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Abstract
Inmany real-world applications of interest, several related optimization tasks can be encountered, where each task is associated
with a specific context or personalized information.Moreover, the amount of available data for each taskmay be highly limited
due to the expensive cost involved. Although Bayesian optimization (BO) has emerged as a promising paradigm for handling
black-box optimization problems, addressing such a sequence of optimization tasks can be intractable due to the cold start
issues in BO. The key challenge is to speed up the optimization by leveraging the transferable information, while taking the
personalization into consideration. In this paper, optimization problems with personalized variables are formally defined at
first. Subsequently, a personalized evolutionary Bayesian algorithm is proposed to consider the personalized information and
the measurement noise. Specifically, a contextual Gaussian process is used to jointly learn a surrogate model in different
contexts with regard to the varying personalized parameter, and an evolutionary algorithm is tailored for optimizing an
acquisition function for handling the presence of personalized information. Finally, we demonstrate the effectiveness of the
proposed algorithm by testing it on widely used single- and multi-objective benchmark problems with personalized variables.

Keywords Personalized Bayesian optimization · Transfer learning · Noisy optimization · Expensive optimization

Introduction

Expensive black-box optimization problems are ubiquitous
in real-world engineering and design optimization problems,
where the problem is unknown besides the observed function
values and the available number of function evaluations is
severely limited. Bayesian optimization (BO) has emerged as
an efficientmethod for optimizing black-box problems due to
its data efficiency, which originates from a surrogate model
approximating the true expensive objective functions [17].
Traditional BO typically focuses on a single task each time
and starts a search from scratch assuming each task is iso-
lated, which is called cold start [20]. However, several related
tasks may be encountered in some real-world applications.
As the standardBOdoes not consider task relatedness, a num-
ber of costly function evaluations are required to construct an
efficient surrogate model even in cases several related tasks
are encountered, making it inapplicable in practice [18].
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Recently, transfer learning methods have been incorpo-
rated with BO to alleviate the cold start issue by leveraging
the information from related tasks. A representative work
is multi-task Gaussian processes [24], which is proposed to
extend the GP to learn the inter-task similarities. Multi-task
Gaussian processes have been successfully adopted vari-
ous applications, such as hyperparameter optimization of
machine learning models [20] and biomedical engineering
[7]. The problem setting considered in this paper is moti-
vated by problems in practice, such as optimizing a complex
system subject to varying environmental conditions, adver-
tising on different web pages, and developing personalized
treatment for patients. In these problems, a sequence of
related black-box optimization tasks should be addressed
subjected to given context/personalized information in each
round, which can be defined as expensive optimization with
personalized/contextual information. For example, recently
personalized medicine has been developed to shed light on
the potential advantages of incorporating personal informa-
tion, i.e., each person’s unique clinical, environmental, and
genetic information, into the treatment. Take the transcranial
alternating current stimulation (tACS) [1] as an example;
tACS utilizes an alternating current delivered via multiple
electrodes placed on the scalp, which is capable of propa-
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gating through the scalp and modulating the activity of the
underlying neurons.However, it is problematic to identify the
optimal tACS parameters, i.e., the current and frequency, for
different individuals, as tailoring the treatment basedon tACS
is financially costly and time-consuming and may be per-
turbed by noise. In each round, the personalized/contextual
information is available for a patient, and the aim is to search
for the optimal parameters for tACS simulations.

We formally define the considered optimization problems
as follows:

x∗(p) = argminx∈X f (x, p), (1)

where x = (x1, x2, . . . , xd) is the decision vector with
d decision variables, X denotes the decision space, p
denotes a variable that indicates the personalized/contextual
information, such as personal characteristics and contex-
tual information from the environment, and f denotes the
expensive black-box objective function, where each function
evaluation requires to perform time- and resource-consuming
simulations or physical experiments. Note that the black-box
function f has no closed form, but can be evaluated at any
location x in the domain. As a result, the evaluation may
contain measurement noise ε, which can be formulated as

y(x, p) = f (x, p) + ε, (2)

where y denotes the noisy observation/output of the costly
simulations or experiments. For instance, in tACS simula-
tions, the decision variables include the alternating frequency
and the current strength, and p is the personalized infor-
mation of each patient. For this problem, the best inferred
parameter combination differs along the value of p due to the
individual difference. Hence, the optimal parameter x∗(p) is
not defined globally, but specifically to variable p. Given a
group of participants associated with their personal charac-
teristic, the goal is to find the optimal tACS parameters for
each individual. Moreover, the objective function f is black-
box that can only be evaluated by the time-consuming tACS
simulations.

In this work, we attempt to address the above-mentioned
computationally expensive optimization problems with per-
sonalized information and measurement noise. To this end,
a personalized Bayesian optimization algorithm (PBO-EA)
with an evolutionary algorithm (EA) to solve the inner opti-
mization in BO is proposed to take the personalized variable
into consideration. More specifically, personalized Gaussian
processes (PGPs) are employed to jointly learn surrogate
models across different contexts by utilizing the personal-
ized information. Hence, for a test data with a specific value
of personalized variable, the PGP can provide predictions
associated with a confidence level. For the given personal-
ized information, a modified evolutionary algorithm is used

to optimize an acquisition function for identifying new sam-
ples. Both single-objective and multi-objective benchmark
problems are modified to test the proposed method on the
considered problem setting.

In the rest of the paper, Bayesian optimization for black-
box global optimization problems, including Gaussian pro-
cesses and acquisition functions, is introduced first. Follow-
ing that, the proposed personalized evolutionary Bayesian
optimization algorithm is presented. Tovalidate the effective-
ness of the proposed algorithm for expensive optimization
problems with personalized variables and output noise, the
single-objective and multi-objective benchmark suites are
modified and the experimental results are summarized in
“ Experimental studies”. Finally, we draw a conclusion and
present some lines of future work.

Bayesian optimization

In this section, Bayesian optimization [17] is briefly intro-
duced, including its two key components, i.e., Gaussian
processes and acquisition functions. Suppose we aim to opti-
mize an expensive black-box function f : X → R, where
X ⊂ R

d is a compact and convex set. We can access only
the possible noisy evaluations y = f (x) + ε at any query
point x. Formally, the goal is to find the global optimum

x∗ = argminx∈X f (x). (3)

However, the limited evaluation budget resulting from the
costly function evaluations makes it hard for an algorithm to
converge to the global optimum. Bayesian optimization has
been emerged as a popular methodology for global optimiza-
tion of expensive black-box functions due to its high sample
efficiency. A key component of Bayesian optimization is a
surrogate model that trained by the observed data to approx-
imate the true objective function. The surrogate model can
replace the expensive evaluation by providing predictions
on the queried locations. Bayesian optimization often adopts
Gaussian processes (GPs) as the surrogate model, especially
in the small data regime. Gaussian processes provide predic-
tions associated with uncertainty estimates that is important
to guide the global search. Afterwards, an acquisition func-
tion (AF) is carefully designed to balance the exploration and
exploitation based on the predictions. Instead of optimizing
the expensive objective function, the acquisition function is
optimized to identify the next query point. In the following,
more details of Gaussian processes and acquisition functions
are presented.
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Gaussian processes

The Gaussian process (GP) is characterized by its prior mean
function m(·) and covariance function (or kernel matrix)
k(·, ·) [16]. Consider a finite collection of data pairs (X, y)
of the unknown function y = f (X)+ ε with ε ∼ N (

0, σ 2
ε

)
,

where X = [x1, x2, ..., xN ]T , y = [y1, y2, ..., yN ]T , we
assume that the observed data are drawn from a multivariate
Gaussian distribution with a Gaussian prior

y ∼ GP (
m(x), k

(
x, x′)) . (4)

Therefore, we obtained the predictive distribution for y at a
new observation x that also follows a Gaussian distribution.
Its mean μ and variance σ 2 are given by

μ(x) = K (x, X) (K (X, X) + σ 2
ε I)

−1 y

σ 2(x) = K (x, x) − K (x, X) (K (X, X) + σ 2
ε I)

−1K (X, x) ,
(5)

where k (x; X) presents a correlation vector between x and
each element xi in X , K (X; X) is a covariancematrix whose
element is calculated by the covariance (kernel) function.
Commonly used covariance functions include the squared
exponential and Matérn covariance functions.

