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Abstract
Landslides are dangerous disasters that are affected by many factors. Neural networks can be used to fit complex observations
and predict landslide displacement.However, hyperparameters have a great impact on neural networks, and each evaluation of a
hyperparameter requires the construction of a corresponding model and the evaluation of the accuracy of the hyperparameter
on the test set. Thus, the evaluation of hyperparameters requires a large amount of time. In addition, not all features are
positive factors for predicting landslide displacement, so it is necessary to remove useless and redundant features through
feature selection. Although the accuracy of wrapper-based feature selection is higher, it also requires considerable evaluation
time. Therefore, in this paper, reliability-enhanced surrogate-assisted particle swarm optimization (RESAPSO), which uses
the surrogate model to reduce the number of evaluations and combines PSO with the powerful global optimization ability
to simultaneously search the hyperparameters in the long short-term memory (LSTM) neural network and the feature set
for predicting landslide displacement is proposed. Specifically, multiple surrogate models are utilized simultaneously, and
a Bayesian evaluation strategy is designed to integrate the predictive fitness of multiple surrogate models. To mitigate the
influence of an imprecise surrogate model, an intuitional fuzzy set is used to represent individual information. To balance
the exploration and development of the algorithm, intuition-fuzzy multiattribute decision-making is used to select the best
and most uncertain individuals from the population for updating the surrogate model. The experiments were carried out
in CEC2015 and CEC2017. In the experiment, RESAPSO is compared with several well-known and recently proposed
SAEAs and verified for its effectiveness and advancement in terms of accuracy, convergence speed, and stability, with the
Friedman test ranking first. For the landslide displacement prediction problem, the RESAPSO-LSTM model is established,
which effectively solves the feature selection and LSTM hyperparameter optimization and uses less evaluation time while
improving the prediction accuracy. The experimental results show that the optimization time of RESAPSO is about one-
fifth that of PSO. In the prediction of landslide displacement in the step-like stage, RESAPSO-LSTM has higher prediction
accuracy than the contrast model, which can provide a more effective prediction method for the risk warning of a landslide
in the severe deformation stage.
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Introduction

Landslides are major geological disasters that cause great
property losses and casualties every year [1]. The successful
prediction of the displacement of landslides within a cer-
tain period will play a vital role in disaster prevention and
mitigation. Therefore, how to efficiently predict landslide
displacement has become an urgent problem to be solved.
In the early stage of landslide displacement prediction,
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researchers usually adopt strict mathematical and mechan-
ical analysis or statistical models such as grey GM(1,1).
However, because the landslide displacement problem is a
complex nonlinear system, this kind of method is only suit-
able for the prediction of the upcoming landslide, and the
reusability is not high.

With the rapid development of artificial intelligence tech-
nology, an increasing number of scholars are introducing
machine learning methods to landslide displacement pre-
diction problems [2, 3]. As a mature and effective machine
learning method, the long short-term memory (LSTM) neu-
ral network can better deal with the situation where the
input samples are correlated because of its special structural
design. Therefore, it is widely used in various sequence prob-
lems, such as natural language processing and time series
prediction [4, 5].However, feature selection andhyperparam-
eter selection have a great influence on the final prediction
result of the LSTM neural network.

Generally, there are three methods for feature selection:
the filter, wrapper, and embedded methods. In the filter
method, the correlation between each feature and the label
is first calculated, and then the most appropriate feature is
selected as the training input according to the correlation. In
the wrapper method, a feature subset is selected, the feature
subset is substituted into the machine learning algorithm for
training, and the training error is regarded as the score of the
subset to judge its quality. The embedded method is simi-
lar to the filter method. However, the correlation calculation
method between features is replaced by a machine learning
algorithm. Therefore, unlike the wrapper method, the filter
method and the embedded method are not dependent on the
specific network when features are selected. Although cal-
culations are performed sufficiently fast in these methods,
they are not as effective as the wrapper method. However,
to evaluate the advantages and disadvantages of each feature
subset, each feature subset must be substituted into specific
network training to obtain the corresponding evaluationwhen
using the wrapper method, and training consumes consider-
able time.

In addition, to test the hyperparameters of a set of LSTM
algorithms, it is often necessary to construct the correspond-
ing LSTMmodel and train the model to obtain its prediction
accuracy. Therefore, each evaluation of hyperparameters
requires a large amount of evaluation time.

Therefore, wrapper-based feature selection and hyperpa-
rameter optimization is a computationally expensive black
box optimization problem, where the global optimum must
be found. Moreover, there is no explicit objective function,
and each evaluation is very time consuming.

The evolutionary algorithm (EA) has been proposed due to
its powerful global search ability and strong generality. It can
be used to search for the global optimal solution to optimiza-
tion problems with nonderivable functions or even without

explicit objective functions. Therefore, compared with tra-
ditional mathematical optimization methods, EAs are used
in a wider range of real-world engineering problems [6, 7].
However, EAs often require a large number of evaluations to
adapt to the search space and find the global optimal solution
[8, 9]. Therefore, it is often difficult to use general EAs for
computationally expensive problems.

The surrogate-assisted evolutionary algorithm (SAEA) is
an important method for solving computationally expensive
problems [10]. Unlike in ordinary EA, in SAEA, a search is
performed not for a real objective function but for a surrogate
model that approximates a real objective function. Therefore,
by reducing the number of fitness evaluations on the real
objective function, SAEA can be used to effectively reduce
the time cost and economic cost.

In recent years, a large number of studies on high-
dimensional computationally expensive problems have been
carried out, and less attention has been given to low-
dimensional problems [11–13]. Although high-dimensional
computationally expensive problems are more challenging,
there are still many low-dimensional problems in real-world
engineering applications, such as airfoil design problems,
pressure vessel design problems, and welded beam design
problems [14–16]. In addition, SAEAs for high-dimensional
computationally expensive problems are not necessarily suit-
able for low-dimensional problems.More powerful surrogate
models can be used for low-dimensional problems. Par-
ticle swarm optimization (PSO), as a global optimization
algorithm, has been widely considered by industry and
academia because of its fast convergence rate and generality.
Therefore, this paper focuses on the application of PSO to
low-dimensional computationally expensive problems.

Although the SAEA framework avoids PSO from per-
forming a large number of fitness evaluations directly on
real objective functions and makes it suitable for computa-
tionally expensive problems. But its performance is limited
by several factors.

1. Different models have different characteristics, which
gives them different fitting abilities for different types of
functions [29, 30]. Therefore, to adapt to different search
spaces, the simultaneous utilization of multiple surrogate
models becomes a more reliable option [30]. However,
multisurrogate model-based methods require a suitable
strategy to integrate the predicted values of multiple sur-
rogate models.

2. The fitting ability of the surrogate model is different in
different local regions. However, few studies have con-
sidered the local confidence of surrogate models.

3. In SAEA, it is often necessary to select suitable indi-
viduals from the population to be evaluated in the real
objective function to update the surrogate model. Good
evaluation points can effectively improve the accuracy
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of the surrogate model. In the promising-uncertain strat-
egy, an optimal and uncertain point from the population
is selected; thus, both exploration and development are
considered [17, 18]. However, in the selection process,
only the fitness of the individual is taken as the basis for
selection, i.e., the fitness maximum and minimum are
selected without considering more individual informa-
tion or the influence of the error between the surrogate
model and the real objective function on the fitness. As a
result, the selected points have little improvement on the
accuracy of the surrogate model.

Based on the above analysis, we propose reliability-
enhanced surrogate-assisted particle swarm optimization
(RESAPSO). In RESAPSO, the weights of each region of
the surrogate model are adaptively adjusted using BES to
more accurately predict the fitness of each individual. In
this paper, we use intuitionistic fuzzy sets to extract fuzzy
attribute information from individuals and use IFMADM to
select new evaluated points so that the surrogate model can
better approximate the real objective function. Themain con-
tributions of this paper are as follows.

a. Based on the surrogate model, a new surrogate-assisted
evolutionary algorithm, RESAPSO, is designed to meet
the needs of computationally expensive problems. Using
RESAPSO,we search for the best subset of landslide fea-
tures while optimizing the hyperparameters of the LSTM
network and apply this model to the landslide displace-
ment prediction problem.

b. A Bayesian evaluation strategy (BES) is designed based
on Bayes’ theorem. BES is an individual fitness evalua-
tion strategy suitable for multisurrogate models. It uses
the error of each surrogate model and the real function
in the local region to estimate the internal confidence of
each model in the local region and adjusts the weight of
each surrogate model adaptively. Specifically, the error
between the predicted fitness of each surrogate model
and the true fitness is calculated and represented in the
form of a probability that sums to 1. Then, multiple eval-
uated points in the local region are regarded as likelihood
samples; combined with the prior probability of each
surrogate model, the posterior probability is calculated
using Bayes’ theorem, and finally, it is converted into the
weight of each model. In BES, which is a fitness evalu-
ation strategy based on multisurrogate models, the local
confidence of each surrogatemodel is considered, and the
local weight of each surrogate model can be adaptively
adjusted to overcome the first and second shortcomings
mentioned above.

c. Intuitionistic fuzzy multiattribute decision-making
(IFMADM) is used to select appropriate individuals
from the population to update the surrogate model.

