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Abstract
The complex q-rung orthopair fuzzy (CQ-ROF) set can describe the complex uncertain information. In this manuscript, we
develop the Yager operational laws based on the CQ-ROF information and Yager t-norm and t-conorm. Furthermore, in
aggregating the CQ-ROF values, the power, averaging, and geometric aggregation operators have played a very essential and
critical role in the environment of fuzzy set. Inspired from the discussed operators, we propose the CQ-ROF power Yager
averaging (CQ-ROFPYA), CQ-ROF power Yager ordered averaging (CQ-ROFPYOA), CQ-ROF power Yager geometric
(CQ-ROFPYG), and CQ-ROF power Yager ordered geometric (CQ-ROFPYOG) operators. These operators are the modified
version of the Power, Yager, averaging, geometric, and the combination of these all based on fuzzy set (FS), intuitionistic FS,
Pythagorean FS, q-rung orthopair FS, complex FS, complex intuitionistic FS, and complex Pythagorean FS.Moreover, we also
discuss the main properties of the proposed operators. Additionally, we develop a multi-attribute decision-making (MADM)
method based on the developed operators. To show the supremacy and validity of the proposed method, the comparison
between the proposed method and some existing methods is done by some examples, and results show that the proposed
method is better than the others in terms of generality and effectiveness.

Keywords Complex q-rung orthopair fuzzy sets · Power aggregation operators · Yager t-norm and t-conorm · Multi-attribute
decision-making (MADM)
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Introduction

The MADM can be considered as a problem-evaluating
procedure to get the best one from the family of alterna-
tives. In traditional MADM, the attribute values can only be
expressed by real numbers, to describe the uncertain infor-
mation for the attribute values, Zadeh [1] proposed FS to
describe fuzzy information. Further, Atanassov [2] improved
the FS and proposed the IFS by adding one extra term
based on the FS, called falsity grade with a characteristic
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0 ≤ �
˜�
(x) + �

˜�
(x) ≤ 1. Moreover, Yager [3, 4] modi-

fied the IFSs and proposed the PFS and Q-ROFS with two

new characteristics: 0 ≤
(

�
˜�
(x)

)2 +
(

�
˜�
(x)

)2 ≤ 1 and

0 ≤
(

�
˜�
(x)

)� +
(

�
˜�
(x)

)� ≤ 1, � ≥ 1. The Q-ROFS is

a generalization of Fs, IFS, and PFS.When� = 2, Q-ROFS
is reduced to PFS; When� = 1, Q-ROFS is reduced to IFS;

and when� = 1 and�
˜�
(x) = 0, Q-ROFS is reduced to FS.

Now, the Q-ROFS, PFS, IFS, and FS have received a lot of
attention from various individuals because of their structure
and characteristics.

Because the Q-ROFS, PFS, IFS, and FS can only express
one-dimensional information, in some real decision prob-
lems, for example, to describe the amplitude and phase of a
variable, they cannot describe this problem. So, it is neces-
sary to add another dimensional information based on them.
Therefore, Ramot et al. [5] extended the range of FS by
utilizing the unit disc instead of the unit interval and pro-
posed the CFS. The truth grade in CFS is expressed by a
complex number where the values of real and imaginary
parts are contained in the unit interval. The FS is a spe-
cial case of the CFS. Furthermore, Alkouri and Salleh [6]
proposed the CIFS which is massively modified from the
FSs, and IFSs. In CFSs, they meet the characteristics 0 ≤
�r̃ p(x)+�r̃ p(x) ≤ 1 and 0 ≤ �

˜i p(x)+�
˜i p(x) ≤ 1. Further,

Ullah et al. [7] and Liu et al. [8, 9]modified the CIFS and pro-
posed the CPFS and CQ-ROFS with the characteristics: 0 ≤
�r̃ p

2
(x) + �r̃ p

2
(x) ≤ 1, 0 ≤ �

˜i p

2
(x) + �

˜i p

2
(x) ≤ 1 and

0 ≤ �r̃ p
�
(x)+�r̃ p

�
(x) ≤ 1, 0 ≤ �

˜i p

�
(x)+�

˜i p

�
(x) ≤ 1,

� ≥ 1. The FSs, IFSs, PFSs, Q-ROFSs, CFSs, CIFSs, and
CPFSs are the special case of the CQ-ROFS.

Literature review

The PA operator was proposed by Yager [10] in 2001, which
is the combination of two different structures such as power
weighting and aggregation operators, to aggregate the finite
family of attribute values into a singleton value. In addition,
Yager [11] proposed Yager t-norm and t-conorm, which is
a very famous and reliable operational laws. Furthermore,
Xu [12] developed the simple averaging AOs for IFS. Xu
and Yager [13] presented the geometric AOs for IFS. Xu
[14] developed the PA operators for IFS. Rahman et al. [15]
proposed the geometric AOs for PFS.Wei and Lu [16] devel-
oped the PA operators for PFS. Shahzadi and Akram [17]
proposed the Yager aggregation operators for PFS. Liu and
Wang [18] developed simple AOs for Q-ROFS. Riaz et al.
[19] derived the geometric AOs for Q-ROFSs. Akram and
Shahzadi [20] developed the Yager aggregation operators
for Q-ROFS. Garg and Rani [21, 22] developed the AOs for
CIFS and the geometric AOs for CIFSs. Rani and Garg [23]

examined the PA operators based on the CIFS. Moreover,
Akramet al. [24] developed the novelYagerAOsbased on the
CPFSs. Garg et al. [25] proposed the PA operators based on
the CQ-ROF information. Further, some scholars developed
some new and different types of operators based on prevail-
ing concepts, for example, Senapati et al. [26] developed
the Aczel-Alsina geometric AOs under the IFS. Further-
more, Garg et al. [27] examined the novel combination of
Schweizer-Sklar and prioritized AOs for IFSs. Azeem et al.
[28] evaluated the Einstein AOs for the complex IFSs. Mah-
mood and Ali [29] combined the Aczel-Alsina and power
aggregation operators based on the complex IFSs, Senapati
et al. [30] developed the power Aczel-Alsina AOs for IFS.
Moreover, Jin et al. [31] proposed Aczel-Alsina AOs for the
complex PFS and Liu et al. [32] exposed the Archimedean
AOs for complexPFSs.Abrief analysis of someFSs is shown
in Table 1.

Two types of symbols are used in Table 1, such as
√

and
×, which is represented the yes and no. From the data in Table
1, it is clear that the CQ-ROFS is a very complete and reliable
structure because it contained the truth grade, falsity grade,
phase term, and power conditions as well. Therefore, based
on the CQ-ROFS, we develop some powerful aggregation
operators.

Motivation and advantages

Now, we observed that the PA operators based on Yager
t-norm and t-conorm for CQ-ROF information was not
researched. However, it is very clear that the CQ-ROFSs are
more general than some existing fuzzy sets, such as FSs,
IFSs, PFSs, Q-ROFSs, CFSs, CIFSs, and CPFSs, and the PA
operators based on Yager t-norm and t-conorm are more gen-
eral than some existing averaging and geometric AOs, it is
necessary to propose some new PAs for CQ-ROFSs based on
Yager t-norm and t-conorm, and then to develop the MADM
methods based on the proposed operators to solve real-life
decision problems. The major advantages of the proposed
operators are explained as

1. When � = 2 in CQ-ROFSs, then all the proposed oper-
ators are converted into the ones based on the CPFSs.

2. When � = 1 in CQ-ROFSs, then all the proposed oper-
ators are converted into the ones based on the CIFSs.

3. When �i p−z = �ĩ p−z = 0 in CQ-ROFSs, then all the
proposed operators are converted into the ones based on
the Q-ROFSs.