Acquisition functions

Once the GP is constructed, the next step is to select the next
query point, i.e., to select a new point to be evaluated using
the expensive function. In Bayesian optimization, instead of
optimizing the true objective function, an AF is optimized
to identify new samples. Generally, optimizing the AF by
evolutionary algorithms is called evolutionaryBayesian opti-
mization (EBO). AFs typically incorporate both the mean
and the variance of the GP prediction to achieve a trade-
off between exploration and exploitation. A fruitful line of
research has been done on designing acquisition functions,
including expected improvement (EI) [11] and lower confi-
dence bound (LCB) [8]. Moreover, some extensions of EI
accounting for measurement noise have been proposed.

Let f ∗ denote the optimum obtained so far, and �(·)
and φ(·) denote the normal cumulative distribution func-
tion (CDF), and probability density function (PDF) of the
standard normal random variable, respectively. A commonly
used acquisition function is called lower bound confidence
(LCB) [19]. LCB is designed to balance the exploration and
exploitation by combining the uncertainty with the predicted
objective values

LCB (x) = μ (x) − κσ (x) , (6)

where κ presents a trade-off constant. LCB implicitly prefers
points whose predicted mean value μ is small and the corre-
sponding standard deviation σ is large.

Alternatively, expected improvement (EI) [14] calculates
the expected improvement with respect to f ∗

E I (x) = E
[
max

(
0, f ∗ − f (x)

)]

= (
f ∗ − μ(x)

)
�

(
f ∗ − μ(x)

σ (x)

)
+ σ(x)φ

(
f ∗ − μ(x)

σ (x)

)
,

(7)

where E denotes the expectation value, and � and φ are the
Gaussian CDF and PDF, respectively.

For noisy observations, i.e., the objective function is sub-
ject to noise, the standard EI will face two key challenges
[15]: (1) the current best solution is not well defined, and (2)
the prediction uncertainty associated with the current best
fitness values is not accounted for. Hence, a variant of EI for
handling noisy optimization, known as Augmented EI (AEI)
[10], is introduced

AE I (x) =

E
[
max

(
μ

(
x∗) − f (x)), 0

)] ·
(

1 − σε√
σ 2(x) + σ 2

ε

)

,
(8)

where x∗ stands for the current ‘effective best solution’,
which is determined as explained below, σ 2

ε denotes the noise
level. In Eq. (8), the expectation is conditional given the past
data and given estimates of the correlation parameters.

To determine the effective best solution x∗, we introduce
a utility function, denoted as Utili t y(x), to account for the
uncertainty associated with the predicted objective values.
In general, the form of the utility function may be selected
according to the user’s preference. In AEI, the following for-
mula is used:

Utili t y(x) = −μ(x) − cσ(x), (9)

where c is a constant that can reflect the degree of risk
aversion. We select c = 1 as our default, while implies a
willingness to trade 1 unit of the predicted objective value
for 1 unit of the standard deviation of prediction uncertainty.
Consequently, the new sample is identified by maximizing
Utili t y function and μ (x∗) denotes the prediction on x∗
provided by the surrogate model.

Similarly, in [9], another variant of EI criterion, called Pro-
file EI (PEI), for contextual optimization is proposed. Recall
that the standard EI measures the expected improvement on
the current best location. However, for a given new context,
the current best location may misguide the search for the
unseen context. Hence, an alternative for the current best
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location is introduced as follows:

T (x) := min
(
maxμ(x), x∗) , (10)

where m(x) is the mean value of x predicted by the person-
alized Gaussian process. Consequently, the PEI is

PE I (x) ≡ E [max (T (x) − f (x), 0)] . (11)

Personalized evolutionary Bayesian
optimization

Despite the abundance of applications of Bayesian opti-
mization, a few methods have been proposed to investigate
expensive black-box function with personalized variables
and measurement noise. In this section, a personalized
evolutionary Bayesian optimization is introduced. While
the existing work mainly focused on single-objective opti-
mization, we attempt to extend the proposed algorithm
to multi-objective optimization problems with personalized
variables. The pseudo code of the proposed algorithm for
single/multi-objective problems is outlined in Algorithm 1.

Algorithm 1 Personalized Bayesian Optimization
Input: FEmax : the maximum number of the slow objective function

evaluations;
Output: the optimal solution;;
1: Initialization: use the Latin Hypercube Sampling method [13] to

sample N points X = {
xi0

}N
i=1 to be evaluated on the true objective

functions; set D0 = (X,Y) and FE = N ;
2: //Construct surrogate models//
3: Train a personalized GP for each objective function;
4: while FE ≤ FEmax do
5: if PBO-EA then
6: Employ GA to optimize EI (Eq. 7) and select a new sample
7: end if
8: if PGP-MOEA then
9: Employ an MOEA (we use RVEA) to optimize mLCB

(Eq. 13) and select u new samples
10: end if
11: //Update the Gaussian process//
12: Add the newly evaluated data into the training dataset and re-

train the surrogate model;
13: if Optimize single-objective problems then
14: Update FE = FE + 1;
15: end if
16: if Optimize multi-objective problems then
17: Update FE = FE + u;
18: end if
19: end while
20: Return the optimized solution.

Personalized Gaussian processes

The commonly used surrogate model in BO, Gaussian pro-
cesses, does not take the personalized information into
consideration. That is, the standard surrogate model approx-
imates f (x) instead of f (x, p). To model the objective
function f (x, p) in presence of personalized variables, there
are three possible methods: (1) we assume that each indi-
vidual with a specific value of the personalized variable is
not related to each other. Under this assumption, a single
Gaussian process should be constructed for each individual
and BO should be performed separately on each individual.
Unfortunately, we only have very limited number of data
for each individual, posing challenges for constructing sep-
arate surrogate models with good quality. (2) Alternatively,
we can ignore the influence of the personalized variables on
the objective function by assuming that all individuals with
varying personal characteristics share a same objective func-
tion. Hence, we can reduce the optimization problem with
personalized parameters to a standard optimization prob-
lem. However, this is not the case in practical problems. (3)
we assume that these individuals with different personalized
information share some similarities. Hence, we can learn a
personalized Gaussian process by leveraging the similarity
between different individuals. For the considered problem
setting, the observed data for a number of individuals with
different personal characteristics can be augmented together
to train a single GP model, enhancing the estimate of the
model parameters. To achieve this, a contextual GP [12] is
employed in our work to jointly learn a personalized surro-
gate model, called a personalized GP (PGP).

The contextual GP is designed for contextual bandit prob-
lem where varying environmental conditions are considered.
To leverage the contextual information, an additional ker-
nel function is defined over the context space, which is used
in conjunction with a kernel function over the input features.
Such a composite kernel function in the contextual GP allows
us to analysis different contexts within a single GP model.
Motivated by the success of the contextual GP, we present a
product kernel for the optimization with personalized param-
eters. This product kernel is constructed using kernels defined
over the decision variables and the context (the personalized
parameter). Hence, the covariance becomes

k
({xi , pi } ; {

x j , p j
}) = k

(
xi , x j

) ⊗ k
(
pi , p j

)
, (12)

where k
(
xi , x j

)
and k

(
pi , p j

)
are the kernel over search

space and the context, respectively. ⊗ denotes Kronecker
product. The core idea behind this product kernel is to
describe the data-context pairs by constructing separate ker-
nels on different variables. As a result, the observed data in
one context can impact the predictions in another context
as the model can capture the correlation between multiple
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optimization tasks with varying contexts. In this work, the
squared exponential kernel is used.

Optimization of acquisition functions

Having constructed the contextual Gaussian process, the nest
step is the design and optimization of an AF to search for the
new sample conditional on the personalized parameter. In our
work,while EI is adopted as theAF for single-objective prob-
lems with personalized variables, a variant of LCB is used
in multi-objective optimization problems (MOPs). Consider
a m-objective optimization problem with personalized vari-
ables, one personalized GP is constructed for each objective.
Hence, thePGPs canpredictmean andvarianceof a candidate
solution x on all objectives, denoted as σ (x) = {σi (x)}mi=1
andμ(x) = {μi (x)}mi=1, respectively. In thisway, the original
LCB shown in Eq. (6) can be extended to MOPs as follows:

mLCB (x) = μ (x) − κσ (x) , (13)

where k is a parameter to manage the trade-off between
exploration and exploitation.Note thatmLCB (x) is a vector
with a length of m.

