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Abstract
It is essential to define more convincing and applicable classifiers for small datasets. In this paper, a minimum reconstruction
error-based K-nearest neighbors (K-NN) classifier is proposed. We propose a new neighbor selection method. In the pro-
posed neighbor selection method, a subset of data that minimize the reconstruction error is assigned as the neighbors of the
query sample. Also, there is not any constraint on the distance of the neighbors from the query sample. An l0-based sparse
representation problem is introduced for selecting the neighbors. These neighbors are assigned as neighbors of the minimum
reconstruction error-based K-NN classifiers. Three l0-based minimum reconstruction error-based K-NN classifiers are intro-
duced. These classifiers are less sensitive to the reconstruction coefficients in minimum reconstruction error-based K-NN
classifiers and reconstruct the query sample with less error. The results on UCI machine learning repository, UCR time-series
archive datasets, and a small subset (16%) of MNIST handwritten digit database demonstrate the suitable performance of the
proposed method. The recognition precision increases up to more than 3% in some evaluations.

Keywords K-NN based classifiers · Minimum reconstruction error · l0-Based neighbor selection · Recognition rate

Introduction

Artificial intelligence andmachine learning have been devel-
oped in many applications, such as face recognition [1, 2],
optical character recognition (OCR) [3], medical image pro-
cessing [4, 5], gesture recognition [6, 7], fault detection [8, 9],
communication systems [10], and news classification [11].
The classification section is an unavoidable part of most of
these applications.

It is essential to define convincing and applicable clas-
sifiers for small datasets. These days, deep learning-based
classifiers obtain exciting results in different applications
[12, 13]. However, deep learning-based methods need large
datasets for training the network and determining param-
eters. Therefore, they cannot be employed on every small
dataset. Already, many classifiers have been presented, such
asK-nearest neighbors (K-NN) [14], support vector machine
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(SVM) [15], and neural network-based classifiers [16]. K-
NN based classifiers are very convenient because of their
simplicity and suitable performance. In the conventional K-
NN classifier, first,K-nearest neighbors of the query sample
are determined based on Euclidean distance. Then, bymajor-
ity voting on classes of theK selected neighbors, the query
sample is classified.

Recently, some K-NN-based classifiers have been
introduced such as weighted representation-based K-NN
(WRKNN) [17], weighted local mean representation-based
K-NN (WLMRKNN) [17], collaborative representation-
based nearest neighbor (CRNN) [18], distance-weighted K-
NN (DWKNN) [19], multi-local means-based nearest neigh-
bor (MLMNN) [20], local mean-based K-NN (LMKNN)
[21], pseudo-nearest neighbor (PNN) [22], local mean-based
pseudo-nearest neighbor (LMPNN) [23], generalized mean-
distance-based k-nearest neighbor classifier (GMDKNN)
[24], and representation coefficient-based k-nearest centroid
neighbor method (RCKNCN) [25]. Generally, K-NN-based
classifiers can be categorized into three groups: majority
voting-based, mean-distance-based, and minimum recon-
struction error-based classifiers.

The majority voting-based K-NN classifiers, such as con-
ventional K-NN, DWKNN, and CRNN, predict the category

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01027-1&domain=pdf
http://orcid.org/0000-0002-8570-1492


5716 Complex & Intelligent Systems (2023) 9:5715–5730

of a query sample by majority voting on theK neighbor
classes. In CRNN, the query sample is linearly reconstructed
versus all data with a constraint on their Euclidean distances.
Then,K samples corresponding to theK largest reconstruc-
tion coefficients are selected as neighbors of the query
sample. Finally, similar to the conventional K-NN, the query
sample is classified by majority voting on theK neighbors
classes [18]. InDWKNN,K weights are calculated according
to the distances among K neighbors. Then, the query sample
is assigned to the class for which the weights of represen-
tatives among the K-nearest neighbors sum to the greatest
value [19].

In mean-distance-based K-NN classifiers, such as
LMKNN, PNN, and LMPNN, the query sample is classi-
fied using a pseudo-neighbor that is calculated by neighbors.
In LMKNN, pseudo-neighbor per class is calculated by the
mean ofK selected neighbors. Next, the query sample is clas-
sified to theminimumdistance between the query sample and
the pseudo-neighbors [21]. Similarly, inPNN, after determin-
ingK neighbors per class, a pseudo-neighbor is calculated as
a weighted mean of the K neighbors per class [22]. Then, the
query sample is classified into the class corresponding to the
closest pseudo-neighbor. LMPNNis also an extendedversion
of the PNN classifier, which uses local mean-based pseudo-
neighbors [23]. GMDKNN uses multi-generalized mean and
nested generalized mean distances, which are based on the
characteristic of the generalized mean [24].

