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Abstract
Probabilistic predictions for regression problems are more popular than point predictions and interval predictions, since they
contain more information for test labels. Conformal predictive system is a recently proposed non-parametric method to do
reliable probabilistic predictions, which is computationally inefficient due to its learning process. To build faster conformal
predictive system and make full use of training data, this paper proposes the predictive system based on locally weighted
jackknife prediction approach. The theoretical property of our proposedmethod is proved with some regularity assumptions in
the asymptotic setting, which extends our earlier theoretical researches from interval predictions to probabilistic predictions. In
the experimental section, ourmethod is implemented based on our theoretical analysis and its comparisonwith other predictive
systems is conducted using 20 public data sets. The continuous ranked probability scores of the predictive distributions and the
performance of the derived prediction intervals are compared. The better performance of our proposed method is confirmed
with Wilcoxon tests. The experimental results demonstrate that the predictive system we proposed is not only empirically
valid, but also provides more information than the other comparison predictive systems.
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Introduction

Machine learning techniques been widely applied to many
areas because of their expressive power with the help of
gradient descent [13, 15, 19, 23, 24] and metaheuristics
[1–3, 16, 17] for efficient parameter searching. Based on
machine learning, one can build predictive models consid-
ering the uncertainty of outputs. This paper concentrates on
the predictive system providing predictive distribution for
the test label, which is desirable for all walks of life [11].
For regression problems, the predictive distribution contains
the full information of the uncertainty, as it can provide the
probability of any event relevant to the test label and be trans-
formed to prediction point or prediction interval by use of
the corresponding first-order moment or quantiles. For many
applications, especially the high-risk ones, the predictive dis-
tributions are required to be valid, which implies that the
distributions or their derived prediction intervals have statis-
tical compatibility with realizations, i.e., they ought to tell
the truth [33].

Nowadays, many algorithms in the context of statistics
or machine learning have been proposed to output predic-
tive distributions for test labels. However, most of them

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01044-0&domain=pdf
http://orcid.org/0000-0002-6517-4373


5762 Complex & Intelligent Systems (2023) 9:5761–5778

such as Bayesian regression and Gaussian process regression
are highly dependent on their prior distribution assump-
tions, which can be far away from being valid if the prior
assumptions are not correct [6, 18]. Recently, some frequen-
tist approaches of probabilistic prediction algorithms have
been proposed with compatibility with realizations in mind
[25, 27]. While these approaches concern more about fre-
quentist probability, they are limited in applications due to
their original parametric forms. This issue has been tackled
by a collection of promising works about conformal pre-
dictive systems (CPSs) [31, 33, 34], which build predictive
system using learning framework of conformal prediction [6,
32] and extend the above frequentist approaches to a general
nonparametric setting of being valid even in the small-sample
cases.

The purpose of conformal prediction is to output valid
prediction sets for test labels. One of the key characteris-
tics of conformal prediction is that its p values calculated
using conformity scores follows the uniform distribution on
[0, 1] with the assumption of the samples being independent
and identically distributed. This excellent property enables
us to transform the unknown uncertainty from data to one
of our most familiar distributions. CPSs utilize the p values
of conformal prediction and transform them to the predic-
tive distributions, which makes CPSs have the small-sample
property of validity [31].

The pioneer work [31] first proposed CPSs with the clas-
sical least square procedure as the underlying algorithms
and the asymptotic efficiency was proved with some strong
assumptions. After that, [31] was done to answer some
general questions about the existence and construction of
consistent CPSs. In addition to the general theoretical studies
above, two kinds of works concentrating on the applicability
of CPSs were done. The first kind is to propose more flexible
CPSs, whose representatives are [33] and [35]. The former
extends using the classical least square procedure as under-
lying algorithm to using a more powerful algorithm named
kernel ridge regression, and the latter proposed conformal
calibration whose underlying algorithms are existing predic-
tive systems. The second kind is to speed up the learning
process of CPSs, as CPSs inherit the computational issue
from conformal prediction [14, 20, 30]. To address this,
there are two ways to try. One way is to modify the learn-
ing process of the original CPSs, such as split conformal
predictive systems (SCPSs) and cross-conformal predictive
systems (CCPSs) [34]. SCPSs are also valid even in small-
sample cases, but they may lose predictive efficiency, as
they split the data into two parts, one of which is used to
train the underlying algorithm and the other of which is
used to calculate conformity scores. Although CCPSs do
not have the theoretical guarantee of validity, they improve
the prediction performance by making full use of the data.

Another way is to use a fast and well-performed underly-
ing algorithm to compute the conformity scores, which was
our previous work for building a fast probabilistic prediction
algorithm [37]. In that work, based on the Leave-One-Out
CCPS and extreme learningmachine [12], we proposed a fast
CPSnamedLOO–CCPS–RELMand analysed its asymptotic
property of validity. LOO–CCPS–RELM takes advantage
of jackknife prediction of residuals and their closed-form
formula to make the whole learning process fast, which is
competent in real-time applications.

This work extends our previous work about LOO–CCP-
S–RELM in two aspects. First, we design a more general
learning framework in the spirit of LOO–CCPS–RELM to
make probabilistic prediction, whose underlying algorithms
can be any uniformly stable algorithm. Second, contrast
with LOO–CCPS–RELM designed and proved to be asymp-
totically valid only for homoscedastic cases, the learning
framework in this paper considers the heteroscedastic cases
and a more general theoretical guarantee of the asymptotical
validity is proved. The heteroscedastic cases are addressed
by the idea of locally weighted jackknife prediction, whose
theoretical analysis for prediction intervals has been con-
ducted in our earlier work [38]. This paper extends the related
concepts and analytical techniques to the probabilistic pre-
diction. Since the predictive system we proposed is based on
the idea of locally weighted jackknife prediction, it is named
as locally weighted jackknife predictive system (LW-JPS) in
this paper.

In summary, to build valid and computationally efficient
predictive system, we develop locally weighted jackknife
prediction approach with asymptotic guarantee of validity
with the contributions as follows:

• A general predictive system based on the idea of locally
weighted jackknife prediction is proposed for probabilistic
prediction, which is easy-to-code and can learn fast if the
underlying algorithms have the closed-form formula for
leave-one-out residuals.

• The asymptotical validity of our predictive system is
proved with some regularity assumptions, which extends
the analysis of LOO–CCPS–RELMby considering amore
general setting and the heteroscedastic cases.

• The experiments with 20 public data sets are conducted,
which empirically proves the effective and efficiency of
the proposed predictive system.

The rest of this paper is organized as follows. “Con-
formal predictive systems and locally weighted jackknife
predictive system” reviews conformal predictive systems
and defines the proposed LW-JPS. “Asymptotic analysis of
locally weighted jackknife predictive system” proves the
asymptotic validity of LW-JPSwith some regularity assump-
tions and conditions. In “Experiments”, the experiments
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are designed to test the validity and efficiency of LW-JPS
empirically and the conclusions of this paper are drawn in
“Conclusion”.

Conformal predictive systems and locally
weighted jackknife predictive system

Throughout this paper, X ⊆ Rn denotes the object space and
Y ⊆ R the label space. The observation space is denoted by
Z � X × Y and each observation z � (x, y) ∈ X × Y
comprises its object x and corresponding label y. Zl � {Zi ,
i � 1, · · ·, l} denotes a random training set whose realiza-
tion is zl � {zi , i � 1, · · ·, l}. Z0 denotes a random test
observation whose realization is z0, where Z0 � (X0, Y0),
Z1 � (X1, Y1), · · · , Zl � (X l , Yl) are independent and
identically distributed and drawn from the distribution ρ on
Z � X × Y . T denotes a random number uniformly dis-
tributed on [0, 1], which is independent of all observations
and its realization is denoted by t .

For a fixed training set zl and a test input object x0, the goal
of predictive systems is to construct a predictive distribution
on y ∈ R, which contains much of the information about y0.

