
Complex & Intelligent Systems (2023) 9:5831–5850
https://doi.org/10.1007/s40747-023-01015-5

ORIG INAL ART ICLE

Ametaheuristic approach to optimal morphology in reconfigurable
tiling robots

Manivannan Kalimuthu1 · Thejus Pathmakumar1 · Abdullah Aamir Hayat1 ·Mohan Rajesh Elara1 ·
Kristin Lee Wood2

Received: 22 July 2022 / Accepted: 17 February 2023 / Published online: 10 April 2023
© The Author(s) 2023

Abstract
Reconfigurable robots are suitable for cleaning applications due to their high flexibility and ability to change shape according
to environmental needs. However, continuous change in morphology is not an energy-efficient approach, with the limited
battery capacity. This paper presents a metaheuristic-based framework to identify the optimal morphology of a reconfigurable
robot, aiming to maximize the area coverage and minimize the energy consumption in the given map. The proposed approach
exploits three different metaheuristic algorithms, namely, SMPSO,NSGA-II, andMACO, to generate the optimalmorphology
for every unique layout of a two-dimensional grid map by considering the path-length as the energy consumption. The novel
feature of our approach is the implementation of the footprint-based Complete Coverage Path Planning (CCPP) adaptable
for all possible configurations of reconfigurable robots. We demonstrate the proposed method in simulations and experiments
using a Tetris-inspired robot with four blocks named Smorphi, which can reconfigure into an infinite number of configurations
by varying its hinge angle. The optimum morphologies were identified for three settings, i.e., 2D indoor map with obstacles
and free spaces. The optimum morphology is compared with the standard Tetris shapes in the simulation and the real-world
experiment. The results show that the proposed framework efficiently produces non-dominated solutions for choosing the
optimal energy-efficient morphologies.

Keywords Reconfigurable robots · Path planning · Area coverage · Metaheuristics algorithms · Design principles

B Abdullah Aamir Hayat
abdullahaamir@sutd.edu.sg; aamir_hayat@rediffmail.com

Manivannan Kalimuthu
manivannankalimuthu@mymail.sutd.edu.sg

Thejus Pathmakumar
thejus_pathmakumar@sutd.edu.sg

Mohan Rajesh Elara
rajeshelara@sutd.edu.sg

Kristin Lee Wood
kristin.wood@ucdenver.edu

1 ROAR Lab, Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road,
487372 Singapore, Singapore

2 College of Engineering, Design and Computing, University of
Colorado Denver, 1200 Larimer St, Ste. 3034, Denver,
CO 80204, USA

Introduction

Cleaning is an essential function of daily routine, yet it is
considered monotonous, dirty, and time-consuming. More-
over, humans prefer to prioritize other tasks over cleaning,
which fosters the development of cleaning robots that can
free up humans to do creative tasks. Several cleaning robots
have been developed to tackle these problems, including
Roomba, Xiaomi, Samsung, Dyson, etc. However, the exist-
ing robots’ performance is limited by their morphology,
primarily because they are not custom-made to work on
the different layouts in the home. To address this limitation,
reconfigurable robots are designed to change their morphol-
ogy or shape to clean efficiently and access difficult-to-reach
regions. When compared to fixed morphology robots, these
reconfigurable robots provide better area coverage. However,
at the same time, they consume more power to often change
shapes to clean a given area, and they may not be able to
function continuously for a long time since they draw power
from finite source batteries. Hence, it will be useful to look

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-023-01015-5&domain=pdf
http://orcid.org/0000-0001-6141-4600

5832 Complex & Intelligent Systems (2023) 9:5831–5850

for a method to find an optimal shape of a reconfigurable
robot that can be used during, say, a cleaning or maintenance
task according to the given map of the deployment area.

Reconfigurable systems have a wide range of advantages
in terms of multi-ability (in various configurations, the sys-
tem can execute multiple functions at different times), evolu-
tion (the system’s configuration can be altered by removing,
substituting, and adding newelements), and survivability (the
system can still work despite a potential failure of one or
more components) [1]. Reconfigurable systems have been
widely adopted in various applications, including reconfig-
urable manufacturing systems [2], field-programmable gate
arrays [3], various software concepts [4], aerospace [5], etc.
One of the main applications of reconfigurable systems is
demonstrated in self-reconfigurable robots, which can mod-
ify their morphology manually or automatically depending
on the situation or environment. The development of recon-
figurable robotic systems has gained attention since 1980 [6].
Self-reconfigurable robots are broadly divided into two main
categories: intra-reconfigurable and inter-reconfigurable [7].
Inter reconfigurable robots change their function by adding a
new module/system via assembly and disassembly. CONRO
[8], Crystal [9], andM-Lattice [10] are a few examples. Intra-
reconfigurable robots transform their configuration without
the requirement for external attachment to enable a new
function or improve an existing function. Examples include
Panthera [11], a pavement-sweeping robot that can change its
footprint by expanding and collapsing to clean the pavements
while overcoming different obstacles, a ship maintenance
robot with different end-effector to remove barnacles from
the hull [12], and sTetro [13,14], a staircase cleaning robot.
Therefore, the potential of morphology change in reconfig-
urable robots are beneficial for several applications.

In recent years, there has been substantial progress in
the mechanism design, control, perception, and autonomy
in reconfigurable robots [15–20]. For example, the Tetris-
inspired tiling robot reported in [21] can change into seven
different configurations, namely, {I, J, L, O, S, T, Z} follow-
ing the constraint of one-sided polyomino [22] to perform
area coverage tasks [21,23,24]. Here the authors highlighted
the advantage of reconfigurable robots over fixed morphol-
ogy robots by demonstrating the higher area coverage task.
Similarly, the concept proposed in [25] named pleomorphic
h-Infi can change into an infinite number of configurations
to perform cleaning tasks (as the constraint of a one-sided
polyomino is not accounted). However, only a few authors
have explored the energy optimization problem in reconfig-
urable robots. The energy consumption and time taken in
self-reconfigurable robots are a crucial factor since these
robots have a higher number of actuators than fixed mor-
phology robots [26]. In [27], the author proposed a coverage
path planning approachwith the optimal energy consumption
based on the Genetic Algorithm (GA) and the Ant Colony

Optimization (ACO) technique, and the reportedwork in [28]
introduced a Reinforcement Learning (RL) based path plan-
ning approach suitable for producing Pareto plans, which
allow the robot to cover a specified region on the map with
the least amount of energy consumed. The suggested solu-
tion in [29] assures complete area coverage of the robot while
decreasing the number of reconfigurations carried out, reduc-
ing time and energy consumption. However, to the best of
the author’s knowledge, none of the aforementioned works
address the identification of a single optimal morphology to
cover a given area resulting in minimizing energy consump-
tion and maximizing the area coverage.

Path planning is an integral part of the self-reconfigurable
robotic system [30]. Establishing a path which traverses
across all points of a defined region in the map is consid-
ered as coverage path planning [31]. Classical exact cellular
decomposition is one of the prominent CPP methods [32].
This method breaks down the coverable region (exclud-
ing obstacles) into a non-overlapping region called cells.
Trapezoidal and boustrophedon are the two popular offline
decomposition methods [33]. Grid-based methods, on the
other hand, utilize a representation of the map in the form of
a set of uniform grid cells. Each cell holds a value in this grid-
based arrangement, whether it has an obstacle or free space.
A gridmap is simple to generate since it is generallymodeled
as an array, with each element containing occupancy infor-
mation corresponding to the cell [34]. As a result, coverage
algorithms most commonly use grid-based representations.
However, grid-based algorithms are only suitable for indoor
environments (relatively smallmaps) since they require accu-
rate localization and suffer from the exponential growth of
memory usage [31].

Wavefront algorithm [35] and spanning trees methods
[36] is the widely adopted grid-based CPP approaches. Both
methods can be used for offline and online approaches. Sim-
ilarly, other methods include Graph-based coverage [37],
landmark topological-based coverage [38], and 3D cover-
age [39,40], etc. CPP’s main criteria include covering all
points, reducing overlapping, continuous operation with no
path repetition, avoiding obstacles, simple trajectories, and
determining the optimal path. Similarly, optimal solutions
for path planning and area coverage tasks can be identified
using many approaches like Reinforcement Learning (RL),
neural networks, metaheuristics algorithm, fuzzy logic, and
linear optimization [41–44].Among these, themetaheuristic-
based algorithmhas outperformedothers due to its simplicity,
flexibility, faster computation, and the ability to explore pos-
sible solutionswithout prior information [45].Metaheuristics
are designed to tackle combinatorial optimization problems,
where classical methods are inefficient in producing a good
solution [46]. Metaheuristic algorithms have recently been
widely used in machine learning, computer vision, schedul-
ing, robot motion planning, etc [47–49]. Further, Particle

123

Complex & Intelligent Systems (2023) 9:5831–5850 5833

Fig. 1 Set of Standard
polyomino morphologies as
reported in [21,26]

Swarm Optimization (PSO), Genetic Algorithm (GA), Sim-
ulated annealing (SA), Harmony search (HS), Ant Colony
Optimization (ACO), and Grey Wolf Optimizer (GWO) are
extensively used metaheuristics algorithms in mobile robots
and UAVs for path planning and area coverage applications.
[50–57].