In minimum reconstruction error-based K-NN classifiers,
such as MLMNN, WRKNN, and WLMRKNN, the query
sample is linearly reconstructed versus theK neighbors per
class. Then, the query sample is assigned to the category
with the minimum reconstruction error. In MLMNN, the
reconstruction coefficients are constrained by a l2-norm on
their values [20]. WRKNN calculates the coefficients with
constraints on the Euclidean distance of the selected neigh-
bors [17]. In WLMRKNN, first, local mean-based pseudo-
neighbors are calculated using neighbors. Then, similar to
WRKNN, the reconstruction coefficients are calculated [17].

Except for the CRNN classifier, other mentioned K-NN-
based classifiers select neighbors of the query sample in the
same way. While these classifiers decide the query sample
with different criteria. Therefore, it can make decrease the
performance of the classifiers.

Ourmotivation and contribution

It is necessary to introduce convincing and effective classi-
fiers for small datasets. K-NN-based classifiers are relatively
simple and efficient. In this manuscript, we try to improve
their performance and increase the recognition rate. All
types of K-NN-based classifiers select a subset of samples
as neighbors of the query sample. The selection of neigh-
bors is the unavoidable part of the K-NN based classifiers.

Therefore, how to choose neighbors can be pivotal to the
performance of the K-NN-based classifiers. Most K-NN-
based classifiers select neighbors based on the minimum
Euclidean distance. The Euclidean distance-based selection
of neighbors is rational for majority voting-based and mean-
distance-based K-NN classifiers. However, this scheme of
selection of neighbors is not logical forminimum reconstruc-
tion error-based K-NN classifiers, which decide about query
sample according to the minimum error value. Sometimes,
a sample is closer to a query sample than another sample,
but it cannot well linearly reconstruct the query sample. It
can reduce the performance of the minimum reconstruction
error classifiers. On the other hand, a sample may provide
minimum reconstruction error, but it is not in proximity to
the query sample.

The minimum reconstruction error-based K-NN clas-
sifiers typically have the best performance [17]. In this
manuscript, I propose a neighbor selection method based
on the minimization reconstruction error of the query sam-
ple. In the proposed method, a subset of data that minimizes
the reconstruction error is assigned as the neighbors of the
query sample. Euclidian distance is not considered as a cri-
terion to select the neighbors of the query sample. Also,
an l0-based sparse representation scheme is introduced for
determining the proposed neighbors. The proposed neighbor
selection method is applicable for minimum reconstruction
error-based classifiers. Three l0-MLMNN, l0-WRKNN, and
l0-WLMRKNN classifiers are defined based on the proposed
neighbor selection method.

The examples are based on different databases which
include University of California Irvine (UCI) machine learn-
ing repository [26], UCR time-series classification archive
[27], and a small subset of Modified National Institute
of Standards and Technology (MNIST) handwritten digit
database [28]. The results exhibit the suitable performance
of the proposed method.

The rest of themanuscript is organized as follows.The sys-
temmodel and related works are presented in “Systemmodel
and related works”. Next, the proposed neighbor selection
method and proposed K-NN-based classifiers are described.
In “Simulation results”, the simulation results and the discus-
sion of the results are given. Finally, “Conclusion” concludes
the manuscript.

Systemmodel and related works

Figure 1 shows the general scheme of minimum recon-
struction error-based K-NN classifiers. All minimum recon-
struction error-based K-NN classifiers select K samples as
neighbors of the query sample per class. Then, based on the
reconstruction errors, the category of the query sample is
determined.
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Fig. 1 The general scheme of minimum reconstruction error-based K-NN classifiers

Generally, minimum reconstruction error-based K-NN
classifiers include three steps: (1) selecting neighbors using
minimum Euclidean distance, (2) calculating reconstruction
coefficients, and (3) classifying based on the minimum error.

Suppose X = [x1, . . . , xN ] ∈ RD×N includes N labeled
samples, y ∈ RD is the query sample, L = {1, . . . , C}
is the label set of data (C is the number of classes), and

X j
KNN =

[
x j
1NN, . . . , x j

KNN

]
∈ RD×K expressesK-nearest

neighbors belong to thejth class. MLMNN, WRKNN, and
WLMRKNN are presented in the following.

MLMNN classifier

First,K neighbors of the query sample are determined per
class based on the minimum Euclidean distance. Then,K
local mean pseudo-neighbors per class are calculated as

x j
iNN = 1

i

i∑
l=1

x j
lNN, i = 1, . . . , K . (1)

Then, the query sample is linearly reconstructed per class
usingK local mean pseudo-neighbors with a l2-norm con-
straint on reconstruction coefficients (β j ) as

β j ∗ = arg min
β j

{
‖ y − X

j
KNNβ j‖22 + μ‖β j‖22

}
, (2)

where μ is a regularization parameter, X
j
KNN =[

x j
1NN, x

j
2NN, . . . , x j

KNN

]
, and β j =

[
β
j
1 , β

j
2 , . . . , β

j
K

]
is

the reconstruction coefficients vector of the jth class. The
optimum β j can be calculated as a closed-form solution

β j ∗ =
((

X
j
KNN

)T
X

j
KNN + μI

)−1(
X

j
KNN

)T
y. (3)

Then, reconstruction errors are computed as

r j
MLMNN(y) = ‖ y − X

j
KNNβ j ∗‖22. (4)

Finally, the query sample is classified into the class with
minimum reconstruction error [20].