Generally, AFs aremulti-modal, non-convex, and difficult
to beoptimized.While various kinds of optimizationmethods
have been introduced to solve the inner optimization within
the BO framework, there is a lack of studies exploring the
optimization of acquisition functions in the presence of the
personalized/contextual information and the measurement
noise. In the considered problems, the personalized infor-
mation for each individual is given before performing BO.
Hence, the value for the personalized parameter is fixedwhen
optimizing the acquisition functionwith the surrogatemodel.

Evolutionary algorithms (EAs), a class of population-
based methods, have been successfully applied to various
non-convex optimization problems [3]. EAs’ efficiency orig-
inates from the fact that they are insensitive to local optima
and do not require gradient information. While EAs have
emerged as a powerful method to optimization AFs in BO
[25], they are not applicable to the problem considered here
as the personalized/contextual information is not considered.
For the considered problem, the personalized information is
given in each round of BO. Hence, the value of the person-
alized variable is fix when optimizing the AF. Without loss
of generality, we suggest a standard genetic algorithm (GA)
and a reference vector guided EA (RVEA) [2] as the single-
objective and multi-objective optimizer for the acquisition
function optimization given the personalized information,
respectively. Specifically, in both GA and RVEA, a real num-
ber coding scheme, the simulated binary crossover [4], and
the polynomial mutation [5] are employed.

Experimental studies

Test problems

We consider nine commonly used single-objective opti-
mization problems [15,21], including six two-dimensional
problems, i.e., Goldstein, Rosenbrock, Branin, Six-hump
camel, Dropwave, Beale and Ackley function with ten deci-
sion variables, and Hartmann function with three and six
decision variables, respectively. The DTLZ [6] test suite is
used to test the performance of the proposed algorithm on
MOPs. The modified counterparts for DTLZ1 and DTLZ3
by reducing the complexity to a reasonable level are denoted
as DTLZ1a and DTLZ3a, respectively, and shown in the
Supplementary material. As recommended in [6], the num-
ber of decision variables for the test instances is set to
n = m + K − 1, where K = 5 is adopted for DTLZ1,
K = 10 is used for DTLZ2 to DTLZ6 as well as DTLA3a,
and K = 20 is employed inDTLZ7.m represents the number
of objectives. Here, we set m = 3.

Note that these benchmarks are designed without con-
sidering the personalized variables. Hence, to involve per-
sonalized variables into the objective function, we vary the
parameters in the benchmark problems, so that different
values for the personalized variable will generate different
objective functions. For example, the original Rosenbrock
function is

f (x) =
[
D−1∑

i=1

(
100

(
x̄i+1 − x̄2i

)2 + (1 − x̄i )
2
)]

, (14)

where x̄i = 15xi − 5, for all i = 1, 2, 3, 4. To generated a
variant of Rosenbrock function for the considered problem,
we treat a constant in Eq. (14) as the personalized variable
p. The different value of p is calculated by multiplying the
original value of the selected constant with values of samples
s drawn fromanormal distribution.Hence, the corresponding
Rosenbrock function is formulated as

f (x, p) =
[
D−1∑

i=1

(
p

(
x̄i+1 − x̄2i

)2 + (1 − x̄i )
2
)]

(15)

with p = 100 ∗ s.
On the other hand, the observations in the real-word exper-

iments may be noisy. To test the influence of the noise, we
add aGaussian noise noise ∼ N

(
0, σ 2

ε

)
to the output of each

benchmark problem. Varying σ 2
ε of the distribution from 0 to

1 can change the level of noise. Hence, the final Rosenbrock
function used in our experiments is

f (x, p) =
[

3∑

i=1

(
p

(
x̄i+1 − x̄2i

)2 + (1 − x̄i )
2
)]

× (1 + σε)

(16)
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with p = 100∗ s. In our experiments, we test each algorithm
on the benchmark problems with different levels of noise,
i.e., σ 2

ε = 0, 0.05, 0.1, 0.5 and 1.Moreover, ten personalized
values are generated for each benchmark problem to test each
algorithm on different optimization problems with varying
personalized information.

Similar to personalized single-objective benchmark prob-
lems, we also modified the selected multi-objective test
problems by treating a parameter in the original benchmark
problem as the personalized variable.

Experimental settings

Hence, we tested a standard evolutionary algorithm (i.e.,
genetic algorithm), and a BFGS-based sequential quadratic
programming (SQR) provided by an MATLAB function.
We denote these two methods as PBO-EA and PBO-SQR,
respectively. Note that the expected improvement (EI) is
adopted as the acquisition function to identify new samples
in both methods.

Based on the above analysis, we attempt to solve the
optimization problems with the personalized variable from
the perspective of the surrogate model, the design, and the
optimization of the acquisition function. To validate each
component in the proposed personalized Bayesian opti-
mization framework, shown in Algorithm 1, the experiment
include four major parts:

1. To validate the effectiveness of the personalized GP, the
proposed PBO-EA is compared with the standard BO
with the standard GP. While the standard GP ignores
the personalized information, the contextual Gaussian
process in PBO-EA attempts to jointly learn an approx-
imation of the true objective function over different
contexts.

2. A variant of PBO-EA is introduced to test the advantage
of the use of GA.While PBO-EA use GA to optimize EI,
the variant employs a BFGS-based sequential quadratic
programming (SQR) provided by a MATLAB function,
called PBO-SQR.

3. Different AFs are tested on the problems with personal-
ized variable and measurement noise. In addition to EI,
the two variants of EI for handling measurement noise,
i.e., AEI and PEI, and LCB are adopted, denoted as PBO-
AEI, PBO-PEI, and PBO-LCB, respectively.

4. To test the effectiveness of PGP on MOPs with per-
sonalized variables, we suggest to compare a PGP-
assistedmulti-objective evolutionary algorithm (MOEA)
and a GP-assisted one, denoted as PGP-MOEA and
GP-MOEA, respectively. In both PGP-MOEA and GP-
MOEA, a commonly used MOEA (we use RVEA [2]) is
performed to optimize mLCB to select u new samples.
Parameter k in mLCB is set to 2 and u is set to 5.

We run each algorithm on each benchmark problem for
ten independent times, and the Wilcoxon rank sum test [23]
is calculated to compare the mean over ten independent runs
obtained by PBO-EA and by the compared algorithms at
a significance level of 0.05. Symbol “(+)” indicates that the
proposed algorithmoutperforms the compared algorithm sta-
tistically significantly, while “(−)” means that the compared
algorithm performs better than PBO, and “(≈)” means that
there is no significant difference between them.Themean and
standard deviation (Std) of ten runs for the single-objective
problems with different noise levels obtained by the algo-
rithms are recorded in Tables 1, 2, 3, 4, 5 and Tables SI–SV
in the Supplementary material. Note that we use notation ‘S’
to indicate tables and figures in the Supplementary material
to avoid confusion. For MOPs, the hypervolume (HV) [22]
metric is adopted to assess the performance of the algorithms.
HV provides a combined information of the convergence
and diversity of the obtained set of solutions. All HV values
presented in this work are normalized to [0, 1]. Algorithms
achieving a larger HV value are better. The results in terms
of HV values obtained by PGP-MOEA and GP-MOEA are
summarized in Table 6.

All algorithms are implemented in Matlab R2019a on an
Intel Core i7 with 2.21 GHz CPU. The general parameter
settings in the experiments are given as follows:

1. We initial ten personalized parameters. For each person-
alized value, the size of the initial training data is ten.
Hence, there are 10 ∗ 10 initial data in total.

2. We randomly generate ten personalized values, i.e., p =
[p1, p2, · · · , p10], and the algorithm runs ten iterations
for each personalized value. Hence, the maximum num-
ber of function evaluations FE = 10 ∗ 10 + 10 ∗ 10.

