
Complex & Intelligent Systems (2023) 9:5793–5806
https://doi.org/10.1007/s40747-023-01043-1

ORIG INAL ART ICLE

Transformer tracking with multi-scale dual-attention

Jun Wang1 · Changwang Lai1 ·Wenshuang Zhang1 · Yuanyun Wang1 · Chenchen Meng2

Received: 22 November 2022 / Accepted: 9 March 2023 / Published online: 7 April 2023
© The Author(s) 2023

Abstract
Transformer-based trackers greatly improve tracking success rate and precision rate. Attention mechanism in Transformer can
fully explore the context information across successive frames. Nevertheless, it ignores the equally important local information
and structured spatial information. And irrelevant regions may also affect the template features and search region features.
In this work, a multi-scale feature fusion network is designed with box attention and instance attention in Encoder–Decoder
architecture based on Transformer. After extracting features, the local information and structured spatial information is learnt
by multi-scale box attention, and the global context information is explored by instance attention. Box attention samples
grid features from the region of interest. Therefore, it effectively focuses on the region of interest (ROI) and avoids the
influence of irrelevant regions in feature extraction. At the same time, instance attention can also pay attention to the context
information across successive frames, and avoid falling into local optimum. The long-range feature dependencies are learned
in this stage. Extensive experiments are conducted on six challenging tracking datasets to demonstrate the superiority of the
proposed tracker MDTT, including UAV123, GOT-10k, LaSOT, VOT2018, TrackingNet, and NfS. In particular, the proposed
tracker achieves AUC score of 64.7% on LaSOT, 78.1% on TrackingNet and precision score of 89.2% on UAV123, which
outperforms the baseline and most recent advanced trackers.

Keywords Transformer · Attention mechanism · Context information · Local information · Feature fusion network

Introduction

Visual tracking has an important research significance in
computer vision [1]. It has a large number of practical appli-
cations, such as video surveillance, automatic driving, and
visual localization. The goal of visual tracking is to use the
target information given in the previous frame to predict the
position of target in the next frame. Visual tracking still con-
fronts many challenges due to a lot of complicating factors
in real-world scenes, such as partial occlusion, out-of-view,
background clutter, viewpoint change, scale variation, etc.

Recently, Vaswani et al. [2] first propose an attention
mechanism based on Transformer for nature language pro-
cessing. The Transformer explores long-range dependencies
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in sequences by computing the attention weights with triples
(i.e., query, key, and value). Based on the excellent ability
of attention mechanism in feature fusion, Transformer struc-
tures have successfully been introduced to visual tracking
and achieved encouraging results. Wang et al. [3] propose an
encoder–decoder-based tracking framework to explore the
rich context information across successive frames. It is a
meaningful attempt and achieves great success.

Existing Transformer-based trackers use CNN (Convolu-
tional Neural Network) as a backbone network for feature
extracting. CNN focuses more on local information, and
ignores the global information and the connection between
them. These disadvantages may have some impacts on track-
ing performance, especially in the complicated tracking
scenes, such as severe occlusion, out-of-view, and drastic
illumination. Even these challenges can lead to tracking
drift or failure. In Transformer-based trackers, the encoder–
decoder structure compensates for this deficiency of CNN,
and the global context information is fully explored. How-
ever, the structured spatial information is not adequately
exploited. How to effectively explore the context informa-
tion across successive frames without losing a lot of useful
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spatial information becomes a crucial factor to improve the
tracking performance.

In this paper, a novel multi-scale dual-attention-based
tracking method is proposed to further explore structured
spatial information. The proposed method is inspired by the
encouraging work of TrDiMP [3], which first introduces
Transformer to the tracking field and builds a bridge to
explore context information across successive frames.Differ-
ent from TrDiMP, the proposed method uses a novel feature
fusion network, which can not only explore context informa-
tion, but also fully explore local information and structured
spatial information across successive frames. The proposed
method predicts the ROI by applying a geometric transfor-
mation to the reference window. So that it can focus more
on the predicted regions. By this way, the structured spatial
information can be fully explored. In addition, the instance
attention is introduced to the decoder structure, which can
focus more on the global context information across succes-
sive frames. The proposed tracker can make the attention
module more flexible, and can quickly focus on the region of
interest. The proposed tracker performs well on six tracking
benchmarks, includingUAV123 [4], VOT2018 [5], GOT-10k
[6], NfS [7], LaSOT [8], and TrackingNet [9].

In summary, the main contributions of this work can be
summarized as follows:

• A Transformer-based multi-scale feature fusion network
with dual attentions is designed, namely, box attention
and instance attention. With the feature fusion network,
we can quickly obtainmultiple bounding boxeswith high
confidence scores in encoder, and then refine and obtain
the predicted bounding boxes in decoder.

• In the Transformer-based feature fusion network, box
attention effectively extracts the structured spatial infor-
mation, and instance attention explores the temporal
context information by the Encoder–Decoder architec-
ture. By this way, the tracker MDTT can explore enough
global context information across successive frames
while focusing on more local responses.

