
Complex & Intelligent Systems (2023) 9:5731–5744
https://doi.org/10.1007/s40747-023-01045-z

ORIG INAL ART ICLE

A time-sensitive learning-to-rank approach for cloud simulation
resource prediction

Yuhao Xiao1 · Yiping Yao1 · Kai Chen1 ·Wenjie Tang1 · Feng Zhu1

Received: 7 October 2022 / Accepted: 9 March 2023 / Published online: 3 April 2023
© The Author(s) 2023

Abstract
Predicting the computing resources required by simulation applications can provide a more reasonable resource-allocation
scheme for efficient execution. Existing prediction methods based on machine learning, such as classification/regression,
typically must accurately predict the runtime of simulation applications and select the optimal computing resource allocation
scheme by sorting the length of the simulation runtime. However, the ranking results are easily affected by the simulation
runtime prediction accuracy. This study proposes a time-sensitive learning-to-rank (LTR) approach for cloud simulations
resource prediction. First, we use the Shapley additive explanation (SHAP) value from the field of explainable artificial
intelligence (XAI) to analyze the impact of relevant factors on the simulation runtime and to extract the feature dimensions
that significantly affect the simulation runtime. Second, by modifying the target loss function of the rankboost algorithm and
training a time-sensitive LTRmodel based on simulation features, we can accurately predict the computing resource allocation
scheme that maximizes the execution efficiency of simulation applications. Compared with the traditional machine learning
prediction algorithm, the proposed method can improve the average sorting performance by 3%–48% and can accurately
predict the computing resources required for the simulation applications to execute in the shortest amount of time.

Keywords Cloud computing · Complex system simulation · Computing resource prediction · Learning to rank

Introduction

Simulations of complex systems are widely used in the
defense, energy, transportation, aerospace, and other fields.
Modeling and simulation technology is one of the most
important methods for studying complex systems. Higher
requirements have been proposed for the computing and
communication capabilities of simulation systems because of
the growing computational load and the runtime of complex

B Feng Zhu
zhufeng@nudt.edu.cn

Yuhao Xiao
xiaoyuhao19@nudt.edu.cn

Yiping Yao
ypyao@nudt.edu.cn

Kai Chen
chenkai@nudt.edu.cn

Wenjie Tang
tangwenjie@nudt.edu.cn

1 College of Systems Engineering, National University of
Defense Technology, Changsha 410073, China

system simulation applications [1]. Parallel discrete event
simulations (PDES) are often used to improve the efficiency
of complex system simulation applications. It is typically
necessary to specify the amount of computing resources
(referred to in this study as the number ofCPUcores) required
for the complex system simulation applications based on
PDES before they are executed and divide the simulation task
into different CPU cores for parallel computation [2]. Cloud
computing technology can realize collaborativemanagement
and on-demand distribution of computing/storage and other
resources to provide efficient resource allocation tools for
complex system simulation applications based on parallel
and discrete simulation (PADS) [3]. However, a high com-
munication delay occurs in the cloud environment because
computing and storage resources are often distributed among
different computing nodes [4]. During the execution of the
simulation task, communication is frequently synchronized,
and numerous messages are sent and received. The execution
efficiency of the simulation application in the cloud envi-
ronment will be affected if there is an excessive allocation
of computing resources, which will increase communica-
tion overhead between the simulation entities [5]. Therefore,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01045-z&domain=pdf
http://orcid.org/0000-0003-0263-6806


5732 Complex & Intelligent Systems (2023) 9:5731–5744

a method is required to predict the priority order of the
simulation runtime corresponding to the number of differ-
ent simulation computing resources before the simulation
application is executed and to reasonably allocate comput-
ing resources for the simulation application according to the
priority order.

Several researchers have recently investigated classifica-
tion/regression machine learning-based simulation resource
predictionmethods in cloud environments [6,7]. Thesemeth-
ods collect the characteristic data of simulation applications
and use classification/regression algorithms to predict the
runtime of simulation applications using various computing
resources. Finally, these methods rank simulation comput-
ing resources based on the prediction results (simulation
runtime) and expect to obtain those that will enable the sim-
ulation applications to execute in the shortest time. However,
thesemethods typically base their predictionmodels on high-
precision prediction indicators, such as root mean square
error (RMSE) [8] ormean absolute percentage error (MAPE)
[9]. The optimization objective is to minimize the difference
between the predicted and actual runtimes, which makes the
simulation’s ordination susceptible to prediction accuracy.
Compared with the predictionmethod that directly optimizes
the overall ordination accuracy of computing resources, a
method based on the prediction before ordination requires a
higher time and space computational complexity and makes
it difficult to achieve higher sorting accuracy. The learning-
to-rank (LTR) method uses the relative ranking between
pairwise samples in the dataset as feedback information and
reduces the error ranking probability between sample pairs
through iterative learning to produce the best ranking possi-
ble [10]. Therefore, during the task of simulation computing
resource prediction, the method that directly learns the rank-
ing of resource usage can explain the relationship between
different resource usage and simulation application runtime
at a deeper level than the method that predicts the simulation
runtime under different computing resources and re-ranking.

To address the above problems, this study proposes a
time-sensitive LTR approach for resource prediction in cloud
simulation. The method collects static feature and dynamic
monitoring data from simulation applications, and analyzes
the impact of various factors on the execution efficiencyof the
simulation based on the feature extraction method of SHap-
ley additive exPlanation (SHAP) interpretation framework.
Second, based on the analysis of the factors that significantly
affect the runtime of simulation applications, the objective
loss function of the proposed method was designed, and
the RankBoost model was used to construct the simulation
runtime-sensitive predictor. The method uses the shortest
simulation runtime as the training goal and adds a time
penalty factor to the loss function of the LTR model to
ensure that more penalty is added when the best resources

are not correctly ranked to accurately predict the computing
resources with the shortest simulation runtime.

