA GeForce 1080Ti card.

Ablation study

The following Table 1 is the experimental result on the vali-
dation data of the cityscapes dataset after we added the ASPP
layer to the network. The second column shows whether we
use the ASPP module before extracting 1/32 feature in the
semantic branch. The third column shows whether we use the
ASPP module before extracting 1/16 feature in the semantic
branch. The fourth column shows whether we use the ASPP
module before extracting 1/8 feature in the semantic branch.
The fifth column shows whether we use the ASPP module

Table 1 The impact of adding different numbers of ASPP layers on the
validation data of the cityscapes dataset

BisenetV2 S4 S3 S2 S1 mloU Gain

v 73.36 -

v v 74.76 1.4
v v v 75.97 2.61
v v v v 76.15 279
v v v v v 76.07 271

Boldface indicates the highest accuracy value among all the models

Table 2 The impact of CFF module on the validation data of the
cityscapes dataset

BisenetV2+CFF BisenetV2
ToU (%) 77.12 73.36
Gain 3.76 -

Boldface indicates the highest accuracy value among all the models

Table 3 The effect of UCBA layer on cityscapes val dataset

BisenetV2+UCBA BisenetV2
IoU (%) 73.76 73.36
Gain 0.2 -

Boldface indicates the highest accuracy value among all the models

before extracting 1/4 feature in the semantic branch. From
Table 1 below, we can see that the network achieved the best
performance after we added ASPP layers in the last three
stages of the network.

Table 2 shows the experimental results of the network on
the validation data of the cityscapes dataset after replacing
the feature fusion part of Bisenetv2 into CFF module. As
can be seen from Table 2 below, the model with CFF module
achieved a total mIoU improvement of 3.76%.

The following Table 3 is the experimental results of the
network on the validation data of the cityscapes dataset after
using our UCBA module in the network. In the experiment,
we set the “align_corners” parameter of bilinear to true. From

@ Springer
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Table 4 The effect of the model

.. BisenetV2 backbone+CFF  Loss7 Loss6 LossS5 Loss4 Loss3 Loss2 Lossl mloU Gain
when the position and number
of side branches are different. v v v 73.84  0.58
Bisenetv2 backbone is the
semantic branch, detail branch v v v v 7448 1.22
of Bisenetv2. Bisenetv2 v v v v v 7551 225
backbone with CFF obtained v v v v v v 76.81 3.55
17)3.26'% r}lIoU.We us.e itasa v v v v v v v 7770 444
aseline in the experiment
v v v v v v v v 7873 447
v 73.26

Boldface indicates the highest accuracy value among all the models

Table 5 The results of different networks on the cityscapes validation
dataset

Method mloU(%) FPS GPU
DF2-Segl [17] 75.9 672 GTX 1080Ti
DF2-Seg2 [17] 76.9 56.3 GTX 1080Ti
SwiftNetRN-18 [22] 755 39.9 GTX 1080Ti
CABiNet [15] 76.6 76.5 RTX 2080Ti
BiSeNet2 [37] 734 156 GTX 1080Ti
GAS [19] 724 108.4 TitanXp
STDC2-Seg75 [9] 77.0 97.0 GTX 1080Ti
PP-LiteSeg-B2 [24] 782 102.6 GTX 1080Ti
HyperSeg-S [21] 782 16.16 GTX 1080Ti
DDRNet-23 [12] 79.5 37.1 GTX 2080Ti
Ours 813 110 GTX 1080Ti

Boldface indicates the highest accuracy value among all the models

Table 3 below, it can be seen that the model with UCBA
module achieved a total mIoU improvement of 0.2%.

The following Table 4 is the experimental results of the
network on the validation data of the cityscapes dataset after
using the auxiliary feature extraction layer in the network.
From Table 4 below, it can be seen that the model with
the auxiliary feature extraction layer achieved a total mIoU
improvement of 4.47%. The network obtained the best per-
formance after adding the auxiliary feature extraction layer
at each stage of the semantic branch.