Predictive system and randomized predictive system

We first give the definition of predictive system which is first
formally defined in [35].

Definition 1 A measurable function Q : Zl+1 → [0, 1]
is a predictive system (PS) if it satisfies the following two
conditions:

A. For each realization zland x0, the function
Q
(
zl , (x0, y)

)
is increasing in y ∈ R.

B. For each realization zland x0,

lim
y→−∞Q

(
zl , (x0, y)

)
� 0

and

lim
y→∞Q

(
zl , (x0, y)

)
� 1.

Next, the notion of randomized predictive system is needed
to introduce conformal predictive system.

Definition 2 A measurable function Q : Zl+1 × [0, 1] →
[0, 1]is a randomized predictive system (RPS) if it satisfies
the following two conditions:

A. For each realization zland x0, the function
Q
(
zl , (x0, y), t

)
is increasing in y ∈ Rand t ∈ [0, 1].

B. For each realization zland x0,

lim
y→−∞Q

(
zl , (x0, y), 0

)
� 0

and

lim
y→∞Q

(
zl , (x0, y), 1

)
� 1.

In this paper, we use the shorthand notation Q zl , x0(y) �
Q
(
zl , (x0, y)

)
to explicitly regard it as a function of y depen-

dent on zl and x0, and the shorthand notation Q zl , x0, t (y) �
Q
(
zl , (x0, y), t

)
to explicitly regard it as a function of y

dependent on zl , x0 and t . Q zl , x0(y) is the predictive dis-
tribution of PS, which is a cumulative distribution function
(CDF) of Y0 given zl and x0. Different from that, RPS
introduces a random number t to build the predictive distri-
bution Q zl , x0, t (y). For fixed training set z

l and x0, the lower
bound and upper bound of Q zl , x0, t (y) are Q zl , x0, 0(y) and
Q zl , x0, 1(y), respectively. The gap Q zl , x0, 1(y)−Q zl , x0, 0(y)
can converge to 0 quickly for the existing designed RPSs
[31]. Thus, one can use a CDF between or approximating
Q zl , x0, 0(y) and Q zl , x0, 1(y) to remove the impact of t and
build the predictive distribution of Y0.

A predictive system Q zl , x0(y) is valid, if the following
holds:

P
{
QZl , X0

(Y0) ≤ η
}

� η, (1)

where QZl , X0
(y) is a random function of y whose realization

is Q zl , x0(y). In addition, Q zl , x0(y) is asymptotically valid

if formula (1) holds asymptotically. Let q̂(η/2)
zl , x0

and q̂(1−η/2)
zl , x0

be the η/2 and 1 − η/2 quantiles of Q zl , x0(y). Then, the
property of validity defined by formula (1) ensures that

P
{
Y0 ∈ C (1−η)

Zl , X0

}
� 1 − η, (2)

where C (1−η)

Zl , X0
�
[
q̂(η/2)
zl , x0

, q̂(1−η/2)
zl , x0

]
is the prediction interval

derived from Q zl , x0(y), whose expected coverage rate is 1−
η.

The predictive systems developed in the literature needs
strong assumptions to be valid in small-sample cases [25, 27].
Therefore, to obtain validity in small-sample cases, random-
ized predictive system introduces the extra random number
t , whose purpose is to define a similar property of validity
for RPS as follows,

P
{
QZl , X0, T (Y0) ≤ η

}
� η (3)

If Q zl , x0, t (y) is the p value of conformal prediction, the
corresponding RPS is called conformal predictive system,
which has the property of validity in small-sample cases
defined by formula (3) and the equation-like formula (2)
holds by introducing T .

Next, we review SCPSs and CCPSs to demonstrate how
to construct the function Q zl , x0, t (y).
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Split conformal predictive system

To build a CPS, the conformity scores of observations calcu-
lated by a conformity measure A(S, z) are needed, where S
is a data set and z is an observation. The conformity measure
evaluates the degree of agreement between S and z. In the
context of SCPSs, A(S, z) should be a balance isotonic func-
tion [34]. In general, with a regression algorithm u, A(S, z)
can be designed as

A(S, z) � y − μ̂S(x), (4)

or

A(S, z) � y − μ̂S(x)√
υ̂S(x)

, (5)

where μ̂S and υ̂S are estimatedmean function and conditional
variance function learned from S, respectively.

The learning process of SCPSs splits the training set zl into
two parts, which are the proper training set zm1 � {(x j , y j

)
,

j � 1, 2, · · · , m} and the calibration set zlm � {(x j , y j
)
,

j � m + 1, · · · , l}. For each possible label y ∈ R, l −m + 1
conformity scores can be computed as follows:

αi � A
(
zm1 , (xi , yi )

)
,

α
y
0 � A
(
zm1 , (x0, y)

)
,

where x0 is a test input, y is the corresponding label of x0
and i � m + 1, m + 2, · · ·, l. Based on the above calculation,
Q zl , x0, t (y) can be obtained as formula (5) in [37]. The theory
in [34] shows that the above Q zl , x0, t (y) is a valid RPS.

Different A(S, z) leads to different Q zl , x0, t (y). Suppose
that formula (5) is the conformity measure and define Ci as

Ci � μ̂zm1
(x0) +

ym+i − μ̂zm1
(xm+i )

√
υ̂zm1

(xm+i )
×
√

υ̂zm1
(x0).

SortCi to obtainC(1) ≤ · · · ≤ C(l−m) and letC(0) � −∞
and C(l−m+1) � ∞. Then, the corresponding Q zl , x0, t (y)
is calculated as formula (7) in [37], which can be further
modified to become a formal CDF as formula (8) in [37],
i.e., the empirical CDF of

{
C(i), i � 1, · · · , l − m

}
.

The split process of SCPSs may not make full use of
the training data, which is the reason of the development
of CCPSs.

Cross-conformal predictive system

Based on the idea of cross validation, CCPSs first partition
the training data into k folds. Let oi denote the ordinals of
training data in the i th fold and zl(oi ) denote the training data

without the i th fold. For each i ∈ {1, · · ·, k}, a CCPS with
conformitymeasure A(S, z) calculates the conformity scores
with zl(oi ) being the proper training set and

{
z j | j ∈ oi

}
the

calibration set. The corresponding conformity scores are

α j , i � A
(
zl(oi ), z j

)

and

α
y
0, i � A

(
zl(oi ), (x0, y)

)
.

Finally, the function Q zl , x0, t (y) of the CCPS is written as
formula (9) in [37].

Suppose that formula (5) is the conformity measure and
for j ∈ oi , C j , i is written as

C j , i � μ̂zl
(oi )

(x0) +
yi − μ̂zl

(oi )
(xi )

√
v̂zl

(oi )
(xi )

×√v̂zl
(oi )

(x0).

Sort all C j , i to obtain C(1) ≤ · · · ≤ C(l) and set C(0) �
−∞ and C(l+1) � ∞. Then, the Q zl , x0, t (y) of the above
CCPS can be written as formula (10) in [37], which can be
further modified to become a formal CDF as formula (11) in
[37], i.e., the empirical CDF of

{
C(i), i � 1, · · · , l}.

Leave-One-Out CCPS with formula (5) as conformity
measure can be obtained by choosing k � l, whose predic-
tive distribution is the empirical CDF of {Ci , i � 1, · · · , l},
with Ci being written as.

Ci � û zl
(i)

(x0) +
yi − û zl

(i)
(xi )

√
v̂zl

(i)
(xi )

×
√

v̂zl
(i)

(x0).

We summarize the Leave-One-Out CCPS in Algorithm
1, since our proposed predictive system based on locally
weighted jackknife prediction is highly related to it.

Algorithm 1 Leave-One-Out CCPS 
Input: 

Training set , test object 0 , conformity score 
( , ) as formula (5), regression algorithms μ and . 

Output: 
Predictive distribution for 0. 

1: For = 1,2,⋯ , , calculate  as follows, 

= ̂
( )
( 0) +

− ̂
( )
( )

√ ̂ ( )
( )

× √ ̂ ( )
( 0). 

