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Abstract

Particle swarm optimization (PSO) is a well-known optimization algorithm that shows good performances in solving different
optimization problems. However, the PSO usually suffers from slow convergence. In this article, a reinforcement-learning-
based parameter adaptation method (RLAM) is developed to enhance the PSO convergence by designing a network to control
the coefficients of the PSO. Moreover, based on the RLAM, a new reinforcement-learning-based PSO (RLPSO) algorithm is
designed. To investigate the performance of the RLAM and RLPSO, experiments on 28 CEC 2013 benchmark functions were
carried out to compare with other adaptation methods and PSO variants. The reported computational results showed that the
proposed RLAM is efficient and effective and that the proposed RLPSO is superior to several state-of-the-art PSO variants.
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Introduction

In recent years, the research community has witnessed an
explosion of literature in the area of swarm and evolutionary
computation [1]. Hundreds of novel optimization algorithms

B Guoliang Gong
gongmianjie@semi.ac.cn

Shiyuan Yin .
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Min Ti in many applications, e.g., system reliability optimization
mn Jin

[2], DNA sequence compression [3], systems of boundary
value problems [4], solving mathematical equations [5,6],
object-level video advertising [7], and wireless networks [8].
Particle swarm optimization (PSO), which was first proposed
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simplicity and high performance, a multitude of enhance-
ments have been presented on PSO during the last few
decades, which can be simply categorized into three types:
parameter selection, topology, and hybridization with other

High Speed Circuit and Neural Network Laboratory, Institute algorithms [10].
of Semiconductors, CAS, A 35 Qinghua East Road, Beijing,
Beijing 100083, China

chengang08 @semi.ac.cn

Wenchang Li
liwc@semi.ac.cn

When solving different optimization problems, appropri-
ate parameters need to be configured for PSO and its variants.
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The current parameter setting algorithms are mainly
divided into two categories: parameter tuning and parameter
control. The classifications are shown in Fig.1. Parame-
ter tuning is relatively simple to implement, but because
all its designs are determined before the optimization algo-
rithm runs, it loses some adaptability to the problem when
running. In contrast, parameter control will monitor the oper-
ation of the optimization algorithm to control the operation
of the algorithm. Furthermore, the types of parameter con-
trol have been clearly defined, distinguishing deterministic,
adaptive, or self-adaptive methods. Only adaptive methods
are informed as they receive feedback from the EA run and
assign values based on that feedback [12].

Thus, this paper focuses on adaptive methods.

Common parameter adaptation methods include control
based on history, control based on test experiments, control
based on fuzzy logic, and control based on reinforcement
learning. In the existing adaptive methods, almost all the
control rules need to be learned when the algorithm is
running. Although fuzzy logic has pre-configured rules, it
also needs to be manually configured item by item, which
makes the current adaptation algorithms inefficient. In addi-
tion, these adaptation algorithms are usually designed for a
certain optimization algorithm and cannot be applied to vari-
ous optimization algorithms. However, in the image domain
[13] and natural language processing domain [14], the pre-
training models are very mature, which greatly improves the
performance of subsequent tasks. This inspired us to use
reinforcement learning to improve the particle swarm per-
formance through pre-training. Using the adaptation method
based on RL will bring the following benefits: 1. There is no
need to manually design rules and tune parameters, which
greatly reduces the burden on users. Although the parame-
ters in RL are also very important, experiments have shown
that using the same set of parameters achieves good results
for different algorithms and test functions. Therefore, in the
actual use process, it is not necessary to adjust the parameters
in RL. 2. By learning from past experience, the application
of the algorithm is more extensive, and the effect is better.

In this paper, we propose a reinforcement-learning-based
parameter adaptation method (RLAM) by embedding a deep

Fig.1 Adaptation schemes

parameter setting

deterministic policy gradient (DDPG) [15] into the process
of PSO. In the proposed method, there are two neural net-
works: the actor network and the action-value network. The
actor network is trained to help the particles in the PSO
choose their best parameters according to their states. The
action-value network is trained to evaluate the performance
of the actor network and provide gradients for the training of
the actor network. The input of the actor network includes
three parts: the percentage of iterations, the percentage of
no-improvement iterations, and the diversity of the swarm.
All the particles will be divided into several groups, and each
group has their own action generated by the actor network.
Typically, the action controls w, c1, and ¢2 in the PSO, but it
has the ability to control any parameters if needed. A reward
function is needed to train the two networks. The design is
very simple and targeted at encouraging the PSO to obtain
a better solution in every iteration. The whole process of
training and utilizing the two networks is described in “Deep
deterministic policy gradient”.

To evaluate the performance of the method proposed
in this paper, three sets of experiments were designed: 1.
Six particle swarm algorithm variants were selected, and
their performances combined with the RLAM were com-
pared with their original performances. 2. The RLAM was
combined with the original PSO and compared with other
adaptation methods. 3. A new reinforcement-learning-based
PSO (RLPSO) was designed based on this method, and its
performance was compared with five particle swarm variants
and several advanced algorithms proposed in recent years.
These experiments verified the effectiveness of the RLAM.

Main contributions of this paper

1. Thereinforcement learning algorithm (DDPG algorithm)
is introduced into the adaptation process, which greatly
improves the parameter adaptation ability.

2. The concept of pre-training is introduced into the adapta-
tion process so that the particle swarm algorithm can not
only adapt the parameters based the current situation but
also through past experience, which improves the intel-
ligence level of the algorithm.
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3. Based on the above improvements, a adaptive particle
swarm optimization algorithm based on reinforcement
learning (RLPSO) is proposed, which greatly improves
the performance of the PSO.

Structure of paper

The rest of this paper is organized as follows. The definitions
of the PSO and DDPG are presented in ‘“Background infor-
mation”. Related work on parameter setting is introduced
in “Related work”. The implementation of the proposed
RLAM and RLPSO algorithms is described in “Proposed
Algorithm”. Experimental studies are presented in “Experi-
ments”. Conclusions summarizing the contributions of this
paper are presented in “Conclusions”.

Background information

Particle swarm optimization

Particle swarm optimization is the representation of swarm
behaviors in some ecological systems, such as birds flying
and bees foraging [16]. In the classic PSO, the movement of
a particle is influenced by its own previous best position and
the best position of the best particle in the swarm. To describe
the state of the particles, the velocity V; and position X; of
the i particle are defined as follows:

1 1 >

%:(v-l,vz,... vD>,i=1,2,...,N

X; = (xil,xiz,...,x,p),i =1,2,...,N

where D represents the dimension of the search space, and N
represents the number of particles. As the search progresses,
the two movement vectors are updated as follows:

Vit +1) =wVi(®t) +cl xr1 (pBest; — X;(t))
+c2 xr2 (gBest — X;(t))
Xit+ 1) =Xi@)+ Vit + 1)

where w is the inertia weight, c1 is the cognitive acceleration
coefficient, ¢2 is the social acceleration coefficient, » 1 and 2
are uniformly distributed random numbers within [0, 1], V; ()
denotes the velocity of the i’” particle in the ' generation,
pBest; is the personal best position for the i"* particle, and
g Best is the best position in the swarm.

Reinforcement learning and deep deterministic
policy gradient

This subsection introduces the DDPG and RL briefly. Further
details can be found elsewhere [15].

