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Abstract
In the complex tasks environment, efficient state feature learning is a key factor to improve the performanceof the agent’s policy.
When encountering a similar new environment, reinforcement learning agents usually need to learn from scratch. However,
humans naturally have a common sense of the environment and are able to use prior knowledge to extract environmental state
features. Although the prior knowledge may not be fully applicable to the new environment, it is able to speed up the learning
process of the state feature. Taking this inspiration, we propose an artificial potential field-based reinforcement learning (APF-
RL) method. The method consists of an artificial potential field state feature abstractor (APF-SA) and an artificial potential
field intrinsic reward model (APF-IR). The APF-SA can introduce human knowledge to accelerate the learning process of
the state feature. The APF-IR can generate an intrinsic reward to reduce the invalid exploration and guide the learning of the
agent’s policy. We conduct experiments on PySC2 with different mini-games. The experimental results show that the APF-RL
method achieves improvement in the learning efficiency compared to the benchmarks.

Keywords Deep reinforcement learning · Artificial potential field · State representation · Intrinsic reward

Introduction

Deep reinforcement learning (DRL) has been developing
rapidly in recent years. It has been widely used in various
fields, such as playing Atari games [1,2], robotic motion
control [3,4] and recommendation systems [5,6]. Although
DRL methods hold promise for automating a wind range
of decision-making tasks, these methods encounter the chal-
lenge of sample complexitywhen applied to real-world tasks.
The existence of various uncertainties in the real-world tasks
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[7] greatly increases the difficulty of sampling. Even in
some relatively simple tasks, millions of data collection are
required. Complex taskswith high-dimensional observations
and sparse rewards tend to require much more data. In addi-
tion, a large number of random explorations may generate
invalid sample data, which further increases the difficulty of
effective data collection.

During the learning process of humans, when they
encounter a similar environment, they usually use learned
common knowledge to extract its state feature. When this
extracted feature is applied in the state feature learning, the
performance can be improved even if the extracted feature
is not complete. The introduction of human knowledge can
reduce the invalid exploration by the agent in complex task
environments. In addition, integrating human knowledge is
promising to improve the efficiency of environmental state
feature extraction and reduce the complexity and invalidity
of the samples.

There have been studies that combine human knowledge
with reinforcement learning. Hu et al. [8] and Fischer et al.
[9] introduce logical rules into the deep neural network to
improve learning efficiency and model performance. Hes-
ter et al. [10] use human knowledge in imitation learning in
anticipation of solving sequential decision problems. Zhang
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et al. [11] represent human knowledge with the fuzzy logic
rules and leverage this knowledge to accelerate the learning
process of reinforcement learning agents. To deal with vari-
ous uncertainties in the environment, Xin et al. [12] designed
a probabilisticmodel to capture uncertainties in the dynamics
of complex systems using human knowledge, and Zhuang et
al. [13] proposed an iterative online learning method to adapt
the dynamics model to an unknown environment. Xie et al.
[14] and Noguchi et al. [15] combine the artificial potential
field with the reinforcement learning methods to solve the
problem of autonomous navigation and obstacle avoidance
of the agent. The artificial potential field (APF) method [16]
models the agent’s motion space as a virtual potential field
space by constructing a potential function based on human
knowledge about the environment.

Inspired byAPF,wepropose a novelAPF-basedRL (APF-
RL) method, which integrates human knowledge into RL
methods in an end-to-end manner. APF-RL can effectively
extract vital state information from a complex and uncertain
reinforcement learning environment for agent policy learn-
ing. This vital state information allows agent to avoid a lot of
invalid exploration and improve the efficiency of sampling,
therefore accelerating the learning process. The major con-
tributions of this work can be summarized as follows:

1. APF-based RL. We propose an artificial potential field-
based reinforcement learning (APF-RL) method which
can be combined with any policy-based method. APF-RL
consists of two parts: APF-SA and APF-IR.