2: return The empirical CDF of { , = 1,⋯ , }. 
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Locally weighted jackknife predictive system

Jackknife prediction employs leave-one-out predictions for
training data, which was proposed in the context of confor-
mal prediction to build interval predictors [14, 36, 38]. Here,
we extend it to build predictive systems inspired by Leave-
One-Out CCPS. Locally weighted jackknife prediction is the
jackknife prediction with the square root of υ̂zl

(i)
(xi ) in Algo-

rithm 1 as the local weight. In fact, Algorithm 1 can be
modified to base on locally weighted jackknife prediction
by changing û zl

(i)
(x0) and v̂zl

(i)
(x0) to û zl (x0) and v̂zl (x0),

respectively, which reduces the times of the computation for
regressors from l to 1. In addition, one also needs a way of
calculating or approximating v̂zl and v̂zl

(i)
efficiently to build

the predictive system. In this paper, we employ the way of
approximating them developed in our previous works [36,
38] about conformal prediction, which leads to our proposed
predictive system based on locally weighted jackknife pre-
diction in Algorithm 2.

Algorithm 2 Locally Weighted Jackknife Predictive 
System (LW-JPS)
Input:

Training data , test object 0 , two regression 
algorithms , ,
Output:

Predictive distribution for 0.
1: Fit using to obtain ̂ (∙).

2: Calculate ̂ = ( − ̂
( )
( ))

2

, for = 1,2,⋯ , .

3: Fit the data set ̂ = {( , ̂ ), = 1,2,⋯ , } using 
to get ̂ ̂ (∙).
4: Calculate ̂ ̂ ( )( ), for = 1,2,⋯ , .

5: For = 1,2,⋯ , , calculate as follows,

= ̂ ( 0) +
−̂

( )
( )

√ ̂ ̂ ( )
( )

× √ ̂ ̂ ( )
( 0).

6: return The empirical CDF of { , = 1,⋯ , }.

Algorithm 2 utilizes the jackknife prediction û zl
(i)
and cal-

culates the locally weighted leave-one-out residuals with the
square root of v̂̂zl

(i)
(xi ) as the weight to build the predictive

system.
Although Algorithm 2 needs to compute leave-one-out

residuals, the learning process can be fast if the underlying
algorithms u and v are linear smoothers [39], which have
closed-form formula for computation.

Asymptotic analysis of locally weighted
jackknife predictive system

This section provides the asymptotic analysis of LW-JPS.We
first give the related definition, assumptions and conditions,
and then prove the asymptotic validity of LW-JPS.

Definitions, assumptions and conditions

Throughout the paper, we assume that the labels are bounded
by D, i.e., supy∈Y |y| ≤ D. The regularity properties of the
probability distribution ρ on Z � X × Y will be assumed
when it is needed as in [9]. All observations (X i , Yi ) are i.i.d.
samples. The generalization error of a function f : X → Y
is measured by

ξ( f ) � E
[
( f (X) − Y )2

]
�
∫

Z
( f (x) − y)2dρ.

Denote the marginal probability distribution of ρ on X
as ρX , which is ρX (S) � ρ(S × Y) for the measurable set
S ⊆ X . The conditional distribution of y given x is ρ(y|x)

and the regression function of ρ is

μρ(x)� E[Y |X � x] �
∫

Y
ydρ(y|x).

Therefore, based on Proposition 1.8 in [9], μρ is the min-
imizer of ξ( f ) and for each f : X → Y ,

ξ( f ) − ξ
(
μρ

) �
∫

X

(
f (x) − μρ(x)

)2
dρX .

It can be concluded that μρ is bounded by D as Y ≤ D.
For the regression problem, we assume that the samples

satisfy Assumption 1, where ‖ f ‖∞ is the infinite norm of f
on its domain, i.e., ‖ f ‖∞ � supx∈X | f (x)|.
Assumption 1 Each observation (X , Y )satisfies the follow-
ing formula:

Y � μρ(X) +
√

vρ(X) × ζ ,

where vρ(X)is the conditional variance function and ζ is a
random variable with zero mean and unit variance. ζ is inde-
pendent of Xand 0 < vmin ≤ ‖vρ‖∞ ≤ vmax < ∞. In
addition, |ζ | ≤ ζmaxwhose cumulative distribution function
F(b) � P{ζ ≤ b}is continuous and strictly increasing on
{b|F(b) ∈ (0, 1)}.

The formula in Assumption 1 is a standard assumption
for regression problems with heteroscedastic setting, where
the conditional variance of Y is dependent on X instead of a
constant. Since Y is bounded, |ζ | ≤ ζmax is assumed.
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An array of random variables Xl for l ∈ N+ converges
to a random variable X in probability is written as Xl→p X ,
whose definition can be found from the Definition 1 in [38].

To prove the asymptotic validity of LW-JPS, the following
four conditions are needed for algorithms μ and v, which
were also introduced in our earlier work about the theoretical
analysis of locally weighted jackknife prediction [38]. In the
conditions, r represents a general regression algorithm and
Zl is a general random data set for training r, whose samples
are i.i.d.. r̂Zl is the learned regressor whose randomness is
from Zl and r̂zl is the corresponding realization.

Condition 1. The regression algorithm ris symmetric in the
observations, such that for each l, each zland each permu-
tation πof {1, · · · , l}, there holds

r̂zl � r̂πl(zl),

where πl
(
zl
) � {zπ( j), j � 1, · · · , l}.

Condition 2. The regressor r̂Zl uniformly converges in prob-
ability to the regression function μρof Z, i.e.,

‖̂rZl − μρ‖∞→p0.

Condition 3. The regression algorithm ris a uniformly stable
algorithm [8], whose uniform stability with respect to the
square loss is β � β(l), i.e., for each land each zl ,

sup
i

(

sup
(x, y)∈X×Y

∣
∣∣∣
(
y − r̂zl (x)

)2 −
(
y − r̂zl

(i)
(x)
)2∣∣∣∣

)

≤ β(l),

where lim
l→∞β(l) � 0.

Condition 4.For two fixed data sets ẑl � {(x j , ŷ j ), j � 1,
· · · , l}and z̃l � {(x j , ỹ j ), j � 1, · · · , l}with the same input
objects, if for each l, the labels satisfy

sup
i∈{1, 2, ···, l}

|̂yi − ỹi | ≤ η,

there holds

‖̂r̂zl − r̂̃zl‖∞ ≤ η.

With the same mathematical skills in [38], we need the
algorithm μ to satisfy Condition 1, 2, and 3 and v to sat-
isfy Condition 1, 2 and 4 to prove the asymptotic validity of
LW-JPS. The conditions are not too restrict for applications,
which we have analyzed in section 3.3 of [38].

Asymptotic validity of LW-JPS

We introduce Lemma 1 to guarantee that v̂
Ẑl is a consistent

estimator for the conditional variance function in Algorithm
2, which has been proved in [38].

Lemma 1 With Assumption 1 being hold, μ satisfying Con-
dition 2 and 3, and v satisfying Condition 2 and 4, we have

‖̂v
Ẑl − vρ‖∞→p0.

We will prove in Theorem 1 that Algorithm 2 is asymp-
totically valid by showing that the corresponding predictive
distribution Q̂ zl , x0(y) satisfies

P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}
→pα, (6)

which is an asymptotic version of formula (1). To do so, we
need to prove that

P
{
Y0 ≤ q̂(α)

Zl , X0
|Zl
}
→pα, (7)

where q̂(α)

zl , x0
is the α quantile of Q̂ zl , x0(y). Formula (7) is

equivalent to

P
{

Zl ≤ q̂(α)

Zl |Zl
}
→pα, (8)

where 
zl is the normalized residual defined by


zl � Y0 − μ̂zl (X0)√
v̂̂zl (X0)

,

and q̂(α)

zl
is the α quantile of the normalized leave-one-out

residuals
{
al, i , i � 1, · · · , l} defined by

al, i �
yi − μ̂zl

(i)
(xi )

√
v̂̂zl

(i)
(xi )

.