Reinforcement learning

Reinforcement learning (RL) is a kind of machine learning.
Its purpose is to guide the agent to perform optimal actions
in the environment to maximize the cumulative reward. The
agent will interact with the environment in discrete timesteps.
At each timestep , the agent receives an observation s; € S,
takes an actiona, € A, and receives a scalar reward r; (s, a;).
S is the state space, and A is the action space. The agent’s
behavior is controlled by a policy & : § — A, which maps
each observation to an action.

Deep deterministic policy gradient

In the DDPG, there are four neural networks designed to
obtain the best policy 7: the actor network . (s;|6#), target
actor network 1/ (s |9“/), action-value network Q(s;, a;|109),
and target action-value network Q’(s;, a;|0 Q" 1 and ' are
used to choose the action based on the state, Q and Q' are
used to evaluate the action chosen by the actor network. 6,
9“/, 02, and 69" are the neural network weights of these
neural networks. Initially, 6% is a copy of 6* and 6" is
a copy of 0€. During training, the weights of these target
networks are updated as follows:

09 « 702 + (1 —1)0?

, , (D
OF «— 0" + (1 — )"

where 7 < 1.
To train the action-value network, we need to minimize
the loss function:

L(69) = (rGi.a) + 70 (51 aer 1 62)
0 (s, 169))° @)

Then, the action-value network is used to train the actor net-
work with the policy gradient

Voud = V,0 <s,a | eQ)

Vo, (s 1)

s=sp,a=u(s;) s=s,

3

The data flow of the training process is shown in Fig. 2. In
this figure, critic is the action-value network.

Comprehensive learning particle swarm optimizer
(CLPSO)

In PSO, all particles are attracted by their own historical
optima and the optima of all particles. The global optimum
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Fig.2 Training process of deep deterministic policy gradient (DDPG)

may be inside a local minimum, which will cause the par-
ticle swarm to prematurely converge to the wrong location.
To solve this problem, we introduce the mechanism of the
comprehensive learning particle swarm optimizer (CLPSO)
in RLPSO, which allows particles to randomly learn the
dimensions of different particles. Therefore, this section will
introduce the CLPSO.

More details on the CLPSO can be found elsewhere [17].
The velocity updating equation used by the CLPSO is as
follows:

vf(t +1)= wvl-d(t) +ckr* (pbest?-i(d) — xid(t)), @)

where fi(d) = [fi(1), fi(2), ..., fi(D)] defines which par-
ticle’s pbest the i” particle should follow. The 4" dimension
of the i particle should follow the f;(d)"" particle’s pbest
in the d'" dimension. r is a random number between 0 and
1. w and c are coefficients.

To determine f;(d), every particle has its own learning
parameter Pc;. The Pc; value for each particle is calculated
by the following equation:

(o (5) 1)

Pei=a+b
Gt a0 — 1

) (&)

where ps is the population size, a = 0.05, and b = 0.45.
When a particle updates its velocity for one dimension, a
random value in [0, 1] is generated and compared with Pc;.
If the random value is larger than Pc;, the particle of this
dimension will follow its own pbest. Otherwise, it will follow
another particle’s pbest for that dimension. CLPSO employs
a tournament selection to choose a target particle. Further-
more, to avoid wasting function evaluations in the wrong
direction, CLPSO defines a certain number of evaluations as

@ Springer

the refreshing gap m. During the period in which a particle
follows a target particle, the number of times the particle
ceases to improve is recorded as flageipso. If flageipso is
bigger than m, the particle will obtain its new target particle
by employing a tournament selection again.

Related work

When solving different optimization problems, appropriate
parameters need to be configured for PSO and its variants.
The performance of PSO heavily depends on the parameter
setting, which shows the importance of setting the parameter
values. The classifications are shown in Fig. 1. We will briefly
review them next.

Parameter tuning

There are many parameters that need to be configured in the
particle swarm algorithm, and these parameters are related
to the quality of the final optimization result. Therefore, the
parameters can be tested in groups, the parameter groups can
be tested on all the test problems, and the parameter group
with the best effect can be selected.

Since the end of last century, a number of automatic
parameter tuning approaches have been put forward, such
as Design of experiments [18], F-Race [19], ParamILS [20],
REVAC [21], and SPO [22]. SMAC [23] and TPE [24] are
the most commonly used methods in this field.

Determined parameter control

Determined parameter control refers to the adaptive methods
whose parameters are determined before the actual optimiza-
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tion problem is solved, which can be mainly divided into two
categories based on the optimization progress of the opti-
mization problem: linear parameter variation and nonlinear
parameter variation.

Linear strategies

Initially, all the parameters in the particle swarm algorithm
were set to fixed values [9], but researchers have found that
this method is not efficient, and it is difficult to balance the
relationship between exploration and exploitation. There-
fore, linear strategies have been proposed. A linear strategy
means that algorithms pre-specify a linear expression dur-
ing the running process and determine some of the current
running parameters based on the running state.

In the paper [25], the researchers proposed a linearly
reduced w parameter, which improved the fine-tune capa-
bility of the PSO in the later stage. The value of w decreased
linearly from an initial value wmax to wmin. The specific
formula for this change is as follows:

Imax —

1
w(t) = (Wmax — ®min) + @Omin

max

Then, in the paper [26], the researchers proposed a linear
variation operation for three parameters. In addition to the
linear decrease of w, cl was increased linearly and c2 was
decreased linearly. These parameters were preset with their
maximum and minimum values. This method makes the PSO
algorithm more inclined to search near the optimal value that
it found in the early stage, which improves the particle’s
exploration ability and improves its fine-tuning ability in the
later stage, allowing it to quickly converge to the global opti-
mal value. The formulas for the changes of c1 and c2 are
shown as follows, and the change of w is consistent with the
above formula:

L= (el —el) —' 4
=Tl yaximr TN
iter ©)
2= (2f — %) o 4 €2,
¢ ) MAXITR ’

In the paper [27], the researchers constructed a linearly
growing w, which could also achieve a better performance
in some of the problems given in the paper. The equation is
as follows:

t

w(t)=0.5x +0.4

max

Considering that both the linear growth and decline of w
have advantages in some problems, in the paper [28], the
researchers constructed a w that linearly increased first and
then linearly decreased. The specific changes are expressed

as follows:

Ix 4404, 0< 1L

tmax — Imax

<0.5
w(t) = . .

fmax

In addition to the above-mentioned linear adjustment
according to the running progress of the algorithm, there were
also studies in which the parameters were linearly adjusted
based on some other parameters.

For example, in the paper [29], the researchers adjusted
the w value based on the average distance between particles.
The specific adjustment method is as follows:

Din@max

Dmin

Diax@min —

Dmax -

Wmax — @Wmin

Dmax - Dmin

w(t) = x D(1) +

where D(t) denotes the average distance between particles,
and wmax and wnin are predefined.

Nonlinear strategies

Inspired by the various linear strategies, many researchers
have turned their attention to nonlinear strategies. These
methods make parameter changes more flexible and closer
to the needs of the problem.

In the paper [30], the author proposed the use of the E
index to update w, which improves the convergence speed
of the algorithm on some problems. In the paper [31], the
author used a quadratic function to update the parameters.
The test results showed that this method outperformed the
linear transformation algorithm in most continuous optimiza-
tion problems. In the paper [32], the author combined the
sigmoid function into a linear transformation, allowing the
algorithm to quickly converge in the search process. In the
papers [33] and [34], the authors applied a chaotic model
(logistic map) to the parameter transformation, which gave
the algorithm a stronger search ability. Similarly, in the paper
[35], the author set the parameters to random numbers and
also obtained good results.