The main contributions of this study are as follows:

1. This study used the feature extraction method of the
SHAP interpretability framework to quantitatively evalu-
ate the importance of factors that influence the runtime of
a complex system simulation. First, the set of factors that
affect the efficiency of the simulation was analyzed, and
the static characteristics before the execution of the simu-
lation application and the dynamic characteristics during
the dynamic execution of the simulation applicationwere
extracted as the feature data of the training samples.
Second, the significant contribution of each feature was
calculated based on the SHAP value, and the features that
significantly affect the simulation application’s runtime
are extracted as input to improve the performance of the
predictor.

2. This study proposes a time-sensitive learning-to-rank
approach for resource prediction in cloud simulation. The
method designs the target loss function of the RankBoost
algorithm and trains a time-sensitive predictor based on
the simulation features to accurately predict the com-
puting resource allocation scheme that maximizes the
execution efficiency of simulation applications. Com-
pared with other eight machine learning methods, the
experimental results show that our method can achieve
the shortest simulation runtime and improve the accuracy
of the optimal computing resource ranking.

Related work

Several studies have been conducted on the acceleration tech-
nology of complex system simulation applications combined
with the advantages of on-demand sharing and elastic scal-
ing in cloud computing environments. However, although
cloud computing-based simulation technology has several
advantages, the random resource allocation process in the
cloud environment may also reduce simulation performance
[11]. To address this problem, regression/classification pre-
diction models based on machine learning, such as linear
regression [12,13], nearest neighbor [14], regression tree
[15], support vector machine [16], Bayesian [17], neural net-
works [18,19], and ensemble learningmodels [20,21], are the
widely accepted solutions to this problem. These methods
attempt to accurately predict the dynamic properties (such
as computing resource requirements, runtime, or load fluc-
tuations) of simulation applications using deep learning in
many historical feature datasets.

Bin [22] modeled computational resource planning in
cloud environments as a classification problem using a
weighted support vector machine (SVM) model to predict

123



Complex & Intelligent Systems (2023) 9:5731–5744 5733

future workload changes, thus minimizing the cost of cloud
resource allocation and virtual machine provisioning. To
overcome the limitations of reactive cloud autoscaling, Kee
proposed an online framework for cloud computing resource
prediction using multiple predictors to create an ensemble
model for accurate prediction of actual workloads [6]. To
improve the responsiveness of cloud management systems
and improve the quality of cloud services, Nawrocki [23]
combined anomaly detection and machine learning methods
to allocate cloud resources to reduce cost and improve the
quality of service (QoS). To cope with unexpected events
in the cloud environment, Shen [24] proposed an efficient
method for predictive resource allocation in the cloud. The
approach uses machine learning models to predict contin-
gencies and normal events and execute different resource
allocation schemes. To improve the allocation efficiency of
virtualmachines in heterogeneous cloud environments,Mah-
foudh [25] used a diffusion convolutional recurrent neural
network model to predict the fluctuation of computational
load in the next time period in real time and validated the
model on a real-world dataset of CPUusage traces fromPlan-
etLab. For time-series data in cloud computing environments,
Jing [26] integrated bidirectional and lattice-based long- and
short-term memory network models to achieve high-quality
prediction of workload and resource usage in cloud environ-
ments.

The above machine learning methods typically aim to
build a prediction model while improving the absolute
accuracy (that is, reducing the RMSE, MAE, and other
indicators). To obtain an effective resource ranking, these
methods must predict the simulation runtime under vari-
ous resource conditions and then rank the various resources
according to the prediction results. However, compared with
learning-to-rank method that directly optimize the overall
ranking, classification/regression models that indirectly rank
based on absolute accuracy tend to obtain poor ranking
results [27].

Compared with classification/regression-based prediction
methods, research on ranking computing resources for simu-
lation applications using the LTRmethod is still very limited.
Currently, most mainstream LTR algorithms adopt the pair-
wise approach, which considers a sample pair as a single
training sample and focuses on the relative order of two sam-
ples rather than the specific value of a single sample. Some
common methods include RankSVM [28], RankBoost [29],
RankNet [?], and others [30,31]. Nguyen [32] empirically
demonstrated using five datasets that the ranking accuracies
of two LTR methods (RankSVM and RankBoost) were 4%–
21% higher than that of the liner regression model (LR).
Yang [33] proposed an LTR method to develop a software
defect prediction model by directly optimizing the ranking
performance. The method’s accuracy in ranking the met-
rics was demonstrated. Jacky [27] analyzed the cost and

data imbalance problems, and proposed a defect prediction
method based ranking SVM model to improve the accuracy
of software defect prediction. Burges et al. [34] proposed
an ensemble prediction algorithm that combines the Lamb-
daMART and LambdaRank algorithms and demonstrated
through experimental datasets that the algorithm produced
better prediction results.

The LTR algorithm of AdaBoost selects a feature vari-
able each time to learn the weak sorters, which are then
combined to form a strong sorter. The RankBoost algorithm
inherits the advantages of the AdaBoost algorithm and has a
fast convergence speed and strong generalization ability [35].
Therefore, this study combines the advantages of the Rank-
Boost algorithm and proposes a time-sensitive LTR approach
for resource prediction in cloud simulation. The approach
selects the number of features that significantly affect the
simulation efficiency based on the SHAP interpretability
framework and then designs the target loss function of the
RankBoost algorithm to train a time-sensitive LTR model.
Compared with other LTR models, the proposed model adds
more penalties when the ranking of the best resources is
incorrect.

The time-sensitive learning-to-rank
approach for resource prediction

Cloud computing technology could greatly improve the
efficiency of resource allocation for complex system sim-
ulation applications [36]. Compared with the traditional
method of using classification/regression technology to
indirectly predict the use of computing resources for sim-
ulation applications, the LTR method can better explain
the relationship between different resource usages and the
execution efficiency. Therefore, this study proposes a time-
sensitive learning-to-rank approach (TSLTR) to support
optimal resource allocation for simulation applications. The
fundamental concept is to use anLTR algorithm to predict the
priority of the computing resources used before a simulation
application is executed.