WRKNN andWLMRKNN classifiers

Similar to MLMNN, first, K neighbors of the query sam-
ple are calculated per class. Then, reconstruction coefficients
(η j ) of the query sample are calculated per class with a con-
straint onEuclidean distances ofK-nearest neighbors (X j

KNN)
as

η j ∗ = arg min
η j

{
‖ y − X j

KNNη j‖22 + γ ‖T jη j‖22
}
, (5)

where, γ is a regularization parameter, and T j is a diagonal
matrix of Euclidean distances as

T j =

⎡
⎢⎢⎣

‖ y − x j
1NN‖2 · · · 0

...
. . .

...

0 · · · ‖ y − x j
KNN‖2

⎤
⎥⎥⎦, (6)

and η j can be solved in a closed-form per class as

η j ∗ =
((

X j
KNN

)T
X j
KNN + γ

(
T j

)T
T j

)−1(
X j
KNN

)T
y.

(7)

After computing the optimum η j per class, the query sam-
ple is classified to the class with minimum reconstruction
error, which is calculated as

r j
WRKNN( y) = ‖ y − X j

KNNη j ∗‖22. (8)

Most steps of WLMRKNN are similar to WRKNN.

WLMRKNN employs local mean pseudo-neighbors (X
j
KNN,

Eq. (1)) instead of nearest neighbors (X j
KNN). The decision

is also made based on the minimum reconstruction error of
the query sample versus the pseudo-neighbors per class as

r j
WLMRKNN( y) = ‖ y − X

j
KNNS

j ∗‖22, j = 1, . . . , C , (9)

where S j is the reconstruction coefficients vector of the jth
class [17].

It has been shown that minimum reconstruction-based K-
NN classifiers, i.e.,WRKNNandWLMRKNN, have the best
performance [17].
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Fig. 2 An example to explain the proposed method

Proposed l0-based neighbor selection

In minimum reconstruction error-based KNN classifiers, the
neighbors are selected based on theEuclidean distance,while
their decisionmetric is based on theminimum reconstruction
error. There is no certainty that K Euclidean distance-based
nearest samples obtain theminimum reconstruction error. On
the other hand, it is intuitive that the samples with the same
category of the query sample often provide the best represen-
tation of the query sample and minimize the reconstruction
error. Therefore, choosing the neighbors based on the mini-
mum reconstruction error can reduce the reconstruction error
value and improve the accuracy of the classifiers. This state-
ment can be justified by an example. Suppose there are four
two-dimensional samples (Fig. 2).

Assign sample #1 as a query sample and three residual
samples as neighbors of it. Although samples #2 and #3 are
closer to the query sample than sample #4, the reconstruction
error using sample #4 is less than the reconstruction error

using samples #2 and #3. In fact, based on the minimum
reconstruction error criterion, sample #4 can better represent
the query sample. In this manuscript, a neighbor selection
method is proposed based on the below principles:

– There is no constraint on the distance of the neighbors.
– The samples with the same category cause minimum
reconstruction error.

In the proposed method, a subset of training data is
selected as neighbors, which makes the minimum recon-
struction error of the query sample. Also, there is not any
constraint on the Euclidean distance of the neighbors. The
proposed equation is defined as
{
XK

∗, αK
∗} = arg min

XK ,αK

{
‖ y − XK

TαK ‖2
}
, (10)

where XK is a set ofK samples from X , and αK ∈ RK×1 is
the vector of coefficients. Equation (10) can be rewritten as

α∗ = arg min
α

{
‖ y − XTα‖2

}
, s.t. ‖α‖0 = K , (11)

where α ∈ RN×1 is a sparse vector of coefficients with K
nonzero values, and XK

∗ is determined from X according
to the nonzero values of α∗. Equation (11) is an l0-based
sparse representation problem. Equation (11) is an NP-hard
problem, and the orthogonal matching pursuit method is
a semi-optimum method to solve it. Suppose XK−l0 =[
x1−l0 , x2−l0 , . . . , xK−l0

]
is the set ofK l0-based selected

neighbors,K is the number of neighbors, y is the query sam-
ple, and ∅ is the symbol of an empty set. Algorithm 1 shows
steps of the proposed l0-based neighbor selection method.
XK−l0 includesK samples that reconstruct y with minimum
error.

In the proposed method, the K samples are selected as
neighbors that obtain minimum reconstruction error. There
is no constraint on Euclidean distances of the neighbors,
and each K subset of samples can be assigned as neighbors.
Therefore, the reconstruction error value using the proposed
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method is less than the reconstruction error value using the
neighbors that are based on theminimumEuclidean distance.
Figure 3 shows the diagram of the proposed neighbor selec-
tion method.