Due to the error between the surrogate model and the
true objective function, the fitness of each individual is
imprecise. Therefore, intuitionistic fuzzy sets [19] (IFSs)
are used to deal with the fuzzy information carried by
individuals. In addition to individual fitness, the local
accuracy of the surrogate model is considered as one of
the decision attributes. Therefore, based on IFMADM,
both individual fitness and credibility are considered
when selecting promising and uncertain points. By using
IFSs to address the problem of imprecise individual
information on the surrogate model and using IFMADM
to consider the fitness and local credibility of the indi-
vidual at the same time, the promising individuals and
the uncertain individuals are selected more accurately to
improve the accuracy of the surrogate model.

d. RESAPSO is compared with a variety of SAEA on well-
known benchmark functions to prove the advantages
of RESAPSO in terms of its optimization capabilities.
In addition, the comprehensive analysis of RESAPSO’s
search accuracy, convergence speed, stability, and other
aspects further proves its optimization ability. In the land-
slide displacement prediction experiment, the accuracy
of RESAPSO with 100 iterations was better than that
of PSO with 500 iterations, providing higher predic-
tion accuracy while keeping the number of assessments
low. Furthermore, compared with the other optimization
algorithms, the LSTM model based on RESAPSO can
better predict the severe landslide displacement during
the strong rainy season.

The rest of this paper is organized as follows. The “Related
work” section introduces SAEAs and surrogatemodels. “The
proposed RESAPSO” section briefly describes RESAPSO,
including the Bayesian evaluation strategy (BES), the
promising-uncertain strategy based on intuitionistic fuzzy
multiattribute decision-making (IFMADM), and the method
of extracting individual information and transforming it into
intuitionistic fuzzy sets. The “Experimental analysis” section
includes a comparison with other SAEAs and applications in
feature selection and hyperparameter selection. The “Con-
clusion” section summarizes this research.

Related work

Table 1 lists the representative EA-based feature selection,
hyperparameter optimization, and surrogate-assisted evolu-
tion algorithms in recent years.

Feature selection

As a global optimization algorithm, evolutionary algorithm
can search for the global optimal solution in the case of
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Table 1 Characteristics of each algorithm

Author/algorithm Characteristic

EA-based feature selection BBPSO (2021) [21] Song et al. initializes the population by the correlation of
labels and performs local search by measuring the
correlation between features to enhance the local search
ability of the algorithm

MDEFS (2021) [22] Tarkhaneh et al. reduces the calculation cost of irrelevant
features by improving the exploration ability and local
development ability of the algorithm

CDWOASA (2021) [23] Wang et al. combined the simulated annealing algorithm
with the whale optimization algorithm and used it to
remove redundant spectral bands from hyperspectral
images with hundreds of spectral bands

Marzieh Hajizamani (2020) [20] Hajizamani et al. run the gray wolf algorithm and the
differential evolution algorithm in parallel to improve the
diversity of the algorithm and, in turn, the global search
capability of the algorithm

SAGA (2021) [24] Altarabichi et al. proposed a genetic algorithm based on
SAEA to reduce the evaluation time of feature selection,
which divides the search process into multiple stages and
gradually reduces the exploration ability of the algorithm

EA-based hyperparameter optimization Ehsan Rokhsatyazdi (2020) [26] Rokhsatyazdi et al. used the differential evolution
algorithm to search the hyperparameters of the LSTM
neural network, including batch size, drop rate, the
number of neurons per layer, etc., and the optimized
model was used to predict the stock market

SEODP (2020) [27] Bai et al. designed a random mutation method to prevent
the algorithm from falling into local optimum while
speeding up the search, and used it for the optimization of
multi-layer networks and convolutional neural networks

Ji-Hoon Han (2020) [28] Han et al. reduced the time to evaluate hyperparameters by
adjusting the population size of the GA, and used the
optimized model for diagnose motor fault

MadDE (2021) [29] Biswas et al. designed a multi-adaptive strategy that can
automatically adjust the control parameters and search
mechanism of differential evolution (DE), thereby
improving the global search capability of the algorithm.
In addition, a hyperparameter optimization technique
SUBHO, a surrogate-based on Bayesian optimization
algorithm is proposed

PGA (2022) [15] Wu et al. used a multiple-subpopulation strategy to execute
the genetic algorithm independently in each
subpopulation to expand the exploration capability of the
algorithm and used it for hyperparameter optimization of
LSTM neural networks

Surrogate-assisted evolutionary
algorithm

SAMA/APC (2020) [33] In order to allocate the computational resources between
global search and local search more reasonably, zhang
et al. first explored the global space using DE to select
trust regions, calculated the patience of each trust region
based on kriging, and stopped the search when the
patience of local regions was exhausted

SAEGO (2020) [31] To reduce the cost of optimal antenna design, zhang et al.
use surrogate model to reduce the number of evaluations,
which uses the DE as a global search algorithm on the
surrogate model and a fast search of the local space using
the proposed Newton method
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Table 1 (continued)

Author/algorithm Characteristic

SMARTEST (2022) [10] Optimization of the compiler can effectively compress the
code size. Jiang et al. use a surrogate model to alleviate
the problem of expensive evaluation and design a local
search operator to speed up the convergence of the
algorithm

ReDSADE (2022) [39] To solve the computationally expensive problem with
discontinuous space, Wang et al. use support vector
machines to divide the search space into multiple
subregions, and then build surrogate models on each
subregion separately. Their use of DE to search on the
surrogate models and use RBF to build local surrogate
models at the later stage of the search to enhance the local
convergence accuracy

GL-SADE (2022) [13] To solve the high-dimensional expensive problem, Wang
et al. use RBFNN as global surrogate model to estimate
global trends and kriging model as local model to prevent
the algorithms from falling into local optima

underivable and no explicit objective function, which has
stronger generalization [20]. Therefore, various evolutionary
algorithms have been applied to feature selection [21–23].
In these methods, the relationship between features or new
operators is used to accelerate the convergence rate of the
population, thereby reducing the computational cost. How-
ever, a large number of evaluations are still required. In order
to reduce the number of evaluations, some recent studies have
proposed SAEA-based feature selection methods [24].

Hyperparameter optimization

In addition to manually tuning hyperparameters, other com-
monly used tuning methods include the random search, grid
search, and Bayesian optimization algorithms [25]. In a
grid search, the computational complexity and width of the
grid need to be balanced; too large a width leads to low
accuracy, and too small a width leads to too much com-
putation. The stability of a random search is too low. In
the Bayesian optimization algorithm, the number of evalua-
tions is reduced through the kriging model, and exploration
and development points are selected using Bayesian prob-
ability estimation. Therefore, Bayesian optimization can be
regarded as a heuristic optimization algorithm based on a
single surrogate model. The Bayesian optimization algo-
rithm differs from RESAPSO, which utilizes more surrogate
models. In this paper, the Bayes theorem is used to esti-
mate fitness, and the development and exploration points are
selected through IFMADM. In addition to the methods men-
tioned above, a variety of evolutionary algorithms have been
applied to the hyperparameter optimization ofmachine learn-
ing algorithms to improve their optimization ability [26–28].

However, these methods still require a large number of eval-
uations or reduce the number of evaluations at the cost of
accuracy [29].

Surrogate-assisted evolutionary algorithm

The SAEA constructs a surrogatemodel with a small number
of individuals evaluated in the real objective function, and the
population searches on the surrogatemodel instead of the real
objective function, thus significantly reducing the number
of evaluations on the computationally expensive real objec-
tive function [30, 31]. Common surrogate models include the
Kriging model [32, 33], artificial neural network (ANN) [34,
35], polynomial regression (PR) [36], radial basis function
neural network (RBFNN) [37–39], etc.

The SAEA framework effectively reduces the number of
evaluations on the real objective function so that EAs can be
applied to computationally expensive problems. However, it
is difficult to adapt the single surrogate model to complex
real-world applications.