• A novel Transformer tracking framework with multi-
scale dual-attention is proposed, which can effectively
deal with complicated challenges, such as background
clutter, fully occlusion, and viewpoint change. We have
verified the effectiveness of the fusion network and tested
the proposed tracker MDTT on six challenging tracking
benchmark datasets. The experimental results on these
test datasets show that MDTT achieves robust tracking
performance while running on real-time tracking speed.

Related work

Siamese-based visual tracking

Recently, trackers based on Siamese networks achieve a well
balance between tracking speed and accuracy. As the pio-
neering work, SiamFC [10] uses two branches (i.e., template
branch and search branch) to extract the template image fea-
tures and search region image features, respectively. It trains
an end-to-end tracking network and computes the scoremaps
by cross-correlation. SiamFC achieves superior tracking per-
formance on some current tracking benchmarks. Based on
SiamFC, Dong et al. [11] add a triplet loss to Siamese net-
work as the training strategy. To save the time of multi-scale
testing, SiamRPN [12] uses the Region Proposal Network
(RPN) structure in Siamese tracking.

SiamFC and most Siamese-based trackers usually use the
shallow AlexNet as the feature extractor. Li et al. [13] pro-
pose a layer-based feature aggregation structure to calculate
similarity, which is helpful to obtain more accurate similar-
ity maps from multiple layers. Instead of using AlexNet as
the backbone, Abdelpakey et al. [14] design a new network
structure with Dense blocks that reinforces template features
by adding self-attention mechanism.

Due to the use of deep convolution operation in fea-
ture extraction, trackers usually only focus on local regions
of images. Additionally, in Siamese-based trackers, the
cross-correlation operation is usually used as the similarity
matching method. It focuses more on the local information
than global information, and easily traps in local optimum.

Attentionmechanisms in computer vision

In recent years, attention mechanisms are increasingly being
used in various fields of computer vision. It focuses on
important information and ignores the irrelevant information.
Attention mechanisms can be divided into channel attention,
spatial attention, mixed attention, frequency domain atten-
tion, self-attention, and so on.

SENet [15] proposes to learn from the channel dimen-
sion to get the importance of each channel. Woo et al. [16]
combine the channel attention and spatial attention, which
can effectively help information transfer across the network
by learning to reinforce or suppress relevant feature infor-
mation. Self-attention uses a particular modeling method
to explore the global context information. However, since
the self-attention needs to capture the global context infor-
mation, it will focus less on the local region. Xiao et al.
[17] design a federated learning system, which uses atten-
tion mechanism and long short-term memory to explore
the global relationships hidden in the data. Xing et al. [18]
propose a robust semisupervised model, which simplifies
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semisupervised learning techniques and achieves excellent
performance.

Transformer is proposed by Vaswani et al. [2] and first
used in NLP (Natural Language Processing). Due to its
unique and superiority of parallel computing, it is gradu-
ally used in computer vision. Swin Transformer [19] builds a
hierarchical Transformer by introducing a hierarchical con-
struction. Based on Swin Transformer, Xia et al. [20] use
the strategy of flow field migration to focus more on relevant
areas for key and value, so as to obtainmore context informa-
tion. Although attention mechanisms are now well equipped
to deal with associations between different features, it is still
a question how to combine their advantages to obtain features
with stronger representational ability.

Transformer in visual tracking

In recent years, Transformer-based tracking algorithms are
proposed and applied in vision fields. Existing trackers based
on Transformer use encoder or decoder structure to incor-
porate or enhance features extracted by CNN. Wang et al.
[3] first apply Transformer in visual tracking and propose
a remarkable tracking method TrDiMP. TrDiMP uses the
Transformer encoder and Transformer decoder structures
to build the relationship across successive frames, which
explores the rich context information across them. The track-
ing algorithm [21] uses a full convolutional network to
predict response maps of the upper left and lower right cor-
ner, and obtains an optimal bounding box for each frame.
It does not use any pre-defined anchors for bounding box
regressions.

Lin et al. [22] propose an attention-based tracking method
SwinTrack. It uses Transformer for feature extraction and
feature fusion. Zhao et al. [23] use multi-head self-attention
and multi-head cross-attention to adequately explore the
global rich context information instead of using the cross-
correlation operation. Inspired by Transformer, Chen et al.
[24] propose a novel attention-based feature fusion network.
It directly extracts search region features without using any
relevant operations. Mayer et al. [25] propose a tracking
structure based on Transformer model. It captures global
relationships with less inductive bias, and enables it to learn
stronger target model predictions. In these Transformer-
based trackers, the structured spatial information is not fully
exploited.

In this work, a Siamese network architecture is designed.
The difference is that the Encoder–Decoder structure is used
instead of the cross-correlation layer. Two different efficient
attention mechanisms are introduced to the feature fusion
network, which can more accurately focus on the region of
interest.

Overall architecture

In this section, a novel Transformer-based feature fusion net-
work with dual attentions is designed in a Siamese tracking
framework, as shown in Fig. 1. After extracting the deep
features from template images and search region images,
they are fed into Transformer Encoder and Decoder, respec-
tively. In Transformer Encoder, the multi-head box attention
effectively extracts structured spatial information and learns
robust feature representations. The attention weights are
computed in box attention module. The encoded template
features are inputed into Transformer Decoder. In Trans-
former Decoder, the multi-head instance attention can refine
the referencewindows of object proposals fromEncoder. The
rich global context information is fully explored. Based on
Transformer structure, the long-range feature dependencies
are adequately learnt.