4. When �i p−z = �ĩ p−z = 0 and � = 2 in CQ-ROFSs,
then all the proposed operators are converted into the
ones based on the PFSs.
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Table 1 The characteristics for
some FSs Some Fuzzy sets Truth grade Falsity grade Phase term Power full condition

FSs
√ × × ×

IFSs
√ √ × ×

PFSs
√ √ × ×

Q-ROFSs
√ √ × √

CFSs
√ × √ ×

CIFSs
√ √ √ ×

CPFSs
√ √ √ ×

CQ-ROFSs
√ √ √ √

5. When �i p−z = �ĩ p−z = 0 and � = 1 in CQ-ROFSs,
then all the proposed operators are converted into the
ones based on the IFSs.

Furthermore, the power averaging\geometric aggregation
operators, averaging/geometric aggregation operators, and
Yager averaging\geometric aggregation operators based on
the FSs, IFSs, PFSs, Q-ROFSs, CFSs, CIFSs, CPFSs, and
CQ-ROFSs are the particular cases of the developed opera-
tors, which can give a big and wide space to make a valuable
decision for decision-makers.

Main contributions

The main contributions of this study are shown as follows:

1. We develop the main operational laws for the CQ-ROF
values based on the Yager t-norm and t-conorm such as
Yager operational laws.

2. We propose the CQ-ROFPYA operator and CQ-
ROFPYOA operator based on the CQ-ROF information
and power Yager averaging operators.

3. We propose the CQ-ROFPYG operator and CQ-
ROFPYOG operator based on the CQ-ROF information
and power Yager geometric operators.

4. We also explore the major properties of the proposed
operators such as idempotency,monotonicity, andbound-
edness.

5. We develop the MADM method based on the proposed
operators with the CQ-ROF information.

6. Compare the proposed operators with some existing
operators and show the effectiveness of the developed
approaches.
The main contributes of the proposed works are stated in
Fig. 1.

The main construct of this paper is shown as: In “Pre-
liminaries”, we introduce the basic concepts and theories
such as the PA operator, CQ-ROFS and their operational
laws, and Yager t-norm and t-conorm. In “Power Yager

aggregation operators for CQ-ROFNs” section, we propose
the Yager operational laws for CQ-ROFNs. Moreover, we
develop the CQ-ROFPYA, CQ-ROFPYOA, CQ-ROFPYG,
and CQ-ROFPYOG operators, and discuss their fundamen-
tal properties of them. In “MADM methods based on the
proposed operators” section, we propose a MADM method
based on the proposed operators for CQ-ROF information.
In “Comparative analysis” section, we compare the derived
operators with various existing operators, and some practical
examples are used to show the effectiveness of the proposed
approaches. Concluding remarks are given in “Conclusion”
section.

Preliminaries

For convenience, the parameters and variables used in this
manuscript are briefly explained in Table 2.

Definition 1 [10] For the collection of positive integers ˜�z ,
z = 1, 2, . . . , p, the PA operator is given by:

PA
(

˜�1, ˜�2, . . . , ˜� p
) =

∑p
z=1

(

1 +◦ F
(

˜�z
))

˜�z
∑p

z=1

(

1 +◦ F
(

˜�z
)) , (1)

Where
(

˜�z
) = ∑p

z=1
z �=y

SuP
(

˜�z , ˜� y
)

, which should hold the

following axioms:

SuP
(

˜�z , ˜� y
) ∈ [0, 1], (2)

SuP
(

˜�z , ˜� y
) = SuP

(

˜� y, ˜�z
)

, (3)

SuP
(

˜�z , ˜� y
) ≥ SuP

(

˜�a, ˜�b
)

If
∣

∣˜�z − ˜� y
∣

∣ ≤ ∣

∣˜�a − ˜�b
∣

∣.

(4)

Definition 2 [9] The CQ-ROF set ˜� based on universal set
X is defined by:

˜� =
{(

�
˜�
(x), �

˜�
(x)

)

: x ∈ X
}

. (5)
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Fig. 1 The main contributes of
the proposed works 1. We develop the Yager operational laws for the complex q-rung orthopair fuzzy values. 

2. We propose the Yager averaging and geometric aggregation operators for the CQ-ROFSs. 

3. We develop a MADM technique based on the proposed operators. 

4. We do the comparative analysis between proposed work and existing works. 

5. We discuss some remarks. 

Table 2 The meanings of all contained parameters and variables

Symbol Meaning Symbol Meaning Symbol Meaning

˜�z Positive integers X Universal set � ≥ 1 Positive number
˜� CQ-ROF set x Element of the universal set ∇SV Score values

�
˜�

Complex truth grade �r̃ p The real part of truth grade �
˜i p The imaginary part of truth grade

�
˜�

Complex falsity grade �r̃ p The real part of falsity grade �
˜i p The imaginary part of falsity grade

�rg Complex neutral grade �rp The real part of the neutral grade �i p The imaginary part of the neutral
grade

∇AV Accuracy values ϕ Positive number

The �
˜�
(x) =

(

�r̃ p(x), �i p(x)
)

and �
˜�
(x) =

(

�r̃ p(x), �
˜i p(x)

)

are called a truth or positive and falsity

or negative grades with 0 ≤ �r̃ p
�
(x) + �r̃ p

�
(x) ≤ 1

and 0 ≤ �
˜i p

�
(x) + �

˜i p

�
(x) ≤ 1, � ≥ 1. The simplest

form of refusal or neutral grade is expressed by: �rg(x) =
(

�rp(x), �i p(x)
) =

(

(

1 −
(

�r̃ p
�
(x) + �r̃ p

�
(x)

)) 1
�

,

(

1 −
(

�
˜i p

�
(x) + �

˜i p

�
(x)

)) 1
�

)

. Moreover, a CQ-ROFN

is expressed by˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

,

z = 1, 2, . . . , p.

