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Abstract
Healthcare tends to be one of the most complicated sectors, and hospitals exist at the core of healthcare activities. One of the
most significant elements in hospitals is service quality level. Moreover, the dependency between factors, dynamic features,
as well as objective and subjective uncertainties involved endure challenges to modern decision-making problems. Thus, in
this paper, a decision-making approach is developed for hospital service quality assessment, using a Bayesian copula network
based on a fuzzy rough set within neighborhood operators as a basis of that to deal with dynamic features as well as objective
uncertainties. In the copula Bayesian network model, the Bayesian Network is utilized to illustrate the interrelationships
between different factors graphically, while Copula is engaged in obtaining the joint probability distribution. Fuzzy rough
set theory within neighborhood operators is employed for the subjective treatment of evidence from decision makers. The
efficiency and practicality of the designed method are validated by an analysis of real hospital service quality in Iran. A
novel framework for ranking a group of alternatives with consideration of different criteria is proposed by the combination
of the Copula Bayesian Network and the extended fuzzy rough set technique. The subjective uncertainty of decision makers’
opinions is dealt with in a novel extension of fuzzy Rough set theory. The results highlighted that the proposed method has
merits in reducing uncertainty and assessing the dependency between factors of complicated decision-making problems.
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Introduction

Hospital quality service assessment is critical for hospital
management. The modern lifestyle of society requires exten-
sive satisfaction with the quality and efficiency of hospital
services. During the past year of the pandemic, healthcare
and hospitals have proved to be one of the world’s most
highly complicated and significant sectors. The main aspects
of hospital service quality include (not limited to) equipment,
staff behavior, admitting, and several more directly related to
patients, for instance, payment and treatment time [1]. Patient
satisfaction is a degree of matching between the services that
patients receive from the hospital and their expectations [2].
Therefore, improving the service quality and efficiency of
hospitals’ services is a demanding task for decision makers
and managers.

To assess the quality of hospital services, health care
systems, and similar application domains, multi-criteria
decision-making (MCDM) is typically utilized; see in [3]
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and [4]. In MCDM tools, a set of alternatives are exam-
ined simultaneously with consideration of different criteria.
Techniques to address MCDM methods can be classified
into four categories: (i) measurement tools (i.e., allocating
a score for all the alternatives such as analytical hierarchy
process (AHP) [5], and Evidence theory [6]); (ii) refer-
ence level methods (i.e., using an aggregation function such
as TOPSIS (Technique for Order Preference by Similar-
ity to an Ideal Solution) [7, 8], and VIKOR (Multicriteria
Optimization and Compromise Solution) [9, 10]; (iii) out-
ranking methods (i.e., comparing the pairwise comparisons
for all single criterion such as PROMETHEE (king Organi-
zation Method for Enrichment Evaluation) [11], ELECTRE
I, II, III, IV (Elimination and Choice Expressing Reality)
[12], and QUALIFLEX (qualitative flexible multiple criteria
method) [13]); (iv) other methods. MCDM tools are capable
of handling complicated decision-making problems and are
applicable in many application domains, including, but not
limited to, business [14], process [15, 16], safety [17, 18],
and supply chain [19]. More relevant, the BWM [20] has
been maturely utilized in hospital service quality assessment
[21].

In this study, the Copula BayesianNetwork is employed to
evaluate the service quality of a hospital. The decision mak-
ers’ subjective uncertainty is dealt with in a novel extension
of fuzzy rough set theory, and an integrated ranking system
is presented to prioritize the alternatives. The study aims to
design a structure to evaluate the service quality of hospitals.
The outcomes could help the managers and decision makers
to systematically prioritize the factors and spend the bud-
get in a way that effectively improves the service quality of
hospitals.

The rest of the paper is organized as the following. Related
literature is presented in “Methodology”. Methodologies for
analyzing hospital service quality, including the Bayesian
Network, Copula functions, and the extended fuzzy rough set
theory, are provided in “Application of study”. “Conclusion”
demonstrates the application of the study provided to assess
and evaluate a hospital service quality. Finally, conclusions
and future discussions are listed in the last section.

Related literature

Researchers applied various MCDM methods and different
integrations of techniques to evaluate the healthcare service
quality in recent years due to its significance and the presence
of too many qualitative and quantitative factors. However,
service quality is vital for the survival of any service-based
company; hospitals and healthcare institutes are at the core
of the concentration. In the first study [1], the authors used
MCDM methods to evaluate the service quality of B-class
hospitals in Istanbul. They used AHP to find the impor-
tance weight of criteria, then TOPSIS and Yager’s min–max

approach were applied to rank the crisp performance values,
and finally, OWA and Compensatory AND operators were
employed to aggregate the result. In another study [2], a group
of scholars used MCDM tools to identify and evaluate crite-
ria influencing public hospitals in Iran. They used four hybrid
methods and integrated the results by the Copeland method
to achieve the main criteria of environment, responsiveness,
equipment, facilities, and professional capability. Another
study [3] employed a belief function theory to improve the
BWM method as a framework to assess the hospital ser-
vice quality problem. They tried to tackle the vagueness of
decision makers in qualitative judgment through these inte-
grations. The evaluation based on the patient’s view is also
investigated by [4] in a real case study in Istanbul. They used
the Interval Valued Intuitionistic Fuzzy concept to improve
TOPSIS to cope with the vagueness and complexity of evalu-
ation. Another study integrated the fuzzy sets theory and the
VIKORmethod to evaluate hospital service quality in Taiwan
[5]. They addressed vagueness, subjectivity, and uncertainty
with linguistic variables in triangular fuzzy number format.

In Croatia [6], AHP is used to measure the quality of pub-
lic hospitals. They ranked the top-performing hospitals in
the country. According to the study of [7], an integrated
distance-based Pythagorean Fuzzy method, TOPSIS, and
Fuzzy InferenceSystemdesign a framework that could evalu-
ate the healthcare service quality of hospitals. Their approach
is applied to a real case study for prioritizing the ten clinics
in a private hospital. Pythagorean Fuzzy TOPSIS is used to
determine the inputs of the fuzzy system, and the fuzzy infer-
ence system is applied to evaluate the clinic’s service quality
level. A study of [9] investigated the service performance
evaluation of hospitals in the recent COVID-19 situations
not only for health services but also for the elimination of
hesitations in the treatment and vaccination processes. They
integrated CRITIC-TOPSIS with fuzzy sets and designed
a framework to evaluate the hospitals, and they suggested
the required policies and strategies for hospitals under pan-
demic situations. Interested readers could also refer to [4] for
more comprehensive information about MCDM and health-
care service quality evaluation. However, MCDM methods
still suffer from a couple of shortages [22, 23]: (i) subjective
input information causes subjective uncertainty of results;
(ii) insufficient consideration of correlations between fac-
tors; (iii) disability in diagnosis analysis; (iv) insufficient
in dealing with stochastic-based decision-making problems.
Bayesian Network is an asset for model and analyzing the
dependence of systems and is proved to be a helpful tool
in several fields, such as safety and risk analysis [24–26],
human reliability analysis [27, 28], resilience analysis [29],
marine engineering [30, 31], and others. Bayesian Network
is constructed according to the Bayesian inference process
that can update the Bayesian Network with both predictive
and diagnostic analysis once new evidence(s) are obtained.
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Table 1 Related literature approaches

