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Abstract
Although the classification method based on the deep neural network has achieved excellent results in classification tasks, it
is difficult to apply to real-time scenarios because of high memory footprints and prohibitive inference times. Compared to
unstructured pruning, structured pruning techniques can reduce the computation cost of the model runtime more effectively,
but inevitably reduces the precision of the model. Traditional methods use fine tuning to restore model damage performance.
However, there is still a large gap between the pruned model and the original one. In this paper, we use progressive multi-level
distillation learning to compensate for the loss caused by pruning. Pre-pruning and post-pruning networks serve as the teacher
and student networks. The proposed approach utilizes the complementary properties of structured pruning and knowledge
distillation, which allows the pruned network to learn the intermediate and output representations of the teacher network,
thus reducing the influence of the model subject to pruning. Experiments demonstrate that our approach performs better
on CIFAR-10, CIFAR-100, and Tiny-ImageNet datasets with different pruning rates. For instance, GoogLeNet can achieve
near lossless pruning on the CIFAR-10 dataset with 60% pruning. Moreover, this paper also proves that using the proposed
distillation learning method during the pruning process achieves more significant performance gains than after completing
the pruning.

Keywords Deep neural network · Model compression · Network pruning · Knowledge distillation

Introduction

Deep neural networks (DNNs) based on deep learning have
shown impressive results on tasks such as image classifi-
cation [1–3], object detection [4–6], and natural language
processing [7]. With the development of network models,
it seems to be a new trend to build more sophisticated
networks to achieve higher accuracy [8, 9]. These large, com-
plex networks, however, do not work effectively on mobile
devices or Internet of Things devices. Therefore, alleviating
the model’s operational burdens while ensuring high accu-
racy is one of the main problems facing DNNs. Pruning,
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knowledge distillation, quantization, and lightweight net-
works have developed into available ways needed to reduce
the considerable computational resources required [10].

Pruning methods [11] allow the model to be simpler and
more efficient by eliminating redundant parameters or con-
nections through a certain measure, which is why pruning is
a popular technique. Although this technique can minimize
the size of the model while maintaining performance, pre-
cision loss is unavoidable in pruning networks. The goal of
knowledge distillation is to guide student learning through a
more robust teacher model, which enables more straightfor-
ward learners to have a certain degree of mastery over the
teacher’s skills [12]. This, however, requires the researchers
to manually select models for both teachers and students.

Knowledge distillation is an effective way to compen-
sate for the loss of precision due to pruning. However,
using knowledge distillation only after the pruning has been
completed, and not while it is in progress, may result in sub-
optimalmodel performance. In addition,most of the previous
studies have focused on the problem of how to improve the
performance of unstructured pruning [13, 14], while there
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have been few studies on structured pruning [15, 16]. In fact,
non-structured pruning needs special software libraries or
hardware to speed up the network model, whereas structured
pruning can compress the network without any help [17].
Therefore, it is more realistic to combine structured pruning
with distillation learning.

To solve the image classification problem, we present
a new method of progressive multi-level distillation for
structural pruning. In this paper, the original and pruned
networks can be considered teacher and student models,
thus avoiding the need for manual selection of teacher
models. Moreover, we take full advantage of the charac-
teristics of structured pruning, using each block of student
network pruning and its corresponding teacher block as
input for distillation loss based on feature representation. Its
respective blocks gradually increase as pruning progresses,
forming aprogressive distillation. In addition to feature learn-
ing, our proposed multi-level distillation learning includes
response representation-based learning, which allows stu-
dents tomimic the logits output of the teacher’smodel. In this
way, our approach can effectively reduce accuracy losses,
allowing the pruned network to minimize the size of the
model and the computational resources required within an
acceptable range of accuracy degradation.

The contributions of this paper are as follows.

1. This paper proposes a progressive multi-level distillation
learning approach for structured pruning networks. We
also validate the proposed method on different pruning
rates, pruningmethods, networkmodels, and three public
datasets (CIFAR-10/100, and Tiny-ImageNet).

2. Compared with other knowledge distillation methods,
our proposed method can better restore the structured
pruning network’s accuracy and improve themodel’s per-
formance after each pruning.

3. We conduct ablation study experiments further to under-
stand each loss’s contribution to our proposed frame-
work.

4. We show that distillation learning during pruning, rather
than after pruning, improves model performance without
additional inference time.

