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Abstract
High-dimensional optimization problems are increasingly pervasive in real-world applications nowadays and become harder
and harder to optimize due to increasingly interacting variables. To tackle such problems effectively, this paper designs a
random elite ensemble learning swarm optimizer (REELSO) by taking inspiration from human observational learning theory.
First, this optimizer partitions particles in the current swarm into two exclusive groups: the elite group consisting of the top
best particles and the non-elite group containing the rest based on their fitness values. Next, it employs particles in the elite
group to build random elite neighbors for each particle in the non-elite group to form a positive learning environment for the
non-elite particle to observe. Subsequently, the non-elite particle is updated by cognitively learning from the best elite among
the neighbors and collectively learning from all elites in the environment. For one thing, each non-elite particle is directed
by superior ones, and thus the convergence of the swarm could be guaranteed. For another, the elite learning environment is
randomly formed for each non-elite particle, and hence high swarm diversity could be maintained. Finally, this paper further
devises a dynamic partition strategy to divide the swarm into the two groups dynamically during the evolution, so that the
swarm gradually changes from exploring the immense solution space to exploiting the found optimal areas without serious
diversity loss. With the above mechanisms, the devised REELSO is expected to explore the search space and exploit the
found optimal areas properly. Abundant experiments on two popularly used high-dimensional benchmark sets prove that the
devised optimizer performs competitively with or even significantly outperforms several state-of-the-art approaches designed
for high-dimensional optimization.

Keywords Particle swarm optimization · Large-scale optimization · Random elite ensemble learning swarm optimizer ·
Ensemble learning · Cognitive learning · High-dimensional problems

Introduction

High-dimensional optimization problems, involving hun-
dreds or thousands of variables, are exceedingly common
in various fields, such as complex networks optimization
[1, 2], order scheduling [3], industrial copper burdening
system optimization [4], power control optimization [5, 6],
joint deployment and task scheduling optimization [7], neu-
ral network optimization [8], and community detection [9].
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Compared with low-dimensional problems, the complex-
ity of high-dimensional problems increases exponentially,
leading to that they are considerably difficult to optimize
[10–13]. To be specific, for one thing, the solution space
of high-dimensional problems increases exponentially as the
dimensionality increases [14]. Consequently, it is very chal-
lenging to seek the globally optimal solution efficiently in
such vast space. For another, it also often occurs that a vari-
ety of spacious and flat local regions or saddle areas exist in
the high-dimensional environment [10, 15, 16]. As a conse-
quence, it is considerably impeditive to locating the global
optimum of a high-dimensional problem due to the strong
and greedy attraction of these local basins or saddle regions.

The above challenges of high-dimensional optimization
seriously degrade the effectiveness and efficiency of tradi-
tional optimization methods designed for low-dimensional
problems [11, 17–19]. Such a phenomenon is often called
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“the curse of dimensionality” [10]. Since high-dimensional
problems are ubiquitous in various fields, lacking effective
optimization methods to deal with them hinders the develop-
ment of related fields and industries. Consequently, there is
an increasing demand for developing effective and efficient
large-scale optimization methods, which has drawn plenty of
attention from researchers.

As a typical gradient-free heuristic method, particle
swarm optimization (PSO) [20, 21] has exhibited great
success in solving optimization problemswith different prop-
erties, such as multimodal optimization problems [22–24],
constrained optimization problems [25–29], multi-objective
optimization problems [30], and expensive optimization
problems [31]. Besides, it has been broadly employed to
cope with real-world optimization problems [32–36]. Never-
theless, most existing PSO algorithms are mainly devised to
dealwith low-dimensional optimizationproblems [11, 37]. In
face of high-dimensional optimization problems, most exist-
ing PSOs face the dilemma of either falling into local areas
or not being able to find high-quality solutions under the
afforded number of fitness evaluations [38–40].

To get out of these predicaments, researchers have devoted
themselves to devising simple yet effective PSOs for high-
dimensional optimization, and thus, many remarkable large-
scale PSOs have emerged [12, 41, 42]. As far as we are
concerned, existing research on large-scale PSO roughly
proceeds in two main directions [43]: (1) decomposition-
based PSOs [44–46], which are also named cooperative co-
evolutionary PSOs (CCPSOs), and (2) non-decomposition-
based PSOs [47–49].