Study Problem Approach

An integrated evaluation model for service quality
of hospitals: a case study from Turkey [11]

Rank the hospitals according to service quality
from the patient’s point of view

Fuzzy-AHP and fuzzy TOPSIS

A fuzzy framework to evaluate service quality in
the healthcare industry: an empirical case of
public hospital service evaluation in Sicily [12]

Evaluate service quality in the public healthcare
sector

Fuzzy-AHP

Evaluating the service quality of the hospital using
TOPSIS with interval type-2 fuzzy sets [13]

Analyze and evaluate the service quality
performance of the hospital in Taiwan

Fuzzy TOPSIS

A combined fuzzy multi-criteria decision-making
approach for evaluating hospital website quality
[14]

Measuring the website quality of hospitals Fuzzy-DEMATEL

Hospital service quality evaluation: an integrated
model based on Pythagorean fuzzy AHP and
fuzzy TOPSIS [15]

Private hospital service quality evaluation Pythagorean fuzzy AHP and fuzzy
TOPSIS

Estimating the effect of health service delivery
interventions on patient length of stay: a
Bayesian survival analysis approach [17]

Estimating the effect of service delivery
interventions on patient length of stay

Bayesian structural survival model

Table 1 shows the related publications that mostly applied
Fuzzy-AHP and Fuzzy-TOPSIS integrations, and Bayesian
network was somehow neglected in hospital service evalua-
tion problem studies.

Moreover, the probability distributions can be engaged
to tackle the objective uncertainties by describing the con-
tinuous variables in Bayesian Network. Bayesian Network
also has considerable capability to inconsistent aggregate
information, quantify different uncertainties,measure depen-
dency between the factors, and have high flexibility and effi-
ciency to make optimum decision-making [32, 33]. Accord-
ingly, Bayesian Network and its extensions can be utilized
to address the drawbacks of MCDM tools by constructing
the Bayesian Network according to the prior knowledge that
comes up from decision-makers’ opinions or learning the
Network using conditional probability based on the consid-
erable input data.

Bayesian Network can be utilized to make a marginal
decision to evaluate hospital service quality with consider-
ation of confidence level. However, until now, no similar
study to assess hospital service quality using Bayesian Net-
work has been published. The typical Bayesian Network is
still suffering from a couple of shortages when it is imple-
mented in hospital quality service assessment, to be specific,
including modeling marginal distributions and considering
the dependency of interrelationships between factors based
on the stochastic nature of the problem [34–36]. Another
lack is that in the typical Bayesian Network, the conditional
probability tables will be larger and larger by increasing the
number of variables, making the problem too complex to
solve. Copula Bayesian Network is developed to address
the complicated dependencies of continuous variables using
marginal distributions and dependency functions to deal with

this issue. In addition, the Copula Bayesian Network can
adequately model the dependence and causalities between
variables, which further addresses the stochastic nature of
decision-making problems [37, 38].

Considering themerits of theCopulaBayesianNetwork to
solve a decision-making problem, subjective decision mak-
ers opinions still play vital roles in acquiring an important
weight of criteria in hospital quality service. Therefore, in
this study, an extension of fuzzy Rough set theory is used
to cope with the ambiguities and uncertainty of subjective
knowledge collected from decision makers which require no
prior knowledge of decision makers and can also objectively
handle the decision-making problems [39].

The contributions of this study are:

• The Copula Bayesian Network is used to analyze the hos-
pital service quality.

• A novel extension of fuzzy Rough set theory based on
neighborhood operators is engaged to deal with the sub-
jective uncertainty of decision-makers’ opinions.

• A framework for ranking a group of alternatives consider-
ing different criteria is proposed by combining the Copula
Bayesian Network and the extended fuzzy Rough set tech-
nique.

Methodology

In this section, a five-step-based methodology is proposed
to solve a decision-making problem by finding the optimum
solutions, see Fig. 1.
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Fig. 1 The proposed framework to obtain the optimum solutions

Step one: defining the decision-making problem

Decision-making problems in an ordinary way fall into a
problem to solve or a decision to make. The initial schedule
of solving the mentioned task is to define the problem (i.e.,
finding the highest priority for an alternative among a set of
alternatives). In this study, the decision-making problem is
designed to rank the alternatives in descending order by con-
sidering the importance weight of the criteria. Accordingly,
first, all potential alternatives, together with criteria, should
be recognized.

Step two: translating the decision-making problem
into a Bayesian Networkmodel

Bayesian Network is a well-known probabilistic tool for
constructing conditional dependency among a set of vari-
ables. The translation of the decision-making problem into a
Bayesian Network model is to structure, in detail, the deci-
sive goal and criteria (see Step 1). To be specific, Bayesian
Network is a well-known probabilistic tool to construct con-
ditional dependency among a set of variables consisting of
two parts: directed acyclic graph and Conditional Probability
Tables (CPTs). In the directed acyclic graph, nodes are vari-
ables, and edges are causalities between nodes. Nodes can

be categorized into root nodes (no edge points to), interme-
diate nodes (with both starts-with and point-to edges), and
leaf nodes (without start-with edges).

Bayesian Network propagates probabilistic information
by the conditional probability function [40], as:

P(A|B) � P(B|A) × P(A)

P(B)
, (1)

where P(A|B) represents the probability of node A given the
state of node B, P(A) and P(B) denote prior probabilities
of nodes A and B

Assume that in a typical BN, n variables as A1, A2, A3,
. . . , An , are included. In this accordance, the joint probability
distribution of variables is decomposed as:

P(A1, A2, A3, . . . , An) � P(A1|A2, A3, . . . , An)

× P(A2|A3, . . . , An) . . .

× P(An−1|An). (2)

Equation (2) can be simplified into Eq. (3) according to the
D-separation rule [20], as:

P(A1, A2, A3, . . . , An) �
n∏

i�1

P(Ai |Ai+1, Ai+2, . . . , An)
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�
n∏

i�1

P(Ai |Parrents(Ai )). (3)

Assume that a typical BN is structured having a set of
limited variables as M � {A1, A2, A3, A4}, and consists of
a set of arcs that illustrates the interdependency and relation-
ships between the existing variables. Bayesian Network is a
robust and powerful decision-making tool compared to the
other existing analysis method. The reason for utilizing BN
in this paper are highlighted as the following: (i) graphical
representation as a network helps decision makers that could
track the process and have a better undersetting of the prob-
lem, (ii) BN could engage both objective and subjective data
as an input, (iii) it also could handle the uncertainty as well
as updating the information.

Up to this point, Bayesian Network is briefly explained.
Next, Decision-makers should identify all factors and sub-
factors related to the alternative selection. Afterwards, the
importance weight of all factors and corresponding subfac-
tors should be computed, which will further be explained
in step three. Finally, the causality between the factors and
subfactors will be determined to better understand the cause-
and-effect relationship within the factors.