Related work

Network pruning

In earlier studies on pruning, the focus was more on the
granularity of the pruning of individual neurons, i.e., unstruc-
tured pruning. Optimal Brain Damage [18] and Optimal
Brain Surgeon [19] assessed the significance of weights
on the basis of information related to the second-order

derivatives of the loss function. More directly, Han et al.
[20] determined whether the parameters were significant
(insignificant) depending on whether they were larger (less)
than a given threshold. While leading to high compression
ratios, these methods only changed the weight matrix from
dense to sparse. Unstructured pruning would not yield the
expected results without specialized software libraries or
hardware to help calculate [17].

On the other hand, the pruning granularity of structured
pruning is an integrated structure. For example, Li et al.
[21] ranked the filters of each layer according to the sum
of the absolute filter weights (i.e., L1-norm) to determine
their importance. Zhuang et al. [22] considered sparse filters
non-critical, and removing unimportant filters by imposing a
scaling factor on the Batch Normalization (BN) was also an
efficient approach [23]. In a recent study, Lin et al. [24] con-
cluded that the rank of the feature map is more representative
of the amount of information contained in a filter, which can
lead to promising results.

Knowledge distillation

The initial knowledge distillation [25] argued that one-hot
labels limit the performance of the network model, and that
the soft labels of a more robust network would provide
more abundant information, which would allow the trans-
fer of knowledge from a larger teacher network to a smaller
one, thereby bridging the gap.Moreover, besides focusing on
extracting logits output knowledge, intermediate representa-
tions of knowledge within the teacher in the form of feature
maps can also be learned by the student model. FitNet [26]
first proposed distillation learning for a single intermediate
layer of knowledge. AT [27] extended this idea by extracting
multiple intermediate layers knowledge of the teacher model
to guide student learning, and by using L2-regularization
on each feature map to ensure consistent dimensions for
each pair of feature maps. However, knowledge from deeper
intermediate layers may provide students with overly stan-
dardized guidance, while knowledge from shallower layers
may not serve as a guiding role [12], which results in the inef-
ficient transfer of knowledge. In relation-based distillation
learning, knowledge transfer relationships between differ-
ent layers or data are further explored. Yim et al. [28] used
the relationship between layers of the teacher’s network as
the goal of student model learning. SP [29] aimed to pre-
serve the student’s pairwise similarity rather than mimicking
the teacher’s representation space, so that students could
better understand the relationships between instances. Fur-
thermore, in addition to the applications mentioned above
in classification tasks, knowledge distillation methods have
also proven their effectiveness in more complex tasks such
as object detection [30, 31].
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Model pruning and knowledge distillation are two inde-
pendent parts of model compression. How to combine these
two methods is one of the problems worth discussing. The
simplestway to combine them is to use knowledgedistillation
after the completion of pruning [15, 32]. However, we have
shown that the use of distillation learning in the fine-tuning
process of pruning can yield better results, as demonstrated in
“Two combined strategies”. Furthermore, it is also necessary
to validate the efficacy of distillation learning for structured
pruning networks on various model architectures and public
datasets.

Quantization

The memory footprints and inference speed of the model
can be effectively decreased by reducing the number of repre-
sentation bits of original weights. This technique is known as
quantization. Gong et al. [33] quantizing of the weights using
K-means clustering could compress the network model by a
factor of 8–16 with minimal or no performance impairment.
In addition, under exceptional cases, weights could be rep-
resented as one-bit data and constituted a binarized network
[34], significantly reducing computational consumption.Han
et al. [35] integrated pruning, quantization, andHoffman cod-
ing for deep model compression, providing a solution for its
deployment on devices with low energy consumption.

The proposedmethod

Figure 1 gives an overview of the progressive multi-level
distillation learning approach for structured pruning. In the
process of structured pruning, the original network and the
pruned network are treated as a teacher and student model,
respectively, and the proposed method is used in the fine-
tuning process. In contrast to using knowledge distillation
only after pruning is completed, our approach increases the
training time but improves the performance of the model.
Although the structure of the network model (i.e., the num-
ber of channels) is constantly changed with pruning, it has
been shown that we can improve the performance after every
pruning without the need to adjust the hyperparameters. The
algorithm flow is illustrated in Algorithm 1. The proposed
approach will be described in more detail in the following
sections.