Different surrogate models have different characteristics
[40, 41]; thus, they have different fitting abilities for differ-
ent types of functions. The experimental results of Sun et al.
[37] showed that by relying on multiple surrogate models,
the prediction accuracy of the surrogate model can be higher
and more stable [42]. As an interpolation model, the kriging
model [32] can fit complex search space, but it requires a
lot of calculation. An artificial neural network [34, 35] also
has a strong fitting ability but requires a large amount of
calculation and a large number of training samples. Polyno-
mial regression [43] has a small amount of computation and
a relatively low ability to fit a complex local space, but it
can better simulate the trend of the global environment. The
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radial basis function neural network [37, 38, 44] is relatively
balanced in all aspects and is the most widely used surro-
gate model. Therefore, when the accuracy of a single model
cannot be improved, using multiple models at the same time
becomes the optimal choice. However, the multimodel inte-
gration strategy requires adaptive adjustment of the weight
of each surrogate model. Common weight updating strate-
gies include the root of mean square error (RMSE) [17],
prediction variance [45], and prediction residual error sum
of square (PRESS) [41]. In these methods, the weight of
the corresponding surrogate model is calculated through the
error of the selected individual in the surrogate model and the
real objective function. Since each selected individual may
be in any region of the search space, the accuracy of each
surrogate model is different in different regions of the search
space. Therefore, such methods cannot reflect the accuracy
of surrogate models within local regions.

In addition to using multisurrogate models to indirectly
improve the prediction accuracyof fitness, there are also stud-
ies that directly improve the prediction accuracy of surrogate
models through a reasonable selection of evaluation points
[38, 46].

The above methods focus computational resources on
regions where global optimal solutions may exist to improve
the accuracy of the surrogate model in the corresponding
regions. These methods can be used effectively in environ-
mentswhere the local optimal solution and the global optimal
solution are close. However, the exploration ability of the
algorithm is reduced, so it is difficult to cope with more com-
plex multimodal environments. To enable the algorithm to
explore the search space while developing the local optimal
region, most studies adopt the promising-uncertain strat-
egy [17, 18]. In this strategy, the best individual, called the
promising point, is selected to improve the local accuracy of
the model, thereby improving the local development ability
of the algorithm, and the worst individual, called the uncer-
tain point, is selected to explore the search space, thereby
providing diversity for the algorithm.However, asmentioned
above, it is difficult to select ideal promising solutions and
uncertain solutions from the population when an algorithm is
run due to the influence of fitness fuzziness. Therefore, such
methods usually use the kriging model [47, 48]. The kriging
model provides a confidence value with the predicted results
to help the algorithm determine whether it is worth investing
computational resources at an individual’s position. Other
than the kriging model, some researchers have also used the
multisurrogate model voting mechanism to select the poten-
tial best individuals and uncertain individuals [17].

The proposed RESAPSO

The selected individual represents the individual selected by
IFMADM, and the evaluated point represents the individual
evaluated in the real objective function. When an individual
is selected by IFMADM, it is transformed into a selected
individual, and when a selected individual is substituted into
the real objective function, it can be transformed into an eval-
uated point.

Overall framework

Figure 1 shows the overall framework of RESAPSO. The
workflow in the figure represents the running process of the
algorithm, and the data flow represents the data exchange
process in the work of the algorithm. Initially set database
and archive to be empty. First, Latin hypercube sampling is
used to select the initial points, which are evaluated on the
real objective function and stored in the database. The krig-
ing model, RBFNN model, and PR model are constructed
according to the evaluated points in the database. Use the
optimizer (PSO) to search for the surrogate model, and the
individual fitness is evaluated using the BES. All individuals
in each iteration will be stored in the archive. When an epoch
is over, all the individuals in the Archive are transformed into
intuitionistic fuzzy sets, and IFMADM is used to select the
promising point and uncertainty point. The promising point
and uncertainty point are then evaluated by the real objec-
tive function and stored in the Database. Finally, empty the
Achieve and update the surrogatemodel. The epochs continue
until the maximum number of fitness evaluations is reached.

Particle swarm optimization

Due to its simple implementation and strong versatility, PSO
has received extensive attention from researchers and engi-
neers, and various variants have been developed and applied
to various practical problems. In this paper, the PSO pro-
posed by Shi [49] is adopted. The particle update equation is
as follows.

vt+1i � wtvti + c1r1
(
gt − xti

)
+ c2r2

(
pt − xti

)
, (1)

xt+1 � xt + vt+1i , (2)

where xti and vti represent the position and velocity of parti-
cle i at the t th iteration, respectively, and gt represents the
position of the optimal particle in the population at the t th
iteration. pt represents the historical optimal position of the
particle’s i until the t th iteration, c1 and c2 are two preset
constants, and r1 and r2 are two random numbers in [0, 1].
wt represents the inertia weight in the t th iteration. In this
paper, the commonly used inertia weight of linear descent is
adopted.
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Fig. 1 Framework of the RESAPSO

Bayesian evaluation strategy

To synthesize the predicted fitness of multiple models and
make it closer to the real objective function, a Bayesian eval-
uation strategy based on Bayes’ theorem, which uses the
posterior probability to represent theweight of each surrogate
model in a local area, is proposed.

Specifically, whenever the individual’s fitness needs to be
predicted, the weight of all evaluated points in the individ-
ual’s neighborhood will be calculated using Eq. (4). This
weight represents the accuracy of the surrogate model, and
the larger the weight is, the more accurate the surrogate
model. The final fitness prediction can be obtained using the
weighted sum of the distances between the evaluation points
and the individual, namely, Eq. (3). When an individual is
the selected individual, the true fitness of the selected indi-
vidual will be recorded based on the evaluated points in its
neighborhood. When the fitness of individuals in subsequent
epochs needs to be predicted, the error between the previ-
ously predicted fitness and the true fitness will be calculated
from the evaluated point to obtain the current accuracy of
each model at that point, that is, Eq. (6).

The calculation for the synthetic fitness of each individual
is as follows.

fiti �
⎧
⎨

⎩

∑ne(i)
j�1 wg j

∑l
k�1 P(θk |x j )prefiti , k ne(i) > 0

1
l

∑l
k�1 prefiti , k ne(i) � 0,

(3)

where fiti represents the synthetic fitness of individual i .
prefiti , k represents the fitness of individual i calculated on
surrogate model k, and l represents the number of surro-
gate models. Since the kriging model, radial basis function
neural network, and polynomial regression model have been
used in this paper, l � 3. In Eq. (3), ne(i) represents the
number of evaluated points in the neighborhood of individ-
ual i . wg j represents the weight of the j th evaluated point
in the neighborhood of individual i , and the calculation of
wg j is described in Eq. (7). P(θk |x j ) represents the posterior
approximation of the kth surrogate model on the evaluated
point j , and its calculation is as follows.

P
(
θk |x j

) � P
(
x j |θk

)
P(θk)

P(X J )
, (4)

P(X J ) �
l∑

r�1

P
(
x j |θr

)
P(θr ), (5)

where P(x j |θk) represents the likelihood function of surro-
gate model k at evaluated point j , and P(θr ) represents the
prior approximation of the r th surrogate model at evaluated
point j . In this paper, we assume that all surrogate models
have the same prior approximation, that is, the prior approx-
imation of each surrogate model on any evaluated point is
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Fig. 2 BES evaluation process

P(θr ) � 1/l.

P(x j |θk) �
n( j)∏

q�1

1
abs(prefitqj , k−reafitqsep)+�

∑l
r�1

1
abs(prefitqj , r−reafitqsep)+�

, (6)

where � is used to prevent the denominator from being 0;
in this paper, � � 1. abs(·) is used to calculate the absolute
value, sep represents the selected individual, and n( j) repre-
sents the number of times the surrogate model has predicted
the fitness of the selected point at the evaluated point j . In
Eq. (6), prefitqj , k represents the fitness of the selected indi-
vidual predicted by surrogate model k at evaluation point j
for the qth iteration, and reafitqsep represents the true fitness of
the selected individual. In essence, Eq. (6) takes the error of
each evaluated point and the selected individual in its domain
as a sampling in Bayes’ theorem.

In addition, when the neighborhood of the individual con-
tains multiple evaluated points, in addition to considering
the credibility of each surrogate model in the neighborhood
of the individual, it is also necessary to consider the distance
between these evaluated points and the individual. The closer
the evaluated point is to the individual, the higher the credi-
bility is. Based on the above considerations, this paper takes
the Euclidean distance between the individual and these eval-
uated points as the weight, and the calculation for the weight
is as follows.

wg j � di , j
∑ne(i)

q�1 di , q
, (7)

where wg j represents the weight of evaluated point j , di , j
represents the Euclidean distance between i and j , and ne(i)
represents the number of evaluated points in the neighbor-
hood of individual i . Note j in the neighborhood of i . Figure 2

shows a schematic diagram of calculating the synthetic fit-
ness.