Based the designed feature fusion network, a Multi-scale
Dual-attention Transformer Tracker is proposed. Next, the
multi-head box attention is analyzed inTransformerEncoder,
the multi-head instance attention in Transformer Decoder,
and the proposed tracking framework.

Box attention in transformer encoder

In this section, first, the computation of multi-head self-
attention is briefly reviewed. Then, the multi-head box
attention is introduced, which can focus more on the region
of interest in the feature map. Some object proposals with
high confidence scores are obtained by geometrically trans-
forming the reference windows on the input feature map. By
introducing box attention to Encoder, the proposed tracker
MDTT can perform well to appearance variations, such as
occlusion, out-of-view, fast motion, and scale variation.

Multi-head self-attention was first proposed in [2]. Self-
attention is computedusing the scaled dot product in attention
map as

SA(Q, K , V ) = softmax

(
QK�
√
dk

)
V , (1)

where the inputs of attention function are Q, K , and V .
They are obtained by the linear transformation of query,
key, and value. dk is the dimension of key. The multi-head
self-attention (MHSA) of n attention heads is calculated as
follows:

MHSA (Qi , Ki , Vi ) = Concat (h1, . . . , hl)W
O , (2)

hi = SA
(
QWQ

i , KWK
i , VWV

i

)
, (3)
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Fig. 1 An overview of the proposed architecture. Given the target tem-
plate image and the search image in subsequent frames, multi-scale
featuremaps are extracted from the backbone network.Convolution lay-
ers share common network weight. Then, multi-scale feature maps are
fed to the Encoder–Decoder structure. Unlike TrDiMP, the box attention

and instance attention are added to Encoder and Decoder, respectively.
The optimized model can focus on the necessary region and pay atten-
tion to the appearance changes of object at any time, so it achieves
robust visual tracking

whereWO is a learnable projectionmatrix,WQ
i ∈ R

dmodel ×dq ,
WK

i ∈ R
dmodel ×dk , WV

i ∈ R
dmodel ×dv , and hl is the number

of attention heads.
As shown in Fig. 1, similar to the calculation of MHSA,

when calculating the attention of the i th head, given the
bounding boxes bi ∈ R

d in the i th head, am×m grid feature
map vi ∈ R

m×m×dh centered on bi is extracted by the bilinear
interpolation. After that, the attention on the extracted grid
feature map is computed.

Here, an important module named Where-to-Attend is
used after generating the m × m grid feature map vi . The
module is an important part of box attention, which can
transform vi into an attended region through a geometric
transformation. Therefore, the region of attention can adapt
to the appearance changes of target. Finally, the attention
weights are generated by computing matrix multiplication
between query q and key v. Using bilinear interpolation
to extract grid features can effectively reduce quantization
errors in bounding box regression. This operation is actually
identical to RoIAlign [26], which also extracts a finite num-
ber of bounding box proposals within regions of interest.
This method can capture more accurate target information
and obtain more accurate pixel-level information.

After that, the attention weights will be calculated by soft-
max function to get QK�

i . Finally, the final box attention
hi ∈ R

dh is obtained by calculating the weighted average
of linear transformation matrix Vi of QK�

i and m × m grid

feature map vi

hi = BoxAttention (Q, Ki , Vi )

=
∑
m×m

softmax
(
QK�

i

)
∗ Vi . (4)

For calculating the attention weight, the attention should
be focused around the center of target, and the criticalWhere-
to-Attend module is used. The role of Where-to-Attend
module is to make the box attention focusing more on the
necessary regions and predicting the bounding boxes more
accurately. And the module can transform reference window
of queryvectorq into amore accurate region throughgeomet-
ric transformations. It can predict bounding box proposals in
grid feature map using structured spatial information.

As in Fig. 2, bq = [x, y, w, h] are used to denote the refer-
ence windows of q, where x and y denote the central position
coordinates of the reference window, andw and h denote the
width and height of the reference window, respectively.

Here, translation function Ft is used to convert the refer-
ence window bq . Ft takes query q and bq as its inputs and
adjusts the center of the reference window. The output of Ft

is calculated as follows:

Ft
(
bq , q

) = [x + �x, y + �y, w, h] , (5)

where �x and �y are offsets relating to the central position
of reference window bq . In addition, we resize the reference
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Fig. 2 Where-to-attend modules. It allows box attention to spotlight
on the dynamic region of target and effectively use limited attention
calculations

window bq by another translation function Fs . Fs has the
same input as Ft , and its output is computed as follows:

Fs
(
bq , q

) = [x, y, w + �w, h + �h] , (6)

where �w and �h are offsets of the size of the reference
window bq . The offset parameters �x , �y, �w, and �h are
implemented by a linear projection of query q as follows:

�x =
(
qW�

x + bx
)

∗ w

τ
,

�y =
(
qW�

y + by
)

∗ h

τ
,

�w = max
(
qW�

w + bw, 0
)

∗ w

τ
,

�h = max
(
qW�

h + bh, 0
)

∗ h

τ
,

(7)

where W� is the weight of the linear projection. τ is the
temperature hyperparameter and set to 2. bx , by , bw, and bh
are bias vectors. The reference window is resized by multi-
plication, which preserves the scale invariance. Finally, the
translation result of reference window bq is computed with
Ft and Fs as follows:

b′
q = F (Ft ,Fs) = [x + �x, y + �y, w + �w, h + �h] .