This paper proposes a first-of-its-kind framework to iden-
tify an optimal morphology out of multiple morphologies
taken by a Tetris-inspired reconfigurable robot for an area
coverage of a given two-dimensional (2D) environmental
map. The framework is devised to identify the best mor-
phology accounting for maximizing task performance and
minimizing energy consumption. The proposed framework
uses metaheuristic algorithms to generate the optimal shape
for the robot by treating it as a multi-objective optimiza-
tion problem. The proposed framework is generic and can
be applied to any class of tiling robot (polyominoes, hep-
tiamonds, and hexiamonds [22]) that reconfigures in 2D
space. However, this work demonstrates using a developed
reconfigurable robot, named Smorphi , which can change its
shape into infinite1 configurations. On a larger scale, the pro-
posed method allows end-users to customize the robot shape
according to the environment where it has to be deployed.
To the best of the author’s knowledge, an optimal shape
generation framework for the reconfigurable robot which
compromises the area coverage and energy consumption has
not been addressed.

The objectives of the proposed work are:

1. Propose an Opt-Morph framework for identifying the
optimal shape of a reconfigurable robot using a footprint-
based complete coverage path planning approach.

2. Demonstrate the Opt-Morph framework in a reconfig-
urable tiling robot named Smorphi in three differ-
ent simulated environments, using metaheuristics algo-
rithms, namely, Speed-constrained Multi-objective Parti-
cle SwarmOptimization (SMPSO), Non-dominated Sort-

1 by not adhering to the constraints imposed as one-sided polyomino
[22].

ingGenetic Algorithm-II (NSGA-II), andMulti-objective
Ant Colony Optimization (MACO) algorithms.

3. Validation of the proposed Opt-Morph framework in the
real-world settings using in-house developed Smorphi
robot.

The rest of the article is organized as follows; The pro-
posed framework is introduced in Sect. “Opt-Morph frame-
worksec:2”. Section“Design space” describes the mechan-
ical design of the Smorphi robot along with the design
principles and the kinematics of the robot. Section“Complete
Area Coverage and Path Planning (CCPP) space” explains
the implemented path planning and footprint-based area
coverage. Section“inlinkOptimization spacesec:5” presents
the optimization approach along with the objective func-
tions. Results and discussion of the proposed framework,
along with the experiments conducted, are presented in
Sect. “Results and discussion”. Finally, Sect. “Conclusion”
concludes the paper by summarizing the key findings and
highlighting future work.

Opt-Morph framework

The proposed Opt-Morph framework for determining the
optimal shape of a reconfigurable robot is illustrated in Fig. 2.
The proposed framework is divided into three layers as shown
in Fig. 2: I. Design space of a reconfigurable robot (here,
dealt in Sect. “Design space”), II. Complete Area Coverage
and Path Planning (CCPP) space (in Sect. “Complete Area
Coverage and Path Planning (CCPP) space”), and III. Opti-
mization space schemes (in Sect. “Optimization space”). In
design space, to generalize the framework, we used a set of
three transformational principles, namely expand/collapse,
expose/cover, and fuse/divide, proposed in [58]. These three
principles cover the entire spectrum of reconfigurable prod-
ucts or systems based on their means of reconfiguration. The
transformation design principles and the design of the robot
named Smorphi used to demonstrate the Opt-Morph frame-
work is described in Sect. “Design space”.

123

5834 Complex & Intelligent Systems (2023) 9:5831–5850

Fig. 2 Overview of the
proposed Opt-Morph framework

Design Space

Objec�ve
Func�ons

Constraints and termina�on criteria

, , ,

Family of Reconfigurable
Robots

Expand/Collapse

Expose/Cover

Fuse/Divide

Transforma�on Design
Principle

O
p�

m
iza

�o
n

us
in

g
M

et
ah

eu
ris

�c
 A

lg
or

ith
m

s

1, 2,…,

aConstraints a

O
p�

m
al

 P
ar

et
o

so
lu

�o
ns

co

nfi
gu

ra
�o

n
of

 R
R

V

O
p�

m
iza

�o
n

sp
ac

e

Footprint Modelling

Footprint Genera�on

Footprint occupancy
matrix with 0’s and 1’s

II

I

III

Re
co

nfi
gu

ra
bl

e
Ro

bo
t (

RR
) P

ar
am

et
er

s

(, , , …)
Func�on of geometric

parameters

L-shape
configura�on

Algorithm parameters and range

In
pu
tm

ap

En
vi

ro
nm

en
ta

l M
ap

Footprint or reconfigura�on
state-based complete coverage

path planning (CCPP)

IV

Area coverage algorithm
(Wavefront Algorithm)

Area coverage and Path length

The CCPP space focuses on the algorithms for coverage
planning and computes the path-length and the percentage of
area-covered by the robot based on the robot’s footprint and
map of the environment. The CCPP space follows the two-
step approach to compute the percentage of area-covered and
the path-length. First, the rectangular footprints (Fig. 2, ‘I’)
corresponding to the robot shape generated by the design
space is estimated. Then, an occupancy matrix for the indi-
vidual shape is computed such that the occupancy grid’s
size will equal the dimensions of the rectangular footprint
(Fig. 2, ‘II’). The elements of the occupancy matrix are
determined such that zero ’0‘ represents the region unoc-
cupied by the robot base and one ‘1’(Fig. 2, III) corresponds
to the region occupied by the robot base. Then, with the
footprint matrix and the 2D map as the input, the complete
area coverage path planning is computed using the wave-
front algorithm (Fig. 2, ‘IV’). In the optimization space
(Fig. 2, ‘V’), for the given objective function and con-
straints, the algorithm search for the best optimal shape in
the infinite pool of configuration by optimizing the path-
length pmin, and the percentage of area-covered amax (Fig. 2).
This work usesmetaheuristic-based searchmethods, namely,
SMPSO, NSGA-II, and MACO, for the optimization. It is
mainly because of the ability to produce an optimal solu-
tion with the least amount of information [59]. Finally,
upon completing the optimization, the framework provides
the non-dominated solutions for the given map. This work
demonstrates the proposed framework using the reconfig-
urable tiling robot named Smorphi . A detailed discussion on
the design of the Smorphi robot is discussed in the following
section.

Design space

This section outlines the mechanical design process of the
Smorphi robot along with the transformational design prin-

ciples and facilitators used along with the kinematics of the
robot.

Transformational design principles

In this work, we exploited transformational design princi-
ples as an enabler for designing the reconfigurable robot
named Smorphi . [58] author empirically analyzed all the
reconfigurable products, resulting in three transformational
principles: expand/collapse, expose/cover, fuse/divide, and
twenty transformational facilitators. The transformational
principle is a guideline, when embodied singly, creates trans-
formation. Below is a brief description of the transformation
principles.

• Expand/collapse: Changing the physical dimensions of
an object to bring about an increase/decrease in an occu-
pied volumeprimarily along an axis (1D), in a plane (2D),
or 3D (three dimensions).

• Expose/cover: Concealing or revealing a new surface to
alter functionality.

• Fuse/divide: Make a single functional device become
two or more devices or vice versa where at least one of
the multiple devices has a distinct functionality separate
from the function of the single device.

A transformation facilitator is a design element that facil-
itates or assists reconfiguration or transitions. A facilitator
alone will not result in reconfiguration; the facilitator must
be used in conjunction with at least one principle. Please
refer to [58] for a detailed description of transformational
facilitators.

Our previous work extended the transformational design
principles by adding a generator layer to design a reconfig-
urable pavement sweeping robot [11,60]. The generator is the
mechanism construct that helps realize the transformational
facilitator in the form of a mechanism, such as a linkage,

123

Complex & Intelligent Systems (2023) 9:5831–5850 5835

Fig. 3 Transformation principles; a Expand/Collapse, b Expose/Cover, and c Fuse/Divide

2D Lidar

Chassis plate

DC motor with
encoder
Motor casing

Meccanum
wheel

Stand-off

Hinge holder

Control unit

Acrylic plate

(a)

(b)

(c)

#B1 #B4

#B1 #B2 #B3 #B4

#B2

#B1: Block 1

1,1

#B3

3,1
4,1

Surfaces of Block 1, 2, 3, and 4 exposedw

Robot frame
block, #2

Fig. 4 Mechanical design of the Smorphi robot based on Expose/Cover transformation principle; a Exploded view for block 2 (#2), b 3D-Model
of the robot, and c Fabricated Smorphi robot

gear, cam, belt, pulley, etc., that transforms the given input
motion into the desired output motion by varying the joint
configuration.

Figure 3 illustrates the examples of three transforma-
tional principles in reconfigurable robots. For example, in
Fig. 3a pavement sweeping robot expands its body to clean
the pavement and collapses its body to allow the pedestrians
to pass [61]. The floor-cleaning robot is reconfigured into a
wall-cleaning robot by revealing a new surface in Fig. 3b.
The modular robot in Fig. 3c can allow multiple units to
attach/detach to perform various logistics tasks. Deriving
inspiration from the transformational principle, the Smorphi
robot reconfiguration behavior is conceived with the aid of
Expose/Cover principle. As the name implies, the Smorphi
robot is designed to reveal/conceal the side surface of each
block in order to reconfigure from one shape to another. The
comprehensive mechanical design of the Smorphi robot is
discussed in the following section.