Step three: collecting experts’ opinions for factor
weighting

This step gathers a heterogeneous group of decision makers
(e.g., four to six individuals). It should be added that all of
the called decision makers must have a relevant background,
expertise, or education regarding the application of study and
have a proper understanding of the proposed methodology,
the idea behind the work, and how their contributions are
essential and can considerably value to the scientific com-
munities. In addition, the group of decision makers should
declare that there is not any conflict of interest as well as any
kind of relationship that might impact the outcome of the
elicitation process and the outcome of the investigations. A
group of experts as decision makers should be employed to
provide a proper significant weight for the factors involved.
In this study, an extension of the fuzzy Rough set the-
ory is improved to collect and aggregate decision-makers’
opinions. The aggregation of experts’ opinions into BN is
extensively discussed in previous authors’ published work.
To avoid repetition and duplication, an interested reader can
refer to the following references [41, 42].

Dubios and Prade [37] propose the fuzzy Rough set the-
ory[43]. Afterwards, several extensions have been proposed
to meet actual engineering requirements, and the most pop-
ular ones are fuzzy Rough set models [44, 45]. Such studies
extended the technique by replacing the fuzzy binary rela-
tions with a fuzzy covering or replacing the fuzzy binary

relations with fuzzy neighborhood operators. However, the
fuzzy covering is strict, which raises difficulties in common
decision-making problems.

To deal with this situation, the concept of β-coverings
is proposed in [46], in which two different fuzzy Rough
sets are presented by defining a fuzzy β-neighborhood.
Accordingly, Yang and Hu [47] worked to expand the the-
oretical knowledge related to fuzzy β-coverings estimation
space underlying the idea of fuzzy Rough set theory and
fuzz β-neighborhood operators. It should be noted that the
four types of fuzzy β-neighborhood operators proposed
in [47] can be further extended to the four categories of
fuzzy β-neighborhood operators [48]. However, the fuzzy
β-neighborhood operators cannot satisfy the relexification
feature, which is also a considerable shortage of the fuzzy
Rough set theory. Therefore, in this study, we unutilized a
novel type of reflex β-neighborhood operators in fuzzy β-
coverings [49].

The proposedβ-neighborhood operators are defined in the
following subsection.

Theories and definitions

Some of the main fuzzy operators can be summarized as the
following [39]:

(I) There are three types of t-norms (showing asτ ) for all
c, d ∈ [0, 1],
• The standard minimum operator:τM (c, d) � min(c,

d),
• The algebraic product: τP (c, d) � c ∗ d,
• The Lukasiewics τL(c, d) � max(0, c + d − 1),

(II) There are three types of R-implicators (showing as �)
for all c, d ∈ [0, 1],
• It is Godel implicator according to the τM

�τL (c, d) �
{
1c ≤ d
dd > c

,

where R-implicators for allc, d ∈ [0, 1], τL(c, d) �
sup{c ∈ [0, 1)|τ(c, d) ≤ d].

It is Godel implicator according to the τP

�τL (c, d) �
{

1c ≤ d
d/cd > c

• It is Lukasiewics implicatory according to the τL :
�τL (c, d) � min(c, c − c + d)

According to the fuzzy neighborhood operators, some of
the fuzzy covering can be summarized as follows.
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Definition 1 [46]. Let us assume that U is a universal set
where F(U ) denotes a fuzzy family set of U . Assume
that δ̃ � (δ1, δ2, . . . , δm) with δ j ∈ F(U ) and C �
(1, 2, . . .m) would be an index for all k ∈ C . For each
β ∈ [0, 1], δ̃ is named a fuzzy β-covering of U satisfying(⋃m

j�1 δm

)
(a ≥ β) for all a ∈ U . Then, the pair of

(
U , δ̃

)

is named a fuzzy β-covering estimation space and illustrated
as F βCAS

Definition 2 Let us assume that
(
U , δ̃

)
is a F βCAS for

someβ ∈ (0, 1] andδ̃ � (δ1, δ2, . . . , δm). Then for everya ∈
U , the β-neighborhood system can be written as:

�δ̃
β � {δ j ∈ δ̃|δ j (a) ≥ β}. (4)

In addition, the fuzzy β-neighborhood operator can be
defined as the following:

Where �δ̃
β,Ma(a)(a) ≥ β for each a ∈ U .

The operators �δ̃
β,Ma is somehow β-reflexive, and there-

fore this operator cannot satisfy the reflexivity when β �� 1.

�δ̃
β,Ma � {δ j (b)|δ j ∈ δ̃|δ j (a) ≥ β}. (5)

Definition 3 [47] . Let us assume that
(
U , δ̃

)
is a F βCAS

for some value of β ∈ (0, 1] anda ∈ U , the fuzzy β-minimal

description˜Md
Yang & Hu
β, δ̃ (a) and fuzzy β-maximal descrip-

tion˜Md
Yang & Hu
β, δ̃ (a) can be defined as the following:

(6)

˜Md
Yang &Hu
β, δ̃ (a)

� {δ j ∈ �δ̃
β |

(
∀δ j ∈ �δ̃

β (a)
) (

δi ⊆ δ j ⇒ δi � δ j
)

(7)

˜Md
Yang &Hu
β, δ̃ (a)

� {δ j ∈ �δ̃
β |

(
∀δ j ∈ �δ̃

β (a)
) (

δi ⊇ δ j ⇒ δi � δ j
)

Definition 4 Let us assume that ψ(δ, a) denotes a fuzzy
neighborhood system of a whena ∈ U , in which ψ(δ, a) �{
δ j ∈ δ

∣∣δ j (a)
〉
0
}
. Accordingly, the fuzzy minimal and max-

imal descriptions of a as˜Md(δ, a) and˜MD(δ, a), respec-
tively, can be presented as the following:

˜Md (δ, a)

� {δ j
∈ (δ, a) |(∀δ j ∈ (δ, a)

) (
δi (a) � δ j (a) , δi ⊆ δ j ⇒ δi � δ j

)
,

(8)

˜MD (δ, a)

� {δ j
∈ (δ, a) |(∀δ j ∈ (δ, a)

) (
δi (a) � δ j (a) , δi ⊇ δ j ⇒ δi � δ j

)
.

(9)

According to the mentioned equations, four fuzzy neigh-
borhood operators were proposed by D’eer et al. [50]. Let

us assume that
(
U , δ̃

)
is a finite fuzzy covering estimation

space (FCAS), τ a t-norm and L an implication. Therefore,
for ∀a, b ∈ U , the following operators can be defined:

�δ̃
1(a)(b) � infδi∈δL(δi (a), δi (b)), (10)

�δ̃
2(a)(b) � sup

δi∈˜Md(δ, a)
τ (δi (a), δi (b)), (11)

�δ̃
3(a)(b) � inf

δi∈˜MD(δ, a)
L(δi (a), δi (b)), (12)

�δ̃
1(a)(b) � supδi∈δτ (δi (a), δi (b)), (13)

where the fuzzy covering δ is a crisp covering, and the four
mentioned fuzzy neighborhood operators are fully reflexive.
The first and third operators are properly transitive, and the
last operator is symmetric.