In the following,K selected samples are assigned as
neighbors of minimum reconstruction error-based K-NN
classifiers.Basedon the proposedneighbor selectionmethod,
l0-MLMNN, l0-WRKNN, and l0-WLMRKNN are intro-
duced in Algorithms 2–4, respectively.

In WRKNN and WLMRKNN, neighbors are close to the
query sample. However, in the proposed l0-WRKNN and l0-
WLMRKNN, there is not any constraint on the distance of
the neighbors from the query sample, and it can vary in a
wide range. Therefore, we normalize the Euclidean distance
matrix in l0-WRKNN (step 3) and l0-WLMRKNN (step 4).
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Fig. 3 The diagram of the proposed l0-based neighbor selectionmethod

In the following, the computational complexity of the
proposed l0-based neighbor selection method and proposed
classifiers are investigated. Generally, determiningK-nearest
data points to the query sample is the same in all K-NN-based
classifiers. Based on the brute-force neighbor search, the time
complexity of the K-NN-based classifiers is O(N ). The pro-
posed method (Algorithm 1) consists of two nested loops: a
loopwithK repetitions (for determining theK neighbors) and
a loop with N repetitions (for doing step 1 of the algorithm).
Therefore, the l0-based neighbor selection increases the com-
putational complexity. The computational complexity of the
proposedmethod isO(N×K ),while the computational com-
plexity of the Euclidean distance-based neighbor selection is
O(N ).

Table 1 The characteristics of the seven UCI datasets [26]

Dataset Number of samples Attribute Category

Balance 625 4 3

Climate 360 18 2

Parkinson’s 195 22 2

Seeds 210 7 3

Sonar 208 60 2

Vowel 528 10 11

Wine 178 13 3

Also, MLMNN, WRKNN, and WLMRKNN classifiers
consist of two nested loops: a loopwithC repetitions (C is the
number of categories) and a loop for determiningK neighbors
with O(N ). Therefore, the computational complexity of the
MLMNN, WRKNN, and WLMRKNN is O(C × N ). In the
other word, the proposed l0-MLMNN, l0-WRKNN, and l0-
WLMRKNN classifiers consist of three nested loops: a loop
with C repetitions (C is the number of categories) and two
nested loops with O(N × K ) for determining the l0-based
neighbors. Therefore, the computational complexity of the
proposed l0-based classifiers is O(C × N × K ).

Simulation results

Performance of the proposed l0-based neighbor selection
method is investigated on UCI machine learning repository,
UCR time-series classification archive, and a small subset
of MNIST handwritten digit database. In [17], it has been
shown that the minimum reconstruction error-based K-NN
classifiers have the best performance among K-NN-based
classifiers. It is shown that the proposed l0-based neighbor
selection method improves the performance of the minimum
reconstruction error-basedK-NNclassifiers and increases the
precision of the classifiers. The regularization parameters are
set as μ = γ = δ = 0.5. Also, the results are compared with
the SVM classifier on experimented databases.

The results of the evaluation on UCI and UCR
datasets

The proposed method is evaluated on seven datasets of the
UCI machine learning repository and five datasets of the
UCR time-series classification archive. Characteristics of the
employed UCI and UCR datasets are given in Tables 1 and
2, respectively.

Each of the UCI datasets is randomly divided into the
training (66.7%) and test (33.3%) subsets. The recognition
rates of each UCI dataset are provided in eachK by aver-
aging the results for 50 independent iterations. Then, the
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Table 2 The characteristics of
the five UCR time-series datasets
[27]

Dataset Number of training
samples

Number of query
samples

Category Time-series length
(attribute)

Chlorine
concentration

467 3840 3 166

CinC_ECG_Torso 40 1380 4 1639

Fish 175 175 7 463

ItalyPowerDemand 67 1029 2 24

Non-invasive fetal
ECG Thorax1

1800 1965 42 750

Fig. 4 The mean recognition rates on all seven UCI datasets using l0-
MLMNN and MLMNN classifiers

Fig. 5 The mean recognition rates on all seven UCI datasets using l0-
WRKNN and WRKNN classifiers

average of the recognition rate on seven datasets is calcu-
lated for K = 1,…,15. Figures 4, 5 and 6 show the mean
of the recognition rates on the seven UCI datasets. Also,
the standard-deviation values of the accuracy on seven UCI
datasets are given for different numbers of the neighbors in

Fig. 6 The mean recognition rates on all seven UCI datasets using l0-
WLMRKNN and WLMRKNN classifiers

Fig. 7 The mean recognition rates on the five UCR datasets using l0-
MLMNN and MLMNN classifiers

Table 3. The standard-deviation values of the proposed clas-
sifiers are less than the investigated minimum reconstruction
error-based KNN classifiers for most numbers of neighbors.
The accuracy and standard-deviation values show that the
proposed l0-based method almost improves the performance
of classifiers on all seven UCI datasets.
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Table 3 The standard-deviation
values of the accuracy for
different numbers of the
neighbors using the proposed
classifiers on seven datasets of
UCI