Progressive feature distillation

As mentioned in “Knowledge distillation”, the intermedi-
ate knowledge from deep layers can easily lead to over-
normalization of the students’ models, and the intermediate
knowledge from shallow layers will not be able to provide
guidance. Therefore, effectively transferring the knowledge
of teachers’ models to students is a critical issue. As shown in
Fig. 2, unlike FitNet [26] and AT [27] for distillation learn-
ing of fixed intermediate blocks of knowledge, we subtle
used the characteristic of structured pruning in which each
block is pruned in turn, so that each block that is pruned
becomes a mentee. The corresponding unpruned block in the
teacher model becomes a mentor. Although there is a signif-
icant deviation between the pruned block and the original
one, the corresponding feature pairs can effectively trans-
fer intermediate knowledge to achieve better performance
recovery. As illustrated in Fig. 1, when pruning begins, the
number of pruned blocks is small, and only shallow, interme-
diate knowledge can be used as a guide. But as the number
of pruned blocks increases, the corresponding loss of infor-
mation increases, so that the deep intermediate knowledge
becomes useful, avoiding the over-standard of the student
model and compensating for the loss of representation power
caused by pruning.

In the pruning of the student model, the structured pruning
removes the non-significant channels, which leads to a dis-
crepancy in the number of channels between the twomodels.
Using an adaptation layer consisting of a pointwise convo-
lution (1 × 1 kernel) and a BN layer, we map the student
channels to their corresponding teacher counterparts, allow-
ing for more efficient knowledge extraction and reducing
differences in feature maps between the pruned and the orig-
inal model. We present the distillation losses of individual
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Fig. 1 An overview of the implementation of this method, which is
based on a progressive multi-level distillation method for structured
pruned networks. In the figure, the network is divided into three blocks,
and we take the network after pruning each block as a student and the
well-trained network as a teacher. Students #1 to #3 represent the stu-
dent models obtained after sequential pruning of the first module of

the teacher model to the third model. As pruning progresses, the inter-
mediate features of the extracted knowledge are increased, which can
maximize the utilization of pruning properties for distillation learning.
The adaptation layer makes the feature mapping dimension of the stu-
dent block the same as that of the teacher block. Note that a block can
contain more than one convolution layer and block
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Fig. 2 a and b denote the extraction of the single and all intermediate features by FitNet [26] and AT [27], respectively

blocks as follows,

lintermediate
block = Dp(Ft , r(Fs)), (1)

in which Fs is denoted as a feature map of the student model
and Ft is denoted as a feature map of its corresponding
teacher model. r(·) is a regressor consisting of a 1 × 1 con-
volutional layer and a BN layer. Dp is a measure of the L2

distance between student and teacher featuremaps. The over-
all distillation loss based on feature representation can be
expressed as follows,

L intermediate =
B∑

b=1

l intermediate
b , (2)

where B is the number of pruned blocks. This loss makes
it possible for the student model to learn the features of the
teacher model efficiently during the structure pruning pro-
cess.

Output logits distillation learning

Multi-level distillation learning has been shown to perform
better than single knowledge distillation methods for image
classification [36] and object detection [37]. Therefore, we
extend this concept to the pruning process in a reasonable
manner. Apart from the feature representation-based knowl-
edge distillation described above, our approach also includes
output logits mimicking distillation learning. It is also nec-
essary to mimic the softened teacher outputs in order to
learn more from the teacher model. We use the Kullback-
–Leibler Divergence loss between the student and teacher
outputs as the distillation loss for output imitation. The tem-
perature τ softens the outputs between each pair of students

and teachers. This method enables the student model to learn
the predictions of the high-performance teacher model more
efficiently, which can significantly reduce the classification
error rate. The softened softmax function and the overall out-
put imitation loss are shown below,

Xi j = exp
(
xi j/τ

)
∑C

j=1 exp
(
xi j/τ

) , (3)

Loutput =
S∑

i=1

C∑

j=1

XT
i j log

(
XT
i j/Xi j

)
, (4)

where xi j represents the student single output logit for the
j th class of the i th batch sample. Xi j and XT

i j represent the
softened softmax output of the student model and the teacher
model for the j th class of the i th batch sample, respectively.
The temperature hyperparameter T determines the softening
degree of output. XT

i j can also be calculated by Eq. (3).