In Fig. 2, the green squares represent individuals in the
population,where solid green squares represent selected indi-
viduals and nonsolid squares represent ordinary individuals.
I1 and I2 are the selected individuals, and I3 is the ordi-
nary individual. The fitness of the selected individuals will
be calculated in the real objective function after the popula-
tion iteration. The yellow circles represent evaluated points.
The blue curve represents the real objective function. The
left and right brackets indicate the neighborhood range of an
individual. The black solid arrow indicates that the evaluated
individual transmits the confidence of each surrogate model
at its location to the individual, whofitness is calculated using
Eq. (3). The red dashed arrow indicates that after the selected
individual is calculated in the real objective function, the real
fitness will be fed back to the evaluated individual, and the
evaluated individual will adjust the confidence of each surro-
gate model at its location through Eq. (6). It can be seen from
the above figure that the surrogate model at each evaluated
point will undergo multiple confidence adjustments. In this
paper, each error at the same evaluated point is expressed in
the form of probability and taken as a sampling in Bayes’ the-
orem to approximate the true distribution through posterior
probability.

Intuitionistic fuzzymultiattribute decisionmaking

With the special advantage of IFS in dealing with uncertain
and fuzzy problems, IFMADMcan be used to select the opti-
mal plan that best meets the decision maker’s expectations
in an uncertain environment. A common IFMADM process
is as follows [50].

Step 1. Transform the attributes of all decision-making
plans into the form of intuitionistic fuzzy sets and input the
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prior weight of each attribute in the form of intuitionistic
fuzzy sets.

Step 2. Combine all the decision attribute weights
expressed in the form of intuitionistic fuzzy sets into cer-
tainty weights. The transformation method is as follows.

w(ai ) � αμw(ai ) + βπw(ai ), (8)

w(ai ) � w(ai )∑m
k�1 w(ak)

. (9)

In the above equation, μw(ai ) and πw(ai ) represent the
degree of membership and hesitation of attribute ai , respec-
tively, and m represents the number of attributes. α ∈ [0, 1]
and β ∈ [0, 1] represent the importance of membership and
hesitation, respectively, in IFMADM. Since there is no prior
information, theweights of all decision attributes in this paper
are equal, and α � 1, β � 0.5.

Step 3. According to the weight, all attributes of the
decision-making plan are combined into a comprehensive
evaluation. The specific synthesis equation is as follows.

Ai �
⎧
⎨

⎩
< xi ,

m∑

j�1

ui jw
(
a j

)
,

m∑

j�1

γi jw
(
a j

)
>

⎫
⎬

⎭
, (10)

where Ai is the intuitionistic fuzzy set of individual i , which
represents the comprehensive evaluation of decision-making
plan i . μi j represents the degree of membership of decision-
making plan i on attribute j , and γi j represents the degree of
nonmembership of decision-making plan i on attribute j .

Step 4. Calculate the intuitionistic fuzzy distance between
the comprehensive evaluation of each decision-making plan
and the ideal plan.

The ideal plan G is defined as G � {〈g, 1, 0〉}, that is, the
degree ofmembership is 1, and the degree of nonmembership
is 0. The negative ideal plan B is defined as B � {〈b, 1, 0〉},
that is, the degree of membership is 0, and the degree of
nonmembership is 1.

ξi � D(Ai , B)

D(Ai , B) + D(Ai , G)
, (11)

where ξi represents the degree of similarity to the ideal solu-
tion. The closer to 1 the decision plan is, the closer it is to the
ideal solution. The closer to 0 the decision plan is, the closer
it is to the negative ideal solution. D(X , Y ) represents calcu-
lating the distance between any two intuitionistic fuzzy sets
X and Y . This paper uses the Hamming distance calculation,
which is given as follows.

D(X , Y ) � 1

2

m∑

i�1

|μX (ai ) − μY (ai )| + |γX (ai ) − γY (ai )|

+ |πX (ai ) − πY (ai )|, (12)

where μX (ai ), πX (ai ), γx (ai ), μY (ai ), πY (ai ) and γY (ai )
represent the membership, hesitation, and nonmembership
of the intuitionistic fuzzy set X and Y on the attribute ai ,
respectively, andm represents the number of attributes in the
intuitionistic fuzzy set X . Since all attributes in the IFMADM
introduced in this paper have been combined into a compre-
hensive evaluation by Eq. (10), m=1.

Step 5. Sort all ξ from largest to smallest, and the first one
is the optimal decision-making plan. Therefore, the larger
ξi is, the more likely it is that individual i is a promising
individual or an uncertain individual.

Themethod of intuitionistic fuzzification
of individual information

It is difficult to rely on the fitness information alone to
verify whether an individual’s area is the most promising
area or the most uncertain area. Therefore, information from
each individual is extracted from multiple perspectives as
decision-making indicators for IFMADM to select individ-
uals, thereby improving the accuracy of decision-making.
Specifically, these include individual fitness, regional relia-
bility, maximum fitness deviation, and regional unreliability.
The first two are used to select promising individuals, and
the latter two are used to select uncertain individuals.

Promising individual selection

In this paper, the fitness pa1 and regional reliability pa2 of
each individual are selected as the decision attributes of the
promising individuals in IFMADM. In addition to using fit-
ness measures to assess whether the quality of an individual
is promising, the regional reliability of an individual is also
measured. This is because the fitness of each individual on the
surrogate model is not the real fitness of the objective func-
tion, so the distance between the individual and the evaluated
point is taken as the decision attribute and used to measure
the reliability of individual i .

The fitness attribute pa1 of each individual is described by
IFSs, and the conversion equation is as follows.

lprefiti � 1

l

l∑

k�1

ln(prefiti , k − minprefit + e), (13)

lfiti � ln(fiti − minfit + e), (14)

where prefit is amatrix, prefiti , k represents the fitness of indi-
vidual i predicted by surrogate model k, minprefit represents
the smallest element in prefit, fit is a vector, fiti represents
the synthetic fitness (calculated by Eq. (3)) of individual i ,
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minfit represents the smallest scalar in fit, and e is the natural
constant.

In this paper, two types of individual fitness information
are extracted as individual fitness attributes, the average fit-
ness of each surrogate model and the synthetic fitness.

μi (pa1) � 1 − πi (pa1) − γi (pa1), (15)

πi (pa1) � 1

2
× lprefiti

maxlprefit
, (16)

γi (pa1) � 1

2
× lfiti − minlfit

maxlfit − minlfit
, (17)

where μi (pa1), πi (pa1), γi (pa1) represent the degree of
membership, hesitation, and nonmembership of the individ-
ual i on the attribute pa1, respectively, maxlfit and minlfit
represent the maximum and minimum values in lfit, respec-
tively, maxlprefit represents the maximum value in lprefit,
and 1/2 is to limit πi and γi to [0,0.5] to ensure that
μi + πi + γi � 1 holds true. The 1/2 below has the same
meaning.

Equation (15) represents the degree of support that indi-
vidual i is the promising point. The higher the value is, the
greater the degree of support that individual i is a promising
individual, and vice versa. Equation (16) is a measure of the
degree of hesitation that individual i is the promising point.
As shown in Eq. (15), the larger πi is, the smaller μi . There-
fore, the larger Eq. (16) is, the less likely it is that individual
i is the promising point, and vice versa. Equation (17) repre-
sents the degree of nonmembership. The higher the value is,
the higher the opposition that individual i is the promising
point, and vice versa.

The regional reliability attribute pa2 of each individual is
described by IFSs, and the conversion equation is as follows.

μi (pa2) � 1

2
× ne(i)

max{nemax, 1} , (18)

πi (pa2) � 1 − μi (pa2) − γi (pa2), (19)

γi (pa2) � 1

2
× di

dmax
, (20)

where μi (pa2), πi (pa2), and γi (pa2) represent the degree
of membership, hesitation, and nonmembership of the relia-
bility attribute of individual i , respectively, d is a vector, di
represents the Euclidean distance between individual i and
its nearest evaluated point, dmax represents the maximum
value of all d, ne is a vector, ne(i) represents the number of
evaluated points in the neighborhood of individual i , nemax

represents the number of evaluated points in the neighbor-
hood with the most evaluated points, and max{} in the outer
layer is used to prevent the denominator from being zero.

Equation (18) indicates that the more evaluated points in the
neighborhood of the individual there are, the more reliable
the individual and the higher the reliability of supporting the
individual as a promising individual. Equation (20) indicates
that the farther the individual is from the nearest evaluated
point, the less reliable the individual is, and the higher the
reliability of opposing the individual as a promising individ-
ual.

Uncertain individual selection

In this paper, themaximumfitness deviation ua1 and regional
unreliability ua2 are selected as intuitionistic fuzzy decision
attributes. These attributes are chosen for two reasons. First,
the larger the fitness difference of an individual in each sur-
rogate model is, the higher the uncertainty of the individual.
Second, the farther from the evaluated point is individual is,
the lower the degree of reliability of the individual.