3. As ten personalized values (contexts) are considered for
each benchmark problem, there are 10 ∗ 12 optimization
tasks in total.

4. For evolutionary algorithm: the population size is set to
60 and the maximum number of generations is set to 20.

5. One new sample is selected for single-objective prob-
lems, and five new samples (u = 5) are selected for
MOPs.

Experimental results

1. Comparison of surrogate models: The results obtained
by the standard BO and PBO-EA on single-objective
problems with different levels of noise are presented in
Tables 1, 2, 3, 4, 5 and Tables SI–SV, respectively. We
can see that the algorithm with the personalized GP, i.e.,
PBO-EA, shows better overall performance than the stan-
dard BO.More specifically, PBO-EA shows significantly
better or similar performance than the standard BO on 74
out of 80 optimization tasks without noise, indicating the
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Table 1 Statistical results obtained by PBO-EA, BO, PBO-SQR, PBO-LCB, PBO-AEI, and PBO-PEI on benchmark problemswith noiselevel = 0

σ 2
ε = 0 PBO-EA BO PBO-SQR PBO-LCB PBO-AEI PBO-PEI

Problem Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ackley 15.4 0.33 16.1 ≈ 0.44 14.6 ≈ 6.73 15.9 ≈ 0.41 16.1 ≈ 0.29 16.1 ≈ 0.29

8.37 0.19 8.43 ≈ 0.24 7.10 ≈ 2.30 8.21 ≈ 0.36 8.43 ≈ 0.29 8.43 ≈ 0.29

13.1 0.41 13.3 ≈ 0.39 13.0 ≈ 1.01 13.1 ≈ 0.31 13.4 ≈ 0.30 13.4 ≈ 0.21

6.11 0.12 5.97 ≈ 0.15 5.73 ≈ 0.65 6.25 ≈ 0.24 6.19 ≈ 0.34 6.19 ≈ 0.22

12.2 0.22 12.2 ≈ 0.23 12.4 ≈ 0.23 12.2 ≈ 0.23 12.2 ≈ 0.35 12.2 ≈ 0.34

11.9 0.36 11.5 ≈ 0.35 12.1 ≈ 0.27 12.2 ≈ 0.35 11.6 ≈ 0.21 12.2 ≈ 0.21

9.37 0.28 9.34 ≈ 0.23 8.78 ≈ 0.64 9.55 ≈ 0.21 9.54 ≈ 0.29 9.43 ≈ 0.20

16.1 0.21 16.7 ≈ 0.33 16.8 ≈ 0.41 16.6 ≈ 0.31 16.6 ≈ 0.25 16.3 ≈ 0.41

3.67 0.23 3.90 ≈ 0.38 3.94 ≈ 0.41 3.90 ≈ 0.22 4.20 – 0.16 3.91 ≈ 0.23

13.9 0.37 14.3 ≈ 0.33 14.1 ≈ 0.21 14.2 ≈ 0.13 14.2 ≈ 0.25 14.3 ≈ 0.3

Rosenbrock 0.82 0.19 6.23 + 8.5 299 + 279 3.6e3 + 321 1.29 ≈ 0.47 2.89 + 0.41

0.36 0.21 2.19 + 2.2 89.6 + 68.9 3.9e3 + 4.09 0.67 + 0.28 2.17 + 0.5

0.25 0.11 4.31 + 12.9 71.0 + 63.6 3.8e3 + 4.23 0.39 + 0.21 1.41 + 0.39

0.15 0.13 4.39 ≈ 10.8 30.1 + 12.1 3.7e3 + 3.23 0.21 ≈ 0.23 1.07 + 0.49

0.09 0.12 2.98 ≈ 8.93 20.9 + 15.3 3.9e3 + 4.06 0.14 ≈ 0.17 0.56 + 0.23

0.07 0.11 3.09 ≈ 4.81 19.7 + 17.3 3.8e3 + 3.89 0.08 ≈ 0.10 0.41 + 0.41

0.04 0.04 48.3 ≈ 101 18.1 + 16.4 3.8e3 + 4.01 0.04 ≈ 0.05 0.12 ≈ 0.10

0.10 0.05 45.6 ≈ 129 31.5 + 28.2 3.8e3 + 4.30 0.09 ≈ 0.07 0.06 ≈ 0.19

0.10 0.04 945 + 1.4e3 68.4 + 43.1 3.8e3 + 3.91 0.12 ≈ 0.06 0.17 ≈ 0.19

0.17 0.05 947 + 1.5e3 209 + 57.9 3.9e3 + 3.39 0.39 ≈ 0.32 0.21 ≈ 0.11

Branin 0.69 0.21 3.09 + 3.08 29.7 + 21.5 97 + 38.1 0.72 ≈ 0.36 1.41 ≈ 0.91

1.61 2.29 8.09 + 5.87 19.1 + 6.01 89.0 + 64.6 1.00 ≈ 0.73 4.25 + 3.71

1.76 3.84 12.9 + 5.41 19.2 + 3.99 50.9 + 57.4 4.09 + 4.87 10.8 + 6.70

1.71 2.32 7.07 + 6.41 15.2 + 4.43 16.1 + 14.3 6.87 + 7.00 11.2 + 4.81

0.87 0.43 3.28 ≈ 4.39 21.2 + 20.0 19.8 + 12.1 2.46 + 2.47 3.78 + 2.49

0.89 0.35 13.2 + 22.1 82.2 + 50.1 21.1 + 22.3 0.86 ≈ 0.27 1.15 ≈ 0.91

0.79 0.23 14.3 + 14.7 57.1 + 44.1 24.6 + 29.1 1.49 + 0.38 4.01 + 4.43

0.68 0.36 34.6 + 19.6 103 + 69.9 56.1 + 44.2 2.98 + 4.37 12.2 + 11.2

3.03 4.56 13.8 + 14.1 34.5 + 38.1 32.2 + 21.2 5.02 ≈ 7.93 11.9 + 4.76

27.7 11.4 64.7 + 65.0 69.7 + 49.6 45.1 ≈ 44.7 14.7 – 11.7 45.7 ≈ 36.3

Harmann3 −4.21 0.21 −3.21 + 0.70 −1.72 + 0.63 −2.31 + 0.87 −4.01 ≈ 0.14 −3.78 ≈ 0.31

−4.19 0.31 −3.38 + 0.81 −2.21 + 0.89 −2.31 + 1.04 −4.25 ≈ 0.19 −4.13 ≈ 0.21

−3.64 0.24 −3.00 + 0.67 −1.41 + 0.80 −2.41 + 0.65 −3.44 ≈ 0.34 −3.34 ≈ 0.41

−3.79 0.13 −2.95 + 1.1 −2.41 + 0.84 −1.91 + 1.02 −3.78 ≈ 0.17 −3.65 + 0.21

−3.47 0.19 −2.86 ≈ 1.91 −1.82 + 0.72 −1.54 + 0.94 −3.52 ≈ 0.14 −3.52 ≈ 0.22

−4.78 0.28 −4.54 ≈ 0.74 −3.36 + 1.01 −1.75 + 0.94 −4.92 ≈ 0.14 −4.79 ≈ 0.37

−3.78 0.23 −3.26 + 0.67 −2.21 + 0.36 −1.79 + 1.22 −3.84 ≈ 0.21 −3.57 ≈ 0.38

−4.54 0.40 −3.51 + 0.96 −2.84 + 0.67 −1.44 + 1.28 −4.55 ≈ 0.30 −4.51 ≈ 0.23

−3.92 0.16 −2.93 + 0.65 −2.16 + 0.92 −0.25 + 0.11 −3.85 ≈ 0.21 −3.84 ≈ 0.24

+/≈/– 20/20/0 30/9/1 29/11/0 5/32/3 14/26/0
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Table 2 Statistical results obtained by PBO-EA, BO, PBO-SQR, PBO-LCB, PBO-AEI, and PBO-PEI on benchmark problems with noiselevel =
0.05