Comparison

The following Table S is a comparison of the experimental
results of our network and the current mainstream semantic
segmentation network on the validation data of the cityscapes
dataset. We use the network based on bisenetv2 backbone
with the multi-resolution feature fusion module, the auxil-
iary feature extraction module, the upsampling module and
multi-ASPP proposed in the paper achieved that result. Dur-
ing inference, the output of the network is a single-channel
image with a resolution of 1024 x 512. We then resize it to a

@ Springer

Table 6 The results of different networks on the CamVid test dataset

Method mloU(%) FPS GPU
MSFENet [30] 75.4 91.0 GTX 2080Ti
PP-LiteSeg-T [24] 75.0 154.8 GTX 1080Ti
TD2-PSP50 [13] 76.0 11.0 TITAN X
BiSeNetV2 [37] 72.4 124.5 GTX 1080Ti
HyperSeg-L [21] 79.1 16.6 GTX 1080Ti
DDRNet-23 [12] 76.3 94 GTX 2080Ti
DFANet B [16] 59.3 160 GTX 1080Ti
DFANet A [16] 64.7 120 GTX 1080Ti
Ours 80.7 104 GTX 1080Ti

Table 7 The results of different networks on the COCO-Stuff test
dataset

Method mloU(%) FPS GPU

DDRNet-23 [12] 32.1 129.2 GTX 2080Ti
PSPNet50 [43] 32.6 6.60 GTX 1080Ti
ICNet [42] 29.1 35.7 GTX 1080Ti
BiSeNetV2 [37] 252 87.9 GTX 1080Ti
Ours 322 78 GTX 1080Ti

grayscale image with a resolution of 2048 x 1024, and then
use the resolution to calculate the mloU value.

The following Table 6 is a comparison of the experimental
results of our network and the current mainstream semantic
segmentation network on the test data of the CamVid dataset.
We use the network based on bisenetv2 backbone with the
multi-resolution feature fusion module, the auxiliary feature
extraction module, the upsampling module and multi-ASPP
proposed in the paper achieved that result. During inference,
the output of the network is a single-channel image with a
resolution of 960 x 720.

The following Table 7 is a comparison of the experimental
results of our network and the current mainstream semantic
segmentation network on the test data of the COCO Stuff
dataset. We use the network-based on bisenetv2 backbone
with the multi-resolution feature fusion module, the auxil-
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Fig. 8 The left column is the original image, the second column is Ground Truth, the third column is the predictions of the network proposed in

the paper, the fourth column is the predictions of Bisenetv2

iary feature extraction module, the upsampling module and
multi-ASPP proposed in the paper achieved that result. Dur-
ing inference, the output of the network is a single-channel
image with a resolution of 640 x 640.

From the above results, we can see that the network pro-
posed in this paper achieved 81.3% mloU at 110FPS on
Cityscapes validation dataset, 80.7% mloU at 104FPS on the
CamVid test dataset, 32.2% mloU at 78FPS on the COCO-
Stuff test dataset. Better results were obtained at a relatively
fast speed. Figure 8 shows the visualization comparison on
Cityscapes dataset.

Conclusion

In this paper, we conducted research and experiments on the
side branch auxiliary feature extraction module, the feature
fusion module, the upsampling module, and the atrous spacial
pooling pyramid module. We made new discoveries that the
role of side-branch is more than regularization, it may either
slow down the convergence or accelerate the convergence
by influencing the gradient of different layers of the net-
work, which is dependent on the parameters of the network
and the input data. We also proposed an upsampling mod-
ule and a feature fusion module. We used the ASPP module
to further optimize the network. We analyzed the effect of
each improvement on the network in detail through experi-
ments, and confirmed the effectiveness of the above methods.
The network proposed in this paper achieved 81.3% mloU
at 110FPS on Cityscapes validation dataset, 80.7% mloU at

104FPS on the CamVid test dataset, 32.2% mloU at 78FPS
on the COCO-Stuff test dataset.

Availability of data and materials The datasets generated during
and/or analysed during the current study are available in the
https://www.cityscapes-dataset.com/, http://images.cocodataset.org,
http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/repository
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