Definition 3 [8] For any two CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, the Alge-

braic operational laws of them are defined by:

˜�1 ⊕ ˜�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(

�
˜rp−1

� + �
˜rp−2

� − �
˜rp−1

�
�

˜rp−2

�
) 1

�

,

(

�
˜i p−1

� + �
˜i p−2

� − �
˜i p−1

�
�

˜i p−2

�
) 1

�

)

,
(

�
˜rp−1�˜rp−2, �

˜i p−1�˜i p−2

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (6)

˜�1 ⊗ ˜�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

�
˜rp−1�˜rp−2, �

˜i p−1�˜i p−2

)

,
(

(

�
˜rp−1

� + �
˜rp−2

� − �
˜rp−1

�
�

˜rp−2

�
) 1

�

,

(

�
˜i p−1

� + �
˜i p−2

� − �
˜i p−1

�
�

˜i p−2

�
) 1

�

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (7)

ϕ˜�1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

(

1 −
(

1 − �r̃ p−1

�
)ϕ)

1
�

,

(

1 −
(

1 − �ĩ p−1

�
)ϕ)

1
�

)

,
(

�r̃ p−1

ϕ
, �ĩ p−1

ϕ)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

˜�
ϕ
1 =

⎛

⎜

⎜

⎝

(

�
˜rp−1

ϕ
, �

˜i p−1

ϕ)

,
(

(

1 −
(

1 − �
˜rp−1

�
)ϕ)

1
�

,

(

1 −
(

1 − �
˜i p−1

�
)ϕ)

1
�

)

⎞

⎟

⎟

⎠

. (9)

Definition 4 [8] For any two CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, the score

and accuracy values of them are defined as

∇SV
(

˜�z
) = 1

2

(

�r̃ p−z

� + �i p−z
� − �r̃ p−z

� − �ĩ p−z

�
)

∈ [−1, 1], (10)

∇AV
(

˜�z
) = 1

2

(

�r̃ p−z

� + �i p−z
� + �r̃ p−z

� + �ĩ p−z

�
)

123



Complex & Intelligent Systems (2023) 9:5949–5963 5953

∈ [0, 1]. (11)

For Eq. (10) and Eq. (11), we can get the comparison
method for any two CQ-ROFNs

(1) when ∇SV
(

˜�1
)

> ∇SV
(

˜�2
) ⇒ ˜�1 > ˜�2;

(2) when ∇SV
(

˜�1
)

< ∇SV
(

˜�2
) ⇒ ˜�1 < ˜�2;

(3) when ∇SV
(

˜�1
) = ∇SV

(

˜�2
) ⇒ when ∇AV

(

˜�1
)

>

∇AV
(

˜�2
) ⇒ ˜�1 > ˜�2;when∇AV

(

˜�1
)

< ∇AV
(

˜�2
) ⇒

˜�1 < ˜�2.

Further, we introduce Yager’s t-norm and t-conorm (pro-
posed by Yager [11]) which are stated as

x ⊕ y = min

(

1,
(

x� + y�
)

1
�

)

, � ≥ 1, (12)

x ⊗ y = 1 − min

(

1,
(

(1 − x)� + (1 − y)�
)

1
�

)

, � ≥ 1.

(13)

Power Yager aggregation operators
for CQ-ROFNs

In this subsection, we will develop the CQ-ROFPYA, CQ-
ROFPYOA, CQ-ROFPYG, and CQ-ROFPYOG operators,
and discuss their fundamental properties.

Definition 5 For any family of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, and

ϕ > 0, Yager’s operational laws of them are defined as

˜�1 ⊕ ˜�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

�
˜rp−1

�� + �
˜rp−2

��
) 1

�

))
1
�

,

(

min

(

1,

(

�
˜i p−1

�� + �
˜i p−2

��
) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

(

1 − �
˜rp−1

�
)�

+
(

1 − �
˜rp−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

(

1 − �
˜i p−1

�
)�

+
(

1 − �
˜i p−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(14)

˜�1 ⊗ ˜�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

(

1 − �
˜rp−1

�
)�

+
(

1 − �
˜rp−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

(

1 − �
˜i p−1

�
)�

+
(

1 − �
˜i p−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎝

(

min

(

1,

(

�
˜rp−1

�� + �
˜rp−2

��
) 1

�

))
1
�

,

(

min

(

1,

(

�
˜i p−1

�� + �
˜i p−2

��
) 1

�

))
1
�

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(15)

ϕ˜�1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

⎛

⎝min

⎛

⎝1,

(

ϕ

(

�
r̃ p−1

��
)) 1

�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝min

⎛

⎝1,

(

ϕ

(

�
ĩ p−1

��
)) 1

�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝
1 − min

⎛

⎜

⎝
1,

(

ϕ

(

1 − �
r̃ p−1

�
)�

) 1
�

⎞

⎟

⎠

⎞

⎟

⎠

1
�

,

⎛

⎜

⎝
1 − min

⎛

⎜

⎝
1,

(

ϕ

(

1 − �
ĩ p−1

�
)�

) 1
�

⎞

⎟

⎠

⎞

⎟

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (16)

˜�
ϕ
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝
1 − min

⎛

⎜

⎝
1,

(

ϕ

(

1 − �
r̃ p−1

�
)�

) 1
�

⎞

⎟

⎠

⎞

⎟

⎠

1
�

,

⎛

⎜

⎝
1 − min

⎛

⎜

⎝
1,

(

ϕ

(

1 − �
ĩ p−1

�
)�

) 1
�

⎞

⎟

⎠

⎞

⎟

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎝

⎛

⎝min

⎛

⎝1,

(

ϕ

(

�
r̃ p−1

��
)) 1

�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝min

⎛

⎝1,

(

ϕ

(

�
ĩ p−1

��
)) 1

�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (17)

Definition 6 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

CQ-ROFPYA operator is defined by:

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜� p
) = ℵ1˜�1 ⊕ ℵ2˜�2⊕, . . . , ⊕ℵp˜� p

= ⊕p
z=1ℵz˜�z , (18)

where

ℵz =
(

1 +◦ F
(

˜�z
))

∑p
z=1

(

1 +◦ F
(

˜�z
)) , (19)

where ◦F
(

˜�z
) = ∑p

z=1
z �=y

SuP
(

˜�z , ˜� y
)

, SuP
(

˜�z , ˜� y
) = 1−

Dis
(

˜�z , ˜� y
)

, and

Dis
(

˜�z , ˜� y
) = 1

4

(∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

+
∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

)

,

(20)

which should hold the following axioms:

SuP
(

˜�z , ˜� y
) ∈ [0, 1], (21)

SuP
(

˜�z , ˜� y
) = SuP

(

˜� y, ˜�z
)

, (22)
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SuP
(

˜�z , ˜� y
) ≥ SuP

(

˜�a, ˜�b
)

If
∣

∣˜�z − ˜� y
∣

∣ ≤ ∣

∣˜�a − ˜�b
∣

∣.

(23)

Theorem 1 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

final value of Eq. (18) is also a CQ-ROFN, such as:

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜� p
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑p
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑p
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (24)

Obviously, Eq. (24) is the modified version of the power,
Yager, and power Yager aggregation operators for FSs, IFSs,
PFSs, Q-ROFSs, CFSs, CIFSs, CPFSs, and CQ-ROFSs.

Proof We can prove it by mathematical induction for p.