Classifiers MLMNN L0MLMNN WRKNN L0WRKNN WLMRKNN L0WLMRKNN

K = 1 8.21 7.28 7.71 7.28 7.71 7.28

K = 2 8.52 7.84 7.53 7.93 7.47 7.96

K = 3 8.57 8.97 7.24 8.89 7.31 9.04

K = 4 8.28 7.64 6.70 8.02 6.76 7.69

K = 5 7.89 7.46 6.81 7.39 6.75 6.98

K = 6 8.11 7.10 7.05 6.21 7.21 6.76

K = 7 7.89 7.33 6.91 5.82 7.01 6.70

K = 8 7.58 7.08 6.88 4.95 6.94 6.25

K = 9 7.42 7.25 6.81 4.57 6.43 6.42

K = 10 7.53 7.04 6.96 4.84 6.55 6.20

K = 11 7.38 6.88 6.50 4.05 6.43 6.13

K = 12 7.21 7.01 6.49 4.23 6.73 6.27

K = 13 7.13 6.80 6.23 4.27 6.77 5.68

K = 14 6.71 6.55 6.26 4.01 6.86 5.70

K = 15 7.47 6.82 6.22 3.77 6.52 5.70

Fig. 8 The mean recognition rates on the five UCR datasets using l0-
WRKNN and WRKNN classifiers

Fig. 9 The mean recognition rates on the five UCR datasets using l0-
WLMRKNN and WLMRKNN classifiers

UCR includes some time-series datasets. In UCR, the
recognition rates are calculated in accordance with the given
test and training subsets of each dataset. Then, the average
of the recognition rate on five datasets are calculated for K
= 1,…, 15. Figures 7, 8 and 9 show the mean recognition
rates on five UCR datasets using three common and pro-
posed l0-based minimum reconstruction error-based K-NN
classifiers. Also, Table 4 shows the standard-deviation val-
ues of the accuracy for different numbers of the neighbors
on five UCR datasets. The higher recognition rate values and
lower standard-deviation values demonstrate that the pro-
posed method improves the performance of the minimum
reconstruction error-based K-NN classifiers on all five UCR
datasets.

As a consideration, Fig. 5 shows the performance of the
l0-WRKNN is worse than WRKNN when the number of
neighbors is greater than 12. In the WRKNN classifier, the
distances among the query sample and neighbors are influ-
ential in calculating the coefficients vector; and then on the
reconstruction error value (Eqs. 5 and 6). In the proposed
l0-based neighbor selection method, when the number of
neighbors increases, the samples with high Euclidean dis-
tances from the query sample can be selected as neighbors,
because there is no constraint on the Euclidean distance of
the neighbors. Therefore, the neighbors with extremely high
Euclidean distances are lower effective in reconstructing the
query sample. On the other hand, increasing the number of
neighbors provides more freedom to reconstruct the query
sample. Consequently, the WRKNN classifier sometimes
performs better than the l0-WRKNN for higher numbers of
neighbors. However, the WLMRKNN classifier is similar to
WRKNN. However, in WLMRKNN, the local mean-based
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Table 4 The standard-deviation
values of the accuracy for
different numbers of the
neighbors using the proposed
classifiers on five datasets of
UCR

Classifiers MLMNN L0MLMNN WRKNN L0WRKNN WLMRKNN L0WLMRKNN

K = 1 11.76 11.76 11.76 11.76 11.76 11.76

K = 2 10.18 10.01 9.99 10.08 10.07 10.08

K = 3 9.64 8.68 9.29 8.00 9.40 8.70

K = 4 9.52 8.32 8.77 6.66 9.23 8.23

K = 5 9.69 8.66 8.45 6.53 8.99 8.42

K = 6 9.64 8.63 7.88 6.68 8.88 8.43

K = 7 9.45 8.73 7.42 5.93 8.77 8.38

K = 8 9.18 8.56 7.13 6.07 8.55 8.18

K = 9 9.04 8.50 6.74 5.91 8.36 8.02

K = 10 8.80 8.43 6.62 5.77 8.23 7.94

K = 11 8.67 8.31 6.36 5.71 8.13 7.90

K = 12 8.63 8.22 6.32 4.92 8.11 7.72

K = 13 8.67 7.84 6.32 4.89 7.90 7.61

K = 14 8.64 7.56 6.17 4.87 7.86 7.15

K = 15 8.52 7.54 6.21 4.37 8.01 6.97

neighbors (Eq. 1) have been used to reconstruct the query
sample. The Euclidean distances of the local mean-based
neighbors are not very high because of the mean operation
on the pre-selected neighbors. Thus, increasing the num-
ber of neighbors does not reduce the performance of the
l0-WLMRKNN (Figs. 6 and 9).