Remark 1 Intuitionistic fuzzy numbers are one of the main
essential types of fuzzy numbers and arewidely used in fuzzy
operators. Toobtainmore information related to the intuition-
istic fuzzy number, one can refer to [51, 52].

Recently, four novel types of fuzzy β-neighborhood oper-
ators have been proposed by Ye et al. [49] to deal with the
shortcoming of existing neighborhood operators such as [47].
In the following, these three novel operators in a finite F β

CAS are explained.

Definition 5 Let us assume that
(
U , δ̃

)
is a finite Fβ CAS, τ

is a t-norm and L is an implicator, for a, b ∈ U , the operators
�

β

δ̃, s
(s � 1, 2, 3, and 4) : U � F́(U ) : a → �

β

δ̃, s
(a)

are redefined the four types mentioned above of fuzzy β-
neighborhood operators. �

β
δ, s (s � 1, 2, 3, and 4) can be

therefore defined as the following order:

�
β

δ̃, 1
(a)(b) � infδi∈δL(δi (a), δi (b)), (14)

�
β

δ̃, 1
(a)(b) � sup

δi∈˜Md(δ, a)
τ (δi (a), δi (b)), (15)

�
β

δ̃, 1
(a)(b) � inf

δi∈˜MD(δ, a)
L(δi (a), δi (b)), (16)

�
β

δ̃, 1
(a)(b) � supδi∈δτ (δi (a), δi (b)). (17)

According to Eqs. (14)–(17), the following results can be
concluded:

• If δ̃ is a fuzzy covering, Eqs. (14)–(17) can degenerate
into Eqs. (6)–(9), respectively. They would be called as
�1

δ̃, 1
� �δ̃

1, �2
δ̃, 2

� �δ̃
2,�

3
δ̃, 3

� �δ̃
3, and�

4
δ̃, 4

� �δ̃
4.
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• If δ̃ is a fuzzy covering, then �1
δ̃, 1

(a) ⊆
�

1,Ma
δ̃, 1

(a),�2,Ma
δ̃, 2

(a) ⊆ �1
δ̃, 2

(a), �1
δ̃, 3

(a) ⊆ �
3,Ma
δ̃, 3

(a),

and�4,Ma
δ̃, 1

(a) ⊆ �1
δ̃, 4

(a).

If δ̃ is a crisp covering, the operators �
β

δ̃, s
(s � 1, 2, 3,

and 4) overlap with four conventional kinds of neighborhood
operators, which are defined by Yao et al. [49].

It should be highlighted that the computation of opera-
tors �

β

δ̃, 4
and �

β

δ̃, 1
are independent of the factorβ. Once all

opinions are collected from decision makers in any form of
fuzzy numbers, all the fuzzy numbers can be aggregated into
a crisp number by implementing the above methodology.

Step four: performing Copula learning

A Copula is a function to create a joint multivariate dis-
tribution in which one dimension of marginal distribution
would be combined. Copula has enough capability, such as
having considerable flexibility in structural characterizing.
Moreover, it is a robust and powerful tool for selecting a prob-
ability distribution, even in mistaken selection [53]. Besides,
the n-dimensional continues multivariate random numbers
as vector x � (x1, x2, . . . xn) has this chance to be reformed
based on n univariate marginal distributions F1(x1), F2(x2),
. . . , Fn(xn) and n-dimensional Copula function C̃ , which
is defined in the following equations. The Copula function
C̃[0, 1]d → [0, 1] maps univariate the marginal joint cumu-
lative distributions F1(x1), F2(x2), . . . , Fn(xn) into the joint
distribution F [54].

F(x1, x2, . . . xn) � C̃(F1(x1), F2(x2), . . . , Fn(xn)). (18)

Also, when the marginals are continuous, C̃ can be
explained by:

C̃(u1, u2, . . . uk) � F
(
F−1
1 (u1), F

−1
1 (u2), . . . , F−1

n (un)
)
,

(19)

where Fi (xi ) ∀i ∈ {1, 2, . . . n} is the marginal distribution
of xi , and C̃ is based on the Copula function, and ui � Fi (xi )
for i ∈ {1, 2, . . . n}. Moreover, for the bivariate distribution,
F(x1, x2) can be shown in terms of the Copula function and
two different marginal joint cumulative distributions as:

F(x1, x2) � C̃(F1(x1), F2(x2), θ). (20)

In which, θ is signified by the Copula parameter to cal-
culate the dependency of two different variables x1 and x2,
defined by the Pearson correlation coefficient and denoted as
ρ. The parameter ρ, therefore, be obtained as:

ρ �
∞∫

−∞

∞∫

−∞

(
x1−μx1

σx1

)(
x2−μx2

σx2

)
f1(x1) f2(x2)∂C̃

×
(

F1(x1), F2(x2), θ

∂F1(x1)∂F2(x2)dx1dx2

)
. (21)

In which, μx1 and μx2 are the mean values of x1 and x2,
σx1 and σx2 reflect the standard deviation of x1 and x2, and
f1(x1) and f2(x2) represent the marginal probability density
function of x1 and x2, respectively.

Integrating Copula into Bayesian Network to create Cop-
ula Bayesian Network models supports the handling of
complex decision-making problems, as it can fully consider
the dependency within the variables in the Network based
on an existing database. Considering data availability from
objective data or elicitation process from decision makers,
Copula can be appropriately determined by two different
aspects: marginal distributions to fit the variables’ proper-
ties and Copula functions to model dependency structure.
The way of determining marginal distributions and Copula
functions is provided as follows:

(i) Determining marginal distributions
The most significant task to evaluate the best-fitted

marginal distribution for the variables is properly describing a
probability distribution. Three types ofmarginal distributions
are typically used Normal distribution, Beta distribution, and
lognormal distribution, see Table 2. To evaluate the preci-
sion of marginal distributions, the comparison tools like the
Akaike Information Criterion (AIC), see Eq. (18) is appli-
cable. The AIC with minimum value shows that the best
marginal distribution is fitted.

(22)

AIC � −2 × log(max likelihood) + 2

× (
number of parameters

)
,

where the likelihood is the maximum value for the model.
(ii) Determining the Copula function
Copula functions have unique characteristics such as tail

dependency, symmetry, etc. Therefore, these Copula func-
tions can be utilized to fit the various models and make an
appropriate effect on the output’s viability.Besides, theGaus-
sian normal Copula, which is one of the most important and
common Copula based on elliptical Copula, is presented as:

CoGρ (x1, x2, . . . xn) � φρ(φ
−1(x1), φ−1(x2), . . . φ−1(xn)).