The maximum fitness deviation ua1 of each individual on
the surrogate model is described by an IFS, and the conver-
sion equation is as follows.

diff i � maxprefiti − minprefiti , (21)

where maxprefiti and minprefiti represent the maximum and
minimum fitness of individual i on all surrogate models,
respectively. Equation (21) is used to calculate the maximum
difference of individual i in the surrogate model.

μi (ua1) � 1

2
× diff i

maxprefit − minprefit
, (22)

πi (ua1) � 1

2
× log10diff i

maxlog10diff
, (23)

γi (ua1) � 1 − μi (ua1) − πi (ua1), (24)

where μi (ua1), πi (ua1), and γi (ua1) represent the degree of
membership, hesitation, and nonmembership of individual i
on attribute ua1, respectively, and maxprefit and minprefit
represent the maximum and minimum fitness in all surro-
gate models for all individuals, respectively. Equation (22)
uses the maximum difference of individual i on the surrogate
model to describe the degree of membership of individual i
as an uncertain individual. The greater the difference is, the
more uncertain the individual gains, and vice versa. Equa-
tion (23) uses the magnitude of the fitness difference to
express the hesitation that individual i is an uncertain indi-
vidual. Equation (24) expresses the degree of opposition to
the unreliability of the individual. The larger γi (ua1) is, the
higher the reliability of individual i , and vice versa.
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The regional unreliability ua2 of each individual is
described by an IFS, and the conversion equation is as fol-
lows.

μi (ua2) � 1

2
× di

maxd
, (25)

πi (ua2) � 1 − μi (ua2) − γi (ua2), (26)

γi (ua2) � 1

2
× ne(i)

max{nemax, 1} . (27)

The definitions of the parameters in Eq. (25) are consistent
with those in Eq. (20), while the definitions of the parameters
in Eq. (27) are consistent with those in Eq. (18).

Both the regional reliability attribute and the regional
unreliability attribute use two pieces of information, the
distance of the nearest evaluated point and the number of
evaluated points in the neighborhood. The more evaluated
points there are in the individual neighborhood and the closer
they are to the evaluated points, the higher the regional
reliability, which is the opposite of regional unreliability.
Therefore, the membership degree and nonmembership cal-
culation methods of reliability and unreliability are opposite
each other.

Through the above conversion equation, the information
contained in the individuals is expressed by intuitionistic
fuzzy sets, and promising individuals and uncertain individ-
uals are determined. Its pseudo code is similar to Algorithm
1.

Algorithm 1: Pseudo code of the IFMADM strategy

Input: All individuals, weights of all decision attributes

1: For i=1 to all individual

2: Use Equations (15)-(17) to form the membership degree, hesitation degree, and 

nonmembership degree, respectively, of the attribute pa1 of the individual i
3: Use Equations (18)-(20) to form the membership degree, hesitation degree, and 

nonmembership degree, respectively, of the attribute pa2 of the individual i
4: End
5: Executive Equations (8)-(11) to select the individual with the largest as the promising 

individual promising_point
6: For i=1 to all individual

7: Use Equations (22)-(24) to form the membership degree, hesitation degree, and 

nonmembership degree, respectively, of the attribute ua1 of the individual i
8: Use Equations (25)-(27) to form the membership degree, hesitation degree, and 

nonmembership degree, respectively, of the attribute ua2 of the individual i
9: End
10: Executive Equations (8)-(11) to select the individual with the largest as the uncertain individual 

uncertain_point
Output：promising_point, uncertain_point

�

�
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RESAPSO process

The PSO, BES, IFMADM, and intuitionistic fuzzification
methods are described in detail above. The remaining details
of RESAPSO are as follows: The initial model is constructed
using Latin hypercube sampling (LHS), which is commonly
used in SAEA. The kriging model, radial basis function neu-
ral network, and polynomial regression are used as surrogate
models. As mentioned above, the algorithmic pseudocode is
given in Algorithm 2.

Experimental analysis

Neighborhood selection

There are two main functions of the neighborhood. The first
function is to select the evaluated points used to estimate
fitness. In this case, if the neighborhood is too large, the evalu-
ated points that are too far away can provide useless surrogate
model fitting information, while if the neighborhood is too

small, there will be no evaluated points in the neighborhood
to provide model fitting information. The second function is
to calculate the fitting accuracy of the surrogate model on the
evaluated points. In this case, a neighborhood that is too large
will cause the wrong fitting information to be learned, while
a neighborhood that is too small will cause the evaluated
points to be unable to be updated for a long time. Therefore,
the setting of the neighborhood range should change with the
change in the dimension, and the following equation should
be satisfied.

dim∏

i�1

ubi − lbi � 5 × dim ×
dim∏

i�1

neigi , (28)

where dim represents the dimension and ubi represents the
upper bound of the ith dimension in the search space. lbi
represents the lower bound of the ith dimension, and neigi
represents the neighborhood size of the ith dimension. The
left part of Eq. (27) represents the hypervolume of the search
space, the cumulative product on the right represents the
hypervolume of the neighborhood, and 5 × dim on the right
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represents the number of initial sampling points. In the case
that the initial sampling points are evenly distributed, the
above equation allows each individual to have an evalu-
ated point in the neighborhood. In the case of a nonuniform
distribution, some individuals can be affected by multiple
evaluated points, thereby improving the estimation accuracy.

The following equation can be obtained by transforming
Eq. (28).

dim∏

i�1

ubi − lbi
neigi

� 5 × dim ⇒
dim∏

i�1

xi � 5 × dim. (29)

In Eq. (29),xi represents the ratio of the maximum length
to the neighborhood on the ith dimension.

Assuming that the shape of the neighborhood is propor-
tionally reduced in the search space, that is, x1 � x2 � · · ·
� xdim, the following equation can be used to calculate the
neighborhood radius.

neig � 1

2
× (ub − lb)

dim
√
5 × dim

. (30)

The 1/2 in Eq. (30) expresses the neighborhood in the form
of a radius.

BES and IFMADM strategy performance tests

The experiment in this section verifies the effectiveness of
the proposed BES and IFMADM by executing RESAPSO
on different benchmark functions. The benchmark function
is shown in Table 2.

RESAPSO is executed independently 20 times on each
benchmark function. Each execution of RESAPSO outputs
the fitting results of the krigingmodel, polynomial regression
model, radial basis function neural network model, and BES,
and the average of the 20 fitting results is the final result. In
addition, the 20 test results are sorted from smallest to largest
according to the optimal fitness searched, and all the evalu-
ated points of the test results corresponding to the median
are taken as the experimental results of IFMADM.

The parameter settings of RESAPSO are as follows. The
optimizer (PSO) parameters are as follows: population size

Table 2 Benchmark functions

Function Expression

Ackley y � −20× e−0.2
√

1
n

∑n
i�1 x

2
i − e

1
n

∑n
i�1 cos(2πxi ) + 20 + e

Rastrigin y � 10n +
∑n

i�1 x
2
i − 10cos(2πxi )

Griewank y � 1 + 1
4000

∑n
i�1 x

2
i − ∏n

i�1 cos
(

xi√
i

)

Schwefel y � ∑n
i�1 xi sin

(√|xi |
)

popsize � 100, maximum number of iterations maxiter �
500, c1 � c2 � 2, and w � 1.2–0.8 × (t/maxiter), where
t represents the number of iterations at runtime. Initially,
the sampling number of LHS is 5 × dim, where dim rep-
resents the dimension of the problem. The neighborhood
parameters required byBES can be calculated using Eq. (30).
The surrogate models used in this paper include the kriging
model, radial basis function neural network, and polynomial
regression model, which are implemented using the SUR-
ROGATES toolbox [51].

InFig. 3,predict represents themodel obtainedusingBES,
while real represents the real objective function. KRG rep-
resents the kriging model, and PR represents the polynomial
regressionmodel. In addition, RBF represents the radial basis
function neural network, and the red asterisk represents the
evaluated point. From the analysis of the above four func-
tions, it can be found that for different objective functions,
different surrogate models have their advantages and disad-
vantages. The best model on Ackley is the RBFNN model,
and the worst is the kriging model. The worst model on Ras-
trigin is the RBFNN model, and the best is the PR model.
On Griewank, because there are few evaluated points, it is
impossible to fit such a complicated model, so the fitting
effect is generally poor. The best model on Schwefel is the
RBF model, and the worst is the PR model. In particular, the
best fitting effect is the krigingmodel in the interval [40,60] of
the Schwefel function. Therefore, to obtain better fitness pre-
diction results, the algorithm needs to adaptively adjust the
approximation of each surrogate model to different objective
functions or even in different regions and use the approxima-
tion to synthesize the estimated fitness.