Mechanical design

The detailed mechanical design of the Smorphi robot is
shown in Fig. 4. The Smorphi robot is designed as an indi-
vidual modular block that shares the common mechanical
structure that can be connected manually through a hinge.
The more number of the blocks increases the total degree
of freedom of the robot. We have used four identical square
blockswith a length of 10 cm2 and the footprint of 100 cm2 in
the LLR (Left, Left, Right) hinge configuration. Each block
of the designed robot is built in a four-layer structure. The
locomotion units are mounted on the bottom plate, and low-
level controllers, batteries, and other accessories are on the
middle two plates. Perception and localization sensors are
installed on the top plate to avoid obstruction while reconfig-
uring. All the plates are fabricated with the 0.2 cm thickness
acrylic sheet except the chassis plate to reduce the overall
weight. The aluminum standoff is used to adjust the height
between different plates to keep it modular. In addition, the

2 Though the SI unit of distance is meter (m), to avoid decimal places,
we used centimeter (cm) as the unit of distance throughout the paper.

123

5836 Complex & Intelligent Systems (2023) 9:5831–5850

Table 1 Reconfigurable robot Smorphi specifications

Items System specifications

Dimensions (l × w × h) 20 × 10 × 45cm

Total weight 3 kg

Payload capacity 1 kg

Wheel diameter 6cm

Ground clearance 1cm

Maximum velocity of the robot 0.19 ms−1

Maximum angular speed of the robot 1.25 rad s−1

Locomotion power supply 11.1 V

Type of motor Brushed DC

2D LiDAR is installed on top of the robot for mapping
and localization, and the robot is controlled with the help
of the Intel compute stick. The system specifications of the
Smorphi robot is provided in the Table 1.

Smorphi has the ability to change into an infinite num-
ber of configurations by varying the three hinge angles. The
Smorphi robot leverages onMecanumwheel-based locomo-
tion to navigate the environment, with each block equipped
with four Meccanum wheels and motors. Since this locomo-
tion type offers a holonomic drive where the total degree of
freedom is equal to the controllable degree of freedom, the
robot can move in all directions independently. Also, this
locomotion type enables the robot to rotate with zero turning
radius. The 7.4v DCmotor with the encoder is used as a trac-
tion motor to drive the Mecanum wheel. As the Mecanum
wheels drive at different speeds, the individual blocks rotate
around the hinge axis to reconfigure. During this reconfigu-
ration, one block should be kept stationary while the other
three transform concerning that block. For Smorphi Block
2 (B2) is taken as the reference block and does not change
its pose, while the rest of the block can reconfigure about its
passive hinge.

Robot configurations, footprint, and kinematics

Figure 5 depicts the Smorphi robot’s kinematic model in a
2D Cartesian coordinate system. The reconfigurable robot is
represented as four identical squares of length l = 2a. The
hinge angle α, β, and γ determine the robot’s possible con-
figuration spaceCs and the respective footprint orworkspace.

Cs, f p = f (α, β, γ, l), f or 0 ≤ α ≤ π, 0

≤ β ≤ π, 0 ≤ γ ≤ π (1)

where Cs, f p is the footprint corresponding to the configura-
tion space, and l is each block’s geometric length and width
and are constant. The possible shape from the infinite number
of configurations that can be formed by changing the three

hinge angles is determined by Eq.1. Each hinge angle can be
varied between 0 and π , and the angles are 0 when all four
blocks form a straight line or in I-configuration, as shown in
Fig. 1. The kinematic of the individual block of Smorphi fol-
lows the holonomic locomotion supported by four Mecanum
wheels as shown in Fig. 5a. The kinematics of a single block
with four Mecanum wheels are given as:

�m1
︸︷︷︸

4×1

= 1

rw
Jm1
︸︷︷︸

4×3

ζm1
︸︷︷︸

3×1

(2)

where φm1 is the vector of the wheel velocities of module
1 (m1), #1, i.e., [ϕ̇1 ϕ̇2 ϕ̇3 ϕ̇4]T and ζm1 ≡ [ẋ ẏ θ̇]T is the
vector of robot velocity in the robot frame. To transfer this
information to the world frame, the rotation matrix about Z-
axis is included as R(θ)ζm1. Jm1 is the Jacobian matrix for
a single holonomic robot with four Mecanum wheels with
elements as [−1 1 k1; 1 1 − k1; − 1 1 − k1; 1 1 k1]
where the constant k1 = (l + w), i.e., basically the sum of
length and breadth of each block dimension. Figure5c shows
the four block m = 1, 2, · · · , 4 and in total 16 Mecanum
wheels. To establish the relation between the robot frame
and the frame associated with individual blocks, the origin
of the second block, i.e., #2 is selected as the robot frame
with ORXRYR . Relative to this frame, the location of other
individual blocks are assigned with the vector d1,d3,d4 and
can be geometrically found given the angle between the two
consecutive blocks are known. Then the kinematic relation
mapping the wheel velocity of a given block #n (here n =
1, 2, 3) in the robot frame is given by:

�n = Jm1
1

rw
RZ (αn,n+1)Td(dn)ζ R (3)

where ζ R = [ẋR ẏR θ̇R]T is the velocity vector of Smorphi
in robot frame XRYROR , i.e., placed on block #2. Also,
RZ , n(αn,n+1) is the rotation about the Z−axes between the
blocks, i.e., α, β, γ and Tn is the translation matrix in 2D by
the magnitudes of vector d expressed as:

Rz, n ≡
⎡

⎣

cosαn,n+1 sin αn,n+1 0
− sin αn,n+1 cosαn,n+1 0

0 0 1

⎤

⎦ ;

Tn ≡
⎡

⎣

1 0 −dn sinψn,n+1

0 1 dn cosψn,n+1

0 0 1

⎤

⎦ (4)

Moreover, in the inertial frame XI OI YI the inverse kinemat-
ics equation of the four-block system is derived as:

123

Complex & Intelligent Systems (2023) 9:5831–5850 5837

= 45

(a)

(c)

Hinge joints
Mecanum wheel

̇

̇

̇ ̇

−

̇

Footprint area

l/√2

/√2

(b)

#245

: Inertial frame

: Robot frame
with block 2

, , , Angular position w.r.t.,
immediate neighbour

{ }

= Angles between block
(1,2), (2,3), and (3,4)=

=

ll

√2
ℎ

ℎ = = + 90

Fig. 5 Block diagram of Smorphi with a Individual holonomic mobile base. b Distance and angle between the two frames, and c Four holonomic
base connected with hinge joints. The footprint dimensions denoted as l f p and w f p

⎡

⎢

⎢

⎣

	̇m1

	̇m2

	̇m3

	̇m4

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

16×1

=

⎡

⎢

⎢

⎣

J1K1

J2K2

J3K3

J4K4

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

16×3

R(θ)
︸︷︷︸

3×3

⎡

⎣

ẋR
ẏR
θ̇R

⎤

⎦

︸ ︷︷ ︸

3×1

(5)

where, 	̇m1 ≡ [φ̇1 φ̇2 φ̇3 φ̇4]T , and the Jacobian matrix is
a function of the angle between the two blocks represented
in the robot frame, i.e., ψn,n+1, αn,n+1 Jm,∀m = 1, 2, 3, 4
is the Jacobian for four blocks. The connection constraints
from the hinge joint between each block are basically the
rotation and translation of each block w.r.t., #2. Matrix
K1 = RZ ,1Tn,1. The robot configuration is mainly defined
by the angle between each block, i.e., α, β, and γ . By

considering the increment of each angle giving one config-
uration, the total number of possible configuration spaces
with 0 ≤ (α, β, γ) ≤ 180 is 1803 = 5832000 (including
self collision of block) is very large. Hence, the metaheuris-
tic approach is used to find the optimal configuration of the
reconfigurable robot Smorphi for the complete coverage path
planning (CCPP) task, like, cleaning a given 2D space. In the
next section CCPP approach is discussed.

Complete Area Coverage and Path Planning
(CCPP) space

The tasks associated with the Complete Area Coverage and
Path Planning (CCPP) are the footprint generation of a recon-
figurable robot, coverage path planning, and area coverage

123

5838 Complex & Intelligent Systems (2023) 9:5831–5850

estimation based on the footprint. The coverage planning
algorithmgenerates a global trajectory for the robot by avoid-
ing collisionwith obstacles in a givenmap. The path planning
algorithm takes in two inputs for the trajectory generation;
the robot footprint and the 2D environment map.

Footprint generation

This section details the implementation of the footprint gen-
eration for a given configuration of the Smorphi robot.

The Smorphi robot’s footprint is represented by four
squares hinged at LLR corners. This makes the footprint to
have a 2D geometry. Assuming block 2 (B2) ’s pose is fixed,
the remaining square blocks can be rotated about their hinge
axes passing as shown in Fig. 5. The projection of vector a
onto the X− and Y− axes to determine the coordinates of
the vertices, are given in the Eq.6, and 7,

ax = [a1 · x a2 · x . . . an · x]T (6)

ay = [a1 · y a2 · y . . . an · y]T (7)

where ai are the position vector of the vertices of the
polyomino-shaped Smorphi with total vertices of four blocks
resulting in n = 16. Vector x and y are the unit vectors along
X - and Y -axes, respectively. The dot product operator is used
to calculate the magnitude of the projection of vector a1 on
x as a1 · x.