Adaptation parameter controlling

Adaptation parameter controlling are techniques for the
dynamic adaptation of the algorithm’s parameters during its
execution. They are typically based on performance feedback
from the algorithm on the considered problem instance.

History based
The approaches proposed in some papers divide the whole
running process into many small processes, using different

parameters or strategies in each small process and judging
whether the parameters or strategies are good enough based
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on the performance of the algorithm at the end of the small
stage. The strategies or parameters that are good enough will
be chosen more in subsequent runs. In the paper [36], the
author built a parameter memory. In each run, all the running
particles were assigned different parameter groups, and the
parameters used by some particles with better performances
after the small-stage run was completed were saved in the
parameter memory. The parameters chosen by subsequent
particles tended to be close to the average of the parameter
memory. In the paper [37], the author designed five particle
swarm operation strategies based on some excellent particle
swarm variant algorithms in the past and kept a record of
the success rate for each strategy. In the initial state, all the
success rates were set to 50%, and then in each small pro-
cess, a strategy was randomly selected for execution based
on the weight of the past success rate. Based on the number
of particles promoted, the memory of the success rate was
updated. In the paper [38], the author improved the original
EPSO, updated the designed strategy, divided the particle
swarm into multiple subgroups, and evaluated the strategy
separately, which further improved the performance of the
algorithm.

Small test period based

This approach divides the entire optimization process into
multiple sub-processes and divides each sub-process into
two parts. One part is used to test the performance of the
parameters or strategies, and the number of evaluations is
generally less than 10%. The other part is the normal opti-
mization process. In the paper [39], the author divided the
parameters into many parameter groups based on the grid. In
each performance test process, the population was divided
into multiple subgroups, and the parameter groups around
the grid of the previous process were tested. After running
several iterations, the parameter group with the best effect
was selected as the parameter group to be used. In the paper
[40], the author divided the test sub-process into two pro-
cesses. In the first process, the adjacent points of the current
selection point were evaluated, and the probability of success
was calculated. Then, in the second process, the direction
with the highest probability of success was selected as the
exploration direction, multiple steps in this direction were
explored, and finally, the best parameter group in the second
step was selected as the parameter configuration for the next
operation. This method further improved the performance.

Fuzzy rules
In the paper [41], the author presented a new method for
dynamic parameter adaptation in the PSO, where an improve-

ment to the convergence and diversity of the swarm in the
PSO using interval type-2 fuzzy logic was proposed. The

@ Springer

experimental results were compared with the original PSO,
which showed that the proposed approach improved the per-
formance of the PSO. In the paper [42], the author presented
work to improve the convergence and diversity of the swarm
in the PSO using type-1 fuzzy logic applied it to classification
problems.

Reinforcement learning based

At present, most optimization algorithms based on reinforce-
ment learning are based on Q-learning for adaptive control
parameters and strategies. In the paper [43], the author com-
bined a variety of topological structures, using the diversity
of the particle swarm and the topological structure of the pre-
vious step as the state, and selected the topological structure
with the largest Q value from the Q table as the topol-
ogy to be used in the next optimization step. In the paper
[44], the author used the Q-learning algorithm. Enter the
state with how far from the optimal value and the ranking
of the particle evaluation value among all particles. Differ-
ent parameter groups were used as adaptation targets. The
reward was determined based on whether the entire optimiza-
tion problem grew, the current optimization progress, and the
currently selected action. In the paper [45], the author used
the Q-learning algorithm. The strategy selected in the pre-
vious step was the state input. The output actions controlled
different strategies, such as jumping or fine-tuning. Finally,
the reward was determined based on whether the whole opti-
mization problem grew. In the paper [46], the author used
the Q-learning algorithm. The particle position was taken
as the state input. The output action controlled the prediction
speeds of different particle strategies. Finally, the reward was
determined based on the increase or decrease of the particle
evaluation value. In the paper [47], the author used the Q-
learning algorithm with the serial number of each particle,
the particle position as the state input, and the output action
to control two different strategies, and finally, the reward
was determined according to whether the entire optimiza-
tion problem grew. In the paper [48], the author adopted the
algorithm of the policy gradient, which took the particle posi-
tion pbest as the state input and the output action controls c1
and c2 and finally determined the reward based on the growth
rate of the entire optimization problem.

A summary of these papers is shown in Table 1, which
describes the method used in the paper, the state input, the
action output, the reward input, and whether each particle was
controlled separately. In this table, Q represents Q-Learning
and PG represents Policy Gradient.

Section summary and motivation

First, current algorithms are not smart enough. If a human
solves an optimization problem, he optimizes based on
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Table 1 Reinforcement-learning-based adaptive methods

Paper Input (adaptation source) Output (adaptation target) Reward Single particle Algorithm
[43] Topological structure Next topological structure Diversity, gbest No Q

[44] Distance with the best/rank cl,c2,w gbest Yes Q

[45] Previous strategy Strategy gbest Yes Q

[46] Particle position Velocity Evaluate fitness Yes Q

[47] Particle index/position Strategy gbest Yes Q

[48] Position, pbest cl,c2 gbest Yes PG

past experience and the current operating state. The current
parameter tuning methods do not do this. They all adjust
the policy during operation without using past experience.
For the same type of problem, such as path planning, the
algorithm proposed in this article can be trained in advance
through various test problems. After that, the algorithm will
remember the experience of this training. As a result, the
convergence accuracy on new problems will be improved.
The existing parameter adaptive method cannot be trained in
advance and can only collect experience while operating.

Second, the current reinforcement learning methods intro-
duced in parameter tuning methods all suffer from some
performance issues. The currently used reinforcement learn-
ing method is mainly Q-learning, and another researcher used
Policy Gradient.

Since Q-learning can only choose from a limited number
of actions (usually four actions in past papers), this leads
to the necessity of artificially mapping a high-dimensional
continuous action space with a limited number of actions.
This results in a huge drop in the variety of actions.

Policy Gradient (PG) can be used in continuous action
space, but because its training process requires action prob-
ability, it must output a probability distribution and then
determine the action by sampling. This approach makes the
output actions random and reduces the performance of the
reinforcement learning network.

DDPG absorbs the benefits of PG’s support for continuous
motion. At the same time, an evaluation network is designed,
which makes the action probability no longer needed in
the training process and solves the problem of performance
degradation caused by randomness.

Third, how to avoid the introduction of new parameters
that require manual configuration and reduce the difficulty
of algorithm configuration is also a question worthy of con-
sideration.

Proposed Algorithm

In this section, an efficient parameter adaptation method is
proposed. A variant of the particle swarm algorithm based
on the above algorithm will be introduced later.

Parameter adaptation based on deep deterministic
policy gradient (DDPG)

In this section, we first introduce the input and output of
the actor network applied to the particle swarm algorithm.
Next, we describe how the reward function scores based on
changes in state. Then, the approach used to train the particle
swarm algorithm is introduced. The process to run it with the
trained network will be described later. Finally, the proposed
new particle swarm algorithm is introduced.

State of particle swarm optimization (PSO, input of actor
network)

The running state designed in this paper is divided into
three parts: the current iteration progress, the current particle
diversity, and the current duration of the particle no longer
growing. In order for the neural network to work optimally,
all operating states will eventually be mapped to the interval
of [—1, 1] and finally input to the neural network.