2. State representation via APF. Artificial potential field
state feature abstractor (APF-SA) is designed for complex
task environments, which incorporates human cognition
of the environment into the potential field computation
and represents the state feature of the environment as the
potential field.

3. Reward shaping via APF.We design an artificial poten-
tial field intrinsic reward (APF-IR) model to provide the
agent with guidance, and thus reduce the agent’s invalid
exploration in a sparse reward environment. Furthermore,
we prove that using the APF-IR model can still preserve
the invariance of the learned optimal policies.

We conduct experiments in several popular mini-games in
PySC2 [17] and the experiments demonstrate that the APF-
RL method outperforms the benchmark methods. Moreover,
the effectiveness of each component of the APF-RL method
is shown through ablation experiments.

This work is organized as follows. Related work and
background knowledge are discussed in “Related work”
and “Background” respectively. We elaborate our method
in “Method”. Experimental results are in “Experiments”.
Finally, “Conclusion” concludes our work.

Related work

State representation learning (SRL) has been widely used
in deep reinforcement learning as an effective method for
learning high-dimensional data features to find effective fea-
ture from the complex environmental state that contributes to
policy learning. Early researchers used manual methods for
feature extraction [18]. Although these methods can quickly
extract effective features, they require a high level of exper-
tise and understanding of the data feature. To reduce the
labor cost, some researchers have tried to learn embedding
vectors from complex data through deep neural networks
[1,19] to obtain effective features in an end-to-end manner.
Moreover, many other researchers used unsupervised auxil-
iary tasks in DRL to improve data efficiency and robustness
of hyperparameter settings. Contrastive unsupervised repre-
sentations for reinforcement learning (CURL) [20] extracts
high-level features from raw pixels using contrastive learn-
ing and performs off-policy control on top of the extracted
feature. ST-DIM [21] uses temporal and contrastive losses
to operate on local features of the intermediate layer within
the encoderwithout data augmentation.Augmented temporal
contrast (ATC) [22] is amethod that decouples representation
learning from policy learning, which trains a convolutional
encoder to associate pairs of observations separated by a short
time difference, under image augmentations and using a con-
trastive loss. The APF-SA belongs to the combination of
manually constructed features and network embedding.

Reward shaping is a method of modifying the original
reward by adding a shaping reward function to the original
reward. This shaping reward function incorporates the prior
expert knowledge or domain knowledge. There is very early
work on reward shaping in reinforcement learning. Dorigo
et al. [23] translated expert instructions into rewards for the
agent and used these rewards to guide the agent to perform
the task. These early works focused on how to design the
shaping reward function but ignores that the shaping rewards
may change the optimal policy. Ng et al. [24] first proposed
the potential-based reward shaping (PBRS) method. PBRS
constrains the shaping reward to have the form of a differ-
ence of a potential function of the transitioning states and
guarantees the so-called policy invariance property. PBRS
method has led to more researchers focusing on the shap-
ing of rewards. The potential-based advice (PBA) method
[25] extended PBRS to state-action advice potentials, which
defines the state-action space for providing advice on actions.
The dynamic PBRSmethod [26] introduces a time parameter
into the potential function for allowing dynamic potentials.
Harutyun et al. [27] proposed a DPBA method that learns an
auxiliary value function for transforming an arbitrary reward
function into a dynamic potential function. Hu et al. [28]
utilized a bi-level optimization method to solve the problem
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of adaptively utilizing a given shaping reward function. The
APF-IR is a potential-based reward shaping method.

Background

Deep reinforcement learning

In a standard reinforcement learning framework [29], the
agent generally learns by interacting with its Markovian
environment at discrete time steps t = 1, 2, . . .. Formally,
a Markov Decision Process (MDP) [30] is a tuple G =
〈S,A,P,R, γ 〉, where S is a set of states, A is a set of
actions, P = {Psa(·) | s ∈ S, a ∈ A} are the next state tran-
sition probabilities with Psa(s′) specifying the probability
of state s′ occurring upon taking action a from state s,
R : S×A → R is the expected reward functionwithR(s, a)

giving the expected value of the reward that will be received
when the agent takes an action a in the state s, and γ ∈ [0, 1)
is a discount factor.