This method aims to reduce the number of resource
pairs with incorrect rankings, obtain the highest ranking of
resource usage, and improve the execution efficiencyof simu-
lation applications. In practice, the PADS application focuses
more on resource usage, which speeds up the simulation
application’s execution. Therefore, this study adds a penalty
factor to the loss function of the model to improve the rank-
ing accuracy of top-ranked resources. The architecture of the
proposed approach is shown in Fig. 1

During the initial phase of the approach, we deployed
resource monitors on cloud computing nodes to collect real-
time operational information of the emulated applications. In
this study, we considered two sets of simulation parameters:

123



5734 Complex & Intelligent Systems (2023) 9:5731–5744

Fig. 1 Architecture of the proposed approach

pre-execution and runtime parameters. The pre-execution
parameters, which reflect the static characteristics of the sim-
ulation application, are set before the application is executed.
The runtime parameters are collected while the simulation
application is being executed and reflect the performance
differences under different cloud computing resources. The
resource monitor collects information every 3 s and deposits
it into the cloud application database with the specific param-
eters shown in Table 1. During the second stage, the collected
dataset was processed using feature extraction methods to
obtain relevant features. First, data preprocessing and data
cleaning methods were performed to remove the null val-
ues and negative values. Then, standardization was used to
normalize all data to a distributionwith amean of 0 and a vari-
ance of 1 so that eliminating the negative effects of abnormal
samples. Second, based on the SHAP explainable frame-
work, we analyzed the impact of each feature dimension
on the operational efficiency of the simulation application
and selected strongly relevant features to reduce the model
error and achieve a more accurate prediction result. Finally,
the extracted relevant features were used as inputs to train
the LTR model to predict the priority order of various cloud
resource usage. The highest ranked resource was used as the
final prediction result.

The LTRmodel

The LTR algorithm aims to use the data from the previous
execution to predict the priority of the computing resource
usage for the next execution. This method uses the relative
ranking between sample pairs in the training sample set as
feedback information and reduces the probability of incorrect

ranking between sample pairs by iteratively learning to pro-
duce the best ranking for all samples. Therefore, this study
uses the LTR algorithm to predict the overall ranking of com-
puting resources as well as to provide an optimal resource
allocation scheme for achieving the shortest simulation run-
time.

(1) Problem description

Consider the ranking objective named Set X , which ranks
a set of applications Si with the same simulation static
parameters (except for the CPU cores), where X represents
the CPU cores assigned to the simulation execution. The
optimal resource requirements for cloud-based simulation
applications can be expressed as Pi = f (Si (xi , yi )), where
xi = (x1, x2, ...xd) represents the d-dimensional feature vec-
tor of the simulation application, yi represents the simulation
runtime, and f denotes the ranking function. The LTRmodel
aims to learn from the dataset to obtain a sorting function that
correctly sorts the number of resources to be used. Therefore,
the feedback function is defined as follows:

Set X = ϕ
(
S j

(
x j , y j

)
, Sk (xk, yk)

)

=
⎧
⎨

⎩

+1 S j
(
x j , y j

)
> Sk (xk, yk)

0 S j
(
x j , y j

) = Sk (xk, yk)
−1 S j

(
x j , y j

)
< Sk (xk, yk)

(1)

For anypair of samples S j and Sk in any set of applications,
S j

(
x j , y j

)
> Sk (xk, yk) indicates that the simulation run-

time when using Pj resources is higher than the simulation
runtime when using Pk resources. S j

(
x j , y j

)
< Sk (xk, yk)

implies that the simulation runtime when using Pj resources
is lower than that when using Pk resources. S j

(
x j , y j

) =
Sk (xk, yk) indicates that the simulation runtime when using
Pj resources is equal to that when using Pk resources. The
above LTR task was converted to a binary classification task
that involves learning the relative order between sample pairs.
Based on this, a weight D is assigned to each sample pair,
indicating the importance of accurately judging the sample
pairs. The distribution of D is defined as follows:

D
(
S j

(
x j , y j

)
, Sk (xk, yk)

)

= c ·max
{
0, ϕ

(
S j

(
x j , y j

)
, Sk (xk, yk)

)}
, (2)

where c represents a positive constant and satisfies the fol-
lowing:

∑

S j ,Sk

D
(
S j

(
x j , y j

)
, Sk (xk, yk)

) = 1. (3)

Therefore, the LTR algorithm aims to use positive feed-
back sample pairs with weights D to learn a final ranking
function H . The probability of a ranking error between the

123



Complex & Intelligent Systems (2023) 9:5731–5744 5735

Table 1 Description of the
monitoring parameters

Parameters Indicators Description

Pre-execution parameters CPU core Number of CPU cores used

Entity Number of simulation entities

Events Number of simulation events executed

Lookahead Restricts the simulation events that can be
executed between the current timestamp
and the sum of timestamp and
lookahead values

Simulation time The virtual time in simulation applications

Runtime parameters CPU usage Average CPU usage

CPU usage_max CPU usage maximum

CPU usage_min CPU usage minimum

Memory Average memory consumption

Memory_max Memory consumption maximum

Memory_min Memory consumption maximum

File Hard drive read/write capacity

Network rec Network upload rate

Network rec_max Maximum network upload rate

Network rec_min Minimum network upload rate

Network sent Network download rate

Network sent_max Maximum network download rate

Network sent_min Minimum network download rate

Network delay Network latency

best ranking and the predicted ranking in the learning pro-
cess is called the ranking loss (Rloss), and its utility function
Func and loss function Rloss are defined as follows:

Func =
∑

S j ,Sk

Dr
(
S j

(
x j , y j

)
, Sk (xk, yk)

)

× (
hr

(
S j

(
x j , y j

)) − hr (Sk (xk, yk))
)

(4)

Rloss =
∑

s j ,Sk

Dr
(
S j

(
x j , y j

)
, Sk (xk, yk)

)

× exp
(
αr

(
hr

(
S j

(
x j , y j

) − hr Sk (xk, yk)
)))

(5)

where r denotes the number of iterations, αr denotes the
weight of the weak classifier obtained in the current iteration,
and hr denotes a function with 0–1 values. αr > 0 indicates
that the ranking effect of hr is positive, that is, the correct
rate is more than half. Therefore, by selecting the appropriate
αr and hr in each weak learning process, we can reduce the
Rloss of the final ranking result. In this study, we set the αr
weight value by referring to [24,30], defined as follows:

αr = 0.5 ln (1+ r(h)max) / (1− r(h)max) . (6)

(2) Algorithm description
The specific execution steps are shown in Algorithm 1.