Total loss

In addition to the feature and output imitation learning
described above, each student model is trained in a classical
cross-entropy function with ground-truth labels and student
output logits, which aids the model to learn better about a
given dataset, as shown in the following equation,

X̃i j = exp
(
xi j

)
∑C

j=1 exp
(
xi j

) , (5)

LCE =
S∑

i=1

∑C

j=1
−Yi j log

(
X̃i j

)
, (6)
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where X̃i j represents the student softmax output for the j th

class of the i th batch sample. Yi j denotes the ground-truth
label for the j th class of the i th batch sample.

Our proposed progressive multi-level distillation learning
is a weighted combination of these three losses mentioned
above, updating the parameters of the student network only
during the training phase to allow better accuracy recovery
of the pruned model, which is mathematically represented as
follows,

L = αL intermediate + βLoutput + γ LCE . (7)

We find the optimal values of weights by grid search can
be taken at α = 0.25, β = 0.1, and γ = 0.9, and use these
hyperparameters in all the subsequent experiments. Note that
the proposed method does not increase the inference time of
the model, and it is orthogonal to techniques such as quanti-
zation.

Experiments

The effectiveness of this method is evaluated by comparing
it with the existing methods. See “Implementation details”
for details of implementation. In “Main results”, the supe-
riority of our approach is demonstrated in publicly available
datasets. The effects of the ablation experiments and different
combination strategies will be discussed in later sections.

Implementation details

We perform L1-norm [21] pruning and HRank [24] pruning
for VGGnet-16 [38] and ResNet-56 [39], GoogleNet [40].
The location of our selected feature distillation blocks is
shown in Fig. 3. In addition, to enable a more comprehensive
assessment of the usability of the proposed methods, we also
validate it under different layer pruning rates: 60%, 70%,
and the appropriate pruning rate (APR) given by HRank,
as shown in Table 1. All experiments are performed using
Pytorch and on an NVIDIA GeForce GTX 1080Ti GPU.
The resource costs of the model at various pruning rates in
CIFAR-10 are shown in Table 2.

In order to demonstrate the effectiveness of the proposed
approach, we compare it with the following representative
approaches. Baseline is the result of pruning without the use
of a distillation method. Details are as follows.

(a) KD [25]: Makes use of KL divergence to close the soft-
max output of teacher and student, so as to transfer the
knowledge and reduce the classification error of the stu-
dent model.

(b) FitNet [26]: It extracts the knowledge of a single inter-
mediate layer of the well-trained teacher network, and

uses it to guide the students’ study. Knowledge distilla-
tion is accomplished by optimizing the distance between
student and teacher intermediate layer features.

(c) AT [27]: Improves student network performance by
transferring the attention map of the teacher network
so that the student can learn more useful information.

(d) SP [29]: It uses pairwise activation similarity in each
mini-batch to train students. Thus, it is possible to
encourage student models to maintain pairwise simi-
larity in their representation space without mimicking
the teacher’s representation space.

Main results

CIFAR-10/100

CIFAR-10 [41] has 50,000 training and 10,000 test images
divided into 10 classes.CIFAR-100 [41] has the samenumber
of training and test set images as CIFAR-10; the difference
is that these images are classified into 100 categories. To
obtain the pre-trained model to be pruned, we execute an
SGD optimizer with a momentum of 0.9, weight decay of
0.0005, initial learning rate of 0.1, training of 350 epochs, and
multiplying the learning rate by 0.1 at 175 and 262 epochs.
Batch size is set to 64 and fine tuning using 40 epochs after
each layer pruning with a learning rate of 0.01 and divided
by 10 at epochs 5, 10.

A more easily categorized CIFAR-10 dataset can be
obtained fromTable 3, as pruning can still cause performance
impairments to the model even at lower pruning rates. Com-
pared with other distillation methods, our method allows the
model to recover the maximum lost accuracy during the fine-
tuning phase. Especially on the GoogLeNet model with a
60% pruning rate, almost lossless pruning can be achieved
(only a 0.04% decrease in accuracy compared to teacher).
Our method improves only 0.28% accuracy on ResNet-56 at
a 60% pruning rate, but the other methods improve at most
0.11%. GoogLeNet achieves an optimal 0.93% improvement
at APR, while other methods achieve at most 0.4%. This
result provides evidence for our framework to better transfer
knowledge.