A policy π : S×A → R is a probability distribution over
actions at each state that determines the actions the agent will
take in each state. The goal of the agent is to find the policy
π mapping states to actions that maximize the expected dis-
counted total reward over the agent’s lifetime. The state value
function V π (s) is an estimate of the expected future reward
that can be obtained from state s when following policy π .

V π (s) = E

[ ∞∑
t=0

γ t rt+1|s0 = s

]
, (1)

where rt+1 denote the components of R at time t . The
state-action value function Qπ (s, a) is the expected reward
following policy π after taking action a at state s.

Qπ (s, a) = E

[ ∞∑
t=0

γ t rt+1|s0 = s, a0 = a

]
(2)

Advantage actor-critic (A2C)

Several effective policy-based methods [31,32] have been
proposed in the literature. In a policy-basedmethod, the train-
ing objective is to find a policyπ thatmaximizes the expected
reward J over all possible dialogue trajectories given a start-
ing state. Generally, the policy π can be represented by a
parameterized function (e.g., a neural network). In this work,
we denote a policy by πθ , where θ is the parameter of the
policy function. The objective J can be written as follows:

∇θ J (θ) = E[∇θ logπθ (a|s)Qπθ (s, a)]. (3)

Since gradients of this form have potentially high vari-
ance, a baseline function is often introduced to reduce the
variance without changing the estimated gradient. The com-
mon baseline function is the value function V πθ (s). In this
work, we also use the value function as the baseline function,
and then Eq.3 can be written as follows:

∇θ J (θ) = E[∇θ logπθ(a|s)Aπθ (s, a)]. (4)

Here, Aπθ (s, a) = Qπθ (s, a) − V πθ (s) is the advantage
function, which represents the advantage of the state-action
value function over the current state value function. If the
advantage function is greater than 0, then a is better than
average, otherwise, a is worse. The Eq.4 can be viewed as
a special case of the actor-critic, where πθ is the actor and
Aπθ (s, a) is the critic. Temporal difference (TD) errors [33]
can be used to approximate the advantage function [34].

Aπθ = rt + γ V πθ (st+1) − V πθ (st ) (5)

Artificial potential fields

The artificial potential field [16] is a virtual force method for
agent motion planning. The method specifies the effect of
the target and the obstacle on the agent as an artificial poten-
tial field through a potential field function U . The potential
energy is low at the target and high at the obstacle. This
potential difference generates the gravitational force of the
target on the agent and the repulsive force of the obstacle on
the agent, whose combined effort controls the agent’s motion
toward the target point along the negative gradient direction
of the potential field. The potential field function consists of
the attractive and repulsive potential functions:

U (p) = Uatt(p) +Urep(p), (6)

where p is the location of the unit, Uatt and Urep denote the
attractive potential and repulsive potential function, respec-
tively. The classical Uatt and Urep [16] can be written as:

Uatt(p) = 1

2
ψd2, (7)

and

Urep(p) =
{

1
2η( 1d − 1

d∗ ), d ≤ d∗

0, d > d∗ , (8)

whered∗ is the distance threshold,d is the distance between p
and obstacles/ goals,ψ and η are the attraction and repulsion
gain respectively. Unlike the classical potential field func-
tion, in this work, we will use the kernel density estimation
function [35] as the potential field function, as described in
“Artificial potential field state feature abstractor”.
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Fig. 1 Overall architecture of APF-RL

Methods

In this section, we propose a novel end-to-end learning
method to integrate human knowledge into DRL. This pro-
posed method is called APF-based reinforcement learning
(APF-RL), and the overall architecture of APF-RL is shown
in Fig. 1. First, we construct the artificial potential field state
feature abstractor (APF-SA) using a priori domain knowl-
edge, which can convert the original environmental state
feature into a potential field feature. Second, we design
the artificial potential field intrinsic reward model (APF-
IR) based on the potential field feature, which generates an
intrinsic reward for guiding the learning of the agent’s policy.
Third, the fully convolutional neural (FullyConv) network is
used to encode the potential field feature and the original
environment feature. and then connect the encoded feature.
Finally, the encoded feature is connected and used to com-
pute value function and policy.