In addition, McNemar’s statistical test is used to compare
the proposed l0-based classifiers and the mentioned mini-
mum reconstruction error-based K-NN classifiers. McNe-
mar’s test is a statistical method to compare the performance
of two classifiers on the same test set. Suppose there are two
classifiers: classifier A and classifier B. In McNemar’s test,
the null hypothesis is defined as A and B classifiers having
the same error rate (i.e., n01 = n10). Thus, the alternative
hypothesis is that the performances of the classifiers are not
the same. The below parameters are considered for either A
and B classifiers:

– n01: number of test samples misclassified by A but not by
B,

– n10: number of test samples misclassified by B but not by
A.

Then, χ2 statistic value is computed as χ2 =
(n01 − n10)2/(n01 + n10). χ2 is a chi-squared distribution
with one degree of freedom. For a significance threshold of
0.05, i.e., p-value = 0.0.5, if the χ2 statistic value is greater
than 3.48, the null hypothesis is rejected, and there is a sig-
nificant difference between the A and B classifiers. In the
following, the results of McNemar’s test (χ2 statistic value)
on five UCR datasets are given for different numbers of the
neighbors in Table 5.

The results demonstrate that there is a significant differ-
ence; and the recognition rate values (Figs. 7, 8 and 9) show
the superiority of the proposed l0-based classifiers, espe-
cially l0-WLMRKNN, atmost numbers of neighbors onmost
investigated UCR datasets. Of course, it should be noted
that the results of McNemar’s test have not been provided
on UCI datasets, because, in the evaluated experiments, the
recognition rates of each UCI dataset are provided in eachK
by averaging the results for 50 independent iterations. Also,
each UCI dataset is randomly divided into the training and
test subsets in each iteration.

The results of the evaluation onMNIST handwritten
digit database

In this manuscript, a small subset of MNIST is used to eval-
uate the proposed method. MNIST database includes 60,000
train and 10,000 test samples of English handwritten digit
images [28]. A training subset with 10,000 samples and a test
subset with 5000 samples are used in our experiments. The
train and test subsets are randomly selected from the train
and test samples, respectively. The recognition rates using
l0-MLMNN, l0-WRKNN, and l0-WLMRKNNclassifiers are
given in Figs. 10, 11 and 12, respectively. The results demon-
strate that the proposed method improves the performance of
all three reconstruction error-based KNN classifiers. Also,
the results of the McNemar statistical test on the MNIST
dataset are given for different numbers of the neighbors in
Table 6. The results demonstrate that there is a significant
difference between the investigated paired classifiers, espe-
cially for the number of neighbors of less than 9. Again, the
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Fig. 10 The recognition results on the MNIST database using l0-
MLMNN and MLMNN classifiers

Fig. 11 The recognition results on the MNIST database using l0-
WRKNN and WRKNN classifiers

Fig. 12 The recognition rates on the MNIST database using l0-
WLMRKNN and WLMRKNN classifiers
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Fig. 13 The recognition results on the whole MNIST database using
l0–MLMNN and MLMNN classifiers

recognition rate values show the proposed l0-based classi-
fiers, especially l0-WLMRKNN, have the best performance.

Figures 10 and 11 show that the proposed method has
similar recognition rates to the conventionalminimum recon-
struction error-based KNN classifiers for large K . The larger
numbers of neighbors cause larger samples to be involved
in reconstructing the query sample. Therefore, there is more
freedom in reconstructing the query sample, and it can cause
the performance of the classifiers will be closer to each other.
However, the performance is depended on the data distribu-
tion and classifier type.

Also, as is inferrable, the proposed l0-based neighbor
selection method can be more effective on datasets with a
small number of samples or datasets with high variability
per class. Results onMNIST show that the proposed l0-based
classifiers and the mentioned minimum reconstruction error-
basedK-NNclassifiers perform the same for the large amount
ofK when the training subsets include more than 10,000
samples.K-nearest neighbors of the query sample likelymake
minimum reconstruction error when there are datasets with
large amounts of samples per class.

The results on the whole MNIST digit database are evalu-
ated formore investigations in the following. The recognition
rate results are given in Figs. 13, 14 and 15. The results are
similar to the obtained results on a small subset of MNIST
(Figs. 10, 11 and 12) and demonstrate the better perfor-
mance of the proposed method, especially for the smaller
number of neighbors. For the number of neighbors greater
than 12, the performance of the WRKNN is better than the
l0-WRKNN, but l0-WLMRKNN and l0-MLMNN perform
similarly to WLMRKNN and MLMNN, respectively. The
reasons have been described in the paragraph above Table 4.
Also, in the MLMNN, the same as WLMRKNN, the local
mean-based neighbors have been used to reconstruct the
query sample. Therefore, the high Euclidean distances of the
l0-based neighbors do not have any unsuitable effect on cal-
culating and controlling the reconstruction coefficient values

Fig. 14 The recognition results on the whole MNIST database using
l0-WRKNNNN and WRKNN classifiers

Fig. 15 The recognition results on the whole MNIST database using
l0-WLMRKNN and WLMRKNN classifiers

(Eq. 2). On the other hand, increasing the number of neigh-
bors provides more freedom to reconstruct a query sample.
It can make the performance of the MLMNN similar to l0-
MLMNN.