Algorithm 1 A resource prediction algorithm based on LTR
Require: Dataset S(X , Y ), Initialize sample pair weight distribution D
Ensure: Final Sort Values H(x)
1: Initialization Dr=1 = D by Eq. (2)
2: for r = 1 to T do
3: Using D to train a weak learner
4: Find weak learner hr that maximizes r(h) in Eq.(4)
5: Choose αr = 0.5 ln(1+ r(h)max )/(1− r(h)max )

6: Choose Rloss tomake
∑

S j , Sk Dr
(
S j

(
x j , y j

)
, Sk (xk , yk)

) = 1

7: Update Dr+1 = Dr
(
S j

(
x j , y j

)
, Sk (xk , yk)

) ×
exp(αr (hr (S j

(
x j , y j

) − hr (Sk (xk , yk))/Rloss

8: Calculate H (x) = ∑R
r=1 αr hr

9: return H(x)
10: end for

In this algorithm, S(X ,Y ) denotes the input simulation
application features and label data and D denotes the initial-
ized sample pair weight distribution. The Final Sort Values
H(x) are calculated by four steps.

(1) Initialize D1 = D and ensure that the initial D value is
the same for each sample pair by setting the value of c in
Eq. (2).

(2) During the iterative process, the maximized utility func-
tion r(h) is used as the learning objective, weak learning
iterative training with Dr is performed to generate mul-
tiple weak learners hr , and the αr value is obtained by
calculation. Finally, the ranking result is calculated as

123



5736 Complex & Intelligent Systems (2023) 9:5731–5744

follows: H (x) = ∑R
r=1 αr × hr . where R denotes the

number of iterations and H(x) denotes the ranking score,
the higher score indicates the better ranking.

(3) The D distribution value is updated according to the line
7, where Rloss denotes the minimum objective function
value in the current iteration calculated using Eq. (5).

(4) Steps 2 and Steps 3 are repeated until the combined rank-
ing order obtained in two to three consecutive iterations
does not change, which is then considered the final pre-
dicted ranking, and the optimal order of resource usage
is the output.

The time-sensitive LTRmethod for resource
prediction

The simulation application resource prediction problem
requires a problem to be considered to modify the LTR algo-
rithm. Assume that the optimal resource ranking required for
one simulation run is the correct ranking = {4, 2, 3, 1} cores.
There are two predicted ranking results for Ranking a = {2,
4, 3, 1} cores and Ranking b = {4, 2, 1, 3} cores. Rankings
a and b are incorrectly ranked. However, in simulation prac-
tice, one is more concerned with the number of resources
that are used to complete the simulation in the shortest time,
that is, the number of resources ranked first. Therefore, the
time cost of Ranking a is significantly higher than that of
Ranking b, where the shortest simulation run time is guaran-
teed in accordance with the ranking outcome. In other words,
ranking a needs to be allotted a larger penalty. However, the
RankBoost LTR method does not consider this and assumes
that the time cost of Rankings a and b is equal. Therefore,
a penalty factor ε(x j,k) is added to ensure that more penal-
ties are added when the best resource is ranked incorrectly.
Therefore, the loss function in Eq. (5) can be converted into
the following equation:

Rloss =
∑

S j ,sk

ε
(
x j,k

) × Dr
(
S j

(
x j , y j

)
, Sk (xk, yk)

)

× exp
(
αr

(
hr

(
S j

(
x j , y j

) − hr Sk (xk, yk)
)))

. (7)

The definition of the penalty factor is the main issue with
time-sensitive LTR. In this study, we used heuristicstocalcu-
late thevalueofε(x j,k),which isexecuted inAlgorithm2.

First, the algorithm establishes a correct ranking based
on all computational resource requirements in the group of
simulation applications and uses mean reciprocal rank (Eq.
8) as a criterion for ranking performance and for calculating
the optimal score MRRbest .

Second, for each sample pair Q = S j (x j , y j ), Sk(xk, yk)
in the simulation application group, the positions of their
module pairs are exchanged and the new ranking scores
MRR j,k are calculated.

Algorithm 2 The calculation of penalty factor
Require: Dataset S(X , Y )

Ensure: penalty factor ε(x j,k)
1: Obtain a correct ranking for all sample pairs in S(X , Y )

2: Calculate the MRRbest value of the correct ranking
3: Iteration = 0
4: Dec = 0
5: for each pair Q = S j (x j , y j ), Sk(xk , yk) do
6: Exchange S j

(
x j , y j

)
and Sk(xk , yk)

7: Calculate the MRR value of the new ranking MRR j,k
8: Dec = Dec + MRRbest/MRR j,k
9: Iteration++
10: end for
11: ε(x j,k) = Dec/I teration
12: return ε(x j,k)

Finally, the standard decline ratio of theMRR values of all
sample pairs after the swap relative to the correctly ranked
MRR values was calculated and used as the value of the
penalty factor ε(x j,k).

Evaluationmetrics

To test the accuracy of the ranked learning predictionmethod,
two metrics were considered: mean reciprocal rank (MRR)
and normalized discounted cumulative gain (NDCG). The
indicator metrics are formally defined as follows:

(1) MRR is concerned with the position of the first relevant
element in the sorting result. If the first relevant element
appears in the first position, the MRR will be larger. The
MRR is calculated as follows:

MRR = 1

K

K∑

i=1

1

ranki
, (8)

where K denotes the number of samples and ranki
denotes the position where the best resource appears in
the predicted computed resource ranking list for the ith
sample.

(2) By introducing a location influence factor, NDCG con-
siders that more advanced samples in the ranking are
more valuable and have a significant impact on the assess-
ment results. The NDCG@n is calculated as follows:

NDCG@n = Zn

n∑

i=1

2c(i) − 1

log(1+ i)
, (9)

where Zn denotes the generalization factor such that the
range of NDCG values is limited to [0, 1], c(i) denotes
the relevance rank of the sample ranked at position i ,
2c(i)−1 denotes the evaluation gain value of that sample,
and log(1 + i) denotes the discount weight of the rank-
ing position of the document, with a smaller value of i

123



Complex & Intelligent Systems (2023) 9:5731–5744 5737

indicating a higher sorted position. Finally, NDCG@n
accumulates all evaluation gain values of the top n docu-
ments in the ranking as the performance evaluation value
of the ranking model.