In “Artificial potential field state feature abstractor” and
“Artificial potential field intrinsic reward”, we describe the
architecture of the APF-SA and APF-IR, respectively. In
“APF-RL overview”, we demonstrate how to combine the
APF-SA and APF-IR, forming a complete APF-RL method.

Artificial potential field state feature abstractor

APF-SA is an environmental state feature extractionmethod.
It converts the original environmental state feature (e.g.,
images) into the potential field feature by the potential field
function. The classical APF method is generally used in the
field of robot navigation and obstacle avoidance. It first cal-
culates the potential field value between the robot and the

Fig. 2 Calculate the potential field value of point p

target/obstacle unit. And then guides the robot closer to the
target unit (away from the obstacle unit) based on the change
in the potential field value.

In contrast, in this work, we utilize the APF method to
quantify the degree of influence of the unit at the spatial point
p. The specific calculation of the potential field value at p
is shown in Fig. 2. We first zone the environment, converting
the whole environment into a C × C discrete environment.
The spatial point p is the center point of one of the regions,
and the potential field values are the same everywhere in the
same region. Then, we design the potential field function U
to calculate the potential field value of each unit at point p.
The U consists of an attractive function Uatt and a repulsive
functionUrep. The attractive function is designed to increase
as our unit i approaches the spatial point p, i.e. the closer
our unit i is to the point p, the greater its positive influence
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at the point p. While the repulsive function is negative, its
absolute value increases as the enemy unit j approaches the
spatial point p, i.e. the closer the enemy unit j is to the point
p, the greater its negative influence at the point p. Formally,
the attractive function Uatt and repulsive function Urep can
be described as follows:

Uatt(i, p) =
⎧⎨
⎩

3
π

[
1 − d̂(i)

d∗
]2

λi (êi,bpro), d̂(i) ≤ d∗

0, d̂(i) > d∗
(9)

and

Urep( j, p) =
⎧⎨
⎩

3
π

[
ď( j)
d∗ − 1

]2
κ j (ě j,bpro), ď( j) ≤ d∗

0, ď( j) > d∗
. (10)

Here, d̂(i) and ď( j) are the Euclidean distances from the
current positions of our unit i and the enemyunit j to the point
p, respectively. d∗ is the distance threshold. êi,bpro and ě j,bpro
are the intrinsic properties of our unit i and the enemy unit
j , such as shooting range, shooting power, health status, and
sight range, etc., respectively. λi (êi,bpro) is the bpro property
value of the our unit i and κ j (ě j,bpro) is the bpro property
value of the enemy unit j .

According to Eqs. 9 and 10, we can calculate the influ-
ence value of our unit i or the enemy unit j at the point p.
Finally, the influence of all units in the environment at point
p is superimposed to obtain the final potential field value.
Formally, the final potential field value can be described as
follows:

fbpro(p) =
N∑
i=1

[Uatt(i, p)] +
K∑
j=1

[Urep( j, p)], (11)

where N and K are the numbers of our units and enemy
units in the environment, respectively. For the different prop-
erties of the unit at p, we use the Eq.11 to calculate the final
potential field values of different properties, which can be
described as follows:

F = [ fb1(p), . . . , fbM (p)], (12)

where the M is the number of the units’ property. The orig-
inal environment state feature is transformed into a discrete
potential field feature H apf : M × C × C .