(8)

Then, the box attention calculation of a single head is
completed. Furthermore, the box attention calculation is
easily extended to multi-head box attention with multiple
heads. Given multiple attention heads, the boxes of interest
bi ∈ R

d in the query q ∈ R
d are expanded to a set of boxes

{
b1i , . . . , b

t
i

}
. Next, a grid of feature vi ∈ R

(t×m×m)×dh from
each box is sampled and the multi-head box attention is com-
puted.

Instance attention in transformer decoder

The purpose of using box attention in Encoder is to generate
high-quality object proposals. Similarly, the instance atten-
tion is used in Decoder to generate accurate bounding boxes.
Different from the box attention, in the i th attention head,
instance attention takes the grid features of object propos-
als in Encoder as input, and then generates two outputs, hi
and hmask

i . Here, only hi ∈ R
d is used for classification to

distinguish foreground from surrounding background.
Similarly, the instance attention is extended to multi-

head instance attention calculationwithmultiple heads. First,
vi ∈ R

(t×m×m)×dh is obtained by the same way in the box
attention. Before creating hi , the softmax function is used to
normalize t ×m ×m attention scores and then applied to vi .

Tracking with box attention and instance attention

As shown in Fig. 1, a Transformer-based feature fusion
network is designed with both box attention and instance
attention. To enable the model to make full use of sequential
information across successive frames, the positional encod-
ing is added at the bottomofEncoder andDecoder as follows:

PEpos,2i = sin

(
pos

100002i/dmodel

)

PEpos,2i+1 = cos

(
pos

100002i/dmodel

)
.

(9)

where dmodel is set to 256, i is the dimension, and pos is the
location information.

The Encoder encodes feature maps
{
x j

}t−1
j=1 (t = 4)

extracted from the backbone network and obtains the
multi-scale contextual representations

{
e j

}t
j=1. Here, the

ResNet50 [27] is used as the feature extractionnetwork. In the
Transformer structure, each of the Encoder layers includes
the box attention, and each feed-forward layer is followed by
a normalized layer with a residual structure. Encoder takes
the target template features as its input and outputs multiple
object proposals with high confidence scores. Experiments
show that the Encoder with box attention makes the pro-
posed tracker MDTT more effective in dealing with some
tracking challenges, such as occlusion, scale variation, and
fast motion.

The Decoder predicts bounding boxes and distinguishes
the foreground from the background. In decoder layer, the
instance attention is used instead of the cross-attention. The
object proposals in Encoder were put as the input of Decoder,
which will be detailed to the object proposals so as to get a
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Fig. 3 Precision plots on UAV123 for eight challenging aspects: scale
variation, partial occlusion, similar object, fast motion, low resolution,
viewpoint change, illumination variation, and camera motion. The pro-

posed MDTT performs well on all these aspects, especially on similar
objects, low resolution, and fast motion
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Success plots of OPE - Low Resolution (48)
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Success plots of OPE - Aspect Ratio Change (68)
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Success plots of OPE - Illumination Variation (31)
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Success plots of OPE - Camera Motion (70)
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Fig. 4 Area Under the Curve (AUC) plots on UAV123 for eight chal-
lenging aspects: scale variation, partial occlusion, similar object, fast
motion, low resolution, aspect ratio change, illumination variation, and

cameramotion. The proposedMDTTperformswell on all these aspects,
especially on similar object and fast motion

more precise proposal. Since the Decoder use the encoder
features with highest classification scores as the input fea-
tures, this will provide more effective context information to
Decoder. This is crucial for the tracking process, since there
is a lot of context information across the successive frames.

Experiments

In this section, first, the implement details are given. Then,
the proposed tracker MDTT is compared with many recent

state-of-the-art trackers on six tracking benchmarks. Finally,
the ablation study is conducted and the effects of the key
components of the feature fusion network are analyzed.

Implementation details

The proposed method is implemented in Python 3.7 and
PyTorch 1.4.0. Four datasets, including COCO [28], GOT-
10k [6], LaSOT [8], and TrackingNet [9], are used to train
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Fig. 5 Precision and success plots on UAV123 benchmark

Fig. 6 Comparison with state-of-the-art trackers on GOT-10k in term
of success rates

TrDiMP as the baseline on oneNvidia 2060GPU. Themodel
is trained for 50 epochs with 3571 iterations per epoch and
14 image pairs per batch. The Resnet-50 [27] is used as the
feature extraction backbone network. The size of template
images are 128 × 128 pixels and search images are set to
256 × 256 pixels. The proposed tracking method is opti-
mized by ADAM [29] and the initial learning rate is set to
0.01. During the process of tracking, the proposed tracker
MDTT runs about 20 FPS on one GPU.