The iteration input is considered as a percentage of the
iterations during the execution of the PSO, and the values
for this input are in the range of 0 to 1. At the start of the
algorithm, the iteration is considered to be at 0%, and the
percentage is increased until it reaches 100% at the end of
the execution. The values are obtained as follows:

Iteration = Fe_num/Fe_max (7)

where Fe_num is the number of function evaluations that
have been performed, and F'e_max is the maximum number
of function evaluation executions set when the algorithm is
run.

The diversity input is defined by the following equation, in
which the degree of the dispersion of the swarm is calculated:

Lo [
Diversity(t) = o Z Z [xij (1) — X7 (1)] (®)

i=1\ j=1

where x;;(t) is the j'* position of the i’ particle in itera-
tion ¢, X () is the j™ average position of all the particles
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in iteration . With lower diversity, the particles are closer
together, and with higher diversity, the particles are more
separated. The diversity equation can be taken as the average
of the Euclidean distances between each particle and the best
particle.

The stagnant growth duration input is used to indicate
whether the current particle swarm is running efficiently. It
is defined as follows:

Iteration,o—improvement

= (Fe_num — Fe_numjqs—improve)/ Fe_max ©)]

where Fe_numjasi—improve represents the number of evalu-
ations at the last global optimal update.

Since the state distribution space is very different when
optimizing different objective functions, unified normaliza-
tion will cause some states to be too large or too small. To
solve this problem and make it easier for the network to obtain
information from the state, the state needs to be transformed.
We believe that the transformation needs to meet the follow-
ing requirements:

1. Make small changes significant.
2. The range needs to be mapped to the range of —1 to 1.
3. Information cannot be lost.

Based on the above requirements and inspired by previous
work [49], we designed the following transformations.

The input is originally x, which can represent the
Iteration, Diversity, or Iteration,o—improvement- The
output is as follows:

state; = sin(x * 2i) (10)

where state; is the i'" parameter value newly generated from
x. In this paper, i takes values of 0, 1, 2, 3, and 4. An x will
eventually generate five new parameters.

For example, if Iteration = x1, Diversity = x2 and
Iteration,o—improvement = X3, the new generated parame-
ters will be as follows:

@ Springer

y=sin(x)

y=sin(2x) 0 o0 /\ 0, o0

y=sin(4x) 0 0 0 0

11111101 1011 100 ' 011 | 010 ' 001 | 000

Fig.3 Example of transform function

sin(x1%29), sin(x1 %21, sin(x1 % 2%),
sin(x123), sin(x1 % 2%),

sin(x2 % 2%), sin(x2 * 21), sin(x2 x 2?),
sin(x2 % 23), sin(x3 * 24),

sin(x3 % 20), sin(x3 % 21), sin(x3 * 22),

sin(x3 x23), sin(x3 % 2%),

The reason for this operation is that some of the above
parameters are very small, and their changes are even smaller,
which will cause the actor network to fail to capture their
changes and fail to perform effective action output.

Part of the function image is shown in Fig. 3. The case
where y is greater than O is regarded as 1, and the case where
y is less than 0 is regarded as zero. These numbers are com-
bined as shown in the lower part of the figure. These values
are equivalent to the range of 7 to 0 in binary form. That is,
the above transformation is similar to binarizing the original
value. However, using binary values would waste computer
memory when using floats. Instead, we use their float con-
tinuous counterparts—sinusoidal functions. In this way, the
above requirements are met.

Action of PSO (output of actor network)

The actions designed in this paper are used to control the
operating parameters in the PSO, such as w, c1, and ¢2. The
parameters to be controlled can be set as required. The action
output by the actor network does not control the above param-
eters of each particle separately but divides the particles into
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Actlc?ns Grgup 1 » Action Converter <] W, cl, 2 | Control particles in
(4 dimensions) Group 1
Acnqns Grgup 2 o Action Converter > W, c1, 2 Control particles in
(4 dimensions) Group 2
Action Output o| Actions Group 3 - . ol o| Control particles in
Input Network (20 dimensions) (4 dimensions) Action Converter W,cl,c2 Group 3
Actpns Gr(lJup 4 ol Actisn Convertar - W, c1, 2 | Control particles in
(4 dimensions) Group 4
Acno_ns Grgup 5 ol Action Corverter > W, c1, 2 > Control particles in
(4 dimensions) Group 5

Fig.4 Example of output of actor network

five subgroups, and it generates five sets of parameters to
control the different groups.

We determine the corresponding subgroup based on the
index of the particle. For example, if the index of the particle
is 7, then the corresponding subgroup will be 7%5 = 2, i.e.,
subgroup 2. The indices of the subgroups are 0, 1, 2, 3, and 4.
This method ensures that the numbers of individuals in every
subgroup are similar.

For the traditional PSO algorithm, the obtained action vec-
tor a; is 20-dimensional, divided into five groups, each of
which is aimed at a subgroup. For a subgroup, the action
vector is four-dimensional: a[0] to a[3]. The w, c1, and ¢2
required for each round of the optimization algorithm are
generated based on a[0] to a[3] as follows:

w =al0] *x0.8 4+ 0.1
scale = 1/(a[1] + a[2] + 0.00001) * a[3] * 8

cl = scale x a[l]

(11)
c2 = scale x a[2]

where scale is a parameter that helps normalize c1 and ¢2,
which is optional.

An example can be seen in Fig. 4. In this figure, the output
represents action vector a;, the action converter represents
Eq. 11, and Action Group i (i can be 1 2 3 4 5) represents
a[0] to a[3].

For some PSO variants, since the parameters were studied
when developing the algorithm, the original parameter set is
already quite good. To take advantage of the performance of
the original parameter set, the new w, c1, ¢2 are configured
according to the following formulas:

w = al0] % 0.5 + worigin
cl =a[l] % 0.5+ clorigin (12)
c2=al[2]*x0.5+ Czorig,‘n

where Worigin, Clorigin, and ¢2opgin Tepresent the original
parameters of the algorithm. In all subsequent experiments,

each algorithm will choose one of the action parameter con-
figuration methods for experimentation. If there are more
parameters in the algorithm that need to be configured, the
number of output parameters can be increased and configured
like c1 or w.

Reward function

A reward function is used to calculate the reward after an
action is executed. Its target is to encourage the PSO to obtain
a better gBest. Therefore, the reward function is designed as
follows:

1 B 1 B
roy =10 gBest(t +1) < gBest(t) (13)
—1, gBest(t + 1) = gBest(t)

where g Best(t) is the best solution in the 1" jteration.
Training

This section introduces the training process for the traditional
PSO algorithm. Other particle swarm variants use basically
the same process.

In the training process, each iteration of the particle swarm
algorithm is equivalent to the agent performing an action in
the environment, that is, an epoch of training. The particle
swarm completes the optimization of an objective function,
which is equivalent to the interaction between the agent and
the environment, that is, an episode of training.

The training process is as follows. First, the actor network
and the action-value network are randomly initialized, and
the target actor network and the target action-value network
are copied. A replay buffer R is then initialized in the second
step to save the running state, actions, and rewards. The third
step initializes the environment, including the initialization
of the PSO and the initialization of the objective function to
be optimized. The fourth step is to obtain the running state
parameters from the particle swarm. The fifth step is to input
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the running state s; into the actor network, obtain the action
as, and add a certain amount of random noise (the noise is
used to help the network explore the policy space and will
be removed after training). The random noise is normally
distributed, with O as the mean and 0.5 as the variance. The
formula is as follows:

a; = Actor(s;) +N(0, 0.5). (14)

The sixth step converts the resulting actions into the required
w, cl, and c2 using Eq. 11. The seventh step is to perform
an iteration of the PSO using the above parameters to obtain
a new reward r,4| and a new state s;11. The eighth step
saves the state, actions, and rewards to buffer R. The ninth
step is to randomly select a batch of experiences from buffer
R. The weights of the action-value network are updated by
minimizing the loss function (Eq. 3). The weights of the
actor network are updated (Eq. 2). The tenth step is to update
the weights of the target action-value network and the target
actor network according to Eq. 3. If the particle swarm has
not finished iterating yet, then ¢ is increased by 1, and the
process returns to step 4. If the training is not completed,
the process returns to step 3. The pseudocode is presented in
Algorithm 1.