Artificial potential field intrinsic reward

To guide the agent to learn an effective policy and reduce the
agent’s invalid exploration in a sparse reward environment,
we proposed an APF-IR model which generates an intrinsic
reward from the potential field feature. This intrinsic reward

turns the original sparse reward into a dense reward.When the
agent has performed an action, it causes a change in the poten-
tial field value. If the value of the potential field increases,
it means that the action is positive. In this case, we give
the agent positive feedback in addition to the environment’s
original reward. Conversely, we give negative feedbackwhen
the value of the potential field reduces. Based on the above
analysis, we can define an intrinsic reward function r in and
add it to the original reward rorigin to get the proxy reward.
Formally, the proxy reward can be described as follows:

Rproxy
t = rorigint + ξRin

t , (13)

where ξ is a hyper-parameter that balances the original
reward and distinct intrinsic reward. The final potential field
value of different properties F can be obtained by Eq.12.
To obtain the integrated potential field values for the whole
environment, we sum up the potential field values for each
region in the discrete environment. Formally, the integrated
potential field values f allbpro

can be described as follows:

f allbpro =
C×C∑
c=1

fbpro(pc), (14)

where pc denotes the center point of region c. The intrinsic
reward function is designed as the potential field difference
between the t and t − 1. According to Eq.14, the intrinsic
reward function can be written as follows:

r inbpro,t = f allbpro,t − f allbpro,t−1, (15)

where we consider only one property of the unit. To simplify
the notation, we write r inbpro,t as r

in
bpro

. The intrinsic reward of
different properties can be written as follows:

Rin
t = [r inb1, . . . , r inbM ]. (16)

The different properties of the unit have different influ-
ences on the task. To balance the influence of each property,
we introduce trainable weights β1, . . . , βM . Therefore, the
Rin

t can be rewritten as follows:

Rin
t = β1r

in
b1 + · · · + βMr inbM . (17)

In this work, these trainable weights are set according to
prior knowledge. For example, if a property is more relevant
to the unit’s task, the intrinsic reward for this property can be
assigned a higher weight. In practice, intrinsic rewards are
normalized.

Moreover, it needs to notice that adding the intrinsic
reward to the original reward of the Bellman equation may
change the optimal policy π∗(a|s). To address this problem,
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Ng et al. [24] proposed a Potential-based reward shaping
(PBRS) method, which guarantees the policy invariance
property. PBRSdefines theTheorem1 and proves that adding
PBRS function can guarantees the learned policy maintains
its optimally. More detailed proof of the Theorem 1 is given
in [24].

Theorem 1 Let anyS,A, ζ , and any shaping reward function
F : S × A × S ′ → R be given. We say F is a potential-
based shaping function, if there exists a real-valued function
Φ : S → R such that for all s ∈ S, a ∈ A, s′ ∈ S ′

F(s, a, s′) = ζΦ(s′) − Φ(s). (18)

Then, that F is a potential-based shaping function is a
necessary and sufficient condition for it to guarantee con-
sistency with the optimal policy (when learning from G′ =
〈S,A,P,R+F , γ 〉 rather than fromG = 〈S,A,P,R, γ 〉).

We define the reward function Φ(s′) to be the APF
value f allbpro,t

. According to the definition of F(s, a, s′), the
F(s, a, s′) can be rewritten as follows:

F(s, a, s′) = ζ f allbpro,t − f allbpro,t−1 = r inbpro,t , (19)

where the ζ is 1. According to Theorem 1 and Eq.19, the
Eq.17 can be rewritten as follow:

Rin
t = [β1r

in
b1,t + · · · + βMr inbM ,t ]

−[β1r
in
b1,t−1 + · · · + βMr inbM ,t−1]. (20)

Therefore, by addingRin
t to the learning process, the opti-

mal policy learned by the agent remains invariance.