Experimental results and analysis

Application and experimental settings

Phold is a benchmark program used to evaluate the perfor-
mance of simulation applications [37]. The Phold includes
many simulation entities, and each entity will initialize
multiple simulation events.When running the Phold, the sim-
ulation entities randomly executes three types of events and
sends messages to another objects.

PublicOpinionDisseminationModel (PODM) is a typical
complex system simulation model, that studies the impact
on public opinion dissemination when hot events occur. The
PODM consist of four types simulation entities: individuals,
hot events, cities, and medias.

In this study, we repeat running simulation application
with different parameters and collect feature data every 3 s
to train multiple predictors. As shown in Table 2, the pre-
execution parameters of the simulation application were
specified to run in a real cloud environment. To ensure the
effectiveness of the algorithm, we repeated each experiments
10 times, and calculated the average value as the experimen-
tal result. Then, we built a cloud environment to execute
complex simulation application and collect the feature data.
The proposed approach was tested on Intel Xeon Gold 6338
CPUwith 32 cores and 64GB of RAM. In this study, the sim-
ulation application was built by Docker, an open container
engine, and the simulation tasks were offloaded to no more
than 32 containers (each container was assigned 1 core and
2 GB RAM) for parallel execution.

Feature extractionmethod based on the SHAP
interpretable framework

The static features of the simulation application and the
dynamic features at runtime are among the factors that
affect the operational efficiency of complex system sim-
ulation applications in the cloud computing environment.
Most current feature importance calculation methods can
only indicate which features are important without indicat-
ing how these features affect the prediction results. Inspired
by cooperative game theory, SHAP develops a method to
explain individual predictions based on the game theory
[38]. Therefore, to extract the significant factors affecting the
operational efficiency of simulation applications, this study
analyzed the degree of influence of each factor on the opera-

Table 2 Pre-execution parameters configuration of Phold and PODM

Simulation
application

Features Values

Phold CPU cores [1, 2, 4, 8, 16, 24, 32]

Entity [1000, 2000, 3000, 4000, 5000]

Event [100, 200, 300, 400, 500]

Simulation time [2000]

Lookahead [0.2, 0.4, 0.6, 0.8. 1.0]

PODM CPU cores [1, 2, 4, 8, 16, 24, 32]

Individuals [500, 1000, 1500, 2000]

Hot events [5,10,20]

Cities [10,20,30]

Media [10]

Simulation time [1000]

Lookahead [0.1, 0.5, 1.0]

tional efficiency of simulation applications based on SHAP’s
interpretable feature extraction method.

Figure2 shows an overall feature summary analysis based
on SHAP interpretability model. Each point shown in the
figure represents the SHAP values of the sample points cor-
responding to all features. The colors of the points, which
range from blue to red, represent the low to high values of
each feature. The x-axis in the figure represents the SHAP
values; when the SHAP values of the features are greater than
0, it indicates a positive impact on the output of the model;
when they are less than 0, it has a negative impact on the out-
put of themodel. According to Fig. 2, the feature “Entity” has
the largest value, and the feature value of samples is greater
than 0. This indicates that the feature has the largest positive
impact on the model’s output, that is, the simulation runtime
increases as the number of simulation entities increases. The
feature “File” has the smallest value, which indicates it is the
least important to the model and has the smallest impact on
its output.

To further investigate the influence pattern of each factor
on the simulation runtime, SHAP dependency diagrams of
the top three characteristic variables that significantly affect
the simulation runtime are drawn, as shown in Fig. 3. The
contribution of the number of simulation entities “Entity” has
an overall positive correlation, that is, the simulation com-
putational loads and communication loads increases as the
increase of the number of simulation entities and cause a pos-
itive impact on the simulation runtime. The contributions of
the number of CPU cores and CPU usage were negatively
correlated over a range, which means that predicting and
allocating optimal computing resources to simulation appli-
cations can reduce simulation runtime.

To prove the significance of SHAP method, mutual infor-
mation methods are used to compare the performance of

123



5738 Complex & Intelligent Systems (2023) 9:5731–5744

Fig. 2 Overall feature summary analysis based on the SHAP interpretable framework

Fig. 3 Impact of simulation application characteristics on model output

123



Complex & Intelligent Systems (2023) 9:5731–5744 5739

Fig. 4 The effect of each feature
on the model performance

feature selection. First, all features are ranked based on their
importance in Fig. 4. In addition, the features that SHAP val-
ues less than 1 and the F score less than 0.1 are removed.
Second, this study uses the top k feature dimensions in the
importance ranking to train the LTR model and evaluates
its performance based on the NDCG model performance
evaluation metrics. As shown in Fig. 5, The model perfor-
mance obtained by SHAP method is better than the mutual
information method in almost all dimensions, and the high-
est performance was obtained using the SHAP method with
top 16 feature dimensions for training the ranking learning
model. Therefore, these features were selected to train the

ranking learning model in the subsequent experiments in this
study.

Model parameter setting and sensitivity analysis

In this study, eight prediction models such as linear regres-
sion (LR), extremely randomized trees (ETR), support vector
regression (SVR), extreme gradient boosting (XGBoost),
multilayer perceptron (MLP), restricted Boltzmann machine
(RBM), ranking boost(Rankboost) and random forest (RF)
are built to compare the ranking performance, and the param-
eters of each models were tuned by the grid search toolkit.
The specific parameters are shown in Table 3.