If the objective function used in training directly adopts
the function to be optimized later, the effect will be better.
If training is performed with a set of test functions, it can
work on all the objective functions, but not as well as the
first method. After training, a trained action network model
is obtained for subsequent runs.

Algorithm 1 Training algorithm.

1: Randomly initialize 62 and 6* in the actor network p(s|0*) and
action-value network Q(s, a|02), respectively.

2: Initialize the target networks Q" and 1/, and copy the weight values
from Q and p

3: Initialize the playback buffer R

4: for episode = 1 : EpisodeMax do

5:  Initialization environment (PSO and evaluate function)

6:  for t=1, Tmax do

7. Obtain observation s; from environment

8: Choose actions based on s, and network p and explore
noise{Eq. 14}

9: Perform action a; in the environment and observe reward r;
and new state s;41

10: Save (s, ay, ¢, St+1) to the buffer R

11: Update action-value network by minimizing the loss function
{Eq.2}

12: Update the actor network through the sampled action policy
gradient {Eq. 3}

13: Update the weights of the target network function {Eq. 1}

14:  end for

15: end for
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Fig. 5 Running process of particle swarm optimization (PSO) with
reinforcement-learning-based parameter adaptation method (RLAM)

Running

In the running process, compared to the training process,
many steps are removed, and the overall process is very sim-
ple. The operation process of the traditional particle swarm
algorithm is introduced below. The implementation process
of other particle swarm variant algorithms is basically the
same as this process.

The flow chart of the PSO algorithm combined with
RLAM is shown in Fig. 5. In addition to the original process
of PSO, the new content is that before the particle velocity
is updated, the running state of the particle swarm will be
calculated, and a new parameter group will be generated to
guide the particle update.

Network structure

This section introduces the network structures of the actor
network and the action-value network in detail. Since the
action-value network is only used in the pre-training process
and the actor network needs to be used in the actual operation,
to prevent excessive computation during the optimization
process, a smaller actor network and a larger action-value
network are designed. The schematic diagrams of the two
networks are shown in Figs.6 and 7.
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Fig.7 Network structure of action-value network

The action-value network adopts a design with a six-layer,
fully connected network, and the activation function between
the networks is a Leaky ReLU. The actor network adopts a
design with a four-layer fully connected network, and the
activation function between the networks is also a Leaky
ReLU. In the last layer, to map the action to the required
range of —1 to 1, a layer with the tanh activation function is
added.

Reinforcement-learning-based PSO (RLPSO)

To better reflect the parameter adaptation ability of the
RLAM, a new RLPSO algorithm based on theRLAM is

designed. The speed update equation of this algorithm is as
follows:

vl (t +1) = wx v (1) +clxrl* (pBestf 4 — x{ (1))
+c2 %12 % (gBest? — x% (1))
+c3 %73 % (pBest! — x4 (1)) (15)

where f;(d) and the reason it is used in RLPSO were intro-
duced in “Comprehensive learning particle swarm optimizer
(CLPSO)”, pBest is the particle’s own best experience, and
gBest is the best experience in this swarm. w, cl, ¢2, ¢3,
and cpyrarion are coefficients generated by the actor network
based on the current running state. w, c1, ¢2, and ¢3 have been
introduced in “Action of PSO (output of actor network)”.
Cmutation 18 an additional parameter that is generated in the
same way as w. r1, r2, and r3 are all uniformly distributed
random numbers between 0 and 1.

To prevent particles from being trapped in local optima,
there is a mutation stage after the velocity updating. During
this stage, first, a random number r4 between 0 and 1 is
generated, and then r4 is compared with ¢;,141i0n * 0.01 *
flagcipso. If r4is less than it, the mutation is performed, and
the particle position is reinitialized in the solution space.

At the end of one period, particles move according to
their velocities, and then particles’ fitness and historical
best experience are updated. The pseudocode is presented
in Algorithm 2.

Algorithm 2 RLPSO algorithm.

1: Initialize the particle swarm and parameters

2: while computational budget is not exhausted do

3: Calculate s; {Eq. 7, 8,9, 10}

4:  Calculate a; with actor network p (generated in “Training”) and
St

5: fork=1mndo

6: Convert actions into operating parameters (w, cl, c2,
c3, and c¢pyrarion) {Eq. 11, “Reinforcement-learning-based PSO
(RLPSO)”}

7 Calculate the new speed {Eq. 15}

8: if randomvalue < cpyrarion * 0.01 % flagepso then
9: Reinitialize position

10: else

11: Update position X;(r + 1) = X;(t) + Vi(¢)

12: end if

13: Calculate the evaluation values of all particles

14: Update the parameters in particle operation

15:  end for

16: end while

Experiments
To verify the performance of the proposed algorithm, three

sets of experiments were conducted. In the first experiment,
the RLAM was fused with various PSO variants, and the

@ Springer



5596

Complex & Intelligent Systems (2023) 9:5585-5609

Table 2 All test functions and

their optimal values in CEC No. Function name Best value
2013 1 Sphere function —1400
2 Rotated high conditioned elliptic function —1300
3 Rotated bent cigar function —1200
4 Rotated discus function —1100
5 Different powers function —1000
6 Rotated rosenbrock’s function —900
7 Rotated Schaffer’s F7 function —800
8 Rotated Ackley’s function —700
9 Rotated weierstrass function —600
10 Rotated Griewank’s function —500
11 Rastrigin’s function —400
12 Rotated Rastrigin’s function —300
13 Non-continuous rotated Rastrigin’s function —200
14 Schwefel’s function —100
15 Rotated Schwefel’s function 100
16 Rotated Katsuura function 200
17 Lunacek Bi_Rastrigin function 300
18 Rotated Lunacek Bi_Rastrigin function 400
19 Expanded Griewank’s plus Rosenbrock’s function 500
20 Expanded Scaffer’s F6 function 600
21 Composition function 1 (N = 5, Rotated) 700
22 Composition function 2 (N = 3, Unrotated) 800
23 Composition function 3 (N = 3, Rotated) 900
24 Composition function 4 (N = 3, Rotated) 1000
25 Composition function 5 (N = 3, Rotated) 1100
26 Composition function 6 (N = 5, Rotated) 1200
27 Composition function 7 (N = 5, Rotated) 1300
28 Composition function 8 (N = 5, Rotated) 1400

obtained results were compared with the original PSO vari-
ants. The second experiment compared the performance of
the RLAM with other adaptation methods based on the clas-
sical particle swarm algorithm. Finally, the RLPSO designed
based on the RLAM was compared with other current state-
of-the-art algorithms in the third experiment.

In the experiments discussed below, to test the algorithm
performance more comprehensively, we selected the CEC
2013 test set [50] for testing. The test set included 28 test
functions that could simulate a wide variety of optimiza-
tion problems. The test functions of CEC 2013 are shown in
Table 2.