APF-RL overview

To leverage human knowledge, we use the potential field
feature H apf extracted by APF-SA as input for downstream
policy learning. However, the H apf may lose some state fea-
ture information, so the original state feature is used as a
supplement to the potential field feature, as shown in Fig. 1.
First, the FullyConv Network is used to obtain the original
state feature h∗. FullyConv model has the characteristics of
full convolution and maintaining resolution. And then, we
use the H apf as input of the FullyConv network and output
hidden potential field feature hapf . Finally, we aggregate the
two features of h∗ and hapf and input them into a fully con-
nected layer to calculate the value V or action A. The overall
algorithm, APF-RL, is summarized as Algorithm 1.

APF-based RL is an end-to-end policy framework, it can
be combined with any policy-based algorithm. In this work,
we use A2C as our basic RL algorithm, and the training

objective Eqs. 4 and 5 can be rewritten as follows:

∇θ J (θ) = E[∇θ logπθ(a|s)A(s, a)], (21)

where

A = Rproxy
t + γ V (st+1) − V (st ). (22)

Algorithm 1 APF-RL
1: Initialize Actor θ , replay memory D
2: for episode = 1 to M do
3: Initialize a random processN for action exploration, and receive

state information s
4: for t = 1 to max-episode-length do
5: Execute actions a and receive reward rorigint and new obser-

vation st+1
6: Calculate the discrete potential field feature Hapf // Eq.12
7: Calculate the intrinsic reward r in // Eq.17
8: Calculate the proxy reward Rproxy

t // Eq.13
9: Store (st , at ,Rproxy

t , st+1) in replay buffer D
10: Sample a random of minibatch b from D
11: set advantage function: A = Rproxy

t + γ V (st+1) − V (st )
12: set objective function: J (θ) = E[logπθ (a|s)A(s, a)]
13: θ ← θ + α∇θ J (θ) // Eq.21
14: end for
15: end for

Experiments

Settings

For our experiments, we used the Advantage Actor-Critic
(A2C) method as the base learner. The A2C RL agent struc-
ture with neural networks as function approximators, as
implemented by Simonmeister [36]. The experimental envi-
ronment is PySC2 [17] learning environment. PySC2 is a
Python component of the StarCraft II learning environment
developed by DeepMind, which provides an interface for
reinforcement learning agents to interact with StarCraft II. In
the experiment, we consider symmetric battle games in Star-
Craft II with 3 types of mini-games (see Fig. 3). The rewards
are based on the score from the StarCraft II engine against the
built-in computer opponent. Therefore the higher the score
the higher the reward. Like as [17], the score is used as the
performance evaluation indicator.We evaluated the proposed
APF-RL method and compared it with the benchmark meth-
ods (A2C and PBA), where the potential-based advice (PBA)
[25] is a reward reshaping method that provides advice on
actions for the agent.

• DefeatRoaches: In this map, the agent needs to fight
against the enemy army, the enemy army is intact, and it

123



Complex & Intelligent Systems (2023) 9:4911–4922 4917

Fig. 3 The three types of mini-games in PySC2: a DefeatRoaches, b DefeatZerglingsAndBanelings, c 7m_vs_8m

is different from the agent, so the agent needs to find the
best attack policy to defeat the built-in army while only
controlling its own units.

• DefeatBanelingsAndZerglings: In this map, the agent
has to fight two kinds of enemy units, namely Banelings
and Zerglings. Among them, the Banelings will explode
when they encounter the agent, so the agent needs to avoid
poisonous explosions during the fight against insects.

• 7M_vs_8M: In this map, allied units and enemy units
have the same type, but there are more enemy units than
the agent, so the agent needs to learn effective policy to
defeat the enemy army that is stronger than the agent.

We train the agent to control allied units, while the enemy
units are controlled by a built-in hand-crafted AI. Proper
micromanagement of units during battles is necessary to
maximize damage to enemy units while minimizing damage
received, which requires a range of coordination skills such
as focusing firepower or avoiding overkill. It is a challenge
to learn these different behaviors under partial observation
conditions.