(23)

The Gaussian normal Copula is an n-dimensional gen-
eralization, easy to structure dependencies with uncertainty,
and efficient in modeling bivariate distribution with a lack of
data [45]. Therefore, Gaussian normal Copula among exist-
ing ones is selected in this study. The density function of
Gaussian normal Copula is presented as:
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Table 2 Three types of marginal
distributions Name of distribution PDF Mean Standard deviation

Normal 1
σ
√
2π

exp
(
− (x−μ)2

2σ 2

)
μ σ

Log-normal 1
xσ

√
2π

exp
(
− (log x−μ)2

2σ 2

)
exp

(
μ + σ 2

2

) √(
exp

(
σ 2

) − 1
)
exp

(
2μ + σ 2

)

Beta (x−a)α−1(b−x)β−1

β(α,β)(b−a)α+β+1

α
α+β

αβ

(α+β)2(α+β+1)

PDF Probability Density Function

(24)

CoGρ (x1, x2, . . . xn) � ∂CoGρ (x1, x2, . . . xn)

∂x1, ∂x2, . . . ∂xn

� |ρ|
(
− 1

2

)
exp

(
−1

2
ξ

(
ρ−1 − I

))
.

Thus, the main difference between the Gaussian normal
Copula and joint cumulative distribution function is that the
variables in the Gaussian normal Copula follow different
types of themarginal cumulative distribution function, which
provide a better firing with a complex system.

In Eqs. (19) and (20), the ρ is the n-order symmetric
positive definite with the diag(ρ) � 1, φρ is a standard
multivariate normal distribution with correlation matrix ρ,
φ−1 denotes the inverse function standard univariate normal
cumulative distribution function ξ � (φ−1(x1), φ−1(x2),
. . . φ−1(xn)), and I represent the unit matrix. Assume that
the dimension of n is equal to 2, the following Equation can
determine the bivariate normal Copula, as:

CoGρ12 (u, ν)�
φ−1(u)∫

−∞

φ−1(ν)∫

−∞

1

2π
√
1 − ρ2

exp

(
− s2 + t2 − 2ρst

2

)
dsdt ,

(25)

where ρ12 represents the correlation coefficient of the bivari-
ate standard normal distributions.

Step five: Bayesian network analysis

In this section, four types of analysis are introduced to show
the proposed model can be effectively used in decision-
making problems, including (i) model validation, (ii) cor-
relation analysis, (iii) forward propagation analysis, and (iv)
backward propagation analysis.

Model validation

The Kolmogorov–Smirnov test is performed to estimate the
goodness of the obtained best-fitting marginal. The Kol-
mogorov–Smirnov test calculates the distance within the
empirical distribution and approximates the distribution’s
function, see Eq. (26). In the null hypothesis at a signifi-
cant level of 0.5%, the data shape a unique distribution when

h � 0 and p-value > 0.05.

D � Sup−∞<x<∞
∣∣F exp(x) − Fabs(x)

∣∣. (26)

Which Fabs follows the empirical distributions according
to the collected data. Fexp(x) follows the approximated dis-
tribution, and the supremum of the measurement distance is
Sup.

Similarly, the empirical Copula depends on the given data
engaged in examining if the Gaussian Copula makes for the
best fitting of the data. Assume that (xi , yi ) (i � 1, 2, . . . n)

are a sample from (X , Y ). The empirical distribution func-
tions of XandY can be presented by Fn(x) and Gn(x),
respectively. Accordingly, the empirical bivariate Copula is
defined as:

̂Con(u, ν) � 1

n

n∑

i�1

I[Fn(xi )≤u] I[Gn(xi )≤ν], u, ν ∈ [0, 1],

(27)

where I[, ] denotes the indicative function, and Fn(xi ) ≤ u,
I[Fn(xi )≤u] � 1; otherwise, I[Fn(xi )≤u] � 0.

In addition, the empirical Copula can be compared with
other types of Copulas according to the computation of
Euclidean distance as the following Equation:

d2 �
n∑

i�1

∣∣∣̂Con(ui , νi ) − Ĉo(ui , νi )

∣∣∣
2
, (28)

where ui � Fn(xi ), νi � Gn(xi ) (i � 1, 2, . . . n),
̂Con(ui , νi ) stands for the empirical Copula, and Ĉo(ui , νi )

is the best-fitted Copula.

The correlation analysis

The Correlation analysis is to quantify the correlation degree
between two variables or nodes. The standard correlation
coefficientmeasures the linear relation between twovariables
and does not consider the impact of other variables. However,
it may be the effect of the un-controlled variable on these two
variables, which causes misleading outputs. To deal with this
challenge, one can use the partial correlation coefficient to
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evaluate relationships between the two variables under the
influence of other variables in the Network. For instance,
variable z is related to two variables of x and y, and the
partial correlation analysis of the x and y can be computed
according to standard correlation as presented in Eq. (29), in
which the output is between zero and 1, meaning that zero
shows that there is no linear relationship and 1 or− 1 denotes
the highest or lowest linear relationships:

γxy, z � γxy − γxzγyz√(
1 − γ 2

xz

)(
1 − γ 2

yz

) , (29)

where γxz denotes the correlation between two variables x
and z, γyz is the correlation between the variables y and
z, γxy, z is the correlation between x and y; both are un-
correlated with variable z.

In addition, the Spearman ranking correlation has simi-
larities with the partial correlation coefficient. If the result is
closer to 1 or − 1, the relationships would be more robust.
In addition, Spearman’s ranking correlation is significantly
dependent on the ranking of each variable rather than the
existing data, see Eq. (30):

rR � 1 − 6
∑n

i d
2
i

n
(
n2 − 1

) , (30)

where di � rank(xi )−rank(yi ) is the gap in the ranks accord-
ing to the element i is somehow the paired set of data x and
y, and n denotes the amount of data from the two variables
x and y.

Forward propagation

Forward propagation analysis is adding newevidence into the
nodeswith the exaptation of leaf nodes, in this case, Bayesian
Network could be renovated by forwarding propagation. The
goals provided in the leaf nodes evaluate how appropriate
locations would exist for lift installation. This can be predi-
cated in Eq. (31) following an assumption, which causes are
mutually independent:

(31)

P (z) �
∑

x

P(z|x1, x2, . . . , xn)P (x1, x2, . . . , xn)

�
∑

x

[
P (z|x1, x2, . . . , xn)

n∏

i�1

P (xi )

]
,

where (x1, x2, . . . ., xn) is a group of random variables
denoted the causes, and z is the main goal in the Bayesian
Network.

According to the Equation above, the marginal distribu-
tion with the leaf node’s mean and variance will be altered.

Therefore, the best location can be evaluated compared to
the effect in the Bayesian Network according to the different
forward reasonings.

Backward propagation analysis

Backward propagation analysis is to diagnose the goal’s
causes in complicated system dependency. Bayes’ theorem
is used to compute the posterior probability distribution of
causes xi . The distribution variation shows howmuch a cause
can contribute to the consequence, see Eq. (32). In general,
the greater is the change, the more significant the cause is in
the location determination of the system:

P (xi |z)� P (z|xi ) P (xi )

P (z)
� P (z|xi ) P (xi )∑

x

[
P (z|x1, x2, . . . , xn)

∏n
i�1 P (xi )

] ,

(32)

where P(xi |z) is the conditional probability for variable xi
given evidence z.