Denote the CDF of 
zl by Fzl (b), i.e.,

Fzl (b) � P
{

zl ≤ b|zl

}
,

and q(α) is the α quantile of F(b) in Assumption 1. Since
Lemma1 confirms that the estimator v̂̂zl uniformly converges
to vρ in probability and μ satisfying Condition 2, we can
make the connection between 
zl and the normalized noise
term of Assumption 1, which is

ζ0 � Y0 − μρ(X0)√
vρ(X0)

,
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and prove in Lemma 2 that

sup
b∈R

∣∣FZl (b) − F(b)
∣∣→p0.

Also, q̂(α)

Zl and q(α) are highly related as we show in
Lemma 2 that

q̂(α)

Zl →pq
(α).

Building on Lemma 2, formula (8) and formula (6) can be
proved in turn and the conclusion of LW-JPS being asymp-
totically valid can be drawn in Theorem 1.

The analysis techniques in Lemma 2 was first introduced
in [28] for linear regression problems with homoscedastic
errors, which was further improved for nonlinear regression
problems with heteroscedastic errors by our earlier work for
locally weighted jackknife prediction [38]. The above two
works both concerns building interval prediction other than
probabilistic prediction, which makes the detailed expres-
sions different from this work. In addition, our work about
LOO–CCPS–RELM [37] only considers nonlinear regres-
sion problems with homoscedastic errors, and its proofs are
specific to extreme learning machine. Therefore, we intro-
duce and prove Lemma 2, which is essential to proving
Theorem 1 strictly in this paper.

Lemma 2 Fix α ∈ (0, 1). If the conditions of Lemma 1 hold
and both μand valso satisfy Condition 1, then we have.

sup
b∈R

∣∣FZl (b) − F(b)
∣∣→p0, (9)

and

q̂(α)

Zl →pq
(α). (10)

Proof Since μ̂zl satisfies that

‖μ̂Zl − μρ‖∞→p0,

and v̂̂zl satisfies that

‖̂v
Ẑl − vρ‖∞→p0,

for each l we can define a nonempty set B(l) as

B(l) �
{
zl |max
{‖μ̂zl − μρ‖∞, ‖̂v̂zl − vρ‖∞

} ≤ g(l)
}
,

where g(l) is nonnegative and converges to 0 sufficiently
slow. Then, we can construct an array of random variables

zl by taking an arbitrary zl in B(l). As zl ∈ B(l), vmin > 0

and g(l) converges to 0, there exists a l1, such that for all
l > l1, there holds

‖̂v̂zl‖∞ ≥ vmin − g(l) ≥ vmin − g(l1) > 0.

For all l > l1, by the definitions, we have

∣∣
zl − ζ0
∣∣ ≤

g(l)
|√vmin+

√
vmin−g(l1)| × ζmax + g(l)
√

vmin − g(l1)
,

which guarantees that


zl→pζ0.

Since convergence in probability implies convergence in
distribution and the CDF of ζ0 is continuous, according to
Proposition 1.16 of [26], we have

lim
l→∞sup

b∈R

∣∣Fzl (b) − F(b)
∣∣ � 0.

The arbitrarily chosen zl from B(l) leads to

lim
l→∞ sup

zl∈B(l)
sup
b∈R

∣∣Fzl (b) − F(b)
∣∣ � 0,

which implies that formula (9) is correct [38].
Next, we prove formula (10). Since for every ε > 0, we

have

P
{∣∣∣̂q(α)

Zl − q(α)
∣∣∣ > ε
}

� P
{
q̂(α)
Zl > q(α) + ε

}
+ P
{
q̂(α)
Zl

< q(α) − ε
}

.

Thus, we need to show that

P
{
q̂(α)

Zl > q(α) + ε
}

and

P
{
q̂(α)

Zl < q(α) − ε
}

converges to 0, respectively. Define Fl(b) by

Fl (b) � P

⎧
⎨

⎩

Y1 − μ̂Zl
(1)
(X1)

√
v̂
Ẑ
l
(1)
(X1)

≤ b

⎫
⎬

⎭

� E

⎡

⎣P

⎧
⎨

⎩

Y1 − μ̂Zl
(1)
(X1)

√
v̂
Ẑ
l
(1)
(X1)

≤ b|Zl
(1)

⎫
⎬

⎭

⎤

⎦

� E
[
FZl

(1)
(b)
]
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whose distance from F(b) can be bounded by

sup
b∈R

|Fl(b) − F(b)| ≤ E

[

sup
b∈R

∣∣∣FZl
(1)

(b) − F(b)
∣∣∣

]

.

From formula (9) and the definition of leave-one-out sam-

ples, the bounded random variable sup
b∈R

∣∣∣FZl
(1)

(b) − F(b)
∣∣∣

converges to 0 in probability. This leads to

lim
l→∞ sup

b∈R
|Fl (b) − F(b)| ≤ lim

l→∞ E

[

sup
b∈R

∣∣
∣∣FZl

(1)
(b) − F(b)

∣∣
∣∣

]

, � 0

i.e.,

lim
l→∞sup

b∈R
|Fl(b) − F(b)| � 0. (11)

Let the CDF of the normalized leave-one-out residuals{
al, i , i � 1, · · · , l} be denoted by Fal(b). Therefore, FAl (b)

and q̂(α)

Zl are the corresponding random function and ran-

dom variable by introducing the randomness of Zl . Define
Jl, i � 1{Al, i>q(α)+ε}, which is the indicator function of
{
Al, i > q(α) + ε

}
. As algorithms μ and v being exchange-

able implies that
{
Jl, j , j � 1, · · · , l} are exchangeable,

based on the property of quantile function [29], we have

P
{
q̂(α)

Zl
> q(α)+ ∈

}
� P
{
α > FAl

(
q(α)+ ∈

)}

� P
{
1 − FAl

(
q(α)+ ∈

)
> 1 − α

}

� P

⎧
⎨

⎩
1

l

l∑

i�1

(
Jl, i − E

[
Jl, 1
])

> 1 − α − E
[
Jl, 1
]
⎫
⎬

⎭

� P

⎧
⎨

⎩
1

l

l∑

i�1

(
Jl, i − E

[
Jl, i
])

> Fl
(
q(α)+ ∈

)
− α

⎫
⎬

⎭
.

Since formula (11) holds, it follows that

F
(
q(α) + ε

)
> α,

which implies that Fl
(
q(α) + ε

)
> 0 for sufficiently large l.

Thus, it follows fromMarkov’s inequality that for sufficiently
large l, the probability,

P

{
1

l

l∑

i�1

(
Jl, i − E

[
Jl, i
])

> Fl
(
q(α) + ε

)
− α

}

,

is bounded by

1
l var
(
Jl, 1
)
+ l(l−1)

l2
cov
(
Jl, 1, Jl, 2

)

(
Fl
(
q(α) + ε

)− α
)2 , (12)

where var and cov are the variance and covariance func-
tion, respectively. Therefore, to prove P

{
q̂(α)

Zl > q(α) + ε
}

approaches 0, we need to prove cov
(
Jl, 1, Jl, 2

)
converges to

0 as l → ∞.
Let Zl

(1, 2) and Ẑ
l
(1, 2) be the corresponding data setwithout

the first two observations. Define Al, (1, 2) and Al, (2, 1) by

Al, (1, 2) �
Y1 − m̂Zl

(1, 2)
(X1)

√
v̂
Ẑl(1, 2)

(X1)
, Al, (2, 1) �

Y2 − m̂Zl
(1, 2)

(X2)

√
v̂
Ẑl(1, 2)

(X2)
,

and define Ã1 and Ã2 by

Ã1 � [Al, 1, Al, 2
]
, Ã2 � [Al, (1, 2), Al, (2, 1)

]
.