Then, the settings of some parameters used by the tracking
model are given. In Encoder, the size of grid feature maps
vi extracted from bi is set to 2 × 2 (m = 2). The number of
attention heads l is set to 8. d f eed− f orward is set to 1024. The
number of encoder layers and decoder layers is 6 (s = 6).

State-of-the-art comparison

The proposedMDTT is comparedwith recent state-of-the-art
trackers on six challenging benchmarks, including UAV123
[4], GOT-10k [6], LaSOT [8], VOT2018 [5], TrackingNet
[9], and NfS [7].

Table 1 Comparison results of the competing trackers on GOT-10k
in terms of average overlap (AO) and success rate (SR). The best two
results are highlighted in bold and italic, respectively

Tracker Year AO (%) SR0.50 (%) SR0.75 (%)

Ours 68.7 80.2 60.0

STARK [21] 2021 68.0 77.7 62.3

UTT [39] 2022 67.2 76.3 60.5

TrDiMP [3] 2021 67.1 77.7 58.3

TransT-N2 [24] 2021 67.1 76.8 60.9

TREG [40] 2021 66.8 77.8 57.2

SBT [41] 2022 66.8 77.3 58.7

SuperDiMP [42] 2019 66.1 77.2 59.2

TrSiam [3] 2021 66.0 76.6 57.1

AutoMatch [43] 2021 65.2 76.6 54.3

SiamR-CNN [44] 2020 64.9 72.8 59.7

SiamPW-RBO [37] 2022 64.4 76.7 50.9

STMTrack [34] 2021 64.2 73.7 57.5

SAOT [45] 2021 64.0 74.7 53.0

KYS [46] 2020 63.6 75.1 51.5

FCOT [47] 2020 63.4 76.6 52.1

PrDiMP [48] 2020 63.4 73.8 54.3

SiamGAT [35] 2021 62.7 74.3 48.8

SiamLA [49] 2022 61.9 72.4 51.0

OCEAN [50] 2020 61.6 72.1 47.3

DiMP [30] 2019 61.1 71.7 49.2

D3S [51] 2020 59.7 67.6 46.2

SiamCAR [52] 2020 57.9 67.7 43.7

ATOM [53] 2019 55.6 63.4 40.2

UAV123 [4]: UAV123 is a challenging dataset captured from
low-altitude UAVs. It contains 123 video sequences with
many challenging factors, such as fast motion, small object,
similar object, motion blur, scale variation, and so on. The
tracked targets in UAV123 have low resolutions. In spite of
this, the proposed method performs well in dealing with var-
ious challenges, as shown in Figs. 3 and 4. The evaluation
metrics for UAV123 include precision (P) and area under
the curve (AUC). Figure5 shows the tracking results against
state-of-the-art trackers onUAV123 dataset. Compared to the
recent trackers TrDiMP [3], TransT [24], DiMP [30], DaSi-
amRPN [31], HiFT [32], TCTrack [33], STMTrack [34],
SiamGAT [35], and SiamAttn [36], the proposed method
obtains the highest success score of 67.6% and precision
score of 89.2%, and outperforms the baseline by 1.7% on
success and 2.0% on precision. The proposed method also
performswell in comparisonwith some recent trackersToMP
[25], SiamBAN-RBO [37], and CNNInMo [38], as shown in
Table 5.

VOT2018 [5]: VOT2018 dataset consists of 60 video
sequences and the ground truth in VOT is a bounding box
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Table 2 Results on LaSOT. Trackers are evaluated by the area under
the curve (AUC), precision (P), and normalized precision (PNorm ). The
best two results are highlighted in bold and italic, respectively

Tracker Year AUC (%) P (%) PNorm (%)

Ours 64.7 67.5 73.9

UTT [39] 2022 64.6 67.2 –

TransT-N2 [24] 2021 64.2 68.2 73.5

TrDiMP [3] 2021 64.0 66.6 73.2

DualTFR [54] 2021 63.5 66.5 72.0

SuperDiMP [42] 2019 63.1 65.3 72.2

TrSiam [3] 2021 62.9 65.0 71.8

SAOT [45] 2021 61.6 62.9 70.8

SBT [41] 2022 61.1 63.8 –

STMTrack [34] 2021 60.6 63.3 69.3

PrDiMP [48] 2020 59.8 60.8 68.8

AutoMatch [43] 2021 58.2 59.9 67.4

SiamTPN [55] 2022 58.1 57.8 68.3

CAJMU [56] 2022 57.3 57.2 66.3

LTMU [57] 2020 57.2 57.8 66.5

FCOT [47] 2020 56.9 58.9 67.8

SRRTransT [58] 2022 56.9 57.1 64.0

SiamLA [49] 2022 56.1 56.0 65.2

CNNInMo [38] 2022 53.9 53.9 61.6

SiamGAT [35] 2021 53.9 53.0 63.3

CGACD [59] 2020 51.8 62.6 –

OCEAN [50] 2020 51.6 52.6 60.7

SiamCAR [52] 2020 51.6 52.4 61.0

ULAST [60] 2022 47.1 45.1 –

with rotation and scale transformation. Robustness refers
to the percentage of subsequence frames that are success-
fully tracked. EAO is the value that combines accuracy and
robustness for comprehensive evaluation. Figure8 shows the
EAO scores for the proposed MDTT and nine recent track-
ers, including CGACD [59], STMTrack [34], PrDiMP [48],
TrDiMP [3], DCFST [66], SiamR-CNN [44], LADCF [64],
MFT [5], and SiamRPN [12].