The results of the evaluation using SVM classifier

Furthermore, the results of the proposed classifiers are com-
pared with the SVM classifier. The results of the recognition
rates are given in Table 7. The results demonstrate the better
performance of the proposed classifiers than the SVM clas-
sifier on UCI, UCR, and MNIST databases. Also, the results
of the proposed K-NN-based classifiers are approximately
constant for K > 5, which exhibits less sensitivity of them to
the initial parameter of the number of neighbors. Generally,
the proposed method is a suitable classifier for classifying
small datasets.

Discussion of the results

The minimum reconstruction error-based K-NN classifiers
have the best performance among K-NN-based classifiers
and are less sensitive to the number of neighbors. Usually, the
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Table 7 The results of the
recognition rates using
l0-WLMRKNN, l0-WRKNN,
l0-MLMNN, and SVM classifiers

Dataset Recognition rate (%)

l0-WLMRKNN l0-WRKNN l0-MLMNN SVM classifier

Seven UCI datasets 89.36 89.21 89.15 86.25

Five UCR datasets 90.52 92.08 90.13 80.49

Subset of MNIST 97.28 97.38 97.32 89.88

The best results are bolded

neighbors are selected based on the minimum Euclidean dis-
tance of the data from the query sample. However, different
kinds ofK-NN-based classifiersmake the decisionusing their
specific criteria. Therefore, neighbor selection according to
the criterion of the classifier can improve their performance.
The proposed l0-based neighbor selection method decreases
the reconstruction errors of theminimumreconstruction error
K-NN-based classifiers and can improve their performance.
Figure 16 shows the sum of the reconstruction error values
for the query samples according to their category samples
on the Chlorine Concentration dataset of UCR. The min-
imum reconstruction error values of query samples (i.e.,

r(y, XK ) = ‖ y − XK
Tω‖22) have been calculated using

K training samples with the same category of each query
sample. The results are provided for K = 2,…, 15 using
WRKNN and l0-WRKNN classifiers. TheChlorine Concen-
tration dataset includes 3840 query samples, and the number
of the categories is 3 (C = 3). The results demonstrate the
reconstruction errors are decreased using the proposed neigh-
bor selection method.

The reconstruction error of the query sample, i.e.,

r(y, XK ) = ‖ y − XK
Tω‖22, is the decision metric in

all reconstruction error-based K-NN classifiers. XK is the
matrix ofK selected neighbors, and ω is the reconstruction
coefficients vector. ∂r

∂xik
exhibits the contribution of the xik

in classifying y. In l0-WRKNN, the weighted contribution
of each neighbor can be calculated per class as

∂r j

∂x j
i−l0

=
∂

∥∥∥∥ y −
(
X j

K−l0

)T
η
j
K−l0

∥∥∥∥
2

2

∂xi−l0

= 2η j
i−l0

(
y −

(
X j

K−l0

)T
η
j
K−l0

)
, (12)

where x j
i−l0

is the ith l0-based neighbor from the jth class, and

η
j
i−l0

is its corresponding coefficient. Equation (12) expresses
behavior similar to WRKNN and shows that neighbors have
different contributions in classification, corresponding to
their reconstruction coefficients. This conclusion is also cor-
rect for l0-WLMRKNN and l0-MLMNN.

Fig. 16 The sum of the reconstruction error values of all query sam-
ples according to their category samples on theChlorine Concentration
dataset using WRKNN and l0-WRKNN classifiers

Besides, by deriving r to the reconstruction coefficients,
i.e., ∂r

∂wi K
, the weighted contribution of the reconstruction

coefficients can be evaluated. In l0-WRKNN, ∂r j

∂η
j
i−l0

is calcu-

lated as

∂r j

∂η
j
i−l0

=
∂‖ y −

(
X j

K−l0

)T
η
j
K−l0

‖
2

2

∂η
j
i−l0

= 2
(
x j
i−l0

)T(
y −

(
X j

K−l0

)T
η
j
K−l0

)
. (13)

Equation (13) shows that the weighted contribution of
the η

j
i−l0

depends on both the corresponding sample and
the reconstruction error value. Because of selecting neigh-
bors based on the minimum reconstruction error, the pro-
posed l0-based K-NN classifiers can be less sensitive to
the reconstruction coefficients. Generally, Eq. (13) can be
applied for evaluating the reconstruction coefficients in
every reconstruction error-based K-NN classifier. f (K , t) =
∑C

j=1
∑K

i=1

∣∣∣∣ ∂r j
t

∂η
j
i

∣∣∣∣ is introduced for comparing the sensitivity

of the minimum reconstruction error-based K-NN classifiers
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(a) (b)