σ 2
ε =0.05 PBO-EA BO PBO-SQR PBO-LCB PBO-AEI PBO-PEI

Problem Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ackley 16.5 0.25 16.4 ≈ 0.35 15.0 ≈ 3.83 16.4 ≈ 0.41 16.5 ≈ 0.43 16.5 ≈ 0.29

8.37 0.26 8.30 ≈ 0.29 8.38 ≈ 0.66 8.42 ≈ 0.28 8.45 ≈ 0.33 8.52 ≈ 0.21

13.2 0.24 13.2 ≈ 0.32 12.4 – 0.95 13.3 ≈ 0.38 13.2 ≈ 0.39 13.6 + 0.29

6.14 0.26 6.14 ≈ 0.23 6.16 ≈ 0.21 5.89 ≈ 0.16 6.26 ≈ 0.14 6.24 ≈ 0.18

12.3 0.32 12.3 ≈ 0.22 12.6 ≈ 0.31 12.3 ≈ 0.26 12.4 ≈ 0.18 12.3 ≈ 0.38

12.6 0.32 12.4 ≈ 0.29 12.6 ≈ 0.33 12.5 ≈ 0.25 12.6 ≈ 0.18 12.6 ≈ 0.13

9.41 0.27 9.52 ≈ 0.22 9.30 ≈ 0.54 9.45 ≈ 0.12 9.32 ≈ 0.32 9.58 + 0.23

16.7 0.37 16.7 ≈ 0.22 16.5 ≈ 0.61 16.3 – 0.32 16.6 ≈ 0.27 16.5 ≈ 0.29

3.98 0.18 3.93 ≈ 0.16 3.90 ≈ 0.45 4.03 ≈ 0.16 3.99 ≈ 0.21 4.02 ≈ 0.23

14.4 0.35 14.3 ≈ 0.36 4.65 ≈ 0.22 14.1 ≈ 0.22 14.3 ≈ 0.22 14.2 ≈ 0.33

Rosenbrock 1.06 0.27 1.65 ≈ 1.78 356 + 476 3.4e3 + 1.0e3 1.75 + 0.29 3.17 + 0.41

0.43 0.17 3.35 + 9.50 53.4 + 67.6 3.5e3 + 787 0.91 + 0.21 2.06 + 0.35

0.24 0.14 0.61 ≈ 2.05 99.5 + 123 3.6e3 + 687 0.47 + 0.12 1.54 + 0.32

0.14 0.11 0.53 + 1.42 42.8 + 47.1 3.5e3 + 9.1e2 0.26 + 0.08 1.04 + 0.24

0.09 0.06 0.08 ≈ 0.14 20.2 + 9.31 3.8e3 + 4.01 0.11 ≈ 0.06 0.68 + 0.26

0.05 0.05 0.64 + 1.83 29.4 + 40.7 3.9e3 + 4.10 0.06 ≈ 0.08 0.36 + 0.16

0.06 0.08 0.62 ≈ 1.06 68.1 + 113 3.8e3 + 4.01 0.03 ≈ 0.05 0.12 ≈ 0.04

0.06 0.05 1.69 ≈ 1.86 89.9 + 173 3.9e3 + 4.01 0.08 ≈ 0.05 0.06 ≈ 0.07

0.20 0.19 6.23 + 10.3 250 + 198 3.8e3 + 4.11 0.15 ≈ 0.04 0.19 ≈ 0.17

0.24 0.21 7.74 + 14.3 411 + 191 3.8e3 + 4.02 0.25 ≈ 0.11 0.76 ≈ 1.23

Branin 0.61 0.21 1.26 ≈ 0.82 23.6 + 12.3 8.40 + 4.32 0.88 ≈ 0.51 1.78 + 1.22

0.63 0.22 7.08 + 5.71 21.2 + 6.39 4.74 + 5.11 3.21 ≈ 3.26 2.98 + 4.23

2.88 4.46 12.1 + 6.04 14.9 + 4.91 36.4 + 22.8 8.09 + 6.75 6.01 + 4.41

3.37 4.68 6.19 ≈ 6.33 15.6 + 10.1 63.6 + 43.6 9.72 + 6.39 13.4 + 5.40

2.81 4.20 4.24 ≈ 4.98 41.0 + 26.5 85.4 + 93.4 4.38 + 3.37 4.25 + 2.31

1.20 0.81 9.00 ≈ 13.1 49.0 + 44.0 175 + 117 0.87 ≈ 0.25 1.56 ≈ 1.58

0.95 0.38 9.01 + 7.04 49.5 + 33.1 66.3 + 55.7 2.21 + 1.29 2.70 ≈ 5.21

1.09 1.35 29.6 + 17.5 159 + 91.8 247 + 125 9.47 ≈ 9.86 7.34 + 9.42

3.08 4.63 7.44 + 5.55 84 + 79.5 51.0 + 61.6 13.3 + 12.8 13.4 + 6.51

28.2 9.70 46.5 + 33.1 151 + 149 168 + 159 40.7 ≈ 28.3 48.6 ≈ 27.6

Hartmann3 −3.86 0.35 −3.42 + 0.35 −2.15 + 0.90 −2.49 + 0.84 −4.01 ≈ 0.17 −3.93 ≈ 0.35

−4.15 0.30 −3.60 + 0.25 −2.09 + 0.64 −2.28 + 1.14 −4.13 ≈ 0.28 −4.16 ≈ 0.22

−3.69 0.09 −3.12 ≈ 0.41 −2.02 + 0.90 −2.07 + 0.83 −3.47 ≈ 0.38 −3.25 + 0.50

−3.88 0.12 −3.15 ≈ 0.52 −1.95 + 1.16 −2.12 + 0.92 −3.73 ≈ 0.24 −3.81 ≈ 0.17

−3.61 0.21 −2.77 + 0.93 −2.12 + 0.85 −1.87 + 1.04 −3.61 ≈ 0.17 −3.49 ≈ 0.33

−4.80 0.23 −3.64 + 1.24 −2.65 + 0.97 −2.01 + 1.31 −5.10 – 0.12 −4.87 ≈ 0.18

−3.86 0.41 −3.10 ≈ 1.12 −2.59 + 0.73 −1.83 + 1.06 −3.86 ≈ 0.27 −3.75 ≈ 0.29

−4.63 0.23 −3.35 + 1.21 −2.87 + 0.86 −1.31 + 1.31 −4.48 ≈ 0.31 −4.23 ≈ 0.42

−3.84 0.18 −3.18 ≈ 1.21 −2.41 + 0.84 −0.28 + 0.06 −3.84 ≈ 0.25 −3.79 ≈ 0.18

+/≈/– 16/24/0 30/9/1 30/9/1 11/28/1 16/24/0
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Table 3 Statistical results obtained by PBO-EA, BO, PBO-SQR, PBO-LCB, PBO-AEI, and PBO-PEI on benchmark problems with noiselevel =
0.1

σ 2
ε =0.1 PBO-EA BO PBO-SQR PBO-LCB PBO-AEI PBO-PEI

Problem Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ackley 16.4 0.31 13.6 ≈ 4.65 15.2 ≈ 0.45 16.3 ≈ 0.33 15.4 ≈ 0.34 14.0 ≈ 1.54