Application of study

Hospital service quality in aMetropolitan city is estimated by
the proposed fuzzy Rough Copula Bayesian Network based
on neighborhood operators’ decision-making approach. The
health care service system has 200 beds capacity and 11 oper-
ation rooms. This hospital is allocated to the affected patients
with COVID, with a high number of confirmed cases per 1
million people and considerable loss of medical service staff
in the early stage of the SARS-CoV-2 outbreak. In addition,
heavy daily patient circulation and an increasing number of
confirmed severe cases requiring hospitalization are caus-
ing the hospital to face a lack of bed capacity. Increasing
the workload of medical staff in a short period maximizes
the need to sterilize the equipment and medical tools. Thus,
this extensive workload is supposed to raise the number of
confirmed cases and occupational accidents. As can be seen
From Fig. 2, the alternatives and criteria of the present study
to evaluate hospital service quality are obtained from [3, 5,
55].

The evaluation of hospital service quality includes 6
criteria (C1–C6) and 33 sub-criteria (F1–F33). Decision-
makers knowledge and technical information are employed
to establish the Bayesian Network model. The criteria and
sub-criteria will cause the center of attention, which is called
the service quality index (QI). The QI explains as a proba-
bilistic service quality index, which indicates how much the
understudy hospital good is in service quality in a range of
zero and one. The QI can quantitively show the service qual-
ity of hospitals. Besides, for a single hospital, QI ranks the
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Fig. 2 The structural criteria and sub-criteria to assess hospital service quality

subfactors from the best to worth, and subsequently, correc-
tive actions can be presented to improve theworth subfactors.
To create the influence diagram (cause and effect), in the
Bayesian Network of all 33 subfactors, 6 criteria and QI
are named root nodes, intermediate nodes, and leaf nodes,
respectively.

Using the input data obtained from800patients in a private
hospital in Tehran Metropolitan, the size of the decision-
makingproblemwould be 33×800,which directly influences
hospital service quality. In this problem, each problem has
800 data points to construct the marginal distribution that has
been modeled in the Bayesian Network structure. The deter-
mined 33 variables obtained from the patients’ opinions act
as evaluation indicators to evaluate the influence on the ser-
vice quality index. It is also clear that the higher numerical
value is showing much more promising with specific vari-
ables. Respecting the consistency of input data, all 33× 800
collected from patients’ and decision makers’ opinions are
normalized in intervals zero and one.

Concerning the different input data, #C1 − #C6 play the
intermediates nodes in the influence diagram. Root cause
analysis shows that the reason for intermediates nodes is
based on the nodes #F1 − #F33. As a hierarchical structure,
the nodes at different levels contribute to the node QI, which
is located at the highest level. Obtaining the value of QI is
the first task that can be defined as a functional node. QI
describes the hospital quality index qualitatively. Using qual-
itative decision makers opinions based on a fuzzy Rough set,
the functional node ofQI is defined as theweighted sumof six
criteria or intermediate nodes #C1−#C6 following the Equa-
tion asQI � 0.1C1+0.1C2+0.25C3+0.1C4+0.15C5+0.3C6.

An extension of fuzzy Rough set theory based on fuzzy
β-neighborhood operators using Eq. (14) is utilized to illus-
trate the way of obtaining importance weight set, that is,
{0.1, 0.1, 0.25, 0.1, 0.15, 0.3}. The type of data in the is most
of the fuzzy Rough theory-based applications is IFNs (intu-
itionistic fuzzy numbers), obtained from the language terms’
translation. However, it is rare to derive IFNs from the cur-
rent data for numerical data with ambiguity and uncertainty
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Table 3 The best-fitted marginal distributions for the input variables in Copula Bayesian Network

Input variables Marginal
distributions

Relevant parameters Input variables Marginal
distributions

Relevant parameters

#F1 Normal μ � 0.254, σ � 0.211 #F21 Normal μ � 0.221, σ � 0.75

#F2 Beta α � 7, β � 3.51, a � 0,
b � 1

#F22 Normal μ � 0.416, σ � 0.100

#F3 Log-normal μ � −0.114, σ � 0.251 #F23 Normal μ � 0.156, σ � 0.741

#F4 Normal μ � 0.098, σ � 0.156 #F24 Log-normal μ � −0.856, σ � 0.021

#F5 Beta α � 1.984, β � 7.895,
a � 0, b � 1

#F25 Log-uniform μ � 0.156, σ � 0.245,
a � 0, b � 1

#F6 Log-normal μ � −0.547, σ � 0.102 #F26 Normal μ � 0.485, σ � 0.012

#F7 Log-normal μ � −0.254, σ � 0.001 #F27 Normal μ � 0.756, σ � 0.010

#F8 Log-normal μ � −0.145, σ � 0.201 #F28 Log-normal μ � −0.313, σ � 0.001

#F9 Gamma α � 3, β � 1.5, a � 0,
b � 1

#F29 Normal μ � 0.157, σ � 0.24

#F10 Normal μ � 0.145, σ � 0.025 #F30 Log-normal μ � −0.125, σ � 0.754

#F11 Log-normal μ � −0.688, σ � 0.008 #F31 Log-normal μ � −0.515, σ � 0.001

#F12 Log-normal μ � −0.985, σ � 0.085 #F32 Normal μ � 0.954, σ � 0.250

#F13 Normal μ � 0.321, σ � 0.081 #F33 Log-normal μ � −0.115, σ � 0.015

#F14 Log-normal μ � −0.851, σ � 0.845 #C1 Beta α � 9.521, β � 8.546,
a � 0, b � 1

#F15 Normal μ � 0.414, σ � 0.110 #C2 Beta α � 4.568, β � 8.964,
a � 0, b � 1

#F16 Log-normal μ � −0.212, σ � 0.234 #C3 Gamma α � 4.5, β � 2.5,
a � 0, b � 1

#F17 Log-uniform a � 0.25, b � 1 #C4 Log-normal μ � −0.914, σ � 0.121

#F18 Log-normal μ � −0.114, σ � 0.251 #C5 Log-normal μ � −0.319, σ � 0.361

#F19 Normal μ � 0.654, σ � 0.089 #C6 Normal μ � 0.865, σ � 0.021

#F20 Normal μ � 0.556, σ � 0.184

in practice. Therefore, it asked 800 patients to express their
opinions on the more important criteria as an extra task. The
62 patients out of 800 share their judgment in qualitative
terms. The collected qualitative terms. There are a couple
of approaches such as that use proposed Pythagorean fuzzy
numbers (PFNs) as a proper alternative for IFNs, such as in
[56, 57]. Therefore, all collected input qualitative terms are
transferred into the PFNs and then aggregated into a single
PFN. Since all PFNs are obtained from every single criterion,
using Eq. (14), the crisp importance weight for all criteria is
then computed.