Let F̃l, 1 and F̃l, 2 be the CDFs of Ã1 and Ã2, respectively,
i.e.,

F̃l, 1(b1, b2) � P
{
Al, 1 ≤ b1, Al, 1 ≤ b2

}
,

and

F̃l, 2(b1, b2) � P
{
Al, (1, 2) ≤ b1, Al, (1, 2) ≤ b2

}
.

For F̃l, 2, we have

F̃l, 2(b1, b2) � E
[
FZl

(1, 2)
(b1)FZl

(1, 2)
(b2)
]
. (13)

Since FZl
(1, 2)

(b1) and FZl
(1, 2)

(b2) are bounded randomvari-

ables, which converge to F(b1) and F(b2), respectively, due
to formula (9), we have

lim
l→∞F̃l, 2(b1, b2) � F(b1)F(b2).

As Lemma 1 holds and μ satisfies Condition 2, we can
deduce that Al, 1, Al, 2, Al, (1, 2) and Al, (2, 1) are all convergent
in probability to ζ0, which implies that Al, 1 − Al, (1, 2)→p0
and Al, 2−Al, (2, 1)→p0. Therefore, fromLemma 2.8 in [29],
there holds

lim
l→∞F̃l, 1(b1, b2) � F(b1)F(b2).

Furthermore, with

cov
(
Jl, 1, Jl, 1

) � cov
(
1 − Jl, 1, 1 − Jl, 1

)

� F̃l, 1
(
q(α)+ ∈, q(α)+ ∈

)
− Fl
(
q(α)+ ∈

)
Fl
(
q(α)+ ∈

)

and formula (11), we have

lim
l→∞cov

(
Jl, 1, Jl, 1

) � 0.
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Based on the formula above and Eq. (12), we have

lim
l→∞P
{
q̂(α)

Zl > q(α) + ε
}

� 0.

Similarly, we can also prove that

lim
l→∞P
{
q̂(α)

Zl < q(α) − ε
}

� 0.

Thus, since the fact that

P
{∣∣
∣̂q(α)

Zl − q(α)
∣∣
∣ > ε
}

� P
{
q̂(α)
Zl > q(α) + ε

}
+ P
{
q̂(α)
Zl

< q(α) − ε
}

.

and the two limit equations above hold, we have

q̂(1−α)

Zl →pq
(1−α). (14)

The following two theorems describe the statistical com-
patibility of the predictive distributions output by LW-JPS
with observations in the asymptotic setting. Theorem 1
proves the asymptotic version of formula (1) and Theorem 2
proves a sufficient condition of the asymptotic version of
formula (2), where quantiles can be set arbitrarily.

Theorem 1 Fix α ∈ (0, 1). If Assumption 1holds, μ satis-
fying Condition 1, 2 and 3, and vsatisfying Condition 1, 2
and 4, we have

P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}
→pα.

Proof Based on Assumption 1, we have F
(
q(α)
) � α.

Therefore,

∣
∣∣P
{

Zl ≤ q̂(α)

Zl
|Zl
}

− α

∣
∣∣ �
∣
∣∣FZl
(
q̂(α)

Zl

)
− F
(
q(α)
)∣∣∣

≤
∣∣
∣FZl
(
q̂(α)

Zl

)
− F
(
q̂(α)

Zl

)∣∣
∣ +
∣∣
∣F
(
q̂(α)

Zl

)
− F
(
q(α)
)∣∣
∣

≤ sup
b∈R

∣∣FZl (b) − F(b)
∣∣ +
∣∣
∣F
(
q̂(α)

Zl

)
− F
(
q(α)
)∣∣
∣.

From Lemma 2 and F(b) being continuous, we have∣∣∣F
(
q̂(α)

Zl

)
− F
(
q(α)
)∣∣∣→p0 using Theorem 1.10 in [26] and

sup
b∈R

→p0. Thus, we can conclude that

FZl

(
q̂(α)

Zl

)
� P
{

Zl ≤ q̂(α)

Zl |Zl
}
→pα, (15)

which is equivalent to

P
{
Y0 ≤ q̂(α)

Zl , X0
|Zl
}
→pα, (16)

since for every α ∈ (0, 1), there holds

FZl

(
q̂(α)

Zl

)
� P
{

Zl ≤ q̂(α)

Zl |Zl
}

� P
{
Y0 ≤ q̂(α)

Zl , X0
|Zl
}
.

For every ε such that 0 < ε < max{α, 1 − α}, by the
definition of quantiles, we have

P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}

≤ FZl

(
q̂(α+ε)

Zl

)
, (17)

and

P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}

≥ FZl

(
q̂(α−ε)

Zl

)
. (18)

Based on formula (15), for every δ > 0, we have

P
{∣∣∣FZl

(
q̂(α+ε)

Zl

)
− (α + ε)

∣∣∣ > ε
}

< δ,

which combing formula (17) lead to

P
{
P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}

− (α + ε) > ε
}

< δ.

Similarly, with formula (18), there holds

P
{
P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}

− (α − ε) < −ε
}

< δ.

Then, we have

P
{∣∣
∣P
{
Q̂Zl , X0

(Y0) ≤ α|Zl
}

− α

∣∣
∣ > 2ε
}

< 2δ.

Since ε and δ are arbitrary, the conclusion of Theorem 1
can be drawn.

Based on the deduction of Theorem 1, we can obtain the
following coverage guarantee for derived prediction intervals
from Q̂ zl , x0 , which is desirable for practitioners for interval
prediction.

Theorem 2 Fix η1 and η2such that 0 < η1 < η2 < 1. If the
conditions of Theorem 1hold, we have

P
{
q(η1)

Zl , X0
≤ Y0 ≤ q(η2)

Zl , X0
|Zl
}
→pη2 − η1.

Proof For every ε such that 0 < ε < max
{
η1, η

}
, based

on formula (16), we have

P
{
Y0 ≤ q̂(η1−ε)

Zl , X0
|Zl
}
→pη1 − ε,

which leads to

P
{
q(η1−ε)

Zl , X0
< Y

0
≤ q(η2)

Zl , X0
|Zl
}
→pη − ε,
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where η � η2 − η1. Then, for every δ > 0, there holds

P
{∣∣∣P
{
q(η1−ε)

Zl , X0
< Y

0
≤ q(η2)

Zl , X0
|Zl
}

− (η + ε
)∣∣∣ > ε
}

< δ.

Thus, we have

P
{
P
{
q(η1)

Zl , X0
≤ Y

0
≤ q(η2)

Zl , X0
|Zl
}

− (η + ε
)

> ε
}

< δ.

Similarly, there holds

P
{
P
{
q(η1)

Zl , X0
≤ Y

0
≤ q(η2)

Zl , X0
|Zl
}

− (η − ε
)

< −ε
}

< δ.

Therefore, we have

P
{∣∣∣P
{
q(η1)

Zl , X0
≤ Y

0
≤ q(η2)

Zl , X0
|Zl
}

− η

∣∣∣ > 2ε
}

< 2δ,

which proves the conclusion of Theorem 2, since ε and δ are
arbitrary.