From the above 4 functions, it can be seen that the various
surrogate models are better balanced when BES is imple-
mented. On Ackley and Griewank, although there is a large
deviation from the real objective function using the krig-
ing model, with the help of BES, RESAPSO can correctly
identify the degree of approximation between each surro-
gate model and the real objective function. Thus, the kriging
model does not have a significant impact on the estimated
results. RESAPSO has been completely approximated to the
real objective function in the interval [− 100,60] of the Ras-
trigin function. A better approximation degree is obtained
using RESAPSO compared with any surrogate model in the
intervals [− 100, 70], [− 40, 20], and [65, 90] of the Schwefel
function.

In addition, Fig. 3 shows that different surrogate mod-
els have different characteristics. The kriging model is easy
to overfit. For example, the curve amplitude of the kriging
model on the Ackley function is larger; thus, this model is
more suitable for a complex multimodal function. The PR
model has difficulty fitting curves with large changes, such
as the Griewank and Schwefel functions. This model is suit-
able for a unimodal function with little change. The RBF
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Fig. 3 Test results

model is more balanced, and good performance is obtained,
which is one of the reasons why most SAEAs use RBF as
the surrogate model.

In addition, from the evaluatedpoints depicted in the above
four functions, it can be found that the distribution of evalu-
ated points is relatively uniform, and clustering occurs only at
extreme points. This is because a promising individual and an
uncertain individual are selected in each decision. This mea-
sure not only ensures the exploratory ability of RESAPSO
but also allows the regions where the global optimum may
exist to be fully exploited.

Comparative experiment

Experimental design

The experimental platform is MATLAB 2018a based on the
Windows 10 64-bit system, and the CPU, with 16 GB mem-
ory, is AMD Ryzen 7 5800X. The comparative experiment
comprehensively examines the performance of RESAPSO
from three aspects, accuracy, convergence speed, and sta-
bility. The benchmark functions are CEC2015 10D and
CEC2017 10D, and their search spaces are both [−
100,100]D [52, 53]. The maximum number of real func-
tion evaluations (FEs) is 11 × dim, and each algorithm runs
independently 20 times. In this paper, the following SAEAs
are selected as comparison algorithms: CAL-SAPSO [17],
which also uses PSO as the optimizer and RBFNN, PR, and
the kriging model as surrogate models; SA-COSO [12] for
high-dimensional and computationally expensive problems;
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SHPSO [40], whichmainly improves the search strategy; and
ESAO [54] and SA-MPSO [55], which have been proposed
in recent years. The parameter settings of the comparison
algorithm follow those of the original paper. The RESAPSO
parameter settings are described in the “BES and IFMADM
strategy performance test” section.

Accuracy comparison

To compare the convergence accuracy more comprehen-
sively, the accuracy of each algorithm is compared on
CEC2015 10D and CEC2017 10D. In CEC2015, F1–F2
are unimodal functions, F3–F9 are multimodal functions,
F10–F12 are hybrid functions, and F13–F15 are composition
functions. In CEC2017, F1–F3 are unimodal functions, and
F4–F10 aremultimodal functions.Additionally, F11–F20 are
hybrid functions, and F21–F30 are composition functions.

In addition, to compare the performance of each algorithm
more comprehensively, Friedman ranking is introduced in the
experiment. Friedman ranking is used to obtain the average
ranking of each algorithm on all functions according to the
ranking of each algorithm in each function. Therefore, the
smaller the score is, the better the overall performance of the
algorithm. TheWilcoxon signed rank test with a significance
level of 0.05 is used. The statistical results on CEC2015 and
CEC2017 are shown in Tables 2 and 3, respectively.

Table 3 shows the mean and standard deviation of each
algorithm on the CEC2015 10D. In Table 3, Friedman rep-
resents the Friedman ranking, and U/M/H/C represents the
number of functions ranked first for each algorithm for the
unimodal, multimodal, hybrid, and composition functions,
respectively. + , −, and � indicate that RESAPSO is signif-
icantly better than the comparison algorithm, significantly
inferior to the comparison algorithm, and has no signifi-
cant difference from the comparison algorithm, respectively.
Table 3 shows that RESAPSO ranks first among the 13 func-
tions with respect to the mean value. SHPSO, CAL-SAPSO,
SA-COSO, ESAO, and SA-MPSO rank first for 3, 2, 2, 0, and
1 functions, respectively. RESAPSO is significantly better
than the other algorithms for unimodal functions, approxi-
mately 105 better than the other algorithms in terms of F1,
and approximately 106 better than the other algorithms in
terms of F2. There are two reasons for these results. First, for
each IFMADM, one promising individual and one uncertain
individual will be selected. When the objective function is a
unimodal function, half of the computing resources are used
to exploit the global optimum.Second, IFMADMcanbeused
to select promising individuals more efficiently to improve
the accuracy of local exploitation. For multimodal functions
(F3–F9), RESAPSO outperforms the other algorithms for a
total of 4 multimodal functions. This is because IFMADM
can comprehensively evaluate all individuals based on the
search history information of the PSO and obtain the most

uncertain individual, thereby improving the fitting ability
of each surrogate model and then improving the global
optimization ability of RESAPSO. For the hybrid function,
RESAPSO, SHPSO, and SA-MPSO each rank first for one
function. SHPSO, CAL-SAPSO, and SA-COSO each rank
first for a composition function. In addition, RESAPSO’s
Friedman rank is 2.4, which proves that RESAPSO has a
better overall performance.

Table 4 shows the mean and standard deviation of each
algorithm on CEC2017 10D. It can be seen from the table
that RESAPSO ranks first for 12 functions. SHPSO, CAL-
SAPSO, SA-COSO, ESAO, and SA-MPSO rank first for 4,
4, 0, 1, and 9 functions, respectively. For the unimodal func-
tions (F1–F3), the mean value using RESAPSO is more than
105 better than that of the other algorithms for F1. Benefiting
from the expression and discernibility of intuitionistic fuzzy
sets on uncertain problems, RESAPSO can be used to ana-
lyze the regionwhere the extrema point ismost likely to exist.
Therefore, better results can be achieved using RESAPSO
for a unimodal function with only one extreme point. For
the multimodal functions (F4–F10), RESAPSO ranks first
among the three functions and performed better than the
other algorithms. This proves that IFMADM can be used
to accurately select unexplored regions. Thus, the surrogate
model can have a better global fit, improving the exploration
ability of RESAPSO. RESAPSO has the best overall per-
formance on the hybrid functions (F11–F20), ranking first
for 6 functions. This is because the hybrid function is more
complicated. Better fitting results cannot be obtained on a
unimodal function and a multimodal function at the same
time using a single surrogate model. SAEA based on a mul-
timodel strategy cannot be used to effectively distinguish
the fitting degree from different surrogate models in differ-
ent neighborhoods. Therefore, better performance cannot be
achieved. RESAPSO uses BES to dynamically and adap-
tively analyze the fit of each model in the region, thereby
improving the reliability of RESAPSO’s estimation of indi-
vidual fitness. Therefore, RESAPSO has a greater advantage
with respect to hybrid functions. RESAPSO is slightly infe-
rior to SA-MPSO with respect to the combination function
and ranks second. In summary, RESAPSO has more advan-
tages for most functions.

In addition, RESAPSO ranks first in terms of the Fried-
man rankings on CEC2015 and CEC2017, with scores of
2.4 and 1.8, respectively, which shows that RESAPSO has
better solution accuracy and optimization efficiency than the
latest SAEAs and has stronger comprehensive optimization
capabilities.

Convergence curve comparison

Although the convergence accuracy can reflect the searching
ability of each algorithm on each benchmark function, the
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internal details of the algorithm cannot be well reflected.
Therefore, a convergence curve diagram is drawn based on
the experimental results on CEC2017 10D to analyze the
exploration and exploitation capabilities of RESAPSO.

It can be seen from Fig. 4 that for functions F1, F4–F9,
F12–F15, and F18, there is a relatively obvious rapid decline
process in the later stage of RESAPSO operation. There are
two reasons for this situation. First, in the early stage of
RESAPSO, the uncertain individuals selected by IFMADM
explore the search space better, so the selected promising
individuals are closer to the global optimum. Second, the
fitness of each individual can be more accurately estimated
using BES, providing PSO with more reliable accuracy so
that it can find the global optimum for a model that is more
similar to the real objective function. Therefore, RESAPSO
performs better on unimodal functions, multimodal func-
tions, and hybrid functions that can be decomposed into
unimodal functions and multimodal functions. On F27, F28,
and F30, RESAPSO is better than the other algorithms. For
functions F22 and F25, RESAPSO also has a faster search
speed in the later stage. Hence, the results of the algorithms
for functions F23 and F29 are similar.