(1) When p = 2 in Eq. (24), we have

ℵ1˜�1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

ℵ1

(

�
˜rp−1

��
)) 1

�

))
1
�

,

(

min

(

1,

(

ℵ1

(

�
˜i p−1

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

ℵ1

(

1 − �
˜rp−1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

ℵ1

(

1 − �
˜i p−1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

ℵ2˜�2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

ℵ2

(

�
˜rp−2

��
)) 1

�

))
1
�

,

(

min

(

1,

(

ℵ2

(

�
˜i p−2

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

ℵ2

(

1 − �
˜rp−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

ℵ2

(

1 − �
˜i p−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

CQ − ROFPY A
(

˜�1, ˜�2
) = ⊕2

z=1ℵz˜�z = ℵ1˜�1 ⊕ ℵ2˜�2

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

ℵ1

(

�
˜rp−1

��
)) 1

�

))
1
�

,

(

min

(

1,

(

ℵ1

(

�
˜i p−1

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

ℵ1

(

1 − �
˜rp−1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

ℵ1

(

1 − �
˜i p−1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊕

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

ℵ2

(

�
˜rp−2

��
)) 1

�

))
1
�

,

(

min

(

1,

(

ℵ2

(

�
˜i p−2

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

ℵ2

(

1 − �
˜rp−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

ℵ2

(

1 − �
˜i p−2

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑2
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑2
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑2
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑2
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

i.e., Eq. (24) is held when p = 2.
(2) Suppose whenp = k, Eq. (24) is held, then we have:

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜�k
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Then, when p = k + 1, we have:

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜�k+1
)

= ℵ1˜�1 ⊕ ℵ2˜�2⊕, . . . , ⊕ℵk˜�k

⊕ ℵk+1˜�k+1
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= ⊕k
z=1ℵz˜�z ⊕ ℵk+1˜�k+1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊕ ℵk+1˜�k+1

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑k
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑k
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⊕

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

ℵk+1

(

�
˜rp−k+1

��
)) 1

�

))
1
�

,

(

min

(

1,

(

ℵk+1

(

�
˜i p−k+1

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

ℵk+1

(

1 − �
˜rp−k+1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

ℵk+1

(

1 − �
˜i p−k+1

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑k+1
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑k+1
z=1 ℵz

(

�
˜i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑k+1
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑k+1
z=1 ℵz

(

1 − �̃
i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

i.e., when p = k + 1, Eq. (24) is also held.
(3) Based on (1) and (2), we can get the conclusion when

p is any positive value, Eq. (24) is held.

Furthermore, we discuss their valuable and feasible prop-
erties such as idempotency, monotonicity, and boundedness.

Property 1 (idempotency): When ˜�z = ˜� =
((

�r̃ p, �i p

)

,
(

�r̃ p, �
˜i p

))

, z = 1, 2, . . . , p, then

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜� p
) = ˜�. (25)

Property 2 (monotonicity): When ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

≤ ˜�
′ ′
z =

((

�r̃ p−z

′ ′
, �i p−z

′ ′)

,

(

�r̃ p−z

′ ′
, �ĩ p−z

′ ′))

, z = 1, 2,

. . . , p, then

CQ − ROFPY A
(

˜�1, ˜�2, . . . , ˜� p
)

≤ CQ − ROFPY A
(

˜�
′ ′
1 , ˜�

′ ′
2 , . . . , ˜�

′ ′
p

)

. (26)

Property 3 (boundedness): When ˜�−
z =

((

min
z

�r̃ p−z , min
z

�i p−z

)

,

(

max
z

�r̃ p−z , max
z

�ĩ p−z

))

and ˜�+
z =

((

max
z

�r̃ p−z , max
z

�i p−z

)

,

max
z

�i p−z

)

,

(

min
z

�r̃ p−z , min
z

�ĩ p−z

))

, z = 1, 2, . . . , p,

then

˜�
−
z ≤ CQ − ROFPY A

(

˜�1, ˜�2, . . . , ˜� p
) ≤ ˜�

+
z . (27)

Definition 7 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

CQ-ROFPYOA operator is defined by:

CQ − ROFPY OA
(

˜�1, ˜�2, . . . , ˜� p
)

= ℵ1˜�o(1) ⊕ ℵ2˜�o(2)⊕, . . . , ⊕ℵp˜�o( p)

= ⊕p
z=1ℵz˜�o(z). (28)

With o(z) ≤ o(z − 1), where

ℵz =
(

1 +◦ F
(

˜�z
))

∑p
z=1

(

1 +◦ F
(

˜�z
)) , (29)

where ◦F
(

˜�z
) = ∑p

z=1
z �=y

SuP
(

˜�z , ˜� y
)

, SuP
(

˜�z , ˜� y
) = 1−

Dis
(

˜�z , ˜� y
)

, and

Dis
(

˜�z , ˜� y
) = 1

4

(∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

+
∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

)

,

(30)

which should hold the following axioms:

SuP
(

˜�z , ˜� y
) ∈ [0, 1], (31)
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SuP
(

˜�z , ˜� y
) = SuP

(

˜� y, ˜�z
)

, (32)

SuP
(

˜�z , ˜� y
) ≥ SuP

(

˜�a, ˜�b
)

If
∣

∣˜�z − ˜� y
∣

∣ ≤ ∣

∣˜�a − ˜�b
∣

∣.

(33)

Theorem 2 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

final value of Eq. (28) is also a CQ-ROFN, such as:

CQ − ROFPY OA
(

˜�1, ˜�2, . . . , ˜� p
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎝

(

min

(

1,

(

∑p
z=1 ℵz

(

�
˜rp−o(z)

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑p
z=1 ℵz

(

�
˜i p−o(z)

��
)) 1

�

))
1
�

⎞

⎟

⎠
,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �
˜rp−o(z)

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �
˜i p−o(z)

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (34)

Obviously, Eq. (34) is the modified version of the power,
Yager, and power Yager aggregation operators for FSs, IFSs,
PFSs, Q-ROFSs, CFSs, CIFSs, CPFSs, and CQ-ROFSs. Fur-
thermore, we discuss their valuable and feasible properties
such as idempotency, monotonicity, and boundedness.

Property 4 (idempotency): When ˜�z = ˜� =
((

�r̃ p, �i p

)

,
(

�r̃ p, �
˜i p

))

, z = 1, 2, . . . , p, then

CQ − ROFPY OA
(

˜�1, ˜�2, . . . , ˜� p
) = ˜�. (35)

Property 5 (monotonicity): When ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

≤ ˜�
′ ′
z =

((

�r̃ p−z

′ ′
, �i p−z

′ ′)

,

(

�r̃ p−z

′ ′
, �ĩ p−z

′ ′))

, z = 1, 2,

. . . , p, then

CQ − ROFPY OA
(

˜�1, ˜�2, . . . , ˜� p
)

≤ CQ − ROFPY OA
(

˜�
′ ′
1 , ˜�

′ ′
2 , . . . , ˜�

′ ′
p

)

. (36)

Property 6 (boundedness): When ˜�−
z =

((

min
z

�r̃ p−z , min
z

�i p−z

)

,

(

max
z

�r̃ p−z , max
z

�ĩ p−z

))

and ˜�+
z =

((

max
z

�r̃ p−z , max
z

�i p−z

)

,
(

min
z

�r̃ p−z , min
z

�ĩ p−z

))

, z = 1, 2, . . . , p, then

˜�
−
z ≤ CQ − ROFPY OA

(

˜�1, ˜�2, . . . , ˜� p
) ≤ ˜�

+
z . (37)

Definition 8 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

CQ-ROFPYG operator is defined by:

CQ − ROFPYG
(

˜�1, ˜�2, . . . , ˜� p
)

= ˜�
ℵ1
1 ⊗ ˜�

ℵ2
2 ⊗, . . . , ⊗˜�

ℵp
p = ⊗p

z=1
˜�

ℵz
z , (38)

where ℵz =
(

1+◦F
(

˜�z
))

∑p
z=1

(

1+◦F
(

˜�z
)) , ◦F

(

˜�z
) =

∑p
z=1
z �=y

SuP
(

˜�z , ˜� y
)

, SuP
(

˜�z , ˜� y
) = 1 −

Dis
(

˜�z , ˜� y
)

, and Dis
(

˜�z , ˜� y
) = 1

4

(∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣

+
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣ +
∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

)

,

which should hold the following axioms:(1)SuP
(

˜�z , ˜� y
) ∈

[0, 1],(2)SuP
(

˜�z , ˜� y
) = SuP

(

˜� y, ˜�z
)

and
(3)SuP

(

˜�z , ˜� y
) ≥ SuP

(

˜�a, ˜�b
)

If
∣

∣˜�z − ˜� y
∣

∣ ≤
∣

∣˜�a − ˜�b
∣

∣.