Experiments

In this section, to test LW-JPS empirically, randomized ker-
nel ridge regression with random Fourier features [21] is
used as μ and k-nearest neighbor regression is used as v,
respectively, since they satisfy the conditions we assumed in
“Asymptotic analysis of locally weighted jackknife predic-
tive system”. Following [38], the number of random features
were set to 1000 and k � √

l for k-nearest neighbor regres-
sion. The ridge parameter with the least leave-one-out errors
was chosen for LW-JPS. The comparison predictive sys-
tems are SPCS with support vector regression (SCPS–SVR),
SCPS with random forests (SCPS–RF), CCPS with sup-
port vector regression (CCPS–SVR), CCPS with random
forests (CCPS–RF) and CPS with random forests with out-
of-bag errors as conformity scores (OOB–CPS–RF). All the
comparison algorithms employ formula (5) as the confor-
mity measure based on the recently empirical evaluation
research in [40]. SCPS–SVR, SCPS–RF, CCPS–SVR and
CCPS–RF use the same normalization for conformity mea-
sure as LW-JPS, whereas OOB–CPS–RF uses the standard
deviation of out-of-bag predictions for normalization based
on the approach in [40]. OOB–CPS–RF was first proposed
in [40], which extends the idea of the state-of-the-art con-
formal regressor with random forests [7]. Following [37],
for all SCPSs, 40 percent of the training data was used as
calibration set and for all CCPSs, the number of folds was
5. In addition, the meta-parameters of all comparison algo-
rithms were chosen using threefold cross-validation on the
training set based on R2 scores. SVR with Gaussian kernel
was employed, whose regularization parameter C was cho-
sen from

{
10−5, 10−4, · · · , 104, 105}. For random forests,

Table 1 Data sets

Short name Examples Dimensionality Source

Abalone 4177 8 UCI

Bank8fh 8192 8 Delve

Bank8fm 8192 8 Delve

Bank8nh 8192 8 Delve

Bank8nm 8192 8 Delve

Boston 506 13 UCI

Cooling 768 8 UCI

Heating 768 8 UCI

Istanbul 536 7 UCI

Kin8fh 8192 8 Delve

Kin8fm 8192 8 Delve

Kin8nh 8192 8 Delve

Kin8nm 8192 8 Delve

Laser 993 4 KEEL

Puma8fh 8192 8 Delve

Puma8fm 8192 8 Delve

Puma8nh 8192 8 Delve

Puma8nm 8192 8 Delve

Stock 950 9 KEEL

Treasury 1048 15 Delve

the number of trees was chosen from {100, 300, 500, 1000}
and theminimumnumber of samples per tree leafwas chosen
from {1, 3, 5}, respectively.

The experiments were conducted on 20 public data sets,
which are from Delve [22], KEEL [4] and UCI [5] reposi-
tories whose detailed information is summarized in Table 1.
The features and labels were all normalized to [0, 1] with
min–max normalization. Tenfold cross-validation was used
to test the algorithms, i.e., each data set was randomly split
into tenfolds, where each fold was used to evaluate the algo-
rithms trained from the other ninefolds and the mean of ten
results for each algorithm was reported. All the algorithms
in this section were coded with python based on numpy and
scikit-learn library and the experimental results were col-
lected from the computer with 3.5 GHz CPU and 32 GB
RAM.

Test the validity of LW-JPS

This section tests whether LW-JPS is a valid predictive sys-
tem by the definition of formula (1). To do so, the values of
the CDF of LW-JPS on the test data were collected and the
frequency of the values being notmore thanαwas calculated,
whose results are shown in Table 2 with mean representing
the mean value of each column. Table 2 demonstrates that
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Table 2 Validity test of LW-JPS

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Abalone 0.099 0.202 0.302 0.401 0.495 0.601 0.698 0.800 0.900

Bank8fh 0.099 0.200 0.299 0.397 0.498 0.599 0.700 0.798 0.900

Bank8fm 0.099 0.201 0.301 0.401 0.498 0.601 0.699 0.801 0.900

Bank8nh 0.100 0.198 0.300 0.399 0.500 0.601 0.702 0.801 0.899

Bank8nm 0.100 0.202 0.300 0.403 0.499 0.601 0.698 0.798 0.898

Boston 0.099 0.200 0.293 0.419 0.508 0.601 0.713 0.808 0.911

Cooling 0.091 0.202 0.294 0.396 0.503 0.603 0.707 0.814 0.908

Heating 0.104 0.207 0.315 0.398 0.479 0.592 0.703 0.797 0.901

Istanbul 0.099 0.196 0.297 0.399 0.508 0.597 0.700 0.797 0.899

Kin8fh 0.101 0.200 0.298 0.401 0.498 0.600 0.700 0.800 0.900

Kin8fm 0.099 0.201 0.300 0.401 0.501 0.600 0.698 0.798 0.902

Kin8nh 0.101 0.200 0.300 0.396 0.501 0.600 0.704 0.802 0.901

Kin8nm 0.101 0.199 0.299 0.401 0.501 0.598 0.700 0.798 0.903

Laser 0.099 0.203 0.292 0.397 0.493 0.602 0.704 0.793 0.903

Puma8fh 0.100 0.200 0.301 0.401 0.501 0.598 0.699 0.798 0.899

Puma8fm 0.100 0.200 0.299 0.400 0.501 0.601 0.701 0.801 0.899

Puma8nh 0.100 0.201 0.301 0.400 0.500 0.600 0.700 0.800 0.900

Puma8nm 0.100 0.200 0.298 0.405 0.499 0.600 0.699 0.802 0.901

Stock 0.101 0.201 0.293 0.394 0.502 0.602 0.702 0.795 0.900

Treasury 0.097 0.203 0.303 0.397 0.496 0.602 0.692 0.797 0.900

Mean 0.099 0.201 0.299 0.400 0.499 0.600 0.701 0.800 0.901

the frequencies are compatible with corresponding α, which
empirically proves the validity of LW-JPS.

As we analyze in “Conformal predictive systems and
locally weighted jackknife predictive system”, the validity
property of formula (1) implies the coverage guarantee by
formula (2), which will be shown in the next experiment.

Comparison with the other CPSs

This section compares the performance ofLW-JPSwith SCP-
S–SVR, SCPS–RF, CCPS–SVR, CCPS–RF and OOB–CP-
S–RF. To compare the quality of the predictive distributions,
the widely used continuous ranked probability score (CRPS)
are employed whose definition can be found in [34]. The
lower the CRPS is, the better the predictive distribution is.
The barplots of the mean of continuous ranked probability
scores for different data sets are shown in Fig. 1, which
demonstrates that LW-JPS performs better in most cases.
Table 3 records the mean CRPS of all algorithms, with the
least one of each data set shown in bold. For each data set, the
rank of an algorithm is obtained and the mean rank in Table
3 is the mean value of all ranks for each algorithm. From
Table 3, we can see that the LW-JPS performs better than the
other predictive systems, which indicates the effectiveness
of LW-JPS.

We also test the derived prediction intervals from the
predictive distributions of all predictive systems. For a sig-
nificance levelη, which is the expected coverage rate preset
by practitioners, the derived prediction interval is based on
formula (2) with the help of η/2 and 1− η/2 quantiles. Two
indicators are employed to describe the quality of predic-
tion intervals. One is the prediction error rate, which is the
frequency of the true label being out of the prediction inter-
vals. The other is the average interval size, which measures
the information efficiency of the prediction intervals. The
smaller the average interval size, the more information the
prediction intervals contain. We set the significance levels
as 0.2, 0.1 and 0.05 and show the experimental results in
Tables 4, 5 and 6 for error rates and in Tables 7, 8 and 9 for
average interval sizes. We also summarize the error rates, the
means and mean ranks of average interval sizes in Figs. 2, 3,
and 4.