The domain of all the functions was —100 to 100. Due to
the relatively large overall testing volume, in all runs, the end
condition for all algorithms was to complete 10,000 evalua-
tions.

For all algorithms that use RLAM, if not specified, the test
and training sets are the functions being tested. For exam-
ple, if there are multiple functions to be tested, they will be
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trained separately based on these functions and then tested
separately.

The proposed algorithm was implemented using Python
3.9 on the 64-bit Ubuntu 16.04.7 LTS operating system.
Experiments were conducted on a server with an Intel Xeon
Silver 4116 2.1-GHz CPU and 128 GB of RAM. The source
code used in experiments can be downloaded from this link:
https://github.com/Firesuiry/RLAM-OPENSOURSE.

Improvement of PSO variants after combining with
reinforcement-learning-based parameter
adaptation method (RLAM)

In this experiment, we compared the performances of sev-
eral PSO variants incorporating the RLAM with the original
version.

e Comprehensive learning PSO (CLPSO) [17].
e Fitness-distance-ratio-based PSO (FDR-PSO) [51].
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Table 3 Improvement of PSO

vatiants after combinin with Type No. CLPSO  FDRPSO  HPSO-TVAC LIPS PSO  SHPSO
RLAM Unimodal 1 26.0% 46.2% 78.32% 3.19%  97.62% 44.7%
2 37.6% 38.8% 14.26% 2835%  3537%  26.8%

3 98.7% 97.3% 18.47% 94.85%  5570%  32.2%

4 7.8% 22.8% ~1.01% ~1.09%  7.06% 5.5%

5 23.9% 54.9% 38.45% 4249%  8427%  52.5%

Mean 38.8% 52.0% 29.7% 33.6%  56.0%  32.4%
Multimodal 6 37.4% 49.6% ~8.33% 27.94%  22.82%  29.3%
7 75.0% 27.8% 3.67% 9330%  13.61% 6.2%

8 0.3% 0.2% 0.17% 0.12%  0.22% 0.1%

9 5.5% 3.5% —4.42% 9.17%  11.59% 10.1%

10 15.5% 34.0% —4.43% 1559%  41.57%  522%

1 25.0% 28.5% 427% 452%  26.94% 7.8%

12 21.7% 20.8% 12.58% 273%  32.11%  —6.4%

13 18.3% 20.7% 8.57% 577%  13.62% 3.0%

14 6.5% ~3.9% 24.55% 828%  32.44% 4.9%

15 1.4% 5.5% 26.54% 3.99%  28.49% 0.9%

16 6.0% 8.3% 7.06% 7.90%  19.88%  —8.0%

17 18.8% 29.7% 19.61% ~1.97%  37.90% 16.3%

18 26.1% 43.2% 15.95% 092%  19.59% 11.2%

19 52.9% 87.4% 31.36%  —2477%  9546%  457%

20 0.0% 3.5% 4.08% 0.00%  6.32% 0.8%

Mean 20.7% 23.9% 9.4% 102%  26.8% 11.6%
Composition 21 14.3% 37.4% 12.33% 074%  16.82% 18.0%
2 5.5% 5.0% 17.34% 754%  24.48% 13.5%

23 2.9% 5.2% 14.87% 5.68%  27.27% 0.2%

24 1.5% 1.2% 1.60% 1945%  3.26% 1.0%

25 32% 2.6% 0.34% 6.86% 157%  —1.7%

26 5.5% 6.7% 15.05% 1734%  24.05%  23.4%

27 2.2% 3.7% 2.66% 970%  6.45% 22%

28 10.1% 20.7% 9.99% 3.99%  30.77% 13.6%

Mean 5.7% 10.3% 9.3% 8.9% 16.8% 8.8%
All Mean 19.6% 25.0% 13.0% 14.0%  29.2% 14.5%

Self-organizing hierarchical PSO with time-varying
acceleration coefficients (HPSO-TVAC) [26].
Distance-based locally informed PSO (LIPS) [52].
Static heterogeneous swarm optimization (SHPSO) [53].
Particle swarm optimization [54].

The combination of the PSO and the RLAM was as described
above. For each problem, each algorithm was run 50 times,
the test dimension was 30, and the final result is shown in
Table 3.

In Table 3, the improvement was calculated as follows:

improve
= (gBeStorigin_gBeSItrain)/(gBeStorigin

—benchmarkpes;) (16)

where improve is the percentage of improvement, which
is the data shown in the table, gBestyigin is the optimal
value obtained by the original version of the PSO variant,
and g Best;rqin 18 the optimal value obtained by the RLAM
version of the PSO variant. Each row represents the result
for a different evaluation function. benchmar kp.s; represents
the optimal value of the current test function.

To show the improvement more intuitively, Fig. 8 shows
the heatmap of the improvement of various PSO algorithms
after adding the RLAM.

From Table 3 and Fig.8, we can see that almost all the
algorithms had significant improvements after incorporating
the RLAM on all the test functions. The average improve-
ment ranged from 13% to 29.2%, and the overall average
improvement was 19.2%.
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Fig.8 Heatmap of
improvement
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For the unimodal functions (FO1-F05), PSO combined
with RLAM obtained a high average increase. For the multi-
modal functions (FO6-F20), the average improvement was
significantly lower than that of the unimodal functions.
The improvement was the lowest among the composi-
tion functions (F21-F28). In general, the magnitude of the
improvement was inversely related to the complexity of the
function.

We also notice that the improvement varied quite a lot,
even within the same class of test functions. To further study
the influencing factors of the improvement, we tested several
hypotheses and carried out experimental verification.

First, we believe that the original performance of the algo-
rithm will affect the improvement. If the algorithm itself is
already very good, then its improvement will be small. In
contrast, if the algorithm itself is poor, it is more likely to see
a larger improvement.

In addition, we believe that the sensitivity of the algo-
rithm to the parameters will affect the improvement. If the
algorithm is not sensitive to the parameters, no matter how
you adjust it, there will be no change.

Finally, we believe that the probability of gBest updating at
each iteration during the algorithm run affects the magnitude
of the improvement. At each iteration in the training process,
the reward is 1 if gBest is updated and —1 otherwise. If there
are few rewards in the algorithm run, the network may not
learn anything during the learning process.

We designed the following features to reflect the sensitiv-
ity of the algorithm to parameters and the update probability
of gBest: For each algorithm and test function combination,
we traversed all parameters that could be adjusted by training
(such as w, cl1, and c2), with 11 preset values from 0, 0.1 to
0.9, 1. For each preset parameter, the algorithm ran 10 times
on the test function with fixed parameters to obtain the aver-
age optimal value. The standard deviation of these 11 average
optimal values was calculated. If it was larger, the algorithm
was more sensitive to parameters. In the above experimental
process, the percentage of iterations with updated gBest in
the run of each algorithm and test function combination to
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the total number of iterations was recorded. For example, if
the algorithm ran 10 steps in one run and gBest improved in
three steps, then the probability of gBest improvement was
0.3.

Finally, we calculated the Spearman correlation coeffi-
cient between the optimal value obtained by the original
algorithm, the parameter sensitivity of the algorithm and
the update probability of gBest and the improvement with
RLAM respectively. The results are shown in Table 6.

It can be seen that with the confidence level of « = 0.05,
the algorithm sensitivity, the average best update probability,
and the original optimal value were positively correlated with
the improvement.