123



5740 Complex & Intelligent Systems (2023) 9:5731–5744

Fig. 5 Performance analysis
with different feature
dimensions

Table 3 Prediction model and parameter settings

Model Parameters

ETR Num of trees = 200

LR Max iterations = 100, regularization
parameter = 0.2

RF Max depth = 4, num of trees = 300

XGB Learning rate = 0.05, max depth = 3, Max
iterations = 300

MLP Hidden layer = (200,80), learning rate =
0.1, max iterations = 600

SVR Kernel = “linear”, regularization
parameter = 0.1, max iterations = 500

Rankboost Learning rate = 0.15, max depth = 5, max
iterations = 800

RBM Learning rate = 0.2, max iterations = 400

In addition, we analyze the parameters sensitivity of
TSLTR on Phold application in Fig. 6. The model perfor-
mance can improve as learning rate increases and get the
best result when learning rate = 0.08, as shown in Fig. 6(a).
When setting different max depth and n_estimators, NDCG
values with max depth = 6 and n_estimators = 600 are the
best, as shown in Fig. 6(b). In subsequent experiments, the
hyper-parameter learning rate is set to 0.08, and max depth
and n_estimators are set to 6 and 600, respectively.

Model performance evaluation

This section evaluates the performance of the time-sensitive
LTR approach for resource prediction of cloud simulation
(TSLRT). Figures 7 and 8 present the detailed NDCG values
and MRR of the nine methods. The TSLRL model achieves
the highest NDCG and MRR values on Phold and PODM
applications, which the NDCG and MRR values in Phold is
0.78 and 0.81 and in PODM is 0.75 and 0.83. Compared to
the other 8models, The TSLRT improves the average NDCG
values of RBM by 45%, of SVR by 40%, of MLP by 38%,
of LR by 34%, of ETR by 31%, of XGB by 20%, of RF by

17%, and of Rankboost by 7%, respectively. This is because
the TSLRT model modifies the loss function by consider-
ing the simulation features, and uses the relative ranking
between computing resources as feedback information to
train a predictor for minimizing the error ranking probability.
Compared to RankBoost and TSLRT, other methods tend to
get worse performance in NDCG and MRR values, because
their aim to minimize the error between the predicted value
and the true value and does not account for the impact of com-
puting resource ranking. After revising the loss function of
RankBoost, the TSLRT gains 3%–8% higher average NDCG
and MRR values, because the TSLRT takes into account the
ranking cost issue and modifying the loss function to pro-
duce the best ranking possible for the optimal resource. In
addition, different models have their own advantages for dif-
ferent indicators. For example, The NDCG value of MLP
model is lower than that of LR, ETR models in Phold appli-
cation; However, the MRR value of MLP model is higher
than that of LR, ETR models. The RBM model gains the
lowest NDCG values in Phold but the SVR model has the
worst performance in PODM application. According to the
experimental results in Figs. 7 and 8, We conclude that the
TSLRT achieved a higher-ranking performance in term of
NDCG and MRR.

Run-time comparison

Table 4 shows the average training and testing times for all the
sorting. Compared with the other methods, TSLRT requires
the longest training time of 116.04 s. Additionally, the train-
ing times for Rankboost, XBG,MLP, and RBMwere 86.683,
30.267, 55.101, and 60.325s, respectively. This is because
these methods also require several iterations to obtain the
optimal trainingmodel. However, the TSLRT and Rankboost
models, with prediction times of 0.55 s and 0.52 s, respec-
tively, produced the quickest results. This is because the other
models require multiple prediction runtimes and generate
the results by sorting, thus incurring more overhead. In this
study, we focused on the prediction of simulation runtime
resources under static conditions and trained all prediction

123



Complex & Intelligent Systems (2023) 9:5731–5744 5741

Fig. 6 Parameter sensitivity
results

Fig. 7 Performance evaluation
of the different method in Phold
application

models offline. Thus, the TSLRT trades off some of the train-
ing times to achieve higher prediction accuracy.

The Phold application was run in a cloud environment
using two simulation applications with different parame-
ters (the number of simulation entities was 3000 and 100)
and executed in parallel using various CPU core counts. In
the experiments, the proposed TSLRT method was used to
predict the priority of the computational resources used dur-

ing this run by collecting the feature data of the simulation
application after running for 60 s as input and ranking them
from the highest to lowest priority. As shown in Table 5,
for the simulation application Phold-1, the TSLRT model
can accurately predict the priority order of this application
using different CPU core counts. For the simulation appli-
cation Phold-2, the TSLRT model incorrectly predicts only
the priority order with 24 and 12 CPU cores. Additionally,

123



5742 Complex & Intelligent Systems (2023) 9:5731–5744

Fig. 8 Performance evaluation
of the different method in
PODM application

Table 4 Average training and the result output time times of different
models

Model Training time Ranking result output time

RBM 60.325 3.15

SVR 1.165 1.44

MLP 55.101 2.52

LR 1.035 1.74

ETR 2.012 1.23

RF 2.023 2.58

XBG 30.267 3.25

Rankboost 86.683 0.52

TSLTR 116.04 0.55

the shortest simulation runtime was obtained when the high-
est priority number of CPU cores was used in both cases.
Therefore, the experimental results show that the ranking
learning method proposed in this study can effectively pre-
dict the computational resource priority of the simulation
application, and by selecting the highest priority computa-
tional resource, the simulation application runtime can be
significantly reduced and its efficiency can be improved.

Conclusion

This study proposes amethod for predicting cloud simulation
computing resource, which is characterized by predicting the
overall ranking of computing resource usage during a simula-
tion application operation and obtaining the shortest runtime
when the simulation application is run with the computing
resource with the highest predicted ranking. First, the sim-
ulation application is deployed in the cloud environment to
generate the dataset. Second, the SHAP interpretable fea-
ture extraction method is used to quantitatively determine
the importance of each feature dimension. Third, the fea-

Table 5 Comparison of the predicted priority order with the actual
order

Simulation
application

CPU core usage (Listed
in descending order of
prediction results)

Actual runtime
(s)

Phold_1
(simulation
entities are set
3000)

24 456

32 910

16 1075

8 1845

4 2628

2 3428

1 6294

Phold_2
(simulation
entities are set
1000)

16 928

24 1966

32 1083

8 3045

4 5742

2 10,578

1 20,253

ture set that significantly applies the simulation application
runtime is evaluated. Finally, this study proposes a cloud sim-
ulation computing resource prediction algorithm based on
time-sensitive ranking learning, which features the factors
that significantly affect the simulation application runtime
obtained from the analysis, and constructs a simulation run-
time sensitive ranking learning model based on RankBoost
by designing the objective loss function in the ranking learn-
ing algorithm. Different machine-learning methods were
evaluated in this study to demonstrate the advantages of the
proposed method. The results demonstrate that the proposed

123



Complex & Intelligent Systems (2023) 9:5731–5744 5743

method can effectively predict the overall ranking of sim-
ulation computational resources and accurately evaluate the
computational resources required for the shortest runtimeof a
simulation application. In future research,weplan to consider
scalability factors to predict the overall ranking of computa-
tional resources in different types of simulation applications
and to evaluate the model performance on larger scale cloud
platforms.