GOT-10k [6]: Got-10k is a large-scale tracking benchmark.
In particular, the training set and test set inGOT-10k have dif-
ferent tracking targets, respectively. It contains 560 classes
of outdoor moving objects in real scenes, and the test set
contains 180 video sequences. As well as the TrackingNet
benchmark, the ground truth of GOT-10k is not publicly
available, so we evaluate the proposed tracker by an online
evaluation. The average overlap (AO) and success rate (SR)
are used to compare the performance of trackers.

As shown in Fig. 6, MDTT is compared against several
recent popular trackers, including STARK [21], TrDiMP [3],
SuperDiMP [42], SiamLA [49], AutoMatch [43], and TREG
[40]. MDTT achieves the best tracking performance on suc-

Fig. 7 Success and precision plots against competitive trackers on
LaSOT dataset
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Fig. 8 Expected average overlap (EAO) graph with trackers ranked.
Our tracker outperforms all the other trackers on VOT2018
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Table 3 Comparison on VOT2018 in terms of accuracy (A), robustness
(R), and expected average overlap (EAO). The best two results are
highlighted in bold and italic, respectively

Tracker Year A(↑) R(↓) EAO(↑)

Ours 61.9 16.0 45.2

Retina-MAML [61] 2020 60.4 15.9 45.2

CGACD [59] 2020 61.5 17.2 44.9

PGNet [62] 2020 61.8 19.2 44.7

STMTrack [34] 2021 59.0 15.9 44.7

PrDiMP [48] 2020 61.8 16.5 44.2

DiMP [30] 2019 59.7 15.3 44.0

TrDiMP [3] 2021 60.0 16.2 43.7

SiamFC++ [63] 2020 58.7 18.3 42.6

SiamCAR [52] 2020 57.8 19.7 42.3

SiamRPN++ [13] 2019 60.0 23.4 41.4

SiamR-CNN [44] 2020 60.9 22.0 40.8

ATOM [53] 2019 59.0 20.4 40.1

LADCF [64] 2019 50.3 15.9 38.9

MFT [5] 2018 50.5 14.0 38.5

SiamRPN [12] 2018 58.6 27.6 38.3

UPDT [65] 2018 53.6 18.4 37.9

cess. Also, Table 1 presents the tracking performance of the
proposedmethod and recent state-of-the-art trackers onGOT-
10k, such as UTT [39], SBT [41], SiamPW-RBO [37], and
SiamLA [49]. As shown in Table 1, the proposed tracker out-
performs most of them. Compared with the popular tracker
TrDiMP,MDTT is higher on AO , SR0.5, and SR0.75 by1.6%,
2.5%, and 1.7%, respectively. The above results demonstrate
that the proposed method is adapt to a large number of dif-
ferent scenarios and challenges.

LaSOT [8]: LaSOT is a large-scale and complex single object
dataset. It contains 280 sequences with an average 2448
frames per sequence in the test set. We evaluate the proposed
tracker on LaSOT dataset to validate its long-term capability.
The proposed tracker is compared with some recent track-
ers, including UTT [39], TransT [24], TrDiMP [3], DualTFR
[54], SAOT [45], SBT [41], SiamTPN [55], STMTrack [34],
PrDiMP [48], AutoMatch [43], CAJMU [56], SRRTransT
[58], SiamLA [49], CNNInMo [38], SiamGAT [35], and
ULAST [60].

Figure7 shows the success and precision plots of MDTT
tracker and 13 state-of-the-art trackers. These trackers are
ranked according to the AUC and precision scores. From
Fig. 7, it can be seen that MDTT achieves the top-rank AUC
score of 64.7% and achieves the performance on precision of
67.5%. Table 2 shows the tracking performance on success,
precision and normalized precision metrics. Compared with
UTT, TrDiMP, andDualTFR, the proposedmethod improves
the AUC score by 0.1%, 0.7%, and 1.2%, respectively. The

Table 4 Comparison on the TrackingNet in terms of the area under
the curve (AUC), precision (P), and normalized precision (PNorm ). The
best two results are highlighted in bold and italic, respectively

Tracker Year AUC (%) P (%) PNorm (%)