Fig. 17 f (5, .) values of the query samples of the Chlorine Concentration dataset of UCR using a WRKNN and b l0-WRKNN

Fig. 18
∑Nt

t=1 f (K , t) values for K = 2,…, 15 on the Chlorine Con-
centration dataset of UCR using WRKNN, l0-WRKNN, WLMRKNN,
and l0-WLMRKNN

to the reconstruction coefficients.
∑K

i=1

∣∣∣∣ ∂r j
t

∂η
j
i

∣∣∣∣ is the summa-

tion ofK absolute values of ∂r j
t

∂η
j
i

correspondingK neighbors

of the tth query sample. And f (K , t) is the summation of

c values of
∑K

i=1

∣∣∣∣ ∂r j
t

∂η
j
i

∣∣∣∣ corresponding to c categories. rt is

the reconstruction error of the tth query sample. The smaller
f (., .) exhibits less sensitivity of the reconstruction error-
based K-NN classifiers to the reconstruction coefficients.

Figure 17 shows f (5, .) of the query samples of the
Chlorine Concentration dataset of UCR using WRKNN and
l0-WRKNN. Also,

∑Nt
t=1 f (K , t) values usingWRKNN, l0-

WRKNN, WLMRKNN, and l0-WLMRKNN are given in
Fig. 18 for K = 2,…, 15. Nt is the number of query sam-
ples. Figures 17 and 18 demonstrate the proposed minimum
reconstruction error-basedK-NN classifiers are less sensitive
to the reconstruction coefficients.

The minimum reconstruction error-based K-NN classi-
fiers make the decision about a query sample based on the

minimum reconstruction error. Generally, the reconstruction
error of a sample versus the samples with the same class is
less than the reconstruction errors versus the samples with a
different class. On the other hand, the neighbors correspond-
ing toEuclidean distance cannot always reconstruct the query
sample with minimum error. The proposed l0-based neigh-
bor selection method selects K samples from each class that
obtain minimum reconstruction error. Therefore, it is more
probable that the samples with the same class as the query
sample provide the least reconstruction error.

Conclusion

Deep learning obtains exciting results in many applications,
such as classifying includes electroencephalography (EEG)
[29], text [13], time-series data [30], remote sensing images
[31], etc.However, for training the deep neural network, large
datasets are needed. In this manuscript, a robust and pow-
erful K-NN-based classifier is proposed for small datasets.
There are different types of K-NN-based classifiers. Neigh-
bors’ selection is the first and one of the most significant
steps of K-NN-based classifiers. Selecting neighbors accord-
ing to the decision criterion of the classifier can improve
the performance of the classifier. The neighbors are selected
using Euclidean distance for most K-NN-based classifiers
while are not corresponding to their decision criteria. In this
manuscript, an l0-based neighbor selection method has been
introduced (Algorithm 1) for minimum reconstruction error-
basedK-NNclassifiers. There is no constraint on the distance
of the selected neighbors, and the neighbors are determined
using a sparse representation problem scheme.

Based on the proposed neighbor selection method, l0-
MLMNN, l0-WRKNN, and l0-WLMRKNN classifiers have
been introduced. Steps of the proposed classifiers have been
given in Algorithms 2–4. The reconstruction error of the
query sample versus the neighbors has significantly been
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decreased using l0-based neighbors; therefore, the perfor-
mance of the minimum reconstruction error-based K-NN
classifiers has been improved.

Also, the computational complexity of the proposed
neighbor selection method (O(N × K )) is more than the
conventional minimum Euclidean distance-based method
(O(N )). Also, the usedmatching pursuit algorithm is a semi-
optimum solution of (11), which can reduce the performance
of the proposedmethod. Furthermore, the proposed neighbor
selection method is just applicable for minimum reconstruc-
tion error-based classifiers.

The proposed l0-based neighbor selection method is suit-
able for data with low samples or high variability per class.
The performances of the l0-based neighbor selection method
and conventional Euclidean distance-based method are the
same for data with a large number of samples per class or low
variability. Evaluations on UCI machine learning repository
(Figs. 4, 5 and 6, and Table 3), UCR time-series classification
archive (Figs. 7, 8 and 9, and Tables 4, 5), and the subset of
the MNIST handwritten digit database (Figs. 10, 11, 12, 13,
14 and 15, andTable 6) demonstrate the suitable performance
of the proposed classifiers. It has been shown that the pro-
posed reconstruction error-based K-NN classifiers are less
sensitive to the reconstruction coefficients than the conven-
tionalminimum reconstruction error-basedK-NNclassifiers.
Also, the proposed classifiers have performed better than the
SVM classifier on all three datasets. For future research, the
performance of the K-NN-based classifiers can be evaluated
using different distance metrics.

Data availability The used datasets are free and available. Also, the
codes of the proposed methods are available at: https://github.com/
RassoulHajizadeh/Unconstrained-Neighbor-Selection-for-Minimum-
Reconstruction-Error-based-K-NN-Classifiers.
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