Similarly, the dimension of the footprint bounding box,
i.e. its length l and width w are determined by taking the
difference between maximum and minimum values of the
coordinate points along the X and Y axes, as shown in the
Eqs. 8 and 9,

w f p = ‖min(ax) − max(ax)‖ (8)

w f p = ∥

∥min(ay) − max(ay)
∥

∥ (9)

where min and max are functions for finding the minimum
and maximum of a given set of numbers and |.| is an absolute
value operator.

Coverage path planning algorithm

For the coverage planning, we adapted the wavefront algo-
rithm [35]. The implementation of the grid-based wavefront
path planning algorithm for complete area coverage is
explained in Algorithm 1.

This Algorithm 1 works based on the breadth-first search
method. As per the algorithm, the robot moves from the
start point to the goal point while covering all the grids.
Initially, all the grids are assigned with the 0 value except
the grid corresponding to the obstacles, which are assigned
with the -1 value. Then, the algorithm assigns the value from

Algorithm 1: Pseudocode for wavefront algorithm
adapted for complete coverage planning

1 function NodeCost (x, y);
2 for Every node in the map: do
3 if Node == 0 and �= −1 : then
4 xi+1 += 1;
5 xi−1 += 1;
6 yi+1 += 1;
7 yi−1 += 1;
8 end
9 end

10 function GeneratePath (xi , yi);
11 Set (xi , yi) = 0;
12 if Unvisited neighbor with higher cost found: then
13 Current node = Neighbor node;
14 else if No neighbor found: then
15 Mark as visited then stop at the goal;
16 else if Neighbors is visited and goal is not reached: then
17 Back track until finding the un-visited neighbor;
18 end

the goal point for all the grids with zero value in the order
of increasing one until it fully covers the entire map. Each
node assigns a cost to eight adjacent nodes in the existing
wavefront algorithm while considering the robot’s diagonal
movement. However, since the Smorphi robot is assumed to
move in only four directions,wemodified thewavefront algo-
rithm to assign costs to only four adjacent nodes (up, down,
left, and right). Following, nodes have been assigned with a
cost, the algorithm advances from the start node, choosing
the neighbor with the highest cost until it reaches the goal
node. Figure6 shows the implemented coverage algorithm
for the three different scenarios, the arrow mark on the Fig-
ure shows the direction of the path from the start node to the
goal node.

Footprint-based path planning

After generating the footprint model, the input map is resized
with respect to the width and length of the footprint size, as
shown in the Eq.10,

(

x
′ = x

w f p
, y

′ = y

l f p

)

(10)

where x
′
and y

′
are the dimensions of scaled map, and w f p

and l f p are the dimensions of footprint respectively. The
scaled map, including the obstacle data, is passed to the path
planner, which computes the cost and generates waypoints
to cover the whole map. Following that, the robot moves
from the starting position to the goal point by covering all
the cells based on the waypoints received. After complet-
ing the coverage path planning with respect to the robot’s
trials, the area with zeroes is regarded as unvisited, while

123

Complex & Intelligent Systems (2023) 9:5831–5850 5839

Fig. 6 Path planner in three distinct environments as Map-1, -2, and -3 (S: Start point, G:Goal point, -1: Obstacle, ≥ 0: Free space and the value
in each grid denotes the cost associated with it)

an area greater than zero is considered visited. The result-
ing footprint, path planning, and area coverage are shown
in Fig. 7 for the values (α = 0, β = 90, and γ = 0). Fur-
thermore, the provided footprint generation approach avoids
self-collision between individual blocks by determining the
relative angle between each block. The pseudocode for the
implemented footprint-based area coverage is shown in the
Algorithm 2.

Algorithm 2: Footprint based area coverrage

1 function FootpringGeneration (α, β, γ);
2 for Every α, β, γ : do
3 if the blocks are collided: then
4 Ra = Calculate relative angle();
5 Update α, β, γ based on the Ra ;
6 else
7 return α, β, γ ;
8

9 end
10 for Every shape in the possible configurations: do
11 Calculate the coordinates // Equation 3 & 4;
12 Calculate the footprint // Equation 5 & 6;
13 end
14 while State = True do
15 rm = resize the initial map (footprint) // Equation 7 ;
16 Path Planner (rm) // ;
17 Compute cost() ;
18 Generate way points() ;
19 Translate way point to initial map() ;
20 MoveRobot();
21 f1 = Compute Path-Length() ;
22 f2 = Compute Area-Coverage() ;
23 State ← False;
24 end

Optimization space

This section discusses the modeling of the problem, opti-
mization objectives, and optimization algorithms’ imple-
mentation in detail. The optimal shape-finding problem
defined in this work is modeled as a Multi-Objective Opti-
mization Problem (MOOP). For each iteration, the algorithm
calculates the path-length and the percentage of area cov-
ered in a given map. The MOOP algorithms evaluate the
possible shapes with respect to the objective function result-
ing in Pareto optimal solutions. In this MOOP, the path
length is assumed to be proportional to the energy consump-
tion. The overall environment is considered a m × n matrix
map, with each cell representing the following informa-
tion: free space, visited region, obstacle region, and overlap
region.

Ct = min
(

f1(α, β, γ)
(α,β,γ)=180◦
(α,β,γ)=0◦

)

+max
(

f2(α, β, γ)
(α,β,γ)=180◦
(α,β,γ)=0◦

)

(11)

The total cost functionCt for the defined problem is stated
in the Eq.11. The functions f1 and f2 calculate the path-
length Pl and the percentage of area-covered Ac, respectively.
This problem ismodeled as amin-maxoptimization problem,
as the algorithm should aim to minimize the path length and
maximize the percentage of area-covered.

Metaheuristic algorithms for optimization

Metaheuristic is an iterative solution-finding process inspired
by nature that guides a subordinate heuristic by incorpo-
rating various techniques for exploring the solution space.
Metaheuristics algorithm works based on two principles;
choosing the best solution and randomization. The best solu-
tion ensures optimal convergence, and randomization is used

123

5840 Complex & Intelligent Systems (2023) 9:5831–5850

(a) (b) (c)

O
bstacle

region

B1

B2

B3B4

04003002001000

0

10 20 30 40

10

20

30

40

0

1400120010008006004002000

1400

1200

1000

800

600

400

200

0

100

200

300

400

Fig. 7 aGenerated footprint for the shape (α = 0, β = 90, and γ = 0)(matrix of zeroes and ones), b Path planner, and c Complete area coverage

to avoid the solutions being trapped in the local optima.
In this work, we exploited three different metaheuristic
algorithms to optimize the objective function, namely, Speed-
constrained Multi-objective Particle Swarm Optimisation
(SMPSO), Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II), and Multi-objective Ant Colony Optimization
(MACO). Using metaheuristic approaches a group of “non-
inferior” solutions can be identified that define a limit in the
goal space where no objective can be improved without los-
ing at least one of the others is known as a Pareto optimum
solution. The working principle and the implementation of
those algorithms are discussed in the following sections.

Speed-constrained Multi-objective Particle Swarm
Optimisation (SMPSO)

Particle swarm optimization is the bio-inspiredmetaheuristic
optimization algorithm introduced by Eberhart and Kennedy
in 1995 [62]. It is categorized as a swarm-based optimization
approach influenced by bird flocking. In the Particle Swarm
Optimization method, the particle is referred to as each pos-
sible solution, and the swarm is the population of solutions
in the objective space.

In PSO, each particle is randomly distributed in the state
space with the initial particle (�p0) and an initial velocity (�v0).
For every iteration, all the individual particles record their
best solution �pbest . As the particle starts to move, the new
velocity �vn+1, and the particle’s next solution �pn+1 is updated
as per the Equations 12, 13, and 14 until the maximum
number of generation reaches [63].

�xi (q) = �xi (q − 1) + �vi (q) (12)

�vi (q) = ω·�vi (q − 1) + C1·r1(�xpi − �xi)
+C2·r2(�xgi − �xi) (13)

�pn+1 = �pn + �vn+1 (14)

The notations used in the above Equations are adapted
from [63]. Speed Constrained Multi-Objective Optimization
(SMPSO) is an improved version of the PSO algorithm [63],
which facilitates the quicker exploration of the Pareto front
and a more uniform examination of the search region.

χ = 2

2 − ϕ − √

ϕ2 − 4ϕ
(15)

vi, j (t) =

⎧

⎪
⎨

⎪
⎩

δ j i f vi, j (t) > δ j

−δ j i f vi, j (t) ≤ −δ j

vi, j (t) otherwise

(16)

As the name suggests, the SMPSO algorithm constrains
the motion of the particles to avoid swarm explosion; swarm
explosion makes the algorithm inefficient by skipping the
non-visited region. This approach updates the newvelocity of
the particles from PSO bymultiplying it with the constriction
coefficient. The Equation for the constriction coefficient and
dimensional speed range [63] is mentioned in Eqs. 15, and
16. Also, the pseudocode for the implemented SMPSO is
shown in Algorithm 3.

Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

Genetic algorithm (GA) is a search heuristic influenced by
Charles Darwin’s theory of biological evolution, and it is
classified as an evolution-inspired metaheuristic optimiza-
tion technique. NSGA-II is an improved version of the
genetic algorithm proposed by Deb et al. [64]. It is the most
prevalent form of GA, mainly used for multi-objective opti-
mization. The NSGA-II algorithm is built on four operators:
selection, crossover, mutation, and crowding distance. The
selection operator is responsible for choosing solutions from
a pool of options by eliminating the incompetent ones. The
crossover operator creates a new copy by combing the good
substrings from parent populations. By doing a local search,

123

Complex & Intelligent Systems (2023) 9:5831–5850 5841

Algorithm 3: SMPSO algorithm for identifying Opt-
Morph considering Path-length and Area-Coverage

1 I nput = [α, β, γ];
2 function InitializeSwarm (p0, v0, n);
3 InitializeLeadersArchieve();
4 i = 0;
5 // n - number of maximum iterations;
6 while i < n do
7 ComputeVelocity // Equation 10 - 13 ;
8 UpdatePos() // Equation 9 ;
9 PerfotmMutation() ;

10 Evaluation() ;
11 UpdateLeaders() ;
12 UpdateArchieve() ;
13 DetermineQulity() ;
14 i + + ;
15 end
16 returnLeadersArchive();
17 Output =

[Opt(α, β, γ (Path length(f1), Area covered(f2))];

the mutation operator enhances the solution. Finally, the
crowding distance operator helps maintain diversity among
all the populations by supporting the distant solutions. The
crowding distance [65] is defined as,

Cd =
Nobj
∑

j=0

Fd+1
j − Fd−1

j

(Fd
j)max − (Fd

j)min
(17)

The pseudocode for the implemented NSGA-II is shown
in Algorithm 4. For the detailed scheme of NSGA-II, please
refer to the article [64].

Algorithm 4: NSGA-II for identifying Opt-Morph

1 I nput = [α, β, γ];
2 InitializePopulationPo ;

3 GenerateRandomPopulationSize − N
′
;

4 EvaluateObjectiveFunctions;
5 RankPopulationBasedOnParetoFront;
6 GenerateChildPopulationselection, crossover ,mutation;
7 i = 0;

8 while i < si ze − N
′
do

9 for every parent and child in the population do
10 AssignRank;
11 Generate set o f non − dominated solutions;
12 Determine Cd ();

13 loop until N
′
;

14 Choose points wi th higher Cd ;
15 Create(Binary tournament selection, recombined and

mutation) i + +;
16 end
17 end
18 Output =

[Opt(α, β, γ (Path − length(f1), Area − covered(f2))];

Algorithm 5: MACO for identifying Opt-Morph

1 I nput = [α, β, γ];
2 InitializePheromone τ0, N

′
;

3 i = 0;

4 while i < si ze − N
′
do

5 for each colony do
6 for each ant do
7 Construct Solution(Probabili t yscheme) //

Equation 16;
8 end
9 end

10 for each solution in the node do
11 Per f ormLocalDaemonSearch;
12 end
13 UpdatePheromoneStructure //Equation 17;
14 i++
15 end
16 Output =

[Opt(α, β, γ (Path − length(f1), Area − covered(f2))];

Multi-objective Ant Colony Optimization (MACO)

Ant Colony Optimization (ACO) is a swarm-based meta-
heuristic method developed by Marco Dorigo in 1996 [66,
67], inspired by the behavior of real ants and their pheromone
characteristics. It is mainly used for solving complex com-
binatorial optimization problems.

In ACO, all the pheromone values are initially assigned
with a value of τ0, and the algorithm starts with constructing
a set of possible solutions. The algorithm chooses a feasible
solution during each construction and adds it to the partial
solution. The feasible solution selection is based on the prob-
ability scheme described in Eq.18. Further, the local demon
search is performed to improve the solutions constructed by
the ant. Finally, the pheromone values are increased with
respect to the components found with the high-quality solu-
tion as described in the Eq.19,

p
(

c ji | sp
)

=
τα
i j ·

[

η
(

c ji

)]β

∑

cli∈N(sp) τα
i j · [

η
(

cli
)]β

, ∀c ji ∈ N
(

sp
)

(18)

τi j = (1 − ρ)τi j +
∑

s∈Supd |c ji ∈s
g(s) (19)

The pseudocode for the implemented multi-objective
ACO is detailed in the Algorithm 5. For the detailed scheme
of MACO, please refer to the article [68,69].

In the next section, the results obtained from the meta-
heuristic algorithms discussed here are highlighted and
discussed.

123

5842 Complex & Intelligent Systems (2023) 9:5831–5850

Path length

egarevoc aerA

(1)

(
2
)

Path length

Ar
ea

 c
ov

er
ag

e
(
2
)

(1)

Path length

egarevoc a erA
 oteraP ecaps noit arugifnoC

so
lu

�o
ns

Co
nfi

gu
ra

�o
n

sp
ac

e
Pa

re
to

so

lu
�o

ns

Co
nfi

gu
ra

�o
n

sp
ac

e
Pa

re
to

so

lu
�o

ns

Plots for Map-1 Plots for Map-2

Plots for Map-3

(
)

(
)

(
)

(1)

(
2
)

(a)

(b)

(c)

(d)

(e) (f)

Region I

Region II

Region I

Region II

Region I

Region II

, , in degrees

50

55

60

65

70

100 125 150 175 200 225 250 275

64

66

68

70

72

74

76

78

62

140 160 180 200 220 240 260

40

50

60

70

80

75 100 125 150 175 200 225 250 275

Fig. 8 Simulated Pareto front solutions using MOPSO, NSGA-II, and MACO in three different environments, i.e., Map-1, -2, and -3

Results and discussion

The simulation results and validation of the defined problem
using the three metaheuristic multi-objective optimization
methods are discussed in this section. The simulation was
performed on three different maps, each with a size of
500 × 500 cm. Each map is unique in terms of the obstacle
shape, position, and orientation. In this approach, we chose
a set of parameters to provide a fair comparison between the
three methods. SMPSO method uses a particle size of 100.
Similarly, NSGA-II and MACO use an internal population
size of 100; and the number of generations is set to 100 for

all approaches. We applied polynomial mutation and simu-
lated binary crossover (SBX) as operators for mutation and
crossover in the NSGA-II algorithm, using binary tourna-
ment selection for the parents.We discuss the optimal shapes
obtained using the three algorithms next.

Effect of the heuristic approach used for identifying
Opt-Morph

Figure 8a–f depict the set of non-dominated solutions and the
design space for the SMPSO, NSGA-II, and MACO algo-
rithms in Maps-1, -2, and -3. The α, β, and γ in the design

123

Complex & Intelligent Systems (2023) 9:5831–5850 5843

α = 27.64 | β = 166.18 | γ = 49.46 α = 62.57 | β = 90.47 | γ = 118.78 α = 42.37 | β = 85.43 | γ = 127.90

α = 22.49 | β = 168.55 | γ = 119.19 α = 47.47 | β = 88.24 | γ = 120.92 α = 127.04 | β = 11.84 | γ = 155.16

α = 22.65 | β = 168.67 | γ = 87.17 α = 167.23 | β = 26.93 | γ = 94.18 α = 52.96 | β = 78.82 | γ = 111.36

SM
PS

O
N

SG
A-

II
M

AC
O

Map - 1 Map - 2 Map - 3

#B2
#B2#B2

#B2

#B2 #B2

#B2

#B2

#B2#B2

#B2 #B2

Fig. 9 Generated optimal morphologies for Smorphi out of multiple configurations for three different settings, Map-1, -2, and -3

space represent the three hinge angle of the Smorphi robot.
In the objective space, f1 and f2 denote the path length and
the percentage of area covered, respectively. Similarly, Fig. 9
illustrates some of the Smorphi robot’s optimal morphology
Table: Please specify the significance of the symbol [bold]
reflected inside Table [2, 3] by providing a description in the
form of a table footnote. Otherwise, kindly amend if deemed
necessary.taken from the computed Pareto front.