According to the QI function, criteria C6 has a more sig-
nificant impact on the result. Also, the linear function of QI
shows the normalized evaluation of six intermediate nodes.
As much as the #C1 − #C6 is close to the 1, which means
they have better performance in Bayesian Network. How-
ever, the main important task is ranking the subfactors to
find out that with the lowest rank and further corrective
actions to be improved.Therefore, a groupof decisionmakers

identified the variables which they will thoroughly evalu-
ate by Copula Bayesian Network. To model QI uncertainty
in Bayesian Network, the main task is finding the proper
marginal distribution for the continuous variables #C1−#C6

and #F1 − #F33, indicating the corresponding probability
distribution data learning. The marginal distributions can
properly fit the extreme values compared to the empirical
distributions. As listed in Table 2, three marginal distribu-
tions are engaged to model the empirical distributions of
continuous variables #C1 −#C6 and #F1 −#F33 from learn-
ing data. Mainly, the six intermediate nodes #C1 − #C6 are
somehow input variables, and the best marginal distributions
would be fitted to their input data. The process of fitting
marginal distribution for all 33 input variables. For every sin-
gle variable, theAIC value of all three candidate distributions
is compared to obtain the best-fitted marginal distributions
considering the lowest AIC value. One of the main ways to
obtain the marginal distributions is using the maximum like-
lihood approach. Table 3 provides the best-fitted marginal
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Fig. 3 The Copula Bayesian Network evaluates the hospital’s quality index

distribution for all input variables. These obtained marginal
distributions should then be validated using Eq. (26). It is
concluded that bothmarginal distributions and empirical data
have compact shapes, which means that the marginal distri-
butions have a high capability to be fitted to the empirical
distributions. All marginal distributions are acceptable as
they have a significant level of 0.5%, with h � 0 and p value
> 0.05. Accordingly, the bivariate Copula with considera-
tion of interpretability and symmetry is integrated into the
structured Bayesian Network model to characterize depen-
dency between the variables-based Eq. (28), and therefore
by computing the Euclidean distance between the empirical
distributions (Eq. (27)) and another type of Copula func-
tion including t-Copula Gumbel Copula, and Frank Copula,
the effectiveness of normal Copula can be verified. To show
the dependency of the variables to reach the hospital service
quality index (QI) with consideration of multivariate Copula
relevant criteria and subfactors, the Gaussian Copula is used
(Eqs. 23, 24). The corresponding Copula Bayesian Network
is depicted in Fig. 3.

To make a proper decision in assessing and evaluating
the hospital quality service, correlation analysis, standard
statistical analysis, and regression analysis is performed, in
which the influence of each factor in the constructability ofQI
is assessed. Therefore, the factor with the highest correlation
should be the lowest rank to receive corrective actions to
improve the hospital service quality in the next assessment.
The result of the studies above is provided in Table 4.

As it can be seen from Table 4, subfactor #F24 (Hos-
pital health caregivers and medical staff care for patients)
has the lowest rank and needs to be improved by correc-
tive actions. It is followed by #F9 (Hospital has patient
catering services), #F13 (Hospital with professional medi-
cal staff), #F26 (Medical staff for individual requirements of
the patient), and #F3(Good ventilation in hospital wards). A
comparison of the results reached by the proposed approach
and a novel BWM-based method with an extension of belief
theory [3] is performed, see Fig. 4. It can be concluded
that the two approaches present different results. However,
this study has merits in consideration of multiple types of
distributions, Log-Normal, Normal, and Beta, rather than
only the Normal distribution considered in [3], and distribut-
ing weights to experts to avoid bias of experts’ opinions
applied.Hence, the results computed by the proposedmethod
tend to be more reliable and credible than those of other
methods, such as in [3], and others that are disabled to con-
sider the aforementioned aspects. The correlation analysis
between the strongest variables is presented in Fig. 5 ((QI-
#F4(E(QI|#F4 � 3.324+0.044#F4−0.137#F2

4 +0.478#F
3
4 ),

QI-#F21(QI |#F21 � 3.317 + 0.008#F21 − 0.015#F2
21 +

0.001#F3
21), and QI-#F27(QI |#F27 � −456.007 +

1897.006#F27 − 2571.050#F2
27 + 1160.961#F3

27)), the sam-
ple is equal to 10,000).

Another analysis is backward propagation using Eq. (32)
is performed to obtain the optimal hospital quality index.
As can be seen from Table 5, the results of the posterior
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Fig. 4 A comparison study based
on the present study and in [3]

probability of criteria and subfactors are provided. The cor-
relation analysis between the most substantial variables is
presented in Fig. 6. It can be understood that the optimal
value of #C1 − #C6 and #F1 − #F33 to reach QI � 1 will
change the priority of receiving corrective actions for the
sub-actors to improve the hospital service quality for the next
assessment turn.

The last analysis is forward propagation or Copula
Bayesian inference, which adds new evidence to the prior
probability of variables. More specifically, the current ver-
sion of the Network can continuously modify the newly
added evidence(s). Therefore, the hospital quality index
could be updated, subsequently, in the forward propagation
using Eq. (27). It merely denotes that forward propagation is
a supportive tool to update decision-making over time in dif-
ferent types of scenarios. In this study, we defined a scenario

by changing the distributions of variables #F11, #F18, and
#F31 from lognormal into Beta distribution within parame-
ters of α � 8.5, 11.5, a � 0, and b � 1. The result of the
forward propagation analysis is provided in Table 6. The cor-
relation analysis between the strongest variables is presented
in Fig. 7.

According to the analysis that has been performed, deci-
sion makers can obtain which factors have the lowest rank
and need corrective actions to be received. Moreover, it can
be understood what the outstanding value of each factor is to
reach the optimum service quality index and how the model
can be updated and be dynamic over time. Besides, in the
case of a couple of hospitals, they can be compared together
based on the value obtained from the service quality index
for every single hospital. This may also affect receiving the
budget, award, and system reputation.
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Fig. 5 The correlation analysis between the most robust variables

Comparison analysis

This subsection aims to determine the proposed method-
ology’s feasibility and practicality via comparison analysis
with initially two standard MCDM methods, and then with
regular BN. In this subsection, the result of the proposed
approach is comparedwith three differentmethods, including

BWM [58], TOPSIS [59], and regular BN. The comparison
outcomes among the proposed approach, BWM, and TOP-
SIS are presented in Table 7, illustrated in Fig. 8. This reflects
that the priority of all solutions is entirely consistent with
the first highest of the solutions. It simply means that the
first solution in all methods is the same. This shows that the
decision makers, based on some realistic restrictions such as
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Fig. 6 A comparison study
before and after backward
propagation

time and complexity, can also rely on other types of methods.
However, as reflected by the results of the two selected other
models, this deduction is not valid for selecting the optimal
solution.

In addition, the Spearman rank correlation coefficient is
computed between each pair of methods, displayed in Table
8 to accurately reflect the conformity of the importance
ranking of methods. Clearly, the greater Spearman corre-
lation coefficient simply means higher conformity between
the ranking techniques. As presented in Table 8, the ranking
conformity of the proposed approach with other methods,
BWM and TOPSIS, is greater than the ranking conformity
with the rest of the pairwise comparisons. The conformity
of failure modes priorities in comparison to the proposed
approach with three other methods proves that the devel-
oped approach works correctly in the same direction as the

other three methods, while the slight differences affirm the
excellence proposed approach method due to its more robust
mathematical structure versus the other methods. As men-
tioned in the methodology section, a physical explanation
for this is that the proposed approach considers the different
types of uncertainty, including process,model, subjective and
objective input data.