From Tables 4, 5 and 6, we can see that all predic-
tive systems are empirically valid for the data sets, which
also empirically proves the coverage guarantee of LW-JPS.
Besides, it is shown in Tables 7, 8 and 9 that prediction inter-
vals of LW-JPS are more informationally efficient than those
of the other algorithms, which is demonstrated in Figs. 3 and
4. The box plots of average interval size are also shown in
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Fig. 1 Mean of continuous ranked probability scores for different algorithms trained on different data sets

Table 3 The mean CRPS of all
algorithms SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.0399 0.0396 0.0393 0.0390 0.0385 0.0384

Bank8fh 0.0510 0.0496 0.0502 0.0494 0.0484 0.0486

Bank8fm 0.0280 0.0212 0.0270 0.0209 0.0198 0.0217

Bank8nh 0.0558 0.0559 0.0554 0.0554 0.0536 0.0540

Bank8nm 0.0283 0.0226 0.0276 0.0218 0.0197 0.0182

Boston 0.0453 0.0407 0.0431 0.0363 0.0345 0.0335

Cooling 0.0436 0.0212 0.0408 0.0201 0.0187 0.0184

Heating 0.0402 0.0074 0.0380 0.0068 0.0063 0.0080

Istanbul 0.0549 0.0538 0.0551 0.0532 0.0535 0.0515

Kin8fh 0.0396 0.0417 0.0392 0.0411 0.0411 0.0382

Kin8fm 0.0214 0.0246 0.0208 0.0234 0.0232 0.0134

Kin8nh 0.0623 0.0713 0.0614 0.0699 0.0689 0.0610

Kin8nm 0.0361 0.0576 0.0344 0.0548 0.0534 0.0332

Laser 0.0267 0.0128 0.0258 0.0107 0.0101 0.0076

Puma8fh 0.0795 0.0799 0.0791 0.0796 0.0792 0.0784

Puma8fm 0.0381 0.0343 0.0370 0.0340 0.0337 0.0335

Puma8nh 0.0767 0.0736 0.0751 0.0729 0.0714 0.0741

Puma8nm 0.0381 0.0279 0.0369 0.0275 0.0268 0.0321

Stock 0.0322 0.0172 0.0293 0.0150 0.0140 0.0142

Treasury 0.0155 0.0062 0.0145 0.0056 0.0049 0.0045

Mean 0.0427 0.0380 0.0415 0.0369 0.0360 0.0341

Mean rank 5.2000 4.4500 4.1500 3.3000 2.1500 1.7500

Bold indicates the mean CRPS of all algorithms, with the least one of each data set shown in bold

Fig. 5, which also demonstrates that JPS performs better than
other CPSs.

We also conducted Wilcoxon test [10] to answer the
question of whether LW-JPS performs better than other com-
parison algorithms significantly. Table 10 demonstrates the
p values of the experimental results about CRPS and aver-
age interval sizes with η ∈ {0.2, 0.1, 0.05} and the bold
values are less than 0.05, which shows the significant differ-
ences. From Table 10, we can see that LW-JPS significantly

performs better than SCPS–SVR, SCPS–RF, CCPS–SVR
and CCPS–RF, and the differences between LW-JPS and
OOB–CPS–RF are not significant in most cases. Since
OOB–CPS–RF represents the state-of-the-art process using
conformal approach for regression problems, the statistical
tests confirm the effectiveness of LW-JPS for probabilistic
prediction.

For training speed, all of the algorithms are computa-
tionally efficient versions of CPSs and the mean values of
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Table 4 Error rate (η � 0.2)
SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.197 0.204 0.191 0.200 0.197 0.200

Bank8fh 0.204 0.202 0.199 0.198 0.196 0.199

Bank8fm 0.196 0.203 0.202 0.200 0.197 0.199

Bank8nh 0.199 0.196 0.202 0.202 0.197 0.202

Bank8nm 0.201 0.199 0.202 0.200 0.194 0.201

Boston 0.216 0.198 0.212 0.208 0.209 0.196

Cooling 0.185 0.195 0.221 0.208 0.202 0.184

Heating 0.184 0.211 0.203 0.203 0.198 0.204

Istanbul 0.207 0.196 0.207 0.194 0.202 0.200

Kin8fh 0.202 0.202 0.198 0.199 0.197 0.201

Kin8fm 0.199 0.205 0.201 0.198 0.195 0.197

Kin8nh 0.198 0.198 0.204 0.200 0.195 0.199

Kin8nm 0.198 0.200 0.205 0.192 0.199 0.198

Laser 0.201 0.213 0.224 0.180 0.205 0.198

Puma8fh 0.204 0.196 0.198 0.201 0.200 0.200

Puma8fm 0.199 0.195 0.198 0.198 0.198 0.201

Puma8nh 0.205 0.201 0.197 0.201 0.197 0.199

Puma8nm 0.205 0.199 0.202 0.200 0.197 0.200

Stock 0.223 0.198 0.188 0.198 0.173 0.201

Treasury 0.207 0.174 0.239 0.208 0.202 0.197

Mean 0.202 0.199 0.205 0.199 0.198 0.199

Mean rank 4.200 3.425 4.250 3.375 2.350 3.400

Table 5 Error rate (η � 0.1)
SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.101 0.103 0.100 0.101 0.097 0.100

Bank8fh 0.106 0.102 0.102 0.102 0.097 0.101

Bank8fm 0.094 0.101 0.101 0.096 0.102 0.100

Bank8nh 0.098 0.100 0.100 0.102 0.097 0.099

Bank8nm 0.102 0.100 0.100 0.099 0.093 0.100

Boston 0.109 0.095 0.097 0.097 0.089 0.105

Cooling 0.086 0.107 0.118 0.095 0.098 0.095

Heating 0.104 0.103 0.102 0.106 0.090 0.096

Istanbul 0.101 0.097 0.097 0.103 0.103 0.104

Kin8fh 0.097 0.103 0.097 0.102 0.099 0.100

Kin8fm 0.098 0.102 0.099 0.098 0.100 0.102

Kin8nh 0.100 0.098 0.101 0.103 0.100 0.098

Kin8nm 0.100 0.100 0.098 0.094 0.095 0.099

Laser 0.090 0.102 0.098 0.089 0.103 0.101

Puma8fh 0.096 0.098 0.100 0.101 0.095 0.101

Puma8fm 0.104 0.103 0.099 0.099 0.098 0.101

Puma8nh 0.096 0.100 0.097 0.100 0.098 0.102

Puma8nm 0.102 0.095 0.099 0.098 0.097 0.103

Stock 0.112 0.097 0.089 0.100 0.106 0.096

Treasury 0.112 0.099 0.119 0.104 0.106 0.108

Mean 0.100 0.100 0.101 0.099 0.098 0.101

Mean rank 3.650 3.800 3.400 3.600 2.750 3.800
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Table 6 Error rate (η � 0.05)
SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.052 0.056 0.048 0.050 0.047 0.051

Bank8fh 0.053 0.050 0.051 0.051 0.050 0.050

Bank8fm 0.045 0.049 0.050 0.050 0.049 0.050

Bank8nh 0.047 0.050 0.052 0.050 0.049 0.049

Bank8nm 0.048 0.051 0.048 0.051 0.043 0.049

Boston 0.051 0.049 0.037 0.047 0.045 0.051

Cooling 0.050 0.062 0.061 0.053 0.046 0.048

Heating 0.050 0.057 0.057 0.057 0.039 0.056

Istanbul 0.047 0.060 0.056 0.056 0.050 0.047

Kin8fh 0.047 0.048 0.049 0.049 0.049 0.050

Kin8fm 0.049 0.049 0.047 0.050 0.052 0.049

Kin8nh 0.051 0.048 0.049 0.051 0.048 0.050

Kin8nm 0.050 0.049 0.048 0.046 0.047 0.049

Laser 0.046 0.047 0.042 0.048 0.045 0.054

Puma8fh 0.050 0.048 0.050 0.050 0.048 0.051

Puma8fm 0.051 0.053 0.051 0.050 0.048 0.048

Puma8nh 0.049 0.051 0.049 0.049 0.047 0.049

Puma8nm 0.050 0.047 0.049 0.049 0.048 0.052

Stock 0.058 0.055 0.049 0.048 0.044 0.049

Treasury 0.058 0.053 0.059 0.049 0.055 0.051

Mean 0.050 0.052 0.050 0.050 0.048 0.050

Mean rank 3.700 3.950 3.725 3.700 2.050 3.875

Table 7 Average interval size
(η � 0.2) SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.175 0.170 0.171 0.169 0.170 0.167