Ours 78.1 73.4 83.3

SiamLA [49] 2022 76.7 71.8 82.1

AutoMatch [43] 2021 76.0 72.6 –

SRRTransT [58] 2022 76.0 71.9 81.3

PrDiMP [48] 2020 75.8 70.4 81.6

FCOS-MAML [61] 2020 75.7 72.5 82.2

SiamFC++ [63] 2020 75.4 70.5 80.0

SiamGAT [35] 2021 75.3 69.8 80.7

DCFST [66] 2020 75.2 70.0 80.9

CAJMU [56] 2022 74.2 68.9 80.1

KYS [46] 2020 74.0 68.8 80.0

DiMP [30] 2019 74.0 68.7 80.1

SiamCAR [52] 2020 74.0 68.4 80.4

SiamLTR [67] 2021 73.6 69.1 80.2

SiamRPN++ [13] 2019 73.3 69.4 80.0

D3S [51] 2020 72.8 66.4 76.8

OCEAN [50] 2020 70.3 68.8 –

ATOM [53] 2019 70.3 64.8 77.1

CRPN [68] 2019 66.9 61.9 74.6

ULAST [60] 2022 65.4 59.2 73.2

DaSiamRPN [31] 2018 63.8 59.1 73.3

UPDT [65] 2018 61.1 55.7 70.2

above results demonstrate that MDTT adapts to long-term
tracking and performs well in terms of success, precision,
and normalized precision.

Table 3 shows more details compared with these track-
ers. As shown in Table 3, although CGACD achieves an
EAO score of 44.9%, MDTT achieves the better perfor-
mance on EAO of 45.2% and accuracy rate of 61.9%, which
outperforms all other SOTA trackers. In addition,MDTTout-
performs thebaseline by1.5%onEAOand1.9%onaccuracy,
respectively.

TrackingNet [9]: TrackingNet dataset includes 30k video
sequences, and the test set consists of 511 video sequences
with various object classes in real scenes. The evaluation
process is performed on the online evaluation server. The
proposed tracker achieves significant results on success, pre-
cision, and normalized precision. In this benchmark, the
proposed MDTT is compared with SOTA trackers, such as
SiamLA [49], AutoMatch [43], SRRTransT [58], CAJMU
[56], SiamLTR [67], PrDiMP [48], and ULAST [60]. As
shown inTable 4, the proposed tracker obtains the best perfor-
mance with 78.1%, 73.4%, and 83.3% in terms of AUC , P ,
and PNorm , respectively. The proposed tracker performs bet-
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Table 5 Comparison with SOTA trackers on NfS and UAV123 datasets in terms of AUC. Bold and Italic fonts indicate the top-2 trackers

Tracker Ours Tr ToMP Trans Auto CAJ SiamBAN STM CNN DCF CRACT OCEAN SiamDW KYS Siam
DiMP 101 T Match MU RBO Track InMo ST R-CNN
[3] [25] [24] [43] [56] [37] [34] [38] [66] [69] [50] [70] [46] [44]

Year 2021 2022 2021 2021 2022 2022 2021 2022 2020 2020 2020 2019 2020 2020

NfS 66.2 64.8 66.7 65.7 60.6 62.7 61.3 – 56.0 64.1 62.5 55.3 52.1 63.5 63.9

UAV123 67.6 65.9 66.9 66.0 64.4 – 64.1 64.7 62.9 – 66.4 62.1 53.6 – 64.9

Table 6 The ablation study on UAV123 in terms of Precision (P) and Area Under the Curve (AUC). Box-Att denotes box attention. Ins-Att denotes
instance attention

Method Training sets Devices Different variations UAV123

Box-Att Ins-Att AUC (%) P (%)

TrDiMP aSOT GOT-10k TrackingNet COCO 4*GTX1080Ti × × 67.0 87.6

Baseline 1*RTX2060 × × 65.9 87.2

Ours
√ × 66.7 87.9

× √
66.5 87.7√ √
67.6 89.2

Table 7 The ablation study on GOT-10k in terms of AO, SR0.5, and SR0.75, respectively. Box-Att denotes box attention. Ins-Att denotes instance
attention

Method Training sets Devices Different variations GOT-10k

Box-Att Ins-Att AO (%) SR0.5 (%) SR0.75 (%)

TrDiMP LaSOT GOT-10k TrackingNet COCO 4*GTX1080Ti × × 67.1 77.7 58.3

Baseline 1*RTX2060 × × 66.0 76.6 57.1

Ours
√ × 68.0 79.1 59.6

× √
67.6 78.8 58.5√ √
68.7 80.2 60.0

ter than SiamLA with 76.7% on SUC score and SRRTransT
with 76.0% on SUC score.

NfS [7]: NfS is a high frame rate dataset with a total of 380K
frames. It contains 100 challenging videos, and includes 30
FPS version and 240 FPS version. Here, NfS of the 30 FPS
version is used to evaluate MDTT. Table 5 shows the AUC
scores against recent trackers. MDTT has significant advan-
tages over many previous trackers, such as TransT [24],
CAJMU [56], CNNInMo [38], SiamBAN-RBO [37], and
STMTrack [34]. The proposed tracker is on par with the lat-
est tracker ToMP, and outperforms the baseline by 1.4% on
success.

Ablation study and analysis

The ablation study is performed on UAV123 and GOT-10k
to verify the effectiveness of box attention and instance
attention in the designed feature fusion network in MDTT.
Here, also four datasets, including COCO [28], GOT-10k [6],

LaSOT [8], and TrackingNet [9], are used to train TrDiMP
as the baseline on one Nvidia 2060 GPU.