Each type of unit in the mini-games has its inherent prop-
erties. In this work, we focus only on the effect of four
inherent properties—sight range, shooting range, shooting
power and health status—on the policy of the agent. Based
on these four properties, we convert the original environ-
mental state feature into the potential field feature with four
layers. The specific potential field calculation is shown in
Fig. 2. Because of space limitation, here we only give the
potential field value calculation for a Marine at point p as

Table 1 Hyperparameter settings

Name Description Value

lr Learning rate 0.0001

Optimizer Type of optimizer Adam [37]

Optimize α Adam param 0.99

Optimize ε Adam param 1e−5

Grad clip Reduce the global norm of gradients 10

γ Discount factor 0.99

ξ Temperature 0.01

Starting ε Starting value for exploration rate annealing 1.0

Ending ε Ending value for exploration rate annealing 0.05

Anneal time Number of steps to anneal exploration rate 50K

an example. The Marine’s shooting power is 7. We obtain
fbpro(p) by Eq.11 where λi (êi,bpro) is 7.
The training time is about 24–36h on these maps (Intel

(R) Core (TM) i9-10900K CPU @ 3.70 GHz, 96 GB RAM,
GeForce RTX 2080Ti GPU), which is ranging based on the
agent numbers and environmental features of each map. The
number of total training steps is about 300K. We use the ε-
greedy policy for exploration. The starting exploration rate
is set to 1 and the end exploration rate is 0.05. The explo-
ration rate decays linearly at the first 50K steps. The distance
threshold d∗ depends on the sight range of the unit. The
λi (êi,bpro) depends on our units’ inherent properties: shoot-
ing power, shooting range, health status, and moving speed.
The κ j (ě j,bpro) depends on enemy units’ inherent properties.
The discrete potential field feature H apf : M × C × C is set
to 4× 32× 32. More hyper-parameters are listed in Table 1.
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Evaluation

To evaluate the performance and verify our method, we
trained the agent on each mini-game. These experiments are
carried out with 5 different random seeds, and the results
are shown with a 95% confidence interval. The results are
reported in Fig. 4, where the mean scores vs. the training
steps on the three mini-games DefeatRoaches, DefeatBanel-
ingsAndZerglings, 7M_vs_8M are given.

The results show that our APF-RL method scores higher
than the A2C method and PBA method in all three mini-
games, which indicates that APF-RL outperforms the base-
line methods. In DefeatRoaches, the scores of the APF-RL,
PBA, and A2C methods reach about 120, 115, and 100
respectively, indicating that these methods learn a good pol-
icy for the agent in this scenario. TheAPF-RL,PBA, andA2C
methods achieve scores of about 100, 92, and 80 in Defeat-
BanelingsAndZerglings, respectively. Both methods learn a
worse policy in the DefeatBanelingsAndZerglings scenario
than in the DefeatRoaches scenario. This is because the
enemy units in DefeatBanelingsAndZerglings have different

abilities, which requires the agent to explore more different
policies. However, in this heterogeneous scenario, our APF-
RL method still performs better than the A2C method. In
7M_vs_8M, our 7 Marine face the 8 Marine. The unequal
power gap means that our agent is doomed to fail if they
attack directly. It requires our agents to find and attack the
weak points of the enemy forces. The A2C and PBA are
able to score about 70 and 90 respectively, which means that
the agent learns an effective policy. However, our APF-RL
method scored about 100, which means that the agent learns
a better policy. The experimental results in Fig. 4 show that
potential field feature representations and intrinsic rewards
can help the agent explore the weak areas of enemy forces,
learn a policy to preferentially attack the weak areas, and
improve the winning rate.

Visualizing the APF state feature

To explain the superiority of APF-RL, we show the APF
feature representation in Fig. 5 at DefeatRoaches. Here, we
only show the APF feature for the shooting power property

Fig. 4 The mean scores for A2C and APF-RL on three mini-games
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layer. Note that when we calculate the potential field, the
enemy units always generate a negative potential field, and
our units generate a positive potential field. Therefore, the
area where the potential field value is zero is the boundary of
engagement between the enemy and us. In DefeatRoaches,
APF-RL learns to prioritize attacking enemy units with the
largest potential field value. As shown in Fig. 5, our agent
prefers to attack enemy edge units. It is because the potential
field value is greater in the area where the unit is located,
which means that the threat level of units in that area is rela-
tively low and belongs to the enemy’s weak area.