Theorem 2 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

final value of Eq. (38) is also a CQ-ROFN, such as:

CQ − ROFPYG
(

˜�1, ˜�2, . . . , ˜� p
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �
˜rp−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

,

⎛

⎝1 − min

⎛

⎝1,

(

∑p
z=1 ℵz

(

1 − �
˜i p−z

�
)�

) 1
�

⎞

⎠

⎞

⎠

1
�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎝

(

min

(

1,

(

∑p
z=1 ℵz

(

�
˜rp−z

��
)) 1

�

))
1
�

,

(

min

(

1,

(

∑p
z=1 ℵz

(

�̃
i p−z

��
)) 1

�

))
1
�

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (39)

Obviously, Eq. (39) is the modified version of the power,
Yager, and power Yager aggregation operators for FSs, IFSs,
PFSs, Q-ROFSs, CFSs, CIFSs, CPFSs, and CQ-ROFSs. Fur-
thermore, we discuss their valuable and feasible properties
such as idempotency, monotonicity, and boundedness.

Property 7 (idempotency): When ˜�z = ˜� =
((

�r̃ p, �i p

)

,
(

�r̃ p, �
˜i p

))

, z = 1, 2, . . . , p, then

CQ − ROFPYG
(

˜�1, ˜�2, . . . , ˜� p
) = ˜�. (40)

Property 8 (monotonicity): When ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

≤ ˜�
′ ′
z =

((

�r̃ p−z

′ ′
, �i p−z

′ ′)

,

(

�r̃ p−z

′ ′
, �ĩ p−z

′ ′))

, z = 1, 2,

. . . , p, then

CQ − ROFPYG
(

˜�1, ˜�2, . . . , ˜� p
)
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≤ CQ − ROFPYG
(

˜�
′ ′
1 , ˜�

′ ′
2 , . . . , ˜�

′ ′
p

)

. (41)

Property 9 (boundedness): When ˜�−
z =

((

min
z

�r̃ p−z , min
z

�i p−z

)

,

(

max
z

�r̃ p−z , max
z

�ĩ p−z

))

and ˜�+
z =

((

max
z

�r̃ p−z , max
z

�i p−z

)

,
(

min
z

�r̃ p−z , min
z

�ĩ p−z

))

, z = 1, 2, . . . , p, then

˜�
−
z ≤ CQ − ROFPYG

(

˜�1, ˜�2, . . . , ˜� p
) ≤ ˜�

+
z . (42)

Definition 9 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

CQ-ROFPYOG operator is defined by:

CQ − ROFPY OG
(

˜�1, ˜�2, . . . , ˜� p
)

= ˜�
ℵ1
o(1) ⊗ ˜�

ℵ2
o(2)⊗, . . . , ⊗˜�

ℵp
o( p)

= ⊗p
z=1

˜�
ℵz
o(z). (43)

With o(z) ≤ o(z − 1), where ℵz =,
◦F

(

˜�z
) = ∑p

z=1
z �=y

SuP
(

˜�z , ˜� y
)

, SuP
(

˜�z , ˜� y
) =

1−Dis
(

˜�z , ˜� y
)

, and Dis
(

˜�z , ˜� y
) = 1

4

(∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣

+
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣ +
∣

∣

∣�r̃ p−z − �r̃ p−y

∣

∣

∣ +
∣

∣

∣�ĩ p−z − �ĩ p−y

∣

∣

∣

)

,

which should hold the following axioms:SuP
(

˜�z , ˜� y
) ∈

[0, 1],SuP
(

˜�z , ˜� y
) = SuP

(

˜� y, ˜�z
)

and SuP
(

˜�z , ˜� y
) ≥

SuP
(

˜�a, ˜�b
)

If
∣

∣˜�z − ˜� y
∣

∣ ≤ ∣

∣˜�a − ˜�b
∣

∣.

Theorem 4 For the collection of CQ-ROFNs ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

, z = 1, 2, . . . , p, the

final value of Eq. (43) is also a CQ-ROFN, such as:

CQ − ROFPY OG
(

˜�1, ˜�2, . . . , ˜� p
)

=
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. (44)

Obviously, Eq. (44) is the modified version of the power,
Yager, and power Yager aggregation operators for FSs, IFSs,
PFSs, Q-ROFSs, CFSs, CIFSs, CPFSs, and CQ-ROFSs. Fur-
thermore, we discuss their valuable and feasible properties
such as idempotency, monotonicity, and boundedness.

Property 10 (idempotency): When ˜�z = ˜� =
((

�r̃ p, �i p

)

,
(

�r̃ p, �
˜i p

))

, z = 1, 2, . . . , p, then

CQ − ROFPY OG
(

˜�1, ˜�2, . . . , ˜� p
) = ˜�. (45)

Property 11 (monotonicity): When ˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

≤ ˜�
′ ′
z =

((

�r̃ p−z

′ ′
, �i p−z

′ ′)

,

(

�r̃ p−z

′ ′
, �ĩ p−z

′ ′))

, z = 1, 2,

. . . , p, then

CQ − ROFPY OG
(

˜�1, ˜�2, . . . , ˜� p
)

≤ CQ − ROFPY OG
(

˜�
′ ′
1 , ˜�

′ ′
2 , . . . , ˜�

′ ′
p

)

. (46)

Property 12 (boundedness): When ˜�−
z =

((

min
z

�r̃ p−z , min
z

�i p−z

)

,

(

max
z

�r̃ p−z , max
z

�ĩ p−z

))

and ˜�+
z =

((

max
z

�r̃ p−z , max
z

�i p−z

)

,
(

min
z

�r̃ p−z , min
z

�ĩ p−z

))

, z = 1, 2, . . . , p, then

˜�
−
z ≤ CQ − ROFPY OG

(

˜�1, ˜�2, . . . , ˜� p
) ≤ ˜�

+
z . (47)

MADMmethods based on the proposed
operators

To get the best choice from the family of preferences, we
need to develop the MADMmethods based on the proposed
operators. In this section, we propose the MADM methods
with CQ-ROFNs based on the presented operators.