Figure 4 illustrates the time comparison of VGGNet with
different knowledge distillation approaches at a 60% pruning
rate in CIFAR-10. FitNet [26] is closer to running time than
the proposed approach, but it only improves the performance
by 0.15% (we have an improvement of 0.64%). SP [29] and
AT [27] do not effectively compensate for the loss of accu-
racy while consuming significant runtime resources. The KD
[25] method requires less runtime but has a relatively limited
precision recovery. Figure 4 shows that our approach can get
the best results with fewer resources.
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Table 1 The appropriate pruning
rate of models Models Appropriate pruning rate

VGGNet-16 [0.95], [0.5]*6, [0.9]*4, [0.8]*2

GoogLeNet [0.10], [0.80]*5, [0.85], [0.80]*3

ResNet-56 [0.1], [0.60]*35, [0.0]*2, [0.6]*6, [0.4]*3, [0.1], [0.4], [0.1], [0.4], [0.1], [0.4]

[·] represents the pruning rate at each layer and ∗n means the same pruning rate in the following n layers

Table 4 shows that on the more challenging to clas-
sify CIFAR-100 dataset, our method can achieve the most
considerable boost on VGGNet 2.09%—over baseline (at
60% pruning rate). While ResNet-56 has only 0.41% accu-
racy improvement at a 70% pruning rate, the other methods
only improve by 0.13% at most. Compared to the results in
CIFAR-10, the proposed method generally improve more on
CIFAR-100, which may explain the significant difference in
performance between the teacher and student models. How-
ever, as described in [42], it is not the case that the better the
teacher model performs, the better the distillation will be, as
we can observe on ResNet56 at a 70% pruning rate for both
datasets (note that the difference in performance between
teacher and baseline in CIFAR-100 is much larger).

Both Tables 3 and 4 show that our method achieves effec-
tive and superior results on different pruning rates, models,
and pruning methods and allows for continuous improve-
ment.

Tiny-imageNet

Tiny-ImageNet [43] consists of 100,000 training and 10,000
validation images containing 200 classes, and we resize its
input to 32 × 32. To obtain a pre-trained model, we use an
SGD optimizer with a momentum of 0.9 and a weight decay
rate of 0.0005, train 120 epochs with a learning rate of 0.01,
and multiply by 0.1 at epochs 30, 60, and 90. The fine-tuning
strategy after pruning is the same as CIFAR10/100.
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Table 2 Comparison of the
number of parameters and
FLOPs for the model at various
pruning rates in the CIFAR-10
dataset

Model Params FLOPs

VGGNet-16 Original 14.98 M 313.73 M

60% pruning rate 5.88 M 126.42 M

70% pruning rate 4.48 M 95.16 M

APR 2.79 M 109.09 M

GoogLeNet Original 6.15 M 1.52B

60% pruning rate 2.83 M 0.73B

70% pruning rate 2.33 M 0.59B

APR 1.77 M 0.45B

ResNet-56 Original 0.85 M 125.49 M

60% pruning rate 0.33 M 52.32 M

70% pruning rate 0.25 M 39.21 M

APR 0.47 M 62.72 M

Original represents the unpruned model

Table 3 The other methods are
compared with ours in the case of
different pruning rates on
CIFAR-10

Model VGGNet-16 GoogLeNet ResNet-56

Teacher 93.85 95.21 94.23

60%
pruning rate

Baseline 91.95 94.67 92.04

KD [25] 92.34 94.71 92.04

FitNet [26] 92.10 94.63 92.13

AT [27] 92.38 94.89 92.15

SP [29] 92.40 94.90 92.03

Ours 92.62 (+ 0.67) 95.17 (+ 0.5) 92.32 (+ 0.28)

70%
pruning rate

Baseline 91.10 94.16 90.97

KD [25] 90.95 94.45 91.09

FitNet [26] 91.06 94.32 88.56

AT [27] 91.07 94.49 91.30

SP [29] 91.22 94.51 91.35

Ours 91.55 (+ 0.45) 95.01 (+ 0.85) 91.49 (+ 0.52)

ARP Baseline 92.28 93.87 92.46

KD [25] 92.46 93.87 92.50

FitNet [26] 92.37 94.07 92.56

AT [27] 92.21 94.27 92.75

SP [29] 92.45 94.21 92.65

Ours 92.91 (+ 0.63) 94.80 (+ 0.93) 93.10 (+ 0.64)