To further investigate why the partial improvement was
less than 0, we studied the parameters of the worst perform-
ing LIPS in function 19 as a function of the diversity, and
the results are shown in the Fig. 9. The parameters of LIPS
converged to the edge of the parameter definition domain as
the diversity changed, indicating that the network had not
learned useful knowledge, and the parameters of the PSO in
function 1 changed significantly with the diversity. Based on
this, we believe that the reason that the improvement was
less than O was that the reinforcement learning failed to learn
enough from experience in the past runs, which may have
been caused by the performance limitations of the algorithm
itself. In addition, the gBest update probability of LIPS on
function 19 was 9%, and it ranked 119th in all 168 sets of
data, which was lower than the overall average (32%). This
also partially caused the reinforcement learning to fail to
effectively learn from experience.

To provide a more comprehensive statistical analysis, non-
parametric statistical tests were carried out. Table 4 presents
the results of the pairwise comparison on a 30D problem,
showing the number of cases in which the improvement
was positive and negative as well as the p-values from the
Wilcoxon test [43,55]. We normalized the results on every
function to be in [0, 1] based on the best and worst results
obtained by all the algorithms [56]. As shown in the table,
out of all six tested PSO methods, there were two algorithms
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Table 4 Pairwise comparison
between PSO and PSO with CLPSO FDRPSO HPSO-TVAC LIPS PSO SHPSO
RLAM on 30D problems Improve 28 27 24 25 28 25
Decrease 0 1 4 3 0 3
P-value 3.79E—-06 8.07E—06 1.19E—04 1.19E—-04 3.79E—06 9.86E—05
Table 5 Pairwise comparison
between PSO and PSO with CLPSO FDRPSO HPSO-TVAC LIPS PSO SHPSO
RLAM on 100D problems Improve 25 26 24 19 19 23
Decrease 3 2 4 9 9 5
P-value 3.79E—-06 8.80E—06 8.98E—-06 2.69E—04 1.65E—03 3.05E—-02

for which the performance improved for all test functions
after being combined with the RLAM. The performance of
the worst of the other algorithms decreased in four of the
28 test functions. Overall, of the 168 combinations of test
algorithms and test functions, the performance decreased for
atotal of 11 cases, and it improved in the other cases. Thus,
the proportion of cases for which the RLAM was effective
was 93.5%. To further test the effectiveness of the algorithm,
we also ran the above experiments in 100 dimensions, and
the results are shown in Table 5. In general, according to the
results of the Wilcoxon test, all PSO variants with RLAM
were better than their origin versions, with a level of signifi-
cance o = 0.05.

To verify the generalization performance of RLAM, we
used different training and test sets to test RLAM on the clas-
sic PSO algorithm. For different test functions, the functions
in CEC2013 other than the function to be tested were used
as the training set during training. For example, if the test set
was function F1, then the training sets were F2, F3... F28. If
the test set was function F2, then the training sets were F1,
F3,...,F28. A total of 28 training processes were performed,

4.5

4.0

3.5

2.5 _—w
— ¢

0.0 0.2 0.4 0.6 0.8
diversity

(a) LIPS on F19

Fig.9 Parameter changes with diversity

Table 6 Spearman correlation of optimal value, parameter sensitivity
and gBest update probability with improvement

Correlation p-value
Origin optimal value 0.183 1.73E-2
Update probability of gBest 0.294 1.06E—4
Parameter sensitivity 0.465 2.07E—-10

Table 7 Experimental results when the training and test sets were dif-
ferent

Average improvement Improve Decrease p-value

22.3% 27 1 4.23E—-06

and tests were carried out on 28 CEC2013 test functions.
This experiment was performed on 30D problems. The other
conditions and calculations were the same as in the previous
experiments.

As can be seen in Table 7, the average improvement rate
was 22.3%, and 27 of the 28 test functions were improved.
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(b) PSO on F1
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Table 8 Convergence accuracy

comparison between RLAM and No. FT1PSO FT2PSO SuccessHistoryPSO ~ QLPSO PSOtrain

other adaptation methods 1 3ATEH02(+)  6.92E+02(+) 3.16E+02(+)  278E+02(+)  —1.33E+03
2 338B4+07(+)  3.5TE+07(+) S.10E+07(+)  2.68E+07(=)  2.05E+07
3 1.85E+10(+)  2.56E+10(+) 25TE+10(+)  2.05E+10(+)  8.66E-+09
4 6.76E+04(=)  7.02E+04(=) 6.92E+04=)  S557TE+04(=)  5.92E+04
5 —4.27E+02 —1.70E+02(+) LI7TE+02(+) —842E+02(—)  —8.20E+02
6 —6.67E+02 —6.75E+02(+) —6.23E+02(+) —7.82E+02(=) —8.16E+02
7 —6.7TE+02(=)  —6.50E-+02(=) —6.40E+02(+) —6.76E+02(=)  —6.70E4+02
8 —6.79E4+02(=)  —6.79E-+02(+) —6.79E+02(=)  —6.79E+02(+) —6.79E+02
9 —5.72B402(+)  —5.72E+02(+) 571E+02(+)  —5.71E4+02(+) —5.75E-+02
10 —231E401(+)  —2.11E+01(+) 484E+01(+)  —2.18E+02(+) —3.22E+02
1 —223B402(+)  —2.13E+02(+) “221E+02(+)  —2.82E+02(+)  —2.83E+02
12 —1.01E402(+)  —8.81E+01(+) —400E+01(+) —130E+02(=) —1.40E-+02
13 1.03E+02(+)  1.09E+02(+) 121E4+02(+)  3.37B401(+)  171E+01
14 344E+03(+)  3.56E+03(+) 326E+03(+)  S534E+03(+)  2.79E-+03
15 SA48E+03(+)  4.84E+03(=) 493E+03(=)  7T.11E4+03(+)  4.26E+03
16 2.03E4+02(=)  2.03E-+02(=) 203E402(=)  2.03E+02(+)  2.03E4+02
17 496E+02(+)  S5.21E+02(+) SAIEH+02(+)  4.94E+02(+)  4.61E-+02
18 6.49E+02(=)  6.75E+02(+) 6.52E+02(=)  G64TE+02(—)  6.72E+02
19 223E+03(+)  8.66E+02(+) 1.25E4+03(+)  946B+02(+)  5.15E+02
20 6.14E+02(+)  6.14E+02(+) 6.14E4+02(+)  6I4EH02(=)  6.14E+02
21 1.74E+03(+)  1.52E+03(+) 1.96E+03(+) 1.22E4+03(+)  9.96E+02
22 S23E+03(+)  5.12E+03(+) SA9E+03(+)  S.63E+03(+)  4.37E+03
23 621E4+03(=)  6.19E+03(=) 580E+03(—)  829E+03(=)  6.30E+03
24 1.29E+03(+)  1.28E+03(+) 1.30E+03(+) 1.28E+03(+)  1.28E+03
25 141E403(+)  1.41E+03(+) 141E+03(+)  1.39E+03(=) 1.40E+03
26 145B4+03(=)  1.54E+03(=) 1.52E4+03(=)  L44E+03(=) 1.44E+03
27 232E4+03(+)  2.34E+03(+) 235E4+03(+)  238E+03(+)  2.28E-+03
28 352E403(+)  3.51E+03(+) 353E4+03(+)  2.93E+03(+)  2.16E-+03
t—l= 21007 22/0/6 21/1/6 17/2/9

The bold data indicates the optimal result

The effect was slightly worse than that for the previous data,
but with the confidence level of significance « = 0.05, the
results for the classic PSO with RLAM using different train-
ing and test sets was better than those of the corresponding
original versions. The original PSO algorithm was improved,
which showed that RLAM could still achieve significant
results when the test and training sets were different.