For a MADM problem, ˜�1, ˜�2, . . . , ˜� p are the finite
family of alternatives, and for every alternative, it is eval-
uated by the finite attributes such as C1, C2, . . . , Cn ,
and the evaluation value ˜�z j for alternative ˜�z under
attribute C j is expressed by a CQ-ROFN as ˜�z j =
((

�
r̃ p−z j

, �i p−z j

)

,
(

�
r̃ p−z j

, � ˜i p−z j

))

, z = 1, 2, . . . ,

p; j = 1, 2, . . . , n. Where
(

�
r̃ p−z j

, �i p−z j

)

and
(

�
r̃ p−z j

, � ˜i p−z j

)

express a truth and falsity grades with 0 ≤
�

r̃ p−z j

� + �
r̃ p−z j

� ≤ 1 and 0 ≤ �i p−z j
� + � ˜i p−z j

� ≤ 1,
� ≥ 1. In the following, we give the decision-making steps
based on the proposed operators:

Step 1: Normalize the decision matrix
First, we need to obtain the decision matrix in which

the element is expressed by a CQ-ROFN as ˜�z j =
((

�
r̃ p−z j

, �i p−z j

)

,
(

�
r̃ p−z j

, � ˜i p−z j

))

, z = 1, 2, . . . , p;
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Table 3 The decision matrix in CQ-ROFNs

C1 C2 C3 C4

˜�1 ((0.8, 0.8), (0.3, 0.6)) ((0.81, 0.81), (0.31, 0.61)) ((0.82, 0.82), (0.32, 0.62)) ((0.83, 0.83), (0.33, 0.63))
˜�2 ((0.7, 0.6), (0.5, 0.6)) ((0.71, 0.61), (0.51, 0.61)) ((0.72, 0.62), (0.52, 0.62)) ((0.73, 0.63), (0.53, 0.63))
˜�3 ((0.8, 0.2), (0.8, 0.7)) ((0.81, 0.21), (0.81, 0.71)) ((0.82, 0.22), (0.82, 0.72)) ((0.83, 0.23), (0.83, 0.73))
˜�4 ((0.8, 0.7), (0.8, 0.8)) ((0.81, 0.71), (0.81, 0.81)) ((0.82, 0.72), (0.82, 0.82)) ((0.83, 0.73), (0.83, 0.83))
˜�5 ((0.7, 0.5), (0.4, 0.5)) ((0.71, 0.51), (0.41, 0.51)) ((0.72, 0.52), (0.42, 0.52)) ((0.73, 0.53), (0.43, 0.53))

Table 4 The aggregated results by the proposed operators

Comprehensive values for the different alternatives CQ − ROFPY A CQ − ROFPYG

˜�1 ((0.8164, 0.8164), (0.000001, 0.0008)) ((0.0139, 0.0139), (0.3186, 0.6169))
˜�2 ((0.7166, 0.6169), (0.0001, 0.0008)) ((0.036, 0.0008), (0.5173, 0.6169))
˜�3 ((0.8164, 0.2199), (0.0139, 0.0036)) ((0.0139, 0.0002), (0.8164, 0.7166))
˜�4 ((0.8164, 0.2199), (0.0139, 0.0139)) ((0.0139, 0.000002), (0.8164, 0.8164))
˜�5 ((0.7166, 0.5173), (0.0.00004, 0.0001)) ((0.0036, 0.0001), (0.4178, 0.5173))

j = 1, 2, . . . , n, then we need to convert the information in
cost type to benefit type by

N =

⎧

⎪

⎨

⎪

⎩

((

�
r̃ p−z j

, �i p−z j

)

,
(

�
r̃ p−z j

, � ˜i p−z j

))

p×n
for benefit type

((

�
r̃ p−z j

, � ˜i p−z j

)

,
(

�
r̃ p−z j

, �i p−z j

))

p×n
for cost type

.

Step 2: Aggregate all attribute values for each alternative
based on the CQ-ROFPYA operator and CQ-ROFPYG oper-
ator, and get the comprehensive value ˜�z by

˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

= CQ − ROFPY A
(

˜�z1, ˜�z2, . . . , ˜�zn
)

,

and

˜�z =
((

�r̃ p−z , �i p−z

)

,
(

�r̃ p−z , �ĩ p−z

))

= CQ − ROFPYG
(

˜�z1, ˜�z2, . . . , ˜�zn
)

.

Step 3:Calculate the score value for comprehensive value
˜�z by

∇SV
(

˜�z
) = 1

2

(

�r̃ p−z

� + �i p−z
� − �r̃ p−z

� − �ĩ p−z

�
)

.

Step 4: Get the ranking results according to the score val-
ues and give the best choice from the collection of finite
alternatives.

In the following, we give some examples to show the deci-
sion steps.

Example 1 A university wants to select a new faculty mem-
ber for Fuzzy mathematics in the department of mathematics

Table 5 The score values for the different alternatives

Score Values CQ − ROFPY A CQ − ROFPYG

˜�1 0.816 − 0.4539
˜�2 0.6663 − 0.5649
˜�3 0.5095 − 0.7596
˜�4 0.7527 − 0.8077
˜�5 0.6169 − 0.4656

and statistics, university of ABC, Islamabad, Pakistan. For
the position of fuzzymathematics, five candidates are applied
who are expressed by˜�1, ˜�2, ˜�3, ˜�4 and˜�5 and are regarded
as the family of alternatives. Further, they are evaluated by
the following featuresC1: fifteen-year experience,C2: fifteen
impact factor publications, C3: age of the candidate, C4: and
personality and extra skills of the candidate. Based on the
above MADM methods, we can solve this problem, and the
decision steps are shown as follows.

Step 1: Normalize the decision matrix.
First, we get the decision matrix in which the element

is expressed by the CQ-ROFNs shown in Table 3, then we
normalize them. Because all the evaluation values are benefit
type, they do not need to be normalized.

Step 2: Aggregate all attribute values of each alternative
by the CQ-ROFPYA operator and CQ-ROFPYG operator,
and the comprehensive values are shown in Table 4.

Step 3: Obtain the score values of aggregated values,
which are shown in Table 5.

Step 4: Get the ranking results according to the score val-
ues which are shown in Table 6.
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Table 6 The ranking results

Methods Rankingvalues

CQ − ROFPYAoperator ˜�1 > ˜�4 > ˜�2 > ˜�5 > ˜�3

CQ − ROFPYGoperator ˜�1 > ˜�5 > ˜�2 > ˜�3 > ˜�4

So, we get the same best choice is˜�1 according to the CQ-
ROFPYA operator and the CQ-ROFPYG operator. Further,
we use the proposedmethod to solve some decision problems
with different uncertain information.

Example 2. Considering a decision problemwith the CPF
information and the decision matrix is shown in Table 7.

Further, we aggregate all attribute values of each alter-
native by the CQ-ROFPYA operator and CQ-ROFPYG
operator, and the comprehensive values are shown in Table
8.

Obtain the score values of aggregated values, which are
shown in Table 9.

Get the ranking results according to the score valueswhich
are shown in Table 10.

Weget the same ranking result by twooperators, of course,
the best choice is ˜�4.

Example 3 Considering a decision problem with the CIF
information and the decision matrix is shown in Table 11.

We aggregate all attribute values of each alternative by the
CQ-ROFPYA operator and CQ-ROFPYG operator, and the
comprehensive values are shown in Table 12.

Obtain the score values of aggregated values, which are
shown in Table 13.

Table 9 The score values with CPFNs

Score values CQ − ROFPYA CQ − ROFPYG

˜�1 0.4881 − 0.3092
˜�2 0.4382 − 0.3539
˜�3 0.6947 − 0.005
˜�4 0.728 0.0948
˜�5 0.4988 − 0.2436

Table 10 The ranking results with CPFNs

Methods Rankingvalues

CQ − ROFPYAoperator ˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

CQ − ROFPYGoperator ˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

Get the ranking results according to the score valueswhich
are shown in Table 14.