According to the Spearman correlation coefficient, the
importance weighting in descending order is provided, and
the total ranking of the proposed approach with BWM and
TOPSIS is depicted in Fig. 9. Thus, comparedwithBWMand
TOPSIS, the proposed approach in this study is much more
reliable and applicable in identifying the inter-relationship
between different factors.

In the next comparison analysis, we developed regular BN
considering the same input data and compared the outcomes
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Fig. 7 A comparison study
before and after forward
propagation based on the defined
scenario

with the proposed Fuzzy Rough Copula Bayesian Network
model. As it can be seen from Fig. 10, an illustration of
regular BN is developed using the GeNIe Modeler software
package (https://www.bayesfusion.com/genie/). It should be
added that, in the previous study conducted by authors [60],
the regular BN is applied to assess the assess the quality
index of amedical service. The input information for relevant
alternatives (child nodes in Bayesian Network) is obtained
from objective and subjective data. As an example, for the
node alternative “Hospital staff are neat and tidy”, the per-
centage of how much this sentence is correct is obtained.
Subsequently, the best-fitted distraction derived is the normal
distribution. This process is continued for all nodes to obtain
the best-fitted disruptions based on objective data or subjec-
tive opinions from decision makers. For the node obtained
objectively, “Hospital has a professional medical staff”. It

should be added that more than 90% of the data points are
less than 80%, and the data focus on average values. The
criticality analysis is carried out in the regular BN model to
show the priority of failure modes and their contributions to
the quality index. As it can be seen from Table 9, the fail-
uremode priority in the proposed approach and regular BN is
different, and the fact is that the proposed approach considers
both objective and subjective uncertainty while the regular
BN does not. The Spearman rank correlation coefficient is
derived as 0.804489, which is less than the Spearman rank
correlation coefficient of BWM and TOPSIS. However, reg-
ular BN, due to its capability to be updated over time, has
much more advantages compared to the common MCDM
tools.
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Fig. 8 The comparison of the
proposed approach with BWM,
and TOPSIS

Fig. 9 The importance ranking of
among each pair of the proposed
approach with BWM, and
TOPSIS
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Conclusion

This study proposes integrating the Copula Bayesian Net-
work and fuzzy Rough set theory to assess, evaluate, and
manage hospital service quality under an uncertain environ-
ment. The hospital service quality evaluation problem has
been investigated by different researchers and several inte-
grated methods. The current study used the Copula Bayesian
Network to analyze the service quality, where a novel exten-
sion of fuzzy Rough set theory based on neighborhood
operators is employed to tackle the subjective uncertainty
of the problem. The designed framework integrates the Cop-
ula Bayesian Network and extends fuzzy rough set theory
could rank a group of alternatives considering different cri-
teria. In the present work, it is derived that the F24 (Hospital
health caregivers andmedical staff care for patients) have the
lowest rank and need to be improved by corrective actions. It
is followed by #F9 (Hospital has patient catering services),

#F13 (Hospital with professional medical staff), #F26 (Med-
ical staff for individual requirements of the patient), and
#F3(Good ventilation in hospital wards).

Based on the results obtained from the proposed approach,
the following merits and advantages compared to MCDM
tools can be highlighted:

• Copula Bayesian Network model can provide a better
understanding of the causalities and the features in a com-
plex system like hospital quality service, which many
factors play a role in this regard.

• Copula Bayesian Network can also serve as a more con-
victing decision-making tool under objective uncertainty
using different distributions and performing inference
analysis over time.

• Utilizing a novel extension of fuzzy Rough set theory as
a powerful tool can properly deal with inaccuracy. The
advantage is that this does not necessarily require any prior
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Fig. 10 An illustration of regular BN is developed using GeNIe Modeler software

knowledge beyond the data set, and in some studies with
a lack of data could be a reliable choice.

• Using a new neighborhood operator in the proposed exten-
sion of fuzzy rough set theory can adequately satisfy
reflexivity.

However, during the study, a couple of challenges have
arisen in this study, which need to be considered as a direc-
tion for future work. First, in this study, the Clayton Copula
is not evaluated as a tool; therefore, this should be considered
with the three other types of Copula functions. Secondly, in
this study, a method is proposed based on dealing with a
combination of subjective and objective uncertainties, that
is, while a combination of them is under discussion in litera-

ture; thus, it would be better to propose a method much more
objectively or subjectively. Finally, using a hybrid method-
ology has extensive advantages in dealing with a complex
decision-making problem; however, in practice, as a limita-
tion, it makes time-consuming and cannot be a proper tool
in an emergency decision-making problem. Therefore, such
hybrid approaches need to be coded as an application. As
the future direction, the probability theory can be integrated
into MCDM methods alongside fuzzy concepts. Moreover,
evaluating the service quality of different departments in a
hospital is a potential topic for further studies.
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Table 7 The factors and their corresponding priority ranking

Failure modes Ranking

Proposed approach BWM TOPSIS

F1 9 9 7

F2 23 22 22

F3 12 10 9

F4 14 14 12

F5 17 15 15

F6 28 26 27

F7 26 24 25

F8 31 29 30

F9 13 13 11

F10 15 15 14

F11 5 5 4

F12 6 7 4

F13 2 3 3

F14 1 2 1

F15 4 1 4

F16 24 21 23

F17 19 17 18

F18 22 20 21

F19 8 8 6

F20 33 31 32

F21 16 15 13

F22 21 18 19

F23 27 25 26

F24 32 30 31

F25 18 16 17

F26 7 6 5

F27 29 27 28

F28 20 19 20

F29 3 4 2

F30 10 11 10

F31 30 28 29

F32 11 12 8

F33 25 23 24

Table 8 Spearman correlation coefficient of priority sequence among
each pair of the proposed approach with BWM, and TOPSIS

Importance
weight

Pairwise comparison Spearman
correlation
coefficient

3 Proposed
approach

TOPSIS 0.9956792

2 Proposed
approach

BWM 0.9941180

1 BWM TOPSIS 0.9900797

Table 9 The factors and their corresponding priority ranking

Failure modes Ranking

Proposed approach Regular BN

F1 9 8

F2 23 24

F3 12 1

F4 14 9

F5 17 16

F6 28 21

F7 26 23

F8 31 29

F9 13 12

F10 15 13

F11 5 15

F12 6 5

F13 2 3

F14 1 6

F15 4 7

F16 24 20

F17 19 18

F18 22 27

F19 8 10

F20 33 32

F21 16 17

F22 21 22

F23 27 26

F24 32 33

F25 18 19

F26 7 33

F27 29 28

F28 20 14

F29 3 4

F30 10 2

F31 30 30

F32 11 11

F33 25 25
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