The simulation experiment of the above convergence
curve shows that RESAPSO can maintain high convergence
accuracy for all 30 functions. Compared with the compar-
ison algorithm for the unimodal, multimodal, and hybrid
functions, RESAPSO has a rapid convergence ability. Even
for more complex combined functions, RESAPSO can still
maintain a continuous and stable convergence rate.

Convergence stability comparison

In multiple independent tests, the minimum, median, maxi-
mum, upper quantile, and lower quantile are simultaneously
considered in a boxplot, and outliers are identified quickly.
Thus, compared with the standard deviation, a boxplot can
describe the overall stability of an algorithm in more detail
and display it more intuitively in the form of a graph. There-
fore, a boxplot based on the CEC2017 10D data is drawn to
analyze the stability of each algorithm.

Figure 5 shows the boxplots of the experimental results
of all algorithms on CEC2017 10D. For the unimodal func-
tions, the stability and accuracy of RESAPSO on function
F1 are significantly better than those of the other algo-
rithms. On F2, SHPSO performs best, and the accuracy of
RESAPSO on F3 is similar to that of SHPSO. This proves
the effectiveness of RESAPSO in terms of the local search.
The reason is that the proposed fuzzy information extrac-
tion method enables IFMADM to effectively distinguish
promising individuals in the population, thereby improving
the local development capabilities of RESAPSO. For multi-
modal functions, RESAPSO has better accuracy and stability
for F8–F10. Although the accuracy values for F6 and F7

using RESAPSO are not as good as those using SA-MPSO
and CAL-SAPSO, the equal accuracy is better. For hybrid
functions, the stability and accuracy values of RESAPSO
for functions F12–F15, F18, and F19 are better than those
of the other algorithms. This is because a hybrid function is
more complicated. RESAPSO can better identify the fit of
each surrogate model in the neighborhood through BES and
provide a more reliable estimate for IFMADM. IFMADM
is used to analyze the fuzzy information of individuals to
select promising individuals and uncertain individuals for
local development and global exploration of the search space
to achieve better optimization results. Among all the com-
position functions, RESAPSO has better stability in general.
Although the optimal results for F29 usingRESAPSOare not
as good as those using SHPSO, RESAPSO has better stabil-
ity. Although the stability of RESAPSO for F30 is slightly
worse than the other algorithms, its accuracy is better.

Combining the boxplot results of the 30 benchmark func-
tions, better stability can be maintained for the multimodal
function and the composition function using RESAPSO. For
the unimodal function and the hybrid function, better stability
and higher accuracy are obtained using RESAPSO.

RESAPSO for feature selection and hyperparameter
optimization in landslide displacement prediction

China is a region with frequent geological disasters. In 2021,
there were 4772 geological disasters in China, of which
2335 were landslides, and the economic loss reached 3 bil-
lion yuan. The Three Gorges area is an important economic
hub in the middle and lower reaches of the Yangtze River in
China. The abundant rainfall and high reservoir water level
also make this area a landslide-prone place. Along with land-
slides, a large amount of loess, sediment, and vegetation are
poured into the river, blocking the river’s course, increas-
ing the water level, and eroding the slope, thus increasing
the landslide displacement [56]. During the dry season, the
landslide displacement rate is slow. The transition between
rainy and dry seasons causes the formation of step landslides,
which can easily cause landslide disasters.

Throughmemory units, LSTM neural networks can better
maintain the feature dependence among long sequences, and
thus are suitable for solving complex nonlinear systems such
as landslides, which are strongly influenced by time. How-
ever, the influencing factors of landslide are complex and
diverse, and different influencing factors and hyperparame-
ters of LSTMcan affect the prediction accuracy of themodel.
Therefore, this paper will use RESAPSO for feature selec-
tion and LSTM hyperparameter optimization to improve the
effectiveness of landslide displacement prediction.

The deep learning environment configuration in the exper-
iment is as follows: Python 3.8, Keras 2.08. The LSTM
neural network is designed based on the Keras library, and

123



5438 Complex & Intelligent Systems (2023) 9:5417–5447

Fig. 4 Convergence curve of all algorithms on CEC2017 10D
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Fig. 4 continued
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Fig. 5 Box plot of all algorithms on CEC2017 10D
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Fig. 5 continued
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Fig. 6 Engineering geological
plan of Baijiabao landslide

Fig. 7 Statistical diagram of landslide displacement and its influencing
factors

it is encapsulated in the form of a function, which is called
by Matlab. Other software and hardware environments are
described above.

The Baijiabao landslide [57] is located on the right
bank of Xiangxi River, a first-class tributary of Yangtze
River in Three Gorges reservoir area (110° 45′ 33.4′′ E,
30° 58′ 59.9′′ N), 2.5 km from the mouth of Xiangxi River.
the average width of the landslide is about 400 m, longitudi-
nal length about 550 m, average thickness 45 m, area 2.2 ×
105 with an area of 2.2× 105 and a volume of 9.9× 106. The
average thickness is 45 m, the area is 2.2 × 105 and the vol-
ume is 9.9 × 106. Engineering geological plan of Baijiabao
landslide is shown in Fig. 6.

Table 5 Description of each characteristic

Feature Description

A1 The month

A2 Accumulative rainfall in the month

A3 Accumulated rainfall in the previous month

A4 Accumulated rainfall in the first two months

A5 Average reservoir water level in the month

A6 Average reservoir water level in the previous month

A7 Average reservoir water level in the first two months

A8 Reservoir change in the month

A9 Reservoir change in the previous month

A10 Reservoir changes in the first two months

In Fig. 6, the red line represents the landslide boundary,
and the yellow triangle represents the installation location
of detector, the sensing data of the location of ZG323 in the
figure are used.

ZG323 records the local monthly displacement data. At
the same time, we obtained the daily rain capacity and daily
reservoir level from the nearby reservoir. In this paper, the
monthly reservoir water level is obtained by taking the aver-
age value of the daily reservoir level. The monthly rain
capacity, reservoir level, and displacement data of ZG323
are plotted as Fig. 7.

Figure 7 shows the rainfall, reservoir water level, and
displacement curves from March 2007 to September 2018.
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Fig. 8 Flow chart of RESAPSO-LSTM

Table 6 The statistical results of the algorithm comparison for predict-
ing landslide displacement

Model Mean Std

LSTM 3.70E+02 \ 2.50E+01

RESAPSO-LSTM 2.93E+02 \ 7.66E+00

BO-LSTM 2.95E+02 = 3.50E+00

PSO-LSTM (100) 3.02E+02 + 5.43E+00

PSO-LSTM (500) 2.96E+02 = 1.21E+01

The best values are highlighted in bold

Where the histogram represents rainfall, the blue dashed line
represents the reservoir water level, and the red solid line rep-
resents the cumulative displacement. It can be seen from the
figure that the water level of the reservoir decreases signifi-
cantly when it is in the rainy season. When the rainy season
ends, the reservoir level rises significantly. This is because the
rainfall process has an obvious hysteresis effects. Whenever
the rainy season comes, the reservoir will release water in
advance, reducing the reservoir water level to a lower level
to prevent the reservoir water level from breaking through
the warning level. In addition, whenever it is in the rainy
season, the displacement curve grows with a large range,
which proves that rainfall has a large impact on landslide dis-
placement. The opposite is true for the reservoir level, where
landslide displacement is acceleratedwhen the reservoir level

drops. However, rainfall and reservoir level usually have hys-
teresis effects on landslide displacement, so it is necessary to
select appropriate features to avoid the model learning use-
less and redundant features. Therefore, this paper uses the
reservoir water level and rainfall as the training features of
the model.

The landslide data are availablemonthly, and the predicted
value is the cumulative landslide displacement. In order to
better train the model, this paper extracts a variety of features
from the reservoir water level and rainfall. After extraction,
the feature set contains a total of 10 features, and each feature
and its description are shown in Table 5.