Thus, we can conclude that the effect of RLAM was highly
significant.

Comparison with other adaptation methods
To test the pros and cons of the RLAM with other adaptation

methods, the RLAM was compared with four other adapta-
tion methods. The other four algorithms were as follows:

e an adaptation algorithm based on type-1 fuzzy logic
(TF1PSO) [57].

@ Springer

e an adaptation algorithm based on type-2 fuzzy logic
(TF2PSO) [41].

e an adaptation algorithm based on the success rate his-
tory(SuccessHistoryPSO) [58].

e an adaptation algorithm based on Q-learning (QLPSO)
[11].

In the result, the PSO with the RLAM was labeled as
PSOtrain. Wilcoxon’s signed rank test (+, —, = in Table 8)
at the 0.05 significance level was employed to compare the
performances of the algorithms.

The best results obtained by the PSO with the RLAM and
the PSO with other adaptation methods are listed in Table 8,
and the best results are shown in bold. Some of the results
were the same for several algorithms. Only one of the cases
marked in bold was due to insufficient numerical resolu-
tion, and finer results would show differences between these
algorithms. The fuzzy-logic-based adaptation performed the
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worst. The type-1-fuzzy-logic-based adaptation was the best
for F7, whereas the type-2-fuzzy-logic-based adaptation was
not the best in any cases. The adaptation based on successful
history was the best for F16 and F23, while the adaptation
based on reinforcement learning performed the best in the
test. Of these, the adaptation based on Q-learning was the
best for F4, F5, F18, F20, F25, and F26, and the RLAM was
the best for a total of 19 other functions.

Figure 11 describes the ranking of these algorithms for
multiple comparisons. From Fig. 10, we can see that the
RLAM had the lightest overall color and the highest average
ranking on the entire function test set. The adaptation based
on Q-learning also worked well, but it performed the worst
for six test functions: F14, F15, F16, F22, F23, and F27. The
effects of the other algorithms were not much different. Of
these, the adaptation algorithm based on type-1 fuzzy logic
ranked better overall, with almost no worst results, indicating
that its robustness was better.

Table 9,10 shows the pairwise comparisons between the
PSOs with other adaptation methods on 30D and 100D prob-
lems. According to the Sign testin [55], itis clear that the PSO
with the RLAM was significantly better than the FT1PSO,
FT2PSO0, success-history-PSO, and QLPSO with a level of
significance o = 0.05. Overall, the RLAM exhibited excel-
lent performances on all the test functions compared to other
adaptation methods.

-20
-1.5

-1.0

Comparison of RLPSO with other state-of-the-art
PSO variants

Since most of the current state-of-the-art particle swarm
algorithms combine many other optimization methods, adap-
tation parameters alone cannot provide a sufficient compar-
ison. To test the strength of the RLAM applied in particle
swarm optimization, here we compare the performance of the
RLPSO based on the RLAM and some other particle swarm
optimization algorithms. The algorithms compared include
some of the widely used particle swarm algorithms: CLPSO
[17], FDR-PSO [51], LIPS [52], PSO [9], and SHPSO [53],
as well as several state-of-the-art variants of the PSO, includ-
ing the EPSO [37], AWPSO [59], and PPPSO [60]. All the
algorithms were executed 50 times for each problem and
the results shown are the averages. Wilcoxon’s signed rank
test (+, —, = in Table 11) at the 0.05 significance level was
employed to compare the performances of the algorithms.
The best results obtained by the RLPSO and other PSO
variants are listed in Table 11, and the best results are also
shown in bold. The RLPSO was the best in 18 of the 28
test functions, far exceeding several other PSO algorithms.
The SHPSO was the best for two functions, the AWPSO was
the best for five functions, the PPPSO was the best for two
functions, and the EPSO was the best for one function.

@ Springer
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Table 9 Pairwise comparison

between PSO with RLAM and PSO-TRAIN VS. FT1PSO FT2PSO SuccessHistoryPso QLPSO
other adaptation methods on WIN 24 27 25 21
30D problems

LOSS 4 1 3 7

p-value 6.74304E—05 4.21632E—06 1.45882E—05 0.001319008
Table 10 Pairwise comparison  pooy TRAIN VS FT1PSO FT2PSO SuccessHistoryPso QLPSO
between PSO with RLAM and : Y
other adaptation methods on WIN 27 26 24 26
100D problems

LOSS 1 2 4 2

p-value 4.71565E—06 1.2305E—05 2.79026E—05 9.9777E—06

Figure 11 shows the specific ranking of each algorithm
on different test problems. The RLPSO ranked very high on
almost all problems, reflecting the excellent performance of
the RLPSO. To show the stability of the proposed algorithm,
convergence curves are shown in Fig. 12. Tables 12 and 13
show pairwise comparisons of the RLPSO results. According
tothe Sign testin [55], itis clear that RLPSO was significantly
better than other PSOs with a level of significance of « =
0.05.

In general, the RLPSO exhibited outstanding perfor-
mances compared to many other particle swarm algorithms,
which showed that the RLAM method can provide an excel-
lent particle swarm variant algorithm after a certain amount
of design, and the results highlighted the power of the RLAM.

Conclusions

In this paper, a reinforcement-learning-based parameter
adaptation method (RLAM) and an RLAM-based RLPSO
are proposed. In the RLAM, through each generation, the
optimal coefficients are generated by the actor network,
where the actor network is trained before running. It can
be trained using the target function or using test functions.
A combination of iterations, non-improving iterations, and
diversity is used to reflect the state. The reward is calculated
based on the change of the best result after an update. In the
RLPSO, in addition to the RLAM, the CLPSO and mutation
mechanisms are also added to the algorithm.

Furthermore, comprehensive experiments were carried
out to compare the new algorithm with other adaptation meth-
ods, investigate the effects of the RLAM with different PSO

@ Springer

variants, and compare the RLPSO with other state-of-the-art
PSO variants. The proposed method was incorporated into
multiple PSO variants and tested on the CEC 2013 test set,
and almost all the PSO variants had improved final opti-
mization accuracies. This result showed that the RLAM was
beneficial and harmless in almost all the problems and all
the optimization algorithms considered. It solves the prob-
lem that manual parameter adjustment is too cumbersome
and burdensome.

The algorithm proposed in this paper was also compared
with other adaptation methods, including adaptive particle
swarm optimization based on Q-learning, adaptive particle
swarm optimization based on fuzzy logic, and adaptive par-
ticle swarm optimization based on the success rate history.
Based on the final results, the adaptive algorithm proposed
in this paper significantly outperformed other adaptive algo-
rithms.

Since most of the current state-of-the-art particle swarm
algorithms combine many other methods, adaptation param-
eters alone cannot make a good comparison. Therefore, the
RLPSO based on the RLAM was designed, which combined
the CLPSO and some mutation and grouping operations. The
final algorithm was compared with a variety of top particle
swarm algorithms on the CEC 2013 test set, and the proposed
algorithm was at the leading level.

In the future, based on the RLAM, the selection of states,
the control of actions, and the applicability of other optimiza-
tion algorithms will be further studied to further improve the
optimization performance. We will focus on how to use this
algorithm on binary optimization problems.
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Fig. 11 Comparison between
RLPSO and other PSO
algorithms

Fig.12 Convergence curves
between RLPSO and other PSO
variants
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Fig.12 continued
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Fig.12 continued
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