Author Contributions We declare that this manuscript entitled “A
time-sensitive learning-to-rank approach for cloud simulation resource
prediction” is original, has not been published before and is not cur-
rently being considered for publication elsewhere we confirm that the
manuscript has been read and approved by all named authors and that
there are no other persons who satisfied the criteria for authorship but
are not listed. We further confirm that the order of authors listed in the
manuscript has been approved by all of us.

Data availability The data that support the findings of this study are
available from the corresponding author upon reasonable request.

Declarations

Conflict of interest we declare that we have no known competing finan-
cial interests or personal relationships or organizations that could have
appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Yao Y-P, Meng D, Zhu F, Yan L-B, Qu Q-J, Lin Z-W, Ma H-
B (2017) Three-level-parallelization support framework for large-
scale analytic simulation. J Simul 11(3):194–207. https://doi.org/
10.1057/s41273-017-0057-x

2. Fujimoto RM, Malik AW, Park A et al (2010) Parallel and dis-
tributed simulation in the cloud. SCS M&S Magaz 3:1–10

3. Fujimoto RM (2016) Research challenges in parallel and dis-
tributed simulation. ACM Trans Model Comput Simul. https://doi.
org/10.1145/2866577

4. Soni D, Kumar N (2022) Machine learning techniques in emerging
cloud computing integrated paradigms: A survey and taxonomy. J
NetworkComputAppl 205:103419. https://doi.org/10.1016/j.jnca.
2022.103419

5. Xiao Y, Yao Y, Chen K, Tang W, Zhu F (2022) A simulation task
partition method based on cloud computing resource prediction
using ensemble learning. Simul Model Pract Theory 119:102595.
https://doi.org/10.1016/j.simpat.2022.102595

6. Kim IK, Wang W, Qi Y, Humphrey M (2022) Forecasting cloud
application workloads with cloudinsight for predictive resource
management. IEEETransCloudComput 10(3):1848–1863. https://
doi.org/10.1109/TCC.2020.2998017

7. Chen Z, Zhu Y, Di Y, Feng S (2015) Self-adaptive prediction of
cloud resource demands using ensemble model and subtractive-
fuzzy clustering based fuzzy neural network. Intell Neurosci 2015.
https://doi.org/10.1155/2015/919805

8. Kumar J, Singh AK (2020) Adaptive learning based prediction
framework for cloud datacenter networks’ workload anticipation.
J Inform Sci Eng 36(5):981–992. https://doi.org/10.6688/JISE.
202009_36(5).0003

9. Kholidy HA (2020) An intelligent swarm based predic-
tion approach for predicting cloud computing user resource
needs. Comput Commun 151:133–144. https://doi.org/10.1016/j.
comcom.2019.12.028

10. Zhuang P, Wan Y, Qiao Y (2020) Learning attentive pairwise inter-
action for fine-grained classification. AAAI Confer Artif Intell
34:13130–13137

11. Vanmechelen K, De Munck S, Broeckhove J (2013) Conservative
distributed discrete-event simulation on the amazon ec2 cloud: An
evaluation of time synchronization protocol performance and cost
efficiency. Simul Model Pract Theory 34:126–143. https://doi.org/
10.1016/j.simpat.2013.02.002

12. Seneviratne S, Levy DC (2011) Task profiling model for load pro-
file prediction. Future Gener Comput Syst Int J Sci 27(3):245–255.
https://doi.org/10.1016/j.future.2010.09.004

13. Lee B, Schopf J (2003) Run-time prediction of parallel applica-
tions on shared environments. In: IEEE International Conference
on Cluster Computing, proceedings, pp. 487–491

14. Angiulli F, Fassetti F (2013) Nearest neighbor-based classifica-
tion of uncertain data. ACM TRANS Knowledge Discovery Data.
https://doi.org/10.1145/2435209.2435210

15. Miu T, Missier P (2012) Predicting the execution time of workflow
activities based on their input features, pp. 64–72

16. Matsunaga A, Fortes JA (2010) On the use of machine learning to
predict the time and resources consumed by applications. In: 2010
10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pp. 495–504

17. Shyam GK, Manvi SS (2016) Virtual resource prediction in
cloud environment: a bayesian approach. J Network Comput Appl
65:144–154. https://doi.org/10.1016/j.jnca.2016.03.002

18. Ullah A, Nawi NM (2021) An improved in tasks allocation system
for virtual machines in cloud computing using hbac algorithm.
J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-
021-03496-z

19. Malik S, Tahir M, Sardaraz M, Alourani A (2022) A resource
utilization prediction model for cloud data centers using evolution-
ary algorithms and machine learning techniques. Appl Sci-Basel.
https://doi.org/10.3390/app12042160

20. Valarmathi K, Raja SKS (2021) Resource utilization prediction
technique in cloud using knowledge based ensemble random forest
with lstm model. Concurr Eng-Res Appl 29(4):396–404. https://
doi.org/10.1177/1063293X211032622

21. Wang S, Zhu F, Yao Y, Tang W, Xiao Y, Xiong S (2021) A com-
puting resources prediction approach based on ensemble learning
for complex system simulation in cloud environment. SimulModel
Pract Theory. https://doi.org/10.1016/j.simpat.2020.102202

22. Xia B, Li T, Zhou Q, Li Q, Zhang H (2021) An effec-
tive classification-based framework for predicting cloud capacity
demand in cloud services. IEEE Trans Serv Comput 14(4):944–
956. https://doi.org/10.1109/TSC.2018.2804916