We report the Top-1 accuracy (%) of the results. The teacher refers to the pre-trained model without pruning.
Baseline is the result obtained without the use of any distillation learning method

As shown in Table 5, on the larger dataset Tiny-IamgeNet,
some knowledge distillation methods do not work as well as
on CIFAR-10/100. However, our method still recovers the
lost performance, clearly observed at a 60% pruning rate.
The proposed method also obtains better results than other
methods at a 70%pruning rate, allowing themodel to recover
0.52% accuracy. This result proves that our method is still

effective, even when it is more difficult to classify in larger
datasets.

Improving each pruning

As described in the previous section, we show that our
approach achieves promising results at the end of pruning.
However, we hope it will improve the performance after
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Fig. 4 Time comparison of
various methods for VGGNet at
60% pruning rate of CIFAR-10.
Baseline indicates that no
knowledge distillation method is
used
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Table 4 The other methods are compared with ours in the case of different pruning rates on CIFAR-100

Model VGGNet-16 GoogLeNet ResNet-56

Teacher 73.95 80.49 73.34

60%
pruning rate

Baseline 69.22 78.42 67.43

KD [25] 69.55 77.73 67.67

FitNet [26] 69.54 78.09 67.45

AT [27] 70.93 78.92 67.88

SP [29] 70.10 78.91 67.59

Ours 71.31 (+ 2.09) 79.20 (+ 0.78) 68.04 (+ 0.61)

70%
pruning rate

Baseline 66.93 77.41 64.69

KD [25] 66.68 77.56 64.61

FitNet [26] 66.77 77.65 64.82

AT [27] 67.40 78.12 64.71

SP [29] 67.13 78.11 64.82

Ours 67.50 (+ 0.57) 78.33 (+ 0.92) 65.10 (+ 0.41)

ARP Baseline 67.44 75.60 70.39

KD [25] 67.72 75.62 70.44

FitNet [26] 67.30 75.84 71.09

AT [27] 67.63 76.12 71.10

SP [29] 66.76 76.13 71.20

Ours 68.10 (+ 0.66) 76.63 (+ 1.01) 71.62 (+ 1.23)

We report the Top-1 accuracy (%) of the results. The teacher refers to the pre-trained model without pruning. Baseline is the result obtained without
the use of any distillation learning method

123



5788 Complex & Intelligent Systems (2023) 9:5779–5791

)c()b()a(

1 2 3 4 5 6 7 8 9 10 11 12 13

66

68

70

72

74
60% pruning rate of baseline

60% pruning rate of ours

Teacher

A
cc

u
ra

cy
 (

%
)

Layer

1 2 3 4 5 6 7 8 9 10 11 12 13

62

64

66

68

70

72

74

A
cc

u
ra

cy
 (

%
)

Layer

 70% pruning rate of baseline

 70% pruning rate of ours

 Teacher

1 2 3 4 5 6 7 8 9 10 11 12 13

64

66

68

70

72

74

A
cc

u
ra

cy
 (

%
)

Layer

 Appropriate pruning rate of baseline

 Appropriate pruning rate of ours

 Teacher

Fig. 5 Performance change of VGGNet after pruning per layer on CIFAR-100. a, b and c represent the different pruning rates, respectively

)c()b()a(

1 2 3 4 5 6 7 8 9 10

78.0

78.5

79.0

79.5

80.0

80.5

81.0

A
cc

u
ra

cy
 (

%
)

Layer

 60% pruning rate of baseline

 60% pruning rate of ours

 Teacher

1 2 3 4 5 6 7 8 9 10

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

A
cc

u
ra

cy
 (

%
)

 70% pruning rate of baseline

 70% pruning rate of ours

 Teacher

1 2 3 4 5 6 7 8 9 10

75

76

77

78

79

80

81

A
cc

u
ra

cy
 (

%
)