Through the potential field feature, the agent perceives the
current situation information of the environment. Based on
the situational information, the agent can accurately identify
the weak areas of the enemy and learn to prioritize attacking
weak areas. Moreover, the APF feature representation not
only guides the agent’s actions but also conforms to basic
human cognition and provides a degree of interpretability
for high-performance policies.

Ablation study

To investigate the effect of the two components (APF-SA
and APF-IR) on policy performance, we evaluate two vari-
ants of APF-RL in an ablation study. These two variants are
APF-RL-WSA and APF-RL-WIR. APF-RL-WIR is APF-
RL without APF-IR, meaning that the reward is the original
sparse reward rorigin and not the proxy reward rproxy. APF-
RL-WSA is APF-RL without APF-SA, meaning that the
potential field feature is only used to generate an intrinsic
reward and is not used as input to the neural network. The
input to the network uses only the original state feature. We
conduct experiments on the mini-games of DefeatRoaches
and DefeatZerglingsAndBanelings.

As shown in Fig. 6 by comparing APF-RL and APF-RL-
WSA, we can see that the removal of APF-SA causes a drop
in performance. Moreover, when comparing APF-RL and
APF-RL-WIR, we can see that removing APF-IR leads to
slower convergence of the policy. These experimental results
show thatAPF-SAeffectively extracts features for the agent’s

Fig. 5 APF feature representation on DefeatRoaches
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Fig. 6 Mean scores for APF-RL and ablations on DefeatRoaches and DefeatZerglingsAndBaneling

Fig. 7 Comparison between A2C and the APF-RL method with different discrete potential field feature H apf on the mini-games of 7M_vs_8M.
We scale the results in terms of the time consumed by the A2C algorithm. a Each bar shows the scaled scores. b Each bar shows the scaled time
consumption

policy learning, and the intrinsic reward can guide policy
learning and accelerate policy convergence.

To explore the impact of different granularity of potential
field feature on policy performance and time consumption,
we set the discrete potential field feature H apf to 4×64×64,
4 × 32 × 32 and 4 × 16 × 16 respectively. The comparison
experiments are conducted on the mini-games of 7M_vs_8M
with 5 different random seeds. We obtained the time con-
sumed and the score of the policy by the A2C method and
the APF-RL method with different H apf settings for running
300K steps. The results show that in Fig. 7a, as the granu-
larity of the discrete potential field feature H apf gets finer
(16 → 32 → 64), the performance of the policies learned
by the agent gets better. This is because the finer the granu-
larity of the potential field feature, the more information they
contain. Conversely, computing fine-grained potential field
feature also requires more time and computational resources.
We can see from Fig. 7b that as the granularity of the discrete
potential field features gets finer, the time consumed by the
computation grows faster.

To balance performance and time-consuming, we believe
it is more suitable to set H apf to 32 × 32.

Conclusion

In this work, we propose a novel method called APF-RL to
accelerate the learning process of state features and reduce
invalid exploration. This method consists of two parts: (1)
APF-SA introduces human knowledge to convert environ-
mental features into potential field features. (2) APF-IR
generates an intrinsic reward to reduce the invalid explo-
ration and guide the learning of the agent’s policy based on
the potential field feature. We evaluate our method in PySC2
with some mini-games. The experimental results show that
our APF-RL method can improve learning efficiency. The
drawback of this work is that the potential field function
needs to be specific to the scenario or task, which requires
the designer to have a good understanding of the environment
or task. In future work, we will design a more general and
pervasive method to automatically generate potential fields
and apply the potential field-based representation methods
to more challenging tasks, such as the full game of StarCraft
II.
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