8.23 0.28 8.19 ≈ 0.33 8.56 ≈ 0.30 8.63 ≈ 0.24 8.64 ≈ 0.37 7.13 ≈ 1.58

13.2 0.25 13.3 ≈ 0.74 13.2 ≈ 0.16 13.3 ≈ 0.30 13.3 ≈ 0.45 12.1 ≈ 14.7

6.27 0.24 6.01 ≈ 0.33 6.13 ≈ 0.14 6.12 ≈ 0.21 6.25 ≈ 0.19 6.03 ≈ 16.5

12.1 0.23 12.2 ≈ 0.31 12.4 ≈ 0.28 11.7 ≈ 0.32 12.6 ≈ 0.28 26.7 + 6.41

12.1 0.28 12.6 + 0.28 12.4 ≈ 0.30 12.4 ≈ 0.29 12.4 ≈ 0.33 17.9 + 9.13

9.28 0.23 9.10 ≈ 0.51 9.48 ≈ 0.08 9.55 ≈ 0.20 9.60 ≈ 0.15 12.4 + 7.67

16.4 0.34 16.6 ≈ 0.43 16.5 ≈ 0.26 16.6 ≈ 0.36 16.3 ≈ 0.28 22.4 + 10.4

4.01 0.19 3.83 ≈ 0.67 4.07 ≈ 0.24 4.01 ≈ 0.14 4.14 ≈ 0.19 6.63 + 1.26

14.5 0.34 14.3 ≈ 0.62 14.5 ≈ 0.18 14.1 ≈ 0.16 14.2 ≈ 0.19 14.0 ≈ 89.9

Rosenbrock 1.03 0.41 390 + 469 2.2e3 + 1.2e3 2.14 + 0.41 3.39 + 0.70 4.25 + 3.71

0.44 0.23 95.4 + 102 1.8e3 + 1.7e3 1.28 + 0.39 2.21 + 0.37 11.8 + 6.72

0.24 0.15 89.7 + 61.6 1.6e3 + 1.9e3 0.72 + 0.19 1.47 + 0.29 11.5 + 4.83

0.14 0.10 23.2 + 23.2 1.3e3 + 1.7e3 0.36 + 0.14 0.99 + 0.23 3.36 + 2.49

0.08 0.06 40.3 + 61.6 1.3e3 + 1.7e3 0.12 ≈ 0.09 0.81 + 0.38 1.15 ≈ 0.97

0.11 0.08 10.0 + 14.1 1.2e3 + 1.7e3 0.07 ≈ 0.08 0.42 + 0.20 4.25 + 4.95

0.05 0.05 7.01 + 7.22 1.4e3 + 1.7e3 0.03 ≈ 0.03 0.14 + 0.11 12.7 + 13.6

0.07 0.04 83.8 + 112 1.3e3 + 1.7e3 0.09 ≈ 0.05 0.10 ≈ 0.14 13.1 + 5.05

0.16 0.09 381 + 227 1.3e3 + 1.7e3 0.22 ≈ 0.15 0.14 ≈ 0.12 47.9 + 37.8

0.28 0.13 547 + 218 1.3e3 + 914 0.39 ≈ 0.29 0.79 + 0.71 1.90 + 0.37

Branin 2.23 3.23 24 + 19.71 7.98 + 4.46 1.11 ≈ 0.53 1.64 ≈ 1.33 1.40 ≈ 0.9

1.87 2.60 15.4 + 5.50 16.5 + 17.7 3.07 ≈ 3.90 6.10 + 4.02 4.25 + 3.7

0.80 0.46 17.0 + 7.68 35.3 + 29.4 7.63 + 6.63 12.2 + 5.19 11.8 + 6.77

2.89 5.23 18.5 + 16.9 81.8 + 68.1 9.15 + 7.20 13.3 + 5.14 11.6 + 4.88

2.16 4.79 20.6 + 19.0 64.4 + 33.6 2.33 + 1.17 2.84 + 1.21 3.36 + 2.49

1.07 0.48 100 + 54.5 167 + 72.7 1.05 ≈ 0.92 1.21 ≈ 0.71 1.15 ≈ 0.98

1.92 2.69 41.8 + 29.9 50.9 + 45.6 4.19 + 6.08 3.60 + 2.56 4.25 + 4.97

6.43 14.5 104 + 87.4 245 + 97.1 8.42 + 10.4 14.8 + 11.0 11.7 + 11.3

3.78 4.56 68.2 + 83.1 65.8 + 71.8 9.08 + 7.71 13.9 + 8.74 12.7 + 5.01

32.1 14.5 169 + 124 157 + 98.9 32.6 ≈ 15.1 47.1 + 18.2 47.1 ≈ 37.1

Hartmann3 −3.89 0.24 −2.89 ≈ 1.01 −2.78 + 0.78 −3.76 ≈ 0.28 −3.83 ≈ 0.37 −3.91 ≈ 0.33

−4.23 0.28 −2.23 ≈ 1.01 −1.84 + 0.81 −3.76 ≈ 0.33 −3.71 ≈ 0.48 −4.19 ≈ 0.24

−3.48 0.32 −1.28 + 0.43 −1.98 + 1.08 −3.48 ≈ 0.33 −3.49 ≈ 0.12 −3.29 ≈ 0.37

−3.86 0.18 −1.69 + 0.89 −2.15 + 1.09 −3.74 ≈ 0.24 −3.79 ≈ 0.39 −3.70 + 0.29

−3.47 0.31 −1.53 + 0.45 −1.49 + 0.87 −3.59 ≈ 0.20 −3.37 ≈ 0.29 −3.56 ≈ 0.25

−4.78 0.33 −3.24 + 0.53 −2.21 + 1.34 −4.65 ≈ 0.54 −4.89 ≈ 0.43 −4.80 ≈ 0.38

−3.82 0.23 −2.61 ≈ 0.80 −1.56 + 1.13 −3.82 ≈ 0.33 −3.85 ≈ 0.21 −3.71 ≈ 0.39

−4.59 0.15 −2.89 ≈ 0.74 −1.75 + 1.39 −4.43 ≈ 0.46 −4.61 ≈ 0.16 −4.60 ≈ 0.26

−3.82 0.26 −2.12 ≈ 0.75 −0.27 + 0.13 −3.82 ≈ 0.24 −3.66 ≈ 0.26 −3.84 ≈ 0.28

1/0/–1 27/13/0 30/10/0 10/30/0 16/24/0 22/18/0
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Table 4 Statistical results obtained by PBO-EA, BO, PBO-SQR, PBO-LCB, PBO-AEI, and PBO-PEI on benchmark problems with noiselevel =
0.5

σ 2
ε =0.5 PBO-EA BO PBO-SQR PBO-LCB PBO-AEI PBO-PEI

Problem Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ackley 16.6 0.31 16.6 ≈ 0.53 10.4 – 6.50 16.7 ≈ 0.36 16.7 ≈ 0.30 16.5 ≈ 0.32