Only using box attention. Here, the box attention is used
in the Encoder structure. The Decoder structure still uses
cross-attention. MDTT is evaluated in UAV123 and GOT-
10k to verify the effect of the multi-head box attention. As
shown in Tables 6 and 7, MDTT improves the success rate
by 0.8% and precision rate by 0.7% on UAV123 compared
to the baseline when only using box attention. On GOT-10k,
the AO rate increased by 1.9% compared with the baseline.
Experiment results show that box attention plays a key role
in the designed structure.

Only using instance attention. The original self-attention is
used in Encoder and the instance attention is used inDecoder.
The proposed tracker is evaluated in UAV123 and GOT-10k
to verify the influence of instance attention. As shown in
Tables 6 and 7, compared to the baseline when only using
the instance attention, MDTT improves the success rate by
0.6% and precision rate by 0.5% on UAV123. On GOT-10k,
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Table 8 Comparison about the speed, FLOPs, and Params

Tracker Year Backbone Image size Speed (fps) FLOPs (G) Params (M)

Template Search region

Ours ResNet-50 128×128 256×256 20 19.3 23.5

SiamRPN++ [13] 2019 ResNet-50 127×127 255×255 35.0 48.9 54.0

STARK-S50 [21] 2021 ResNet-50 128×128 320×320 42.2 10.5 23.3

Mixformer [72] 2022 MAM 128×128 320×320 25 23.04 –

TransT [24] 2021 ResNet-50 128×128 256×256 50 19.1 23

DualTFR [54] 2021 LAB 112×112 224×224 40 18.9 44.1

the AO rate increases by 1.5% compared with the baseline.
Compared with the method only with box attention, the per-
formance of instance attention is almost the same as using the
box attention. Nevertheless, it also shows the effectiveness
of instance attention.

Using both. Finally, both of box attention and instance atten-
tion are introduced to the baseline and the experiments are
conducted on UAV123 and GOT-10k. As shown in Tables
6 and 7, the proposed method improves the success rate by
1.7% and precision rate by 2.0% on UAV123 compared with
the baseline. On GOT-10k, the AO rate increases by 2.6%
compared with the baseline. The experimental results show
that using both of box attention and instance attention greatly
improved the performance of our tracker by 2.0%. In addi-
tion, the proposed method also shows better performance
compared to TrDiMP. It reaches 1.6% improvement of AO
in GOT-10k and 1.6% improvement of precision in UAV123
than TrDiMP.

Speed, FLOPs, and params

We use ResNet-50 as the backbone network of the proposed
trackerMDTT. The results in Table 8 refer to the official web-
site and the author’s personal homepage. As shown in Table
8, MDTT can run in real-time tracking speed. And the num-
ber of parameters does not increase significantly. In addition,
the FLOPs and Params of MDTT are less than SiamRPN++.
Although we use more advanced attention mechanisms in
the feature fusion network, the increasing in FLOPs and
Params was not significant. This indicates that using of the
box attention and instance attention allows the trackerMDTT
to explore structured spatial information and global informa-
tion at a lower cost.

Limitations and future works

Limitations. Although the proposed feature fusion network
is effective, we did not optimize the feature extraction net-
work. In Fig. 9, we show two tracking failure cases of the
proposed trackerMDTT on Bird1 and Car1 video sequences.

Fig. 9 Two cases of failure

The tracking results of MDTT and the corresponding ground
truths are shown in green and red boxes. As shown in Fig. 9,
when the proposed tracker deals with challenging, such as
out-of-view and motion blur, it fails to track the targets.
This illustrates that the designed feature fusion network is
not robust in capturing the appearance variations in some
scenes. The proposed tracker MDTT is not very robust in
dealingwith large appearance variations, such as out-of-view
or motion blur. Meanwhile, the proposed MDTT lacks a tar-
get template updating mechanism.

Future Works. The proposed tracker can capture the struc-
tured spatial information and global information well. How-
ever, when occurring the appearance variations of the target
disappearing or target blurred, the structure information cap-
tured by the tracker is not accurate, which leads to tracking
drift or failure. In the future, we will further optimize the fea-
ture extraction network to improve the feature representation
ability. On the other hand, we will design a target template
updating mechanism to capture the target appearance varia-
tions. In addition, we found that some statistical tests [71] can
be used to verify the tracking performance. In future study,
we will use some statistical tests for experimental compar-
isons to evaluate the tracking performance.
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Conclusion

A Transformer-based tracking framework with the multi-
scale feature fusion network is proposed. The box attention
can capturemore relevant information and the structured spa-
tial information, and gives more attention to the region of
interest in template images. Then, instance attention exploits
the temporal information. By integrating the box attention
and instance attention in Encoder–Decoder architecture, the
feature fusionnetworknot only focuses on the temporal infor-
mation across successive frames, but also focusesmore on the
ROI. And the network effectively improves the accuracy of
classification and regression. The ablation study on UAV123
andGOT-10k verifies the effectiveness of themulti-scale fea-
ture fusion network. Experimental results on six challenging
tracking datasets show that MDTT outperforms many recent
trackers.
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