23. Nawrocki P, Osypanka P (2021) Cloud resource demand prediction
using machine learning in the context of qos parameters. J Grid
Comput. https://doi.org/10.1007/s10723-021-09561-3

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1057/s41273-017-0057-x
https://doi.org/10.1057/s41273-017-0057-x
https://doi.org/10.1145/2866577
https://doi.org/10.1145/2866577
https://doi.org/10.1016/j.jnca.2022.103419
https://doi.org/10.1016/j.jnca.2022.103419
https://doi.org/10.1016/j.simpat.2022.102595
https://doi.org/10.1109/TCC.2020.2998017
https://doi.org/10.1109/TCC.2020.2998017
https://doi.org/10.1155/2015/919805
https://doi.org/10.6688/JISE.202009_36(5).0003
https://doi.org/10.6688/JISE.202009_36(5).0003
https://doi.org/10.1016/j.comcom.2019.12.028
https://doi.org/10.1016/j.comcom.2019.12.028
https://doi.org/10.1016/j.simpat.2013.02.002
https://doi.org/10.1016/j.simpat.2013.02.002
https://doi.org/10.1016/j.future.2010.09.004
https://doi.org/10.1145/2435209.2435210
https://doi.org/10.1016/j.jnca.2016.03.002
https://doi.org/10.1007/s12652-021-03496-z
https://doi.org/10.1007/s12652-021-03496-z
https://doi.org/10.3390/app12042160
https://doi.org/10.1177/1063293X211032622
https://doi.org/10.1177/1063293X211032622
https://doi.org/10.1016/j.simpat.2020.102202
https://doi.org/10.1109/TSC.2018.2804916
https://doi.org/10.1007/s10723-021-09561-3


5744 Complex & Intelligent Systems (2023) 9:5731–5744

24. Shen H, Chen L (2022) A resource-efficient predictive resource
provisioning system in cloud systems. IEEE Trans Paral Dis-
trib Syst 33(12):3886–3900. https://doi.org/10.1109/TPDS.2022.
3172493

25. Al-Asaly MS, Bencherif MA, Alsanad A, Hassan MM (2022) A
deep learning-based resource usage prediction model for resource
provisioning in an autonomic cloud computing environment. Neu-
ral Comput Appl 34(13):10211–10228. https://doi.org/10.1007/
s00521-021-06665-5

26. Bi J, Li S, YuanH, ZhouM (2021) Integrated deep learningmethod
for workload and resource prediction cloud systems. NEurocom-
puting 424:35–48. https://doi.org/10.1016/j.neucom.2020.11.011

27. Yu X, Liu J, Keung JW, Li Q, Bennin KE, Xu Z, Wang J, Cui X
(2020) Improving ranking-oriented defect prediction using a cost-
sensitive ranking svm. IEEE Trans Reliab 69(1):139–153. https://
doi.org/10.1109/TR.2019.2931559

28. Joachims T (2002) Optimizing search engines using clickthrough
data. In: Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 133–
142

29. Freund Y, Iyer R, Schapire R, Singer Y (2004) An efficient boost-
ing algorithm for combining preferences. J Machin Learn Res
4(6):933–969. https://doi.org/10.1162/1532443041827916

30. Rudin C, Schapire RE (2009) Margin-based ranking and an equiv-
alence between adaboost and rankboost. J Machin Learn Res
10:2193–2232

31. Ganjisaffar Y, Caruana R, Lopes CV (2011) Bagging gradient-
boosted trees for high precision, low variance ranking models. In:
Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 85–94

32. Nguyen TT, An TQ, Hai VT, Phuong TM (2014) Similarity-based
and rank-based defect prediction. In: 2014 International Confer-
ence on Advanced Technologies for Communications (ATC 2014),
pp. 321–32

33. Yang X, Tang K, Yao X (2015) A learning-to-rank approach to
software defect prediction. IEEE Trans Reliabil 64(1):234–246.
https://doi.org/10.1109/TR.2014.2370891

34. Burges C, Svore K, Bennett P, Pastusiak A, Wu Q (2011) Learning
to rank using an ensemble of lambda-gradient models. In: Proceed-
ings of the Learning to Rank Challenge, pp. 25–35

35. Freund Y, Schapire RE (1997) A decision-theoretic generalization
of on-line learning and an application to boosting. J Comput Syst
Sci 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504

36. Karatza HD, Stavrinides GL (2019) Modeling and simulation of
cloud computing and big data. Simul Model Pract Theory 93:1–2.
https://doi.org/10.1016/j.simpat.2019.01.003

37. Yoginath SB, Perumalla KS (2015) Efficient parallel discrete event
simulation on cloud/virtual machine platforms. ACMTrans Model
Comput Simul. https://doi.org/10.1145/2746232

38. Baptista ML, Goebel K, Henriques EMP (2022) Relation between
prognostics predictor evaluation metrics and local interpretabil-
ity shap values. Artif Intel 306:103667. https://doi.org/10.1016/j.
artint.2022.103667

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/TPDS.2022.3172493
https://doi.org/10.1109/TPDS.2022.3172493
https://doi.org/10.1007/s00521-021-06665-5
https://doi.org/10.1007/s00521-021-06665-5
https://doi.org/10.1016/j.neucom.2020.11.011
https://doi.org/10.1109/TR.2019.2931559
https://doi.org/10.1109/TR.2019.2931559
https://doi.org/10.1162/1532443041827916
https://doi.org/10.1109/TR.2014.2370891
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1016/j.simpat.2019.01.003
https://doi.org/10.1145/2746232
https://doi.org/10.1016/j.artint.2022.103667
https://doi.org/10.1016/j.artint.2022.103667

	A time-sensitive learning-to-rank approach for cloud simulation resource prediction
	Abstract
	Introduction
	Related work
	The time-sensitive learning-to-rank approach for resource prediction
	The LTR model
	The time-sensitive LTR method for resource prediction
	Evaluation metrics

	Experimental results and analysis
	Application and experimental settings
	Feature extraction method based on the SHAP interpretable framework
	Model parameter setting and sensitivity analysis
	Model performance evaluation
	Run-time comparison

	Conclusion
	References