Thehyperparameters ofLSTMinclude the time step, num-
ber of units, and input gate activation function. For features,
there are only two possibilities, selecting and not selecting.
Thus, the features can be converted into a binary form, and 10
features can be converted into two binary lengths of 5. Since
rainfall and reservoir levels are recorded on a daily basis,
Therefore, the interval size of the input data on the time
sequence is adjusted by the time step to prevent the influ-
ence of random noise on the model. There are three optional
activation functions, namely, the sigmoid, tanh, and ReLU
functions. Therefore, the search space is 5-dimensional and
constitutes the following objective function.

argmin
	

mtest∑

i�1

abs( f (xi , 	) − yi ) × 100
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s.t.0.6 ≤ θ1 ≤ 32.4

0.6 ≤ θ2 ≤ 32.4

1.5 ≤ θ3 ≤ 7.4

0.6 ≤ θ4 ≤ 48.4

−0.4 ≤ θ5 ≤ 2.4 (31)

In Eq. (31), mtest represents the number of test samples,
and abs(·) represents the absolute value function. f (xi, Θ)
represents the loss of the sample obtained after inputting the
sample xi into the predictionmodel, and the predictionmodel
structure is controlled by the variable Θ . θ1, θ2, θ3, θ4, θ5
represent 5 scalars ofΘ . θ1 is a decimal number,which repre-
sents features 1–5. θ2 is a decimal number, which represents
features 6–10. θ3 represents the time step. θ4 represents the
number of LSTM units. θ5 represents the activation function
of the input gate of the LSTM. There are three options: sig-
moid (θ5 � 0), tanh (θ5 � 1), and ReLU (θ5 � 2). All scalars
of Θ will be rounded from continuous values to discrete
values when constructing the model. The loss function of
the trained LSTM model was the mean square error. Finally,
multiplying by 100 improves the difference between individ-
uals. The LSTM optimization process based on RESAPSO
is shown in Fig. 8.

To test our algorithm, we compare it with the current
mainstreammethods, includinghand-tunedLSTM,PSO, and
Bayesian optimization (BO). Since the grid method requires
manual setting of the grid width, it is not included. For PSO,
we test both 100 and 500 FEs to verify the performance of
our algorithm. In PSO, the following common parameter
settings are adopted [58]:c1 � c2 � 1.49445,w � 0.9 −
0.5 × (t/maxiter), where maxiter represents the maximum
number of iterations. The RESAPSO parameter settings are
described in the “BES and IFMADM strategy performance
test” section. There are 100 FEs for BO and RESAPSO. The
LSTM model considers all training features, i.e., θ1=32 and
θ2 � 32, and its hyperparameters are θ3 � 5,θ4 � 1, andθ5
� 1. For training LSTM, the maximum training epoch is
150. To prevent random interference from heuristic algo-
rithms, except for hand-tuned LSTM, each algorithm uses
the average of 10 independent tests as the statistical result. In
addition, to prevent random interference during LSTM neu-
ral network training, each optimal solution Θbest constructs
10 networks and trains them independently 10 times, and the
average value of these 10 network losses is used as the fitness
of the optimal solutionΘbest. TheWilcoxon signed ranks test
with a significance level of 0.05 is used. The final statistical
results are shown in Table 6.

Fig. 9 Landslide displacement prediction results

Note that the standard deviation of the LSTM model in
Table 6 is the result of ten training sessions under one set
of hyperparameters, while in the remaining models, it is the
result of ten sets of hyperparameters optimized byRESAPSO
or PSO.

The + and � symbols in Table 6 indicate that RESAPSO
is significantly better than the comparison algorithm, and
there is no significant difference between RESAPSO and
the comparison algorithm, respectively. PSO-LSTM (100)
and PSO-LSTM (500) indicate that the FEs of PSO are 100
and 500, respectively, and LSTM represents an LSTMmodel
that does not use optimization algorithms. Table 6 shows that
the prediction accuracy of RESAPSO is better than that of
PSO (100) and PSO (500), Bayesian optimization and man-
ual tuning. In addition, the prediction accuracy of RESAPSO
is significantly better than that of PSO (100), and there is no
significant difference between the accuracy values obtained
using PSO (500) and BO. This means that in the feature
selection and hyperparameter optimization of landslide dis-
placement prediction, RESAPSO and 500 iterations of PSO
have the same ability. In summary, RESAPSO only needs
one-fifth of the time of PSO to achieve the same prediction
accuracy, which greatly reduces the optimization time while
maintaining the prediction accuracy. The landslide displace-
ment prediction result is shown in Fig. 9.

In Fig. 9, in order to make the comparison between
algorithms clearer, the regions with large gaps between algo-
rithms are enlarged. As shown in the figure, in the Three
Gorges area, every year from August to February of the
following year is the non-rainy season, and the landslide dis-
placement at this stage is gentle creep period, and all models
have good performance in landslide displacement predic-
tion at this stage. During the rainy season from March to
July each year, the landslide displacement is more intense
and presents as “step-like” in this period, and the prediction
model is usually difficult to predict accurately. The prediction
of the step-like period is themost critical part of the prediction
of landslide displacement because the drastic displacement
change is likely to cause a landslide disaster. As can be
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seen from the figure, in the maximum displacement interval
[980–1100 mm] from 2016-3 to 2016-7, RESAPSO-LSTM
is closest to the actual measured values compared to other
algorithms. In 2017-3 to 2017-7, performed slightlyworse. In
the minimum displacement interval [1200–1250 mm] from
2018-3 to 2018-7, the RESAPSO-LSTM prediction is the
closest to the actual displacement, while the PSO500-LSTM
and LSTM predicted a large fluctuation in displacement. The
above shows that the RESAPSO-LSTM model can accu-
rately predict both larger displacement changes and smaller
displacement predictions during landslide step-like periods.

Conclusion

Aiming at computationally expensive problems, this paper
proposes a reliability-enhanced surrogate-assisted particle
swarm optimization, RESAPSO. To solve the weight adap-
tive problem of the multisurrogate model ensemble strategy,
this paper considers the influence of neighborhood on the
accuracy of the surrogate model and proposes a Bayesian
evaluation strategy that uses a posteriori probability as the
confidence of each surrogatemodel. By taking the confidence
of the evaluated points in the neighborhood as the sample
points, the Bayes’s theorem is used to calculate the posterior
probability, and it is used as the confidence of the surrogate
model in the neighborhood, so as to reasonably integrate
multiple surrogate models and then improve the fitness pre-
diction accuracy. In addition, in order to more reasonably
select promising points and uncertain points, this paper uses
the intuitionistic fuzzy sets to extractmulti-dimensional deci-
sion attributes from individuals and uses IFMADM to select
promising points and uncertain points.

SHPSO is a SAEA that mainly improves the search strat-
egy of PSO, and this paper mainly improves the model
update strategy. The experimental results of the compari-
son between RESAPSO and SHPSO show that, compared
with the improvement of search strategy, the model updat-
ing strategy proposed in this paper is more effective. Similar
to CAL-SAPSO, RESAPSO also uses the PSO and Krig-
ing models, but this paper uses the multi-surrogate model
method. The results of the experiment with CAL-SAPSO
show the advantages of the multi-model strategy. SA-COSO
is a SAEA for high-dimensional problems, while this paper
mainly focuses on low-dimensional problems. Compara-
tive experiments confirm that SAEA for high-dimensional
problems is not necessarily applicable to low-dimensional
problems. ESAO and SA-MPSO are the SAEAs proposed in
recent years, and the experimental results show the advanced
performance of our algorithm.

Experimental results on CEC2015 and CEC2017 show
that RESAPSO is superior in accuracy, convergence speed,
and stability and ranks first in the Friedman test. In addition,

On F1 and F2 of CEC2015, RESAPSO outperformed other
algorithms by about 105, and 106, respectively; on CEC2017
F1, RESAPSO outperformed other algorithms by about 105.
On these two functions, RESAPSO almost reaches the opti-
mal value. In order to predict the landslide displacement, the
RESAPSO-LSTM model is established, which effectively
solves the landslide feature selection and the optimization
of LSTM hyperparameters and uses fewer evaluation times
while improving the prediction accuracy. The experimental
results show that RESAPSO-LSTM has the highest predic-
tion accuracy compared with the contrast model, and the
optimization time of RESAPSO is about one-fifth that of
PSO. The RESAPSO-LSTM model can reflect the displace-
ment prediction in time in both large and small displacement
changes in the displacement prediction of a landslide step
abrupt period, providing a more effective prediction method
for the risk warning of a landslide in a severe deformation
period.

As a landslide is a very complex nonlinear dynamic
system, in addition to rainfall and reservoir water level, land-
slides are also affected by different internal and external
factors, such as soil water content, groundwater, vegeta-
tion coverage, clay properties, and geological structure. In
addition, landslides are affected by many complex random
factors, such as human engineering activities and extreme
weather, showing very complex nonlinear evolution charac-
teristics. At present, due to the lack of detailed monitoring
data for these factors, this paper only studies the influence of
rainfall and reservoirwater level as themain trigger factors on
landslide displacement.With the increase ofmonitorable fac-
tors, the landslide displacement prediction problem will be
transformed into an expensive computational problem with
high dimensions, which will limit the application of Kriging
models. As a result, in future work, the RBFNN model and
PRmodel with fast calculation speed are considered to fit the
global trend, while the Kriging model with slow calculation
speed but high accuracy is used for local accurate fitting, so
that the landslide disaster prediction in the complex envi-
ronment can be solved with massive, high-dimensional, and
multi-feature fusion.
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