Layer

 Appropriate pruning rate of baseline

 Appropriate pruning rate of ours

Teacher

Fig. 6 Performance change of GoogLeNet after pruning per layer on CIFAR-100. a, b and c represent the different pruning rates, respectively

each pruning. Figures 5, 6, and 7 illustrate the performance
changes of VGGNet-16, GoogLeNet, and ResNet-56 after
each pruning completion on the CIFAR-100 dataset with dif-
ferent pruning rates, respectively. The blue line indicates the
baseline accuracy, i.e., the results obtained without distil-
lation. The orange line shows the results obtained with the
proposed distillation. The dotted line represents the accuracy
of the teacher model without pruning. The pruning of each
layer in the convolution layer removes the irrelevant filters,
which leads to a lower precision. As shown in Figs. 5, 6 and 7,
ourmethod still works during the pruning process,which also
means that the proposed approach is still practical even if we
haven’t completed the pruning. Moreover, the performance
of the student is better than that of the teacher model during
the initial process of pruning proceeding, which also shows
the ability of our approach to combine structured pruning and
distillation learning methods better.

Ablation study

In order to further analyze the contribution of each of our
proposed losses, we add the ablated portions step by step
to observe their effects. We perform experiments related to
VGGNet-16with a 70%pruning rate onCIFAR-10, as shown

in Table 6, where baseline refers to the pruning process with-
out using our method. It can be observed that our proposed
method in “Progressive feature distillation” improves the
performance of the model to the maximum, and the proposed
progressive mechanism based on the pruning process further
improves the pruning process in terms of feature distillation.
In conclusion, the weighted combination of the proposed
components can be used to compensate for the loss of per-
formance due to pruning as much as possible.

Two combined strategies

The strategy of combining distillation learning and prun-
ing can be broadly divided into two categories: using after
pruning is completed and using during pruning, and Fig. 8
shows the performance and time comparison of our proposed
method on these two strategies. It has been shown that using
distillation in the pruning process leads to higher precision
recovery, but it also requires more training time. As a result
of our progressive distillation process, it takes less time and
achieves greater performance gains compared to AT [27].
Compared with the other one, FitNet [26], although it takes
less time to train, its accuracy improvement is not even as
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Fig. 7 Performance change of ResNet-56 after pruning per layer on CIFAR-100. a, b and c represent the different pruning rates, respectively

Table 5 The other methods are compared with ours in the case of dif-
ferent pruning rates on Tiny-ImageNet

Model GoogLeNet

Teacher 61.81

60%
pruning rate

Baseline 60.38

KD [25] 60.25

FitNet [26] 60.13

AT [27] 60.34

SP [29] 60.10

Ours 60.78 (+ 0.4)

70%
pruning rate

Baseline 58.53

KD [25] 58.38

FitNet [26] 58.44

AT [27] 58.54

SP [29] 58.64

Ours 59.05 (+ 0.52)

We report here the Top-1 accuracy (%) of the results. The teacher refers
to the pre-trainedmodel without pruning. Baseline is the result obtained
without the use of any distillation learning method

good as using our distillation method only after the com-
pletion of pruning. This result demonstrates that our method
can recover the decreased accuracy within a relatively short
training time without affecting the inference speed of the
model.

Conclusion and future work

We propose a progressive multi-level distillation learning
method to alleviate the accuracy drop by structured pruned
networks. This method takes advantage of the characteris-
tics of structured pruning, which allows the pruned network
to learn more information from the teacher network. Experi-
ments on different datasets, model architectures, and pruning
rates show that the proposed approach achieves better per-
formance than other approaches, and the accuracy of the
model is improved after every pruning. Further experiments
demonstrate that the proposed method in the pruning pro-
cess enhances the model performance more effectively. Our
approach has higher efficiency in training time and does
not influence inference time. Our study provides a valuable
approach to better integrate pruning and distillation learning.

In future work, we hope to extend this idea to more
complicated tasks such as object detection and semantic seg-
mentation. Furthermore, it is also worth exploring how to
combine better pruning, knowledge distillation, and other
compression techniques like quantization.

Table 6 Ablation experiments of the proposed method

Baseline + Feature
distillation

+ Progressive learning (“Progressive
feature distillation”)

+ Output distillation (“Output logits
distillation learning”)

Accuracy (%) 91.10 91.41 91.45 91.55

Diff – + 0.31 + 0.35 + 0.45
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Fig. 8 The performance and training time of the proposed approach are compared only when pruning is finished and during pruning. a, b, and
c represent the VGGNet-16, GoogLeNet, and ResNet-56 models under APR on CIFAR-100, respectively
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