Bank8fh 0.226 0.219 0.225 0.220 0.208 0.215

Bank8fm 0.129 0.095 0.122 0.094 0.088 0.097

Bank8nh 0.243 0.242 0.239 0.236 0.223 0.231

Bank8nm 0.126 0.086 0.122 0.082 0.086 0.073

Boston 0.195 0.185 0.195 0.158 0.152 0.151

Cooling 0.199 0.101 0.177 0.091 0.085 0.087

Heating 0.176 0.031 0.163 0.030 0.031 0.035

Istanbul 0.241 0.237 0.243 0.233 0.230 0.227

Kin8fh 0.181 0.189 0.180 0.188 0.190 0.175

Kin8fm 0.096 0.108 0.094 0.105 0.106 0.061

Kin8nh 0.283 0.328 0.278 0.316 0.317 0.278

Kin8nm 0.163 0.259 0.155 0.249 0.246 0.146

Laser 0.119 0.041 0.112 0.042 0.041 0.031

Puma8fh 0.354 0.358 0.353 0.353 0.353 0.350

Puma8fm 0.171 0.154 0.167 0.152 0.154 0.149

Puma8nh 0.343 0.328 0.336 0.323 0.313 0.329

Puma8nm 0.170 0.126 0.166 0.123 0.121 0.143

Stock 0.141 0.076 0.133 0.069 0.068 0.064

Treasury 0.096 0.025 0.100 0.021 0.020 0.020

Mean 0.191 0.168 0.187 0.163 0.160 0.152

Mean rank 5.200 4.100 4.400 2.900 2.600 1.800

Bold indicates the mean CRPS of all algorithms, with the least one of each data set shown in bold
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Table 8 Average interval size
(η � 0.1) SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.237 0.230 0.234 0.230 0.230 0.228

Bank8fh 0.296 0.297 0.295 0.294 0.284 0.290

Bank8fm 0.165 0.129 0.155 0.127 0.113 0.126

Bank8nh 0.336 0.345 0.324 0.336 0.319 0.325

Bank8nm 0.158 0.134 0.154 0.126 0.114 0.104

Boston 0.257 0.255 0.263 0.218 0.208 0.207

Cooling 0.231 0.134 0.202 0.116 0.115 0.110

Heating 0.200 0.041 0.188 0.038 0.044 0.044

Istanbul 0.355 0.337 0.325 0.319 0.325 0.313

Kin8fh 0.234 0.242 0.231 0.240 0.245 0.223

Kin8fm 0.124 0.138 0.120 0.133 0.139 0.078

Kin8nh 0.364 0.412 0.357 0.400 0.401 0.357

Kin8nm 0.209 0.325 0.200 0.307 0.306 0.188

Laser 0.148 0.060 0.143 0.056 0.057 0.040

Puma8fh 0.459 0.464 0.449 0.452 0.448 0.447

Puma8fm 0.220 0.201 0.216 0.198 0.199 0.195

Puma8nh 0.458 0.443 0.442 0.433 0.406 0.439

Puma8nm 0.218 0.173 0.213 0.167 0.160 0.188

Stock 0.174 0.102 0.161 0.092 0.088 0.084

Treasury 0.130 0.044 0.124 0.036 0.028 0.027

Mean 0.249 0.225 0.240 0.216 0.211 0.201

Mean rank 5.150 4.450 4.000 3.050 2.750 1.600

Bold indicates the mean CRPS of all algorithms, with the least one of each data set shown in bold

Table 9 Average interval size
(η � 0.05) SCPS–SVR SCPS–RF CCPS–SVR CCPS–RF OOB–CPS–RF LW-JPS

Abalone 0.292 0.293 0.294 0.294 0.295 0.287

Bank8fh 0.358 0.375 0.359 0.374 0.364 0.361

Bank8fm 0.195 0.161 0.182 0.156 0.136 0.150

Bank8nh 0.426 0.453 0.417 0.443 0.427 0.431

Bank8nm 0.190 0.177 0.184 0.165 0.140 0.136

Boston 0.331 0.333 0.324 0.281 0.264 0.251

Cooling 0.253 0.159 0.224 0.139 0.143 0.129

Heating 0.230 0.050 0.209 0.046 0.058 0.053

Istanbul 0.470 0.433 0.425 0.419 0.430 0.398

Kin8fh 0.277 0.291 0.275 0.287 0.293 0.265

Kin8fm 0.149 0.162 0.142 0.156 0.169 0.092

Kin8nh 0.432 0.482 0.424 0.469 0.470 0.423

Kin8nm 0.249 0.377 0.239 0.357 0.358 0.228

Laser 0.170 0.086 0.166 0.073 0.074 0.049

Puma8fh 0.552 0.562 0.539 0.548 0.544 0.535

Puma8fm 0.265 0.242 0.259 0.241 0.241 0.236

Puma8nh 0.552 0.539 0.537 0.537 0.503 0.532

Puma8nm 0.261 0.216 0.255 0.207 0.197 0.228

Stock 0.206 0.125 0.181 0.114 0.110 0.102

Treasury 0.159 0.062 0.142 0.053 0.040 0.034

Mean 0.301 0.279 0.289 0.268 0.263 0.246

Mean rank 4.650 4.600 3.650 3.250 3.250 1.600

Bold indicates the mean CRPS of all algorithms, with the least one of each data set shown in bold
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Fig. 2 Mean of prediction error rates of the prediction intervals derived
from the predictive distributions

Fig. 3 Mean of average interval sizes of the prediction intervals derived
from the predictive distributions

the training times of SCPS–SVR, SCPS–RF, CCPS–SVR,
CCPS–RF, OOB–CPS–RF and LW-JPS on 20 data sets are
0.293 s, 8.704 s, 1.940 s, 59.336 s, 15.393 s and 1.443 s,
respectively, indicating that the LW-JPS used in this paper is
also computationally efficient.

In summary, the experimental results in this section not
only verifies the empirical validity of LW-JPS, but also shows
its better performance than the other comparison algorithms,
which indicates the effectiveness and efficiency of LW-JPS
for probabilistic prediction.

Fig. 4 Mean rank of average interval sizes of the prediction intervals
derived from the predictive distributions

Conclusion

This paper proposes a predictive system based on the idea of
jackknife prediction, which is inspired by the leave-one-out
cross-conformal predictive system. The proposed LW-JPS
can transform any regression algorithm for point prediction
to probabilistic prediction, which can describe the uncer-
tainty of test labels. The asymptotic validity of LW-JPS is
proved with some regularity assumptions and conditions.
Based on the analysis, the empirical testing of LW-JPS with
randomized kernel ridge regression and k-nearest neighbor
regression was conducted. The empirical validity of LW-JPS
was demonstrated in the experiments and its performance for
probabilistic prediction compared favourably with the other
comparison algorithms, which demonstrates the effective-
ness and efficiency of LW-JPS for probabilistic prediction.

Although ourmethod is empirically valid and shows better
performance when compared with other comparison CPSs,
we only employ two representative regression algorithms sat-
isfying the related conditions in this paper. Therefore, future
work about empirical studies with a wider range of regres-
sion algorithms needs to be done. Moreover, the approach of
LW-JPS we proposed in this paper cannot be built on deep
learning models efficiently for complex learning problems,
such as image segmentation or image-to-image regression
problems, since in those cases, there are no efficient ways
to compute leave-one-out predictions on training data. Thus,
future work about approximately computing leave-one-out
predictions for deep neural networks is worth exploring,
in order to make the jackknife prediction approach more
tractable for complex problems.
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Fig. 5 Box plots of average interval sizes of the prediction intervals derived from the predictive distributions

Table 10 The p values of
Wilcoxon tests CRPS η � 0.2 η � 0. 1 η � 0.05

LW-JPS vs SCPS–SVR 1.907E-06 1.907E-06 1.907E-06 9.537E-06

LW-JPS vs SCPS–RF 7.076E-04 0.001 6.294E-05 3.624E-05

LW-JPS vs CCPS–SVR 1.907E-06 3.814E-06 9.537E-06 8.202E-05

LW-JPS vs CCPS–RF 0.009 0.021 0.004 3.223E-04

LW-JPS vs OOB–CPS–RF 0.154 0.312 0.143 0.024

Bold indicates the mean CRPS of all algorithms, with the least one of each data set shown in bold
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