From the outcome of the heuristic approaches, it was
observed that the non-dominated solutions are mainly pop-

ulated in the region-II with path-length (f1) values between
125 and 275cm and the percentage of area-covered (f2) val-
ues between 50 and 78, respectively, as shown in the Fig. 8a,
c, e. TheNSGA-II algorithm generated fewer non-dominated
solutions than the SMPSO and MACO in maps -1, -2, and
-3, as shown in Fig. 8a, c, e. Region-I and region-II in the
Pareto front mainly distinguishes the morphologies based on
task efficiency. Over here, we differentiated region-1 and 2
in the Pareto front by considering cleaning as the main task
the robot has to perform. The morphology in the region-1

123

5844 Complex & Intelligent Systems (2023) 9:5831–5850

Table 2 Comparison on the f1 and f2 based on the footprint size (Cs, f p) in Cs and PF Cs for Map-1

N Cs(α, β, γ) w f p l f p Cs, f p f1 f2 PF Cs(α, β, γ) w f p l f p Cs, f p f1 f2
(degree) (cm) (cm) (cm)2 (cm) (%) (degree) (cm) (cm) (cm)2 (cm) (%)

1 (100, 100, 100) 37 31 1147 157 63.81 (146.98, 166.17, 49.46)1 25 31 775 256 70.43

2 (58, 120, 100) 36 36 1296 126 60.16 (74.28, 41.24, 82.81)1 50 19 950 194 68.83

3 (40, 122, 42) 32 35 1120 173 64.04 (23.06, 40.29, 100.92)2 50 16 800 243 70.4008

4 (40, 40, 42) 48 18 864 201 64.73 (22.49, 168.54, 119.18)2 25 35 875 214 68.57

5 (0, 68, 0) 36 28 1008 180 61.34 (61.03, 36.23, 105.15)3 50 20 1000 195 70.23

6 (25, 92, 0) 33 30 990 177 61.66 (114.28, 67.96, 18.24)3 38 29 1102 180 69.22

Cs : is the configuration space defined by angles α, β, γ in degrees (refer Fig. 5)
Cs, f p: Footprint area by the configuration space, PF Cs : Pareto front configuration space
1 SMPSO:
2 NSGA-II:
3 MACO

Table 3 Dimensions, i.e., length l f p andwidthw f p of the configuration
space footprint Cs, f p (Fig. 5 of the tiling shapes I, J, O, S, T, Z

N Cs (α, β, γ) w f p w f p Cs, f p f1 f2
(degree) (cm) (cm) (cm)2 (cm) (%)

1 (0, 0, 0) ≡ I 40 10 400 414 65.92

2 (0, 0, 180) ≡ J 30 20 600 303 66.84

3 (0, 180, 0) ≡ O 20 20 400 452 70.88

4 (180, 90, 0) ≡ S 20 30 600 309 65.97

5 (90, 180, 180) ≡ T 20 30 600 309 66.07

6 (180, 0, 180) ≡ Z 20 30 600 309 66.53

is considered less suitable for cleaning applications as they
can only cover less percentage of the area in a given map
as shown in Fig. 8a, c, e. In contrast, the morphology pro-
duced in region-2 is more suitable for cleaning application,
as they have a higher percentage of area-covered (f1) with
the optimal path length (f1) compared to the morphology
produced in region-I. Table 2 highlights some of the values
from region-II obtained for Map-1 with the magnitude of the
configuration space (α, β, γ) and the objectives f1 and f2.
Besides, the finding indicates that the results produced by
the MACO algorithm are superior to SMPSO and NSGA-II
for generating optimal morphology, which compromises the
path-length and the percentage of area covered. Overall, all
three algorithms converged as per the objective function for
generating optimal energy-efficient morphology. Similarly,
in the configuration space highlighted in Fig. 8b, d, f, α, β,
and γ values corresponding to the f1 and f2 are randomly
distributed in the range of [0,180]. However, these results
mentioned are for 100 populations and 100 generations and
may vary with the different number of populations and gen-
erations.

Effects of morphologies

In addition, to validate the simulated findings, we compared
the Pareto front to the widely adopted standard polyomino
configurations in tiling robots as reported in [21,23]. Our
simulated finding suggests that these standard polyomino
configurations are considered to be sub-optimal compared
to the shapes generated from our algorithm in terms of the
path length and the percentage of area-covered as shown in
Table 2, and 3.

For example, in Table 3, row 3, the standard polyomino
configuration ‘O’with (α, β, γ) = (0, 180, 0) covered
70.88%of the area in themap-1with a path-length of 452cm.
Even though the shape has a higher percentage of area cov-
ered, the path length required to cover that given map is also
higher, implying the energy consumption is also higher. On
the other hand, the shape generated by the MACO algorithm
with the PF Cs(α, β, γ = 114.28, 67.96, 18.24) (Table 2,
row 6); path-length (f1 = 180 cm) and percentage of area-
covered (f2 = 69.22%) is produced in the optimal range as
per the objective function. Hence this shape is considered
optimal morphology for Map-1 compared to the standard
polyomino configuration ‘O’. Further, this reveals the use-
fulness of infinite configurations in area coverage problems.

Further, to validate our simulated findings, we compared
the Pareto front solutions with the random configuration
chosen from the Smorphi robot. Table 4 shows the path
length and the area covered for the set of random shapes.
The results indicate that the random shapes taken from
the configuration space are also considered sub-optimal
compared to the morphology generated in the Pareto front
(Table 2). For example, the random configuration with the
Cs(α, β, γ = 16.26, 1.37, 22.60) (Table 4, row 5) covered
69.41% of the area(f2) with the path-length of 282cm(f2),
whereas the configuration produced by theMACO algorithm
PF Cs(α, β, γ = 114.28, 67.96, 18.24) (Table 2, row 6)
covered the area of 69.22% (f2) with the much lesser path

123

Complex & Intelligent Systems (2023) 9:5831–5850 5845

Table 4 Dimensions, i.e., length l f p and width w f p of the random
configuration space footprint Cs, f p

N Random Cs(α, β, γ) w f p w f p Cs, f p f1 f2
(degree) (cm) (cm) (cm)2 (cm) (%)

1 (134.13, 156.07, 2.50) 28 27 756 205 58.65

2 (42.82, 49.74, 44.34) 48 22 1056 170 56.74

3 (115.31, 42.75, 130.63) 43 23 989 191 61.94

4 (122.01, 94.04, 113.86) 40 30 1200 138 58.31

5 (16.26, 1.37, 22.60) 45 16 720 282 69.41

6 (109.20, 20.02, 15.29) 42 22 924 187 59.59

length (f1 = 180cm) compared to the random configura-
tion. Similarly, in Table 4 the random configuration with the
Cs(α, β, γ = 115.31, 42.75, 130.63) (Table 4, row 3) has a
path-length (f1 - 191cm), and the percentage of area covered
as (f2 - 61.94%). Even though this shape has a shorter path
length (f1), the percentage of area covered (f2) is lowerwhen
compared to the morphology produced in the Pareto front
Cs(α, β, γ = 61.03, 36.23, 105.15) (Table 2, row 5), which
covers significantly more area than the random configuration
(f2 = 68.33%) for nearly the same path-length (f1 - 195cm),
making it a more optimal configuration for area coverage
tasks with lesser energy consumption. These results substan-
tiate the multi-objective optimisation algorithm’s usefulness
in identifying the optimal morphology.

Effects of the footprint size

From the simulation, we identified that the footprint size is
inversely proportional to the path length; as the footprint size
is larger, the path length is shorter. This makes the shape
with a larger footprint a suitable candidate for the optimal
morphology, and the morphology with a lesser footprint size
(I, J, O, S, T, Z) is the least suitable candidate for the optimal
morphology, as shown in the Tables 3, and 2. However, as
per our objective function, the morphology with the shorter
path length alone cannot be optimal. Since the problem is
defined in such a way that the optimal shape generated is the
trade-off between path length and percentage of area covered.
On the other hand, the area coverage solely relies on the
footprint occupancymatrix and the path generated rather than
the footprint size.

As shown in Table 2, shapes from the Pareto front are
verified with the random values chosen from the config-
uration space (Cs). The results show that even the larger
footprint size alone cannot be an optimal morphology. For
example, in Table 2, row 2, the random value chosen from
the Cs(α, β, γ = 58, 120, 100) has a lesser path length
(f1 = 126) with lower energy consumption; however, for
that shape, the percentage of area covered (f2 = 60.16%) is
also lesser, making it as a sub-optimal morphology. Sim-

ilarly, in the case of the shape generated from the PF
Cs(α, β, γ = 74.28, 41.24, 82.81). Table 2, row 2) has the
optimal path-length (f1 = 194) and the percentage of area-
covered (f2 = 68.83%), making it an optimal morphology
for map-1. Hence, the metaheuristic algorithms were use-
ful in identifying the optimal value that compromises the
percentage of area covered and path-length. Further, this
example justifies the use case of these meta-heuristic algo-
rithms for this combinatorial problem.

Heuristic algorithms and computational time

Figure 10 summarizes the computational time taken3 by the
SMPSO, NSGA-II and MACO algorithms to complete the
100 generations in three different simulated environments.
Among these three methods, the SMSPO algorithm has less
computational cost than the other two algorithms; this is
mainly because SMPSOusesmathematical operators instead
of evolutionary operators for generating solutions. Similarly,
in Map-2, the NSGA-II algorithm converges faster than the
MACO and SMPSO algorithms. Further, from Fig. 10, we
can observe that the MACO algorithm slightly took more
computational cost than the other two algorithms in the three
different maps. In addition, we observed that there are only
slight changes in the computational cost between different
environments even though the obstacle complexity in every
map is different; this is mainly due to the size of the map
being kept constant for the three simulations. However, on
the other hand, heuristic-based optimization algorithms are
stochastic in nature; we cannot conclude one type of opti-
mization algorithm will always produce the best solution
with less computational cost; it varies with respect to the
environmental uncertainty, design parameters, nature of the
algorithm, type of problem, computational power, etc.