Weget the same ranking result by twooperators, of course,
the best choice is ˜�5.

Examples 2 and 3 can show the effectiveness of the pro-
posed methods.

Further, using the information in Tables 3, 7, and 11, we
compare the proposed methods with some famous existing
methods.

Comparative analysis

To further show the advantages of the proposed methods
in this manuscript, we compare them with some existing

Table 7 The decision matrix with CPFNs

C1 C2 C3 C4

˜�1 ((0.6, 0.7), (0.5, 0.6)) ((0.61, 0.71), (0.51, 0.61)) ((0.62, 0.72), (0.52, 0.62)) ((0.63, 0.73), (0.53, 0.63))
˜�2 ((0.6, 0.6), (0.6, 0.5)) ((0.61, 0.61), (0.61, 0.51)) ((0.62, 0.62), (0.62, 0.52)) ((0.63, 0.63), (0.63, 0.53))
˜�3 ((0.8, 0.7), (0.3, 0.4)) ((0.81, 0.71), (0.31, 0.41)) ((0.82, 0.72), (0.32, 0.42)) ((0.83, 0.73), (0.33, 0.43))
˜�4 ((0.7, 0.8), (0.2, 0.3)) ((0.71, 0.81), (0.21, 0.31)) ((0.72, 0.82), (0.22, 0.32)) ((0.73, 0.83), (0.23, 0.33))
˜�5 ((0.7, 0.5), (0.4, 0.5)) ((0.71, 0.51), (0.41, 0.51)) ((0.72, 0.52), (0.42, 0.52)) ((0.73, 0.53), (0.43, 0.53))

Table 8 The aggregated values with CPFNs

comprehensive values for the different alternatives CQ − ROFPY A CQ − ROFPYG

˜�1 ((0.6153, 0.7153), (0.1428, 0.2115)) ((0.2115, 0.3008), (0.5154, 0.6153))
˜�2 ((0.6153, 0.6153), (0.2115, 0.1428)) ((0.2115, 0.2115), (0.6153, 0.5154))
˜�3 ((0.8152, 0.7153), (0.051, 0.0902)) ((0.4202, 0.3008), (0.3156, 0.4155))
˜�4 ((0.7153, 0.8152), (0.0234, 0.051)) ((0.3008, 0.4202), (0.2159, 0.3156))
˜�5 ((0.7153, 0.5154), (0.0902, 0.1428)) ((0.3008, 0.1428), (0.4155, 0.5154))
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Table 11 The decision matrix with CIFNs

C1 C2 C3 C4

˜�1 ((0.5, 0.4), (0.1, 0.2)) ((0.51, 0.41), (0.11, 0.21)) ((0.52, 0.42), (0.12, 0.22)) ((0.53, 0.43), (0.13, 0.23))
˜�2 ((0.6, 0.2), (0.1, 0.2)) ((0.61, 0.21), (0.11, 0.21)) ((0.62, 0.22), (0.12, 0.22)) ((0.63, 0.23), (0.13, 0.23))
˜�3 ((0.7, 0.1), (0.1, 0.2)) ((0.71, 0.11), (0.11, 0.21)) ((0.72, 0.12), (0.12, 0.22)) ((0.73, 0.13), (0.13, 0.23))
˜�4 ((0.6, 0.6), (0.2, 0.2)) ((0.61, 0.61), (0.21, 0.21)) ((0.62, 0.62), (0.22, 0.22)) ((0.63, 0.63), (0.23, 0.23))
˜�5 ((0.7, 0.5), (0.1, 0.3)) ((0.71, 0.51), (0.11, 0.31)) ((0.72, 0.52), (0.12, 0.32)) ((0.73, 0.53), (0.13, 0.33))

Table 12 The aggregated matrix with CIFNs

comprehensive values for the different alternatives CQ − ROFPY A CQ − ROFPYG

˜�1 ((0.5151, 0.5142), (0.1149, 0.2149)) ((0.5149, 0.4149), (0.1155, 0.2153))
˜�2 ((0.6151, 0.2153), (0.1149, 0.2149)) ((0.6148, 0.2149), (0.1155, 0.2153))
˜�3 ((0.7151, 0.1155), (0.1149, 0.2149)) ((0.7148, 0.1149), (0.1155, 0.2153))
˜�4 ((0.6151, 0.6151), (0.2149, 0.2149)) ((0.6148, 0.6148), (0.2153, 0.2153))
˜�5 ((0.7151, 0.5151), (0.1149, 0.3149)) ((0.7148, 0.5149), (0.1155, 0.3152))

Table 13 The score values with CIFNs

Score Values CQ − ROFPY A CQ − ROFPYG

˜�1 0.3002 0.2995
˜�2 0.2503 0.2495
˜�3 0.2504 0.2494
˜�4 0.4002 0.3995
˜�5 0.4002 0.3995

Table 14 The ranking results with CIFNs

Methods Rankingvalues

CQ − ROFPYAoperator ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

CQ − ROFPYGoperator ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

method based on some operators [12–25], including the aver-
aging aggregation operators (AOs) for IFS from Xu [12], the
geometric AOs for IFS fromXu andYager [13], PA operators
for IFS fromXu [14], the geometric AOs for PFS by Rahman
et al. [15]. The PA operators for PFS byWei and Lu [16], the
Yager aggregation operators for PFS by Shahzadi andAkram
[17], the simple AOs for Q-ROFS by Liu andWang [18], the
geometric AOs for Q-ROFSs from Riaz et al. [19], the Yager
aggregation operators for Q-ROFS by Akram and Shahzadi
[20], AOs for CIFS by Garg and Rani [21], geometric AOs
for CIFSs by Garg and Rani [22], the power AOs for CIFS
by Rani and Garg [23], the Yager AOs for CPFSs by Akram
et al. [24], and the PA operators for CQ-ROFS by Garg et al.

[25]. The comparative analysis based on the information in
Table 3 is shown in Table 15.

From Table 15, we can know the best choice is ˜�1 based
on the CQ-ROFPYA operator, the CQ-ROFPYG operator,
and the methods from Garg et al. [25]. They get the same
best result. However, the operators in [12–24] can only pro-
cess the uncertain information from FSs, IFSs, CIFSs, PFSs,
Q-ROFS, and CPFSs, and they cannot deal with the informa-
tion in CQ-ROFS, our methods can deal with all mentioned
information types. In addition, comparedwith themethods in
[25], ourmethods used the operational laws based onYager t-
norm and t-conorm, and [25] used the traditional operational
laws. [25] is a special case of our methods. Our methods are
more general than the methods in [12–25].

Further, the comparative analysis based on the information
on CPFSs in Table 7 is shown in Table 16.

From Table 16, we can know that the best choice is ˜�4

based on the CQ-ROFPYA operator, the CQ-ROFPYG oper-
ator, Yager AOs for CPFSs [24], and the PA operators for
CQ-ROFS [25]. Of course, they also produce the same rank-
ing result, this can explain the effectiveness of the proposed
methods. However, the operators in [12–23] can only pro-
cess the uncertain information from FSs, IFSs, CIFSs, PFSs,
and Q-ROFSs, and they cannot deal with the information in
CPFSs and CQ-ROFS, our methods can deal with all men-
tioned information types. In addition, compared with the
methods in [24], our methods used Power operators, and [25]
used traditional operators and CPFs. Our methods are more
general than the methods in [12–25].