8.35 0.23 8.54 ≈ 0.19 7.37 ≈ 2.87 8.54 ≈ 0.22 8.54 + 0.23 8.63 ≈ 0.23

13.2 0.28 13.1 ≈ 0.22 12.6 ≈ 1.21 13.5 ≈ 0.21 13.4 ≈ 0.34 13.3 ≈ 0.33

6.28 0.19 6.29 ≈ 0.18 6.11 ≈ 0.33 6.17 ≈ 0.23 6.33 ≈ 0.17 6.27 ≈ 0.19

12.1 0.23 12.4 ≈ 0.22 12.6 ≈ 0.23 12.5 ≈ 0.25 12.6 ≈ 0.20 12.5 ≈ 0.23

12.5 0.21 12.3 ≈ 0.22 12.6 ≈ 0.41 12.5 ≈ 0.32 12.7 ≈ 0.30 14.3 + 0.23

9.43 0.23 9.62 ≈ 0.24 9.53 ≈ 0.59 9.58 ≈ 0.22 9.51 ≈ 0.23 9.63 ≈ 0.17

16.2 0.21 16.9 + 0.22 16.3 ≈ 0.61 16.4 ≈ 0.42 16.6 ≈ 0.26 16.2 ≈ 0.32

3.87 0.28 3.88 ≈ 0.27 4.08 ≈ 0.58 4.02 + 0.18 4.01 ≈ 0.13 4.02 ≈ 0.21

14.6 0.21 14.6 ≈ 0.19 14.6 ≈ 0.50 14.6 ≈ 0.23 14.5 ≈ 0.27 14.5 ≈ 0.23

Rosenbrock 56.9 303 5.31 – 6.42 88.2 ≈ 134 1.2e3 + 642 55.2 ≈ 103 62.1 ≈ 124

9.54 16.9 9.39 ≈ 9.47 363 ≈ 894 946 + 986 32.0 + 48.1 141 + 179

16.0 116 12.6 ≈ 26.7 214 + 431 343 + 483 15.5 ≈ 26.7 10.7 ≈ 10.6

4.27 73.2 3.81 ≈ 3.56 13.4 + 13.2 212 + 315 46.1 + 112 6.24 + 10.0

11.5 30.7 3.73 – 4.30 651 + 999 8.77 – 7.02 9.32 ≈ 16.5 18.4 + 26.7

21.7 169 23.1 ≈ 56.4 997 + 998 63.0 + 95.8 45.6 + 72.7 74.1 + 121

2.72 2.65 12.1 + 16.2 63.2 + 121 587 + 767 123 + 203 7.43 + 19.1

23.9 531 30.0 ≈ 67.2 9.19 – 10.1 812 + 756 54.6 ≈ 145 95.2 + 234

20.1 19.9 12.4 ≈ 24.5 18.5 ≈ 27.6 2.3e3 + 1.2e3 51.2 + 98.9 298 + 389

256 387 305 + 876 201 ≈ 564 2.0e3 + 1.0e3 795 + 1.1e3 402 + 813

Branin 7.21 5.56 32.3 + 53.1 59.6 + 67.3 34.2 + 37.2 5.10 ≈ 4.34 11.1 + 10.5

12.1 24.2 11.8 ≈ 12.5 39.9 + 57.1 58.4 + 63.4 23.6 + 20.4 21.7 ≈ 20.4

22.6 21.0 10.9 – 14.4 80.3 + 116 87.7 + 67.8 32.5 + 18.5 27.7 + 19.6

22.1 23.2 5.87 – 3.87 33.8 + 19.0 141 + 97.8 36.7 ≈ 38.00 17.5 ≈ 12.2

21.4 20.9 15.4 ≈ 18.9 25.2 ≈ 17.4 153 + 96.9 20.0 ≈ 36.8 27.3 ≈ 48.4

29.8 28.4 26.3 ≈ 32.3 87.0 + 130 235 + 164 15.6 – 24.1 56.9 + 90.2

8.91 9.00 24.8 + 41.7 54.3 + 55.8 75.4 + 62.0 35.1 + 53.7 32.9 + 57.3

12.6 10.2 8.79 ≈ − 8.28 105 + 141 214 + 118 73.5 + 81.2 32.0 + 23.0

35.3 29.1 19.2 – 24.0 55.6 + 55.2 104 + 72.92 16.9 – 16.0 32.1 ≈ 59.1

38.6 31.1 16.3 – 19.4 19.6 – 13.1 119 + 44.1 65.0 + 50.4 45.0 + 28.6

Harmann3 −3.19 0.67 −1.53 + 0.96 −1.97 + 0.55 −2.11 + 0.81 −2.98 ≈ 0.52 −3.11 ≈ 0.68

−3.74 0.75 −1.63 + 1.14 −1.44 + 0.49 −2.24 + 1.28 −3.37 ≈ 0.65 −3.69 ≈ 0.69

−3.22 0.31 −1.51 + 1.12 −1.56 + 0.27 −2.03 + 1.01 −3.03 ≈ 0.66 −3.23 ≈ 0.23

−3.21 0.58 −2.37 + 1.18 −1.57 + 0.43 −1.99 + 0.73 −3.57 ≈ 0.41 −3.12 ≈ 0.64

−2.99 0.42 −2.19 + 1.13 −1.29 + 0.55 −1.89 + 0.87 −3.36 ≈ 0.33 −2.86 ≈ 0.49

−3.45 1.23 −3.17 ≈ 1.55 −2.34 + 0.56 −2.39 + 1.18 −4.12 ≈ 0.50 −3.80 ≈ 0.81

−3.43 0.76 −2.35 + 1.01 −1.69 + 0.41 −1.54 + 0.91 −3.81 ≈ 0.37 −2.85 + 0.73

−3.89 0.81 −2.65 + 1.49 −1.82 + 0.48 −2.31 + 1.40 −4.34 ≈ 0.61 −4.23 ≈ 0.77

−2.80 0.92 −2.43 ≈ 1.26 −1.87 + 0.44 −1.09 + 0.75 −3.13 ≈ 0.73 −3.19 ≈ 1.03

−2.45 1.12 −2.31 ≈ 1.41 −2.04 ≈ 0.45 −1.22 + 1.29 −3.43 – −3.69 – 0.72

1/0/–1 12/22/6 22/15/3 30/9/1 12/26/2 16/23/1
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Table 5 Statistical results obtained by PBO-EA, BO, PBO-SQR, PBO-LCB, PBO-AEI, and PBO-PEI on benchmark problemswith noiselevel = 1

σ 2
ε =1 PBO-EA BO PBO-SQR PBO-LCB PBO-AEI PBO-PEI

Problem Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Ackley 14.8 0.31 16.1 ≈ 0.34 15.4 ≈ 2.51 12.3 ≈ 0.47 16.5 ≈ 0.52 16.2 ≈ 0.29

8.32 0.18 8.36 ≈ 0.24 7.07 ≈ 2.21 8.49 ≈ 0.28 8.62 ≈ 0.24 8.45 ≈ 0.21

12.1 0.27 13.4 ≈ 0.29 13.4 ≈ 1.39 13.4 ≈ 0.22 13.7 ≈ 0.25 13.43 ≈ 0.42

6.07 0.28 6.01 ≈ 0.21 5.21 ≈ 1.32 6.11 ≈ 0.20 6.28 ≈ 0.26 6.23 ≈ 0.11

11.2 0.23 12.2 ≈ 0.42 9.24 – 3.12 12.7 ≈ 0.28 12.9 ≈ 0.32 12.6 ≈ 0.28

12.1 0.34 13.1 ≈ 0.29 9.87 – 2.31 12.3 ≈ 0.22 12.7 ≈ 0.31 12.7 ≈ 0.19

9.43 0.12 9.52 ≈ 0.12 7.93 ≈ 1.92 9.69 ≈ 0.15 9.50 ≈ 0.18 9.54 ≈ 0.37

16.5 0.29 16.5 ≈ 0.56 13.9 ≈ 4.81 16.6 ≈ 0.25 16.6 ≈ 0.28 16.6 ≈ 0.16

4.15 0.20 4.10 ≈ 0.15 3.22 ≈ 1.03 4.05 ≈ 0.20 3.99 ≈ 0.27 4.10 ≈ 0.26

14.5 0.23 14.5 ≈ 0.35 12.6 ≈ 3.15 14.5 ≈ 0.25 14.4 ≈ 0.22 14.5 ≈ 0.24

Rosenbrock 116 96.1 956 + 768 967 + 786 1.2e3 + 865 701 + 568 445 + 498

193 278 181 ≈ 176 1.3e3 + 1.1e3 854 + 753 488 ≈ 832 490 ≈ 293

121 109 334 + 423 821 + 1.2e3 542 + 454 434 + 601 205 ≈ 184

119 109 131 ≈ 176 1.2e3 + 1.5e3 323 + 276 212 + 123 124 ≈ 123

123 112 189 + 214 1.2e3 + 1.3e3 476 + 346 287 + 251 119 ≈ 125

143 287 149 ≈ 207 423 + 687 621 + 625 276 + 213 241 + 179

117 187 178 + 256 397 + 798 897 + 798 214 + 423 345 + 313

176 512 134 ≈ 176 578 + 821 1.4e3 + 821 501 + 423 156 ≈ 157

556 780 512 ≈ 1.1e3 387 – 865 2.5e3 + 787 921 + 723 1.0e3 + 613

612 761 474 – 1.0e3 1.0e3 + 1.1e3 2.1e3 + 1.0e3 1.0e3 + 765 1.1e3 + 731

Branin 31.9 19.6 81.1 + 61.7 90.4 + 59.5 75.1 + 54.4 48.1 ≈ 33.4 28.1 ≈ 21.8

36.3 34.4 109 + 123 131 + 91.1 121 + 63.3 31.2 ≈ 13.4 34.4 ≈ 17.4

37.1 24.8 93.0 + 75.4 92.4 + 87.1 183 + 67.12 32.2 ≈ 17.9 34.8 ≈ 28.9

73.0 95.1 129 ≈ 126 190 + 156 221 + 102 51.5 ≈ 27.6 43.5 – 42.7

82.3 91.3 126 ≈ 81.6 134 + 137 212 + 110 87.2 ≈ 77.0 50.8 ≈ 54.9

102 95.3 71.4 ≈ 81.4 180 + 188 328 + 126 88.3 ≈ 70.5 86.7 ≈ 53.0

68.1 45.1 52.8 ≈ 33.1 96.9 + 91.4 126 + 58.5 68.8 ≈ 64.5 81.1 + 44.92

102 82 76.0 – 58.3 141 + 154 283 + 95.1 87.5 ≈ 73.2 135 + 98.3

45.4 36.4 31.2 ≈ 20.3 84.7 + 82.2 132 + 70.5 80.4 + 72.1 91.0 + 70.3

91 88 93.2 ≈ 70.3 193 + 128 250 + 139 90.3 ≈ 53.6 146 + 115

Hartmann3 −3.23 0.56 −1.25 + 1.13 −1.53 + 0.59 −1.97 + 0.75 −3.53 ≈ 0.68 −2.63 + 0.84