Experiments

This section details the experiments conducted to validate the
simulation study using the real Smorphi robot. The experi-
ments were carried out in a 3m × 3m lab setup designed to
resemble the simulated environment. Occupancy grids such
as warning signs and cardboards are considered obstacles,
and the remaining space in the bounding box is considered
free space for the robot to navigate. The real experiments
aim to show the optimal morphology generated through the
simulation is energy efficient to cover the area while max-
imizing the area coverage and minimizing the path length.
We conducted four set of experiments, including shapes from
standard polyomino sets, SMPSO, NSGA-II, and MACO.
For all the experiments, the robot is teleoperated with the

3 PC specifications used during optimization: Intel Core i7 4-Core (11th
Gen), 2.8 GHz, 512GB SSD and 16GB RAM.

123

5846 Complex & Intelligent Systems (2023) 9:5831–5850

Fig. 10 Computational time taken by the optimization algorithm in the
three different environments ran on a given personal computing device

same speed of 0.1m/s. For every shape, the path length (f1)
and the percentage of area covered(f2) are tracked using the
overhead camera mounted on the ceiling. Besides, during
the experiment, the angle between the hinges is locked using
an acrylic mechanical stopper to restrict the hinges during
navigation.

Figures 11, 12, 13, and 14 depict actual experiments
performed using four different shapes. To fairly compare
the three optimization algorithms, among the multiple mor-
phologies generated from the Pareto front, we chose the
morphology with the highest area coverage and lesser path
length for the real-world experiment from the respective algo-
rithm. The path-length (f1) and percentage of area-covered
(f2) for each of the four shapes are shown in Table 5. The
results indicate that the forms taken from the Pareto front
outperformed the standard polyomino configuration. Fur-
thermore, the shape generated from theMACOalgorithmhas
a higher percentage of area covered with lesser path-length

Fig. 11 Standard morphology as O-shape with aMap-2 with obstacles,
b Footprint of the O-shape, c Path-planner output with start (S) and goal
(G) points indicated, (d) Area-coverage with the selected morphology,

and e The experimental overlay map with the path length of 92cm and
the percentage of area-coverage as 79.2%

123

Complex & Intelligent Systems (2023) 9:5831–5850 5847

Fig. 12 Real-world experiment using the optimal morphology (refer Table 5) generated from the SMPSO algorithm

Fig. 13 Experimental results using the optimal morphology (refer Table 5) generated from the NSGA-II algorithm

123

5848 Complex & Intelligent Systems (2023) 9:5831–5850

Fig. 14 Real-world experiment using the optimal morphology (refer Table 5) generated from the MACO algorithm

Table 5 Actual and simulated
path-length(f1) and the
percentage of area-covered(f2)
for four different morphologies

Cs (α, β, γ) Algorithm (degree) Path-length (cm) Area-covered (%)
Simulation Actual Simulation Actual

(0,180,0) ≡ O, Standard shape 92 92 81 79.2

(28.19, 0,180) SMPSO 44 44 79.2 74.87

(117.52, 41.28, 177.37) NSGA-II 34 34 77.9 74.52

(122.62, 54.94, 179.26) MACO 37 37 80.5 76.2

compared to the other two algorithms. Besides, as mentioned
in Table 5 the difference in the area coverage between the
actual and simulation is mainly due to the wheel slippage and
the manual error during the teleoperation. When the robot is
commanded to move in a straight line, the wheel slippage
causes the robot to drift from the global path causing it to
leave some area uncovered. In conclusion, the experiment
results satisfy our simulation finding for generating optimal
energy-efficient morphology.

Overall, the suggested framework can determine the opti-
mal morphology by making trade-offs between the path
length and the percentage of area covered using the meta-
heuristic algorithm. Moreover, this work revealed how each
possible shape in a reconfigurable robot could be exploited
for area coverage applications.

Conclusion

Given the current limitations of the existing approach for
reconfigurable robots in performing efficient cleaning with
optimal energy consumption, we propose a framework for
generating an optimal morphology of a reconfigurable robot.
The reconfigurable robot considered in this work consists
of four blocks and is referred to as Smorphi . The robot
can take several morphologies apart from the set of stan-
dard polyomino shapes, i.e., I, J, L, O, S, T, Z. The objective
was to maximize the area coverage and minimizes energy
consumption. The proposed framework is validated through
simulation and real-world experiments using three different
metaheuristics algorithms: SMPSO, NSGA-II, and MACO.
Moreover, the proposedmethod can be extended for different
classes of reconfigurable robots to select an optimal config-
uration depending on the given application such as cleaning,
surveillance or reconnaissance task, among others.

Furthermore, insight into the optimal morphologies is
gained through the simulation and experimental results. The

123

Complex & Intelligent Systems (2023) 9:5831–5850 5849

results show that the each approach finds a near-optimal
energy-efficient morphology for the given map. Besides, the
shape generated from the MACO approach is superior to the
other two algorithms, which can be considered a suitable
algorithm for generating the optimal-energy efficient mor-
phology. Overall, the proposed method opens a new avenue
for further research on identifying Opt-Morph for different
classes of reconfigurable robots. The future work includes
a reinforcement learning-based approach to determine the
optimal shape in reconfigurable robots and developing a
platform-agnostic framework for optimal shape generation
in a different class of reconfigurable robots, developing a
suitable control strategy, and accounting for the rotational
and diagonal motion of the reconfigurable robot in the global
path planner.

AuthorContributions ManivannanKalimuthu conceptualized, designed,
acquired/analyzed/interpreted data, created codes and drafted the
manuscript as part of the reported work. Thejus Pathakumar and Abdul-
lah Aamir Hayat designed, interpreted data, created codes and drafted
the manuscript as part of the reported work. Mohan Rajesh Elara and
Kris L. Wood supervised the work and reviewed the article.

Funding This research is supported by the National Robotics Program
under its Robotics Enabling Capabilities and Technologies (Funding
Agency Project No. 1922500051), National Robotics Program under its
Robot Domain Specific (Funding Agency Project No. 192 22 00058),
National Robotics Program under its Robotics Domain Specific (Fund-
ing Agency Project No. 1922200108), and administered by the Agency
for Science, Technology and Research. We wish to acknowledge the
support of the SUTD DesignZ Center, the Comcast Media and Tech-
nology Center (CU Denver), and the College of Engineering, Design,
and Computing (CU Denver)”.

Data availability The data used during the current study are available
from the first author and corresponding author upon reasonable request.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest

Ethics approval Not applicable.

Consent to participate: Not applicable.

Consent for publication: Yes

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Ferguson S, Siddiqi A, Lewis K, de Weck OL (2007) Flexible and
reconfigurable systems. Nomenclat Rev 48078:249–263

2. Koren Y et al (1999) Reconfigurable manufacturing systems. CIRP
Ann 48(2):527–540

3. Lysaght P, Stockwood J (1996) A simulation tool for dynamically
reconfigurable field programmable gate arrays. IEEE Trans Very
Large Scale Integrat (VLSI) Syst 4(3):381–390

4. Compton K, Hauck S (2002) Reconfigurable computing: a survey
of systems and software.ACMComput Surv (csuR) 34(2):171–210

5. Costantine J, Tawk Y, Barbin SE, Christodoulou CG (2015)
Reconfigurable antennas: design and applications. Proc IEEE
103(3):424–437

6. Fukuda T, Nakagawa S (1987) A dynamically reconfigurable
robotic system (concept of a system and optimal configurations)
SPIE 856:588–595

7. Tan N, Hayat AA, Elara MR, Wood KL (2020) A framework for
taxonomy and evaluation of self-reconfigurable robotic systems.
IEEE Access 8:13969–13986

8. CastanoA, Behar A,Will PM (2002) The conromodules for recon-
figurable robots. IEEE/ASME Trans Mech 7(4):403–409

9. Rus D, Vona M (2000) A basis for self-reconfiguring robots using
crystal modules, IEEE 3:2194–2202

10. Østergaard EH, Kassow K, Beck R, Lund HH (2006) Design of
the atron lattice-based self-reconfigurable robot. Autono Robots
21(2):165–183

11. Hayat AA, Yi L, Kalimuthu M, Elara M, Wood KL (2022) Recon-
figurable robotic system design with application to cleaning and
maintenance. J Mech Design 144(6):063305

12. Pathmakumar T, Sivanantham V, Anantha Padmanabha SG, Elara
MR, Tun TT (2021) Towards an optimal footprint based area
coverage strategy for a false-ceiling inspection robot. Sensors
21(15):5168

13. Ilyas M, Yuyao S, Mohan RE, Devarassu M, Kalimuthu M (2018)
Design of stetro: a modular, reconfigurable, and autonomous stair-
case cleaning robot. J Sens 2018

14. Yuyao S, Elara MR, Kalimuthu M, Devarassu M (IEEE, 2018)
stetro: a modular reconfigurable cleaning robot 1–8

15. TunTT,ElaraMR,KalimuthuM,VengadeshA (2018)Glass facade
cleaning robot with passive suction cups and self-locking trape-
zoidal lead screw drive. Automat Construct 96:180–188

16. Ramalingam B et al (2021) Stetro-deep learning powered stair-
case cleaning and maintenance reconfigurable robot. Sensors
21(18):6279

17. Le AV, Veerajagadheswar P, Thiha Kyaw P, Elara MR, Nhan
NHK(2021)Coverage path planning using reinforcement learning-
based tsp for htetran-a polyabolo-inspired self-reconfigurable tiling
robot. Sensors 21(8):2577