Moreover, the comparative analysis based on the informa-
tion on CIFSs in Table 11 is shown in Table 17.
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Table 15 Comparative analysis
based on the information in Table
3

Methods Scorevalues Rankingvalues

Xu [12] Restricted/Limited Restricted/Limited

Xu and Yager [13] Restricted/Limited Restricted/Limited

Xu [14] Restricted/Limited Restricted/Limited

Rahman et al. [15] Restricted/Limited Restricted/Limited

Wei and Lu [16] Restricted/Limited Restricted/Limited

Shahzadi and Akram
[17]

Restricted/Limited Restricted/Limited

Liu and Wang [18] Restricted/Limited Restricted/Limited

Riaz et al. [19] Restricted/Limited Restricted/Limited

Akram and Shahzadi
[20]

Restricted/Limited Restricted/Limited

Garg and Rani [21] Restricted/Limited Restricted/Limited

Garg and Rani [22] Restricted/Limited Restricted/Limited

Rani and Garg [23] Restricted/Limited Restricted/Limited

Akram et al. [24] Restricted/Limited Restricted/Limited

Garg et al. [25] 0.351,0.101,− 0.2483,− 0.0491,0.1511 ˜�1 > ˜�5 > ˜�2 > ˜�4 > ˜�3

CQ-ROFPYA operator 0.816,0.6663,0.5095,0.7527,0.6169 ˜�1 > ˜�4 > ˜�2 > ˜�5 > ˜�3

CQ-ROFPYG operator − 0.4539,− 0.5649,− 0.7596,− 0.8077,−
0.4656

˜�1 > ˜�5 > ˜�2 > ˜�3 > ˜�4

Table 16 Comparative analysis
based on the information in Table
7

Methods Score values Ranking values

Xu [12] Restricted/Limited Restricted/Limited

Xu and Yager [13] Restricted/Limited Restricted/Limited

Xu [14] Restricted/Limited Restricted/Limited

Rahman et al. [15] Restricted/Limited Restricted/Limited

Wei and Lu [16] Restricted/Limited Restricted/Limited

Shahzadi and Akram [17] Restricted/Limited Restricted/Limited

Liu and Wang [18] Restricted/Limited Restricted/Limited

Riaz et al. [19] Restricted/Limited Restricted/Limited

Akram and Shahzadi [20] Restricted/Limited Restricted/Limited

Garg and Rani [21] Restricted/Limited Restricted/Limited

Garg and Rani [22] Restricted/Limited Restricted/Limited

Rani and Garg [23] Restricted/Limited Restricted/Limited

Akram et al. [24] 0.4862,0.4362,0.6909,0.7236,0.4959 ˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

Garg et al. [25] 0.1004,0.0503,0.4005,0.5006,0.1504 ˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

CQ-ROFPYA operator 0.4881,0.4382,0.6947,0.728,0.4988 ˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

CQ-ROFPYG operator − 0.3092,− 0.3539,− 0.005,0.0948,−
0.2436

˜�4 > ˜�3 > ˜�5 > ˜�1 > ˜�2

From Table 17, we can know that the best choice is ˜�4

based on the CQ-ROFPYA operator, the CQ-ROFPYG oper-
ator, AOs for CIFS [21], geometric AOs for CIFSs [22], the
power AOs for CIFS [23] Yager AOs for CPFSs [24], and
the PA operators for CQ-ROFS [25]. Our method in the CQ-
ROFPYA operator produced the same ranking result as the
operators in [21, 23], and [24], while our method in the CQ-
ROFPYG operator produced the same ranking result as the

operators in [22] because they used the geometric AOs. Com-
paredwith [21], the operators in [21] only can dealwithCIFS,
and only used the traditional AOs; Compared with [22], the
operators in [22] only can deal with CIFS, and only used the
traditional geometric AOs; Compared with [23], the oper-
ators in [23] only can deal with CIFS, and only used the
traditional operational laws. Our methods are more general
than theirs.
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Table 17 Comparative analysis
based on the information in Table
11

Methods Score values Ranking values

Xu [12] Restricted/Limited Restricted/Limited

Xu and Yager [13] Restricted/Limited Restricted/Limited

Xu [14] Restricted/Limited Restricted/Limited

Rahman et al. [15] Restricted/Limited Restricted/Limited

Wei and Lu [16] Restricted/Limited Restricted/Limited

Shahzadi and Akram [17] Restricted/Limited Restricted/Limited

Liu and Wang [18] Restricted/Limited Restricted/Limited

Riaz et al. [19] Restricted/Limited Restricted/Limited

Akram and Shahzadi [20] Restricted/Limited Restricted/Limited

Garg and Rani [21] 0.3004,0.2504,0.2504,0.4003,0.4004 ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

Garg and Rani [22] 0.2998,0.2498,0.2497,0.3999,0.3999 ˜�5 > ˜�4 > ˜�1 > ˜�2 > ˜�3

Rani and Garg [23] 0.3005,0.2505,0.2506,0.4005,0.4005 ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

Akram et al. [24] 0.3002,0.2502,0.2503,0.4001,0.4001 ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

Garg et al. [25] 0.3005,0.2505,0.2506,0.4005,0.4005 ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

CQ-ROFPYA operator 0.3002,0.2503,0.2504,0.4002,0.4002 ˜�5 > ˜�4 > ˜�1 > ˜�3 > ˜�2

CQ-ROFPYG operator 0.2995,0.2495,0.2494,0.3995,0.3995 ˜�5 > ˜�4 > ˜�1 > ˜�2 > ˜�3

Our proposed operators are based on CQ-ROFS, PA, and
theYager operational laws, and they are novel and interesting
to copewith unreliable and awkward information in decision-
making problems.

In addition, no special software and hardware are required
due to the small amount of computation, and Excel can meet
this requirement.

Conclusion

According to the PA operators and Yager t-norm and t-
conorm under the consideration of CQ-ROF information, we
derived the following ideas:

1. We developed Yager operational laws for CQ-ROF val-
ues.

2. We proposed the famous CQ-ROFPYA, CQ-ROFPYOA,
CQ-ROFPYG, and CQ-ROFPYOG operators.

3. We discussed some properties such as idempotency,
monotonicity, and boundedness.

4. We proposed a MADM methods based on the proposed
operators for CQ-ROF information.

5. We compared the proposed operators with some exist-
ing operators to show the effectiveness of the proposed
methods.

In the future, we study the fuzzy multi-criteria decision-
making problems based on the assessment of hydroponic
vertical farming [33], investigation of the fuzzy Dombi
EDAS technique [34], analysis of type-2 Gaussian fuzzy

information [35], analysis of fuzzy secure filtering [36],
interval-type-2 fuzzy non-homogeneous information [37],
and fuzzy fault detection under the presence of the Markov
jump systems [38], then we try to utilize them to artificial
intelligence, machine learning, game theory, clustering anal-
ysis, pattern recognition, and medical diagnosis.
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