−3.61 0.95 −1.36 + 1.44 −1.73 + 0.45 −1.95 + 1.00 −3.60 ≈ 0.52 −2.81 + 0.62

−2.41 0.92 −1.15 + 1.22 −1.28 + 0.61 −2.19 ≈ 0.95 −2.99 ≈ 0.45 −2.42 ≈ 0.87

−2.97 0.76 −1.17 + 1.14 −1.32 + 0.55 −2.24 ≈ 1.21 −3.01 ≈ 0.79 −2.84 ≈ 0.76

−2.99 0.68 −0.89 + 0.76 −1.32 + 0.91 −1.36 + 1.09 −2.65 ≈ 0.72 −2.34 ≈ 0.74

−4.56 1.32 −1.23 + 1.16 −2.31 + 0.78 −2.32 + 1.28 −3.44 ≈ 1.08 −3.37 ≈ 1.29

−2.59 0.84 −1.15 + 0.99 −1.79 ≈ 0.63 −2.27 ≈ 1.31 −2.68 ≈ 0.81 −2.79 ≈ 0.83

−3.85 1.00 −1.28 + 0.99 −2.40 + 0.66 −2.61 + 1.32 −3.70 ≈ 0.66 −3.77 ≈ 0.85

−2.77 0.99 −1.26 + 1.02 −1.54 + 0.47 −1.38 + 1.05 −3.03 ≈ 0.92 −2.68 ≈ 0.70

−2.77 1.13 −1.19 + 0.94 −2.02 ≈ 0.32 −2.02 ≈ 1.56 −2.63 ≈ 0.81 −3.19 ≈ 0.81

+/≈/– 17/21/2 27/10/3 26/14/0 10/30/0 11/28/1

benefits of the use of personalized information for mod-
elling the objective function. However, the performance
of both BO and PBO-EA will degrade with the increase
of the noise level.

2. Comparison of optimization methods: We can see that
PBO-EA always shows better performance than PBO-
SQR, indicating the effectiveness of EAs for optimizing
the acquisition function. A possible explanation is that
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EAs are population-based optimization methods and do
not require the gradient of the objective function, allow-
ing them to get out of local optima. However, it is
interesting to see that PBO-SQR shows better perfor-
mance than PBO-EA on Ackley function. The reason
may be that SQR methods are suitable for solving Ack-
ley function, because Ackley function is characterized by
a nearly flat outer region, and a large hole at the centre,
which follows the assumption of SQR method.

3. Comparison of the acquisition functions: We tested four
acquisition functions within the PBO framework, i.e., EI,
LCB, AEI, and PEI. According to the results in Tables 1,
2, 3, 4, 5 and Tables SI–SV, we can observe that the
EI shows better performance than the others on prob-
lems with different levels of noise. Among all the tested
acquisition functions, LCB shows the worst performance
on most test instances and the level of noise significantly
degrades its performance. It is interesting to see thatwhen
the noise level is large, i.e., σ 2

ε = 1, EI, PEI, and AEI
show similar performance. A possible explanation is that
AEI involves a penalty to account for the noise variance of
the next evaluation. Specially, AEI penalizes data points
with a small prediction variance and therefore enhances
exploration. The small noise level may impact the sur-
rogate model slightly, and the enhanced exploration may
hinder slow convergence, which is not desired when a
very limited number of fitness evaluations are available.
By contrast, when heavy noise may lead to poor surro-
gate models, both PEI, AEI, and EI cannot evaluate the
candidate solutions correctly, resulting in similar perfor-
mance.

4. ComparisononMOPswithpersonalizedvariables:Accord-
ing to the statistical results in terms of the mean and
std HV values in Table 6, it is clear that PGP-MOEA
significantly outperforms GP-MOEA on 38 out of 54
optimization tasks resulting from varying values of
the personalized variable. Moreover, they show similar
performance with regard to convergence and diversity
indicated by HV values on the remaining ones. This
observation indicates that personalized GPs can provide
better predictions than the standardGPs in the considered
problem,which further enhances the optimization perfor-
mance of PGP-MOEA.This confirms the effectiveness of
the personalized GP for handling optimization problems
where personalization is taken into consideration.

To gain a deeper insight into the performance achieved by
each algorithm, we plot the change of the mean and the vari-
ance of the best objective values over the number of contexts
(the value of the personalized variable). As shown in Fig. 1,
PBO-EA can achieve better performance on the selected
test instances for different personalized values. Specifically,

while the best value found by the standard BO on differ-
ent personalized values varies a lot, PBO can achieve a
more stable performance with the change of the personal-
ized variable, indicating the benefits of PGPs. Compared
with the SQR method, the EA shows more stable and better
results, especially for Beal function and Rosenbrock func-
tion. This reveals the advantage ofEAs for optimization of the
acquisition function that are multi-model and complex. By
comparing the different acquisition functions, we can see that
the EI acquisition function shows promising performance
compared with the other acquisition functions. Interestingly,
both AEI and PEI achieve competitive performance on all
the test instances, especially when the noise level increases.
Similarly, we plot the non-dominated solution set with the
median HV value among 20 runs obtained by PGP-MOEA
and GP-MOEA on DTLZ2 and DTLZ1a, respectively. As
shown in Fig. 2 and Fig. S1, we can see that PGP-MOEA
can achieve a better performance in terms of convergence
and diversity.

Conclusion

In this paper, we consider solving expensive optimization
problems with personalized decision variables and observa-
tion noise, which cannot be efficiently solved by standard
Bayesian optimization methods. We consider both single-
objective and multi-objective optimization, and introduce
the corresponding test benchmark problems. Then, we pro-
pose a personalized Bayesian optimization algorithm by
jointly learning surrogate models over different contexts and
accounting for the observation noise. More specifically, a
composite kernel is introduced to measure the similarity
of decision variables and personalized variables simultane-
ously, making it possible to transfer knowledge between
different individuals. To reduce the impact of noise on the
optimization, we test different kinds of acquisition functions
and it turns out that EI always achieves competitive perfor-
mance with different noise levels.

The proposed algorithm is tested on sets of widely used
benchmark problems for different personalized informa-
tion. Our experimental results demonstrate that the proposed
algorithm achieves significantly better performance than
the standard Bayesian optimization methods on most test
instances studied in this work. Comparisons are also carried
out to investigate the effectiveness of the contextual Gaus-
sian process and acquisition functions used in the proposed
algorithm. The empirical results confirm that the Gaussian
processes considering the personalized information result in
the good performance of the proposed algorithm.

The research on optimization problems involving per-
sonalized/contextual information is still in its infancy and
demands for further investigations.On theonehand, it is chal-
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Fig. 2 The optimal solutions associated with median HV values obtained by PGP-MOEA and GP-MOEA on DTLZ2 for six different personalized
values

lenging to construct effective surrogate models over various
contexts, as only a very limited number of data are avail-
able in each context. On the other hand, for a given value for
the personalized variable, the search of new samples to be
evaluated by the true expensive objective functions should
be further investigated, since optimization of the acquisition
function will become increasingly challenging. Moreover,
the assumptions that optimization problems are noise-free
may hardly hold in practice, rendering poor optimization
performance. Hence, it is interesting yet challenging to inves-
tigate noise-handling methods in Bayesian optimization of
real-world problems.
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