18. Samarakoon SBP et al (2021) Modelling and control of a recon-
figurable robot for achieving reconfiguration and locomotion with
different shapes. Sensors 21(16):5362

19. Sinha A, Tan N, Mohan RE (2014) Terrain perception for a
reconfigurable biomimetic robot using monocular vision. Robot
Biomimet 1(1):1–11

20. Rubenstein M, Payne K, Will P, Shen W-M (2004) Docking
among independent and autonomous conro self-reconfigurable
robots 3:2877–2882

21. Prabakaran V, Elara MR, Pathmakumar T, Nansai S (2017) htetro:
A tetris inspired shape shifting floor cleaning robot 6105–6112

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

5850 Complex & Intelligent Systems (2023) 9:5831–5850

22. Golomb SW (1996) Polyominoes: puzzles, patterns, problems, and
packings Vol. 111

23. Prabakaran V, Elara MR, Pathmakumar T, Nansai S (2018) Floor
cleaning robot with reconfigurable mechanism. Autom Construct
91:155–165

24. Cheng KP, Mohan RE, Nhan NHK, Le AV (2020) Multi-objective
genetic algorithm-based autonomous path planning for hinged-
tetro reconfigurable tiling robot. IEEE Access 8:121267–121284

25. Samarakoon SBP, Muthugala MVJ, Le AV, Elara MR (2020)
hTetro-infi: a reconfigurable floor cleaning robot with infinite mor-
phologies. IEEE Access 8:69816–69828

26. HayatAA,Karthikeyan P,Vega-HerediaM,ElaraMR (2019)Mod-
eling and assessing of self-reconfigurable cleaning robot htetro
based on energy consumption. Energies 12(21):4112

27. Le AV et al (2019) Realization energy optimization of complete
path planning in differential drive based self-reconfigurable floor
cleaning robot. Energies 12(6):1136

28. Le AV et al (2020) Reinforcement learning-based energy-aware
area coverage for reconfigurable hrombo tiling robot. IEEEAccess
8:209750–209761

29. Cheng KP, Mohan RE, Nhan NHK, Le AV (2019) Graph theory-
based approach to accomplish complete coverage path planning
tasks for reconfigurable robots. IEEE Access 7:94642–94657

30. Le AV, Prabakaran V, Sivanantham V, Mohan RE (2018) Modi-
fied a-star algorithm for efficient coverage path planning in tetris
inspired self-reconfigurable robot with integrated laser sensor. Sen-
sors 18(8):2585

31. Galceran E, CarrerasM (2013) A survey on coverage path planning
for robotics. Robot Auton Syst 61(12):1258–1276

32. Lumelsky VJ, Mukhopadhyay S, Sun K (1990) Dynamic path
planning in sensor-based terrain acquisition. IEEE Trans Robot
Automat 6(4):462–472

33. Choset H, Pignon P (1998) Coverage path planning: the boustro-
phedon cellular decomposition 203–209

34. Moravec H, Elfes A (1985) High resolution maps from wide angle
sonar 2:116–121

35. Zelinsky A, Jarvis RA, Byrne J, Yuta S et al (1993) Planning paths
of complete coverage of an unstructured environment by a mobile
robot 13:533–538

36. Gabriely Y, Rimon E (2002) Spiral-stc: an on-line coverage algo-
rithm of grid environments by a mobile robot 1:954–960

37. Xu L (2011) Graph planning for environmental coverage. Carnegie
Mellon University

38. Wong SC, MacDonald BA (2003) A topological coverage algo-
rithm for mobile robots 2:1685–1690

39. Atkar PN, Choset H, Rizzi AA, Acar EU (2001) Exact cellu-
lar decomposition of closed orientable surfaces embedded in/spl
rfr//sup 3 1:699–704

40. Cheng P, Keller J, Kumar V (2008) Time-optimal uav trajectory
planning for 3d urban structure coverage 2750–2757

41. Bello I, PhamH, Le QV, Norouzi M, Bengio S (2016) Neural com-
binatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940

42. Tagliarini GA, Christ JF, Page EW (1991) Optimization using neu-
ral networks. IEEE Trans Comput 40(12):1347–1358

43. Muthugala MVJ, Samarakoon SBP, Mohan Rayguru M, Rama-
lingam B, Elara MR (2020) Wall-following behavior for a disin-
fection robot using type 1 and type 2 fuzzy logic systems. Sensors
20(16):4445

44. Savinell JM, Palsson BO (1992) Network analysis of intermediary
metabolism using linear optimization. i. development of mathe-
matical formalism. J Theor Biol 154(4):421–454

45. Ting T, Yang X-S, Cheng S, Huang K (2015) Hybrid metaheuristic
algorithms: past, present, and future. Recent Adv Swarm Intell
Evolut Comput 71–83

46. Osman IH, Kelly JP (1996) Meta-heuristics: an overview. Meta-
heuristics 1–21

47. Yu Y et al (2021) Adsorption control of a pipeline robot based on
improved PSO algorithm. Complex Intell Syst 7(4):1797–1803

48. Geng N, Chen Z, Nguyen QA, Gong D (2021) Particle swarm opti-
mization algorithm for the optimization of rescue task allocation
with uncertain time constraints. Complex Intell Syst 7(2):873–890

49. Mo Y, You X, Liu S (2022) Multi-colony ant optimization with
dynamic collaborativemechanism and cooperative game. Complex
Intell Syst 1–18

50. Masehian E, Sedighizadeh D (2010) A multi-objective PSO-based
algorithm for robot path planning 465–470

51. Wang Y et al (2019) Reconnaissance mission conducted by uav
swarms based on distributed PSO path planning algorithms. IEEE
Access 7:105086–105099

52. Hu Y, Yang SX (2004) A knowledge based genetic algorithm for
path planning of a mobile robot 5:4350–4355

53. Albina K, Lee SG (2019) Hybrid stochastic exploration using grey
wolf optimizer and coordinatedmulti-robot exploration algorithms.
IEEE Access 7:14246–14255

54. Valente J, Del Cerro J, Barrientos A, Sanz D (2013) Aerial cover-
age optimization in precision agriculture management: a musical
harmony inspired approach. Comput Electron Agric 99:153–159

55. TsuzukiMdSG, de CastroMartins T, Takase FK (2006) Robot path
planning using simulated annealing. IFAC Proc 39(3):175–180

56. Chibin Z, Xingsong W, Yong D (2008) Complete coverage path
planning based on ant colony algorithm 357–361

57. Pazooki M, Mazinan A (2018) Hybrid fuzzy-based sliding-mode
control approach, optimized by genetic algorithm for quadrotor
unmanned aerial vehicles. Complex Intell Syst 4(2):79–93

58. Singh V et al (2009) Innovations in design through transformation:
a fundamental study of transformation principles. J Mech Design
131(8)

59. Vikhar PA (2016) Evolutionary algorithms: a critical review and
its future prospects 261–265

60. Kalimuthu M, Hayat A, Elara M, Wood K (2021) Transformation
design principles as enablers for designing reconfigurable robots
85420:V006T06A008

61. Ramalingam B et al (2021) Deep learning based pavement inspec-
tion using self-reconfigurable robot. Sensors 21(8):2595

62. Eberhart R, Kennedy J (1942) Particle swarm optimization 1948
63. Nebro AJ et al (2009) SMPSO: a new PSO-based metaheuristic for

multi-objective optimization, 66–73
64. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-

tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut
Comput 6(2):182–197

65. Wang X, Hirsch C, Kang S, Lacor C (2011) Multi-objective opti-
mization of turbomachinery using improved nsga-ii and approxi-
mation model. Comput Methods Appl Mech Eng 200(9–12):883–
895

66. Dorigo M, Gambardella LM (1997) Ant colony system: a cooper-
ative learning approach to the traveling salesman problem. IEEE
Trans Evolut Comput 1(1):53–66

67. DorigoM, Di Caro G (1999) Ant colony optimization: a newmeta-
heuristic 2:1470–1477

68. Biscani F, Izzo D (2020) A parallel global multiobjective frame-
work for optimization: pagmo. J Open Sour Softw 5(53):2338

69. Acciarini G, Izzo D, Mooij E (2020) Mhaco: a multi-objective
hypervolume-based ant colony optimizer for space trajectory opti-
mization, 1–8

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1611.09940

	A metaheuristic approach to optimal morphology in reconfigurable tiling robots
	Abstract
	Introduction
	Opt-Morph framework
	Design space
	Transformational design principles
	Mechanical design
	Robot configurations, footprint, and kinematics

	Complete Area Coverage and Path Planning (CCPP) space
	Footprint generation
	Coverage path planning algorithm
	Footprint-based path planning

	Optimization space
	Metaheuristic algorithms for optimization
	Speed-constrained Multi-objective Particle Swarm Optimisation (SMPSO)
	Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
	Multi-objective Ant Colony Optimization (MACO)

	Results and discussion
	Effect of the heuristic approach used for identifying Opt-Morph
	Effects of morphologies
	Effects of the footprint size
	Heuristic algorithms and computational time
	Experiments

	Conclusion
	References