The first kind of large-scale PSOs are based on the thought
of the divide-and-conquer approach [41]. Specifically, CCP-
SOs [45] first utilize variable decomposition strategies to
partition a large-scale problem into a number of small-scale
sub-problems. Next, these sub-problems are separately opti-
mized by PSO. At last, the optimal values of the variables
in all sub-problems are integrated to construct the optimal
solution to the high-dimensional problem. In this manner,
existing PSOs developed for small-scale optimization prob-
lems can be utilized to deal with large-scale optimization [45,
46]. However, during the optimization, interacting variables
usually interfere with each other [50]. Therefore, ideally,
interacting variables should be placed into the same sub-
problem to optimize. Nevertheless, without prior knowledge
of correlations between variables, it is very challenging to
partition variables into sub-problems accurately. To this end,
researchers have paid extensive attention to designing novel
decomposition methods to attempt to accurately separate a
large-scale problem into exclusive small-scale sub-problems
[51, 52].

Although CCPSOs have been testified to be effective
in coping with high-dimensional optimization problems to
a certain extent, their optimization performance heavily

depends on the variable decoupling strategy. Once correlated
variables are partitioned into different sub-problems, their
effectiveness deteriorates sharply [41].Given this, the robust-
ness of CCPSOs is usually limited, and thus some researchers
direct their attention to another direction by devising non-
decomposition-based PSOs [47].

UnlikeCCPSOs, all variables are still simultaneously opti-
mized together like traditional PSOs in non-decomposition-
based PSOs [53, 54]. The key to effectuating non-
decomposition-based PSOs in coping with high-dimensional
optimization problems is to design simple yet effective learn-
ing mechanisms for particles, so that they could search the
exponentially increased solution space appropriately [55,
56]. In this direction, taking inspiration from intelligent
collective behaviors of human beings and natural animals,
researchers have devised a lot of new learning strategies, like
the competition learning strategy [47], the level-based learn-
ing scheme [49] and the phased learning mechanism [55].
Among these effective strategies, it is found that instead of
using historical information (like the personal best experi-
ence or the global best experience) to guide the update of
particles, these methods directly utilize superior individuals
in the current swarm to direct the update of inferior ones
along with the superior individuals being not updated. In this
way, the guiding exemplars for different particles are dis-
tinct in the same iteration and they are likely distinct for the
same particle in different iterations as well. Therefore, high
swarm diversity could be maintained during the evolution,
which is profitable for particles to search the solution space
dispersedly and avoid falling into local areas [57].

Though existing large-scale PSOs have exhibited promis-
ing performance to a large extent in tackling certain kinds of
high-dimensional optimization problems, they still encounter
limitations in copingwith complex large-scale problems, par-
ticularly those with complicated interacting variables [10,
14]. Hence, how to effectively further promote the capabil-
ity of PSO in settling complicated large-scale problems still
remains a challenging and open issue and deserves in-depth
research.

In the human observational learning theory proposed by
Bandura [58], the behavior and cognition of an individual
are usually influenced by his surroundings [59]. By tak-
ing the observational and causal learning schemes, human
beings usually watch the actions and talks of their sur-
roundings, gain information to discover how things work,
and learn to do things by themselves [60]. Taking inspi-
ration from such learning theory, this paper proposes a
random elite ensemble learning swarm optimizer (REELSO)
to solve high-dimensional optimization problems. Specifi-
cally, to provide positive environment for particles to learn,
this paper first separates particles in the swarm into two
exclusive groups, namely the elite group constituted by the
top ranked individuals in terms of fitness, and the non-elite
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group containing the rest ones. Then, for each particle in
the non-elite group, several elites are stochastically selected
from the elite group to form a random elite neighbor region
(namely the learning environment). By this means, each indi-
vidual in the non-elite group is surrounded by elites and thus
can acquire positive learning. Subsequently, by watching the
behaviors of these elites, the non-elite particle is guided to
search the solution space by cognitively imitating the best
elite and collectively learning from all elites in the neighbor
region.

To sum up, the main novelty of this paper is summarized
as follows:

(1) A random elite ensemble learning strategy (REEL) is
devised to direct the evolution of particles, which is
inspired by the human observational learning theory. As
mentioned above, each non-elite particle is surrounded
by elite individuals randomly chosen from the elite
group. Such good environment makes positive influ-
ence on the non-elite particle and thus is beneficial
for improving its learning ability. On the one hand, by
watching the promising behaviors of these elites, the
non-elite particle could fly through the vast solution
space fast to find promising zones. On the other hand,
the elites used to form the learning environment of each
non-elite particle are randomly selected from the elite
group. As a result, for different non-elite particles, the
elite environment is different and thus the observational
learning is also different. This indicates that the guiding
exemplars to direct the evolution of different non-elite
individuals are likely different in the same generation.
Besides, the guiding exemplars are also distinct for the
same non-elite individual in different iterations. Such
randomness in the construction of the neighbor elite
environment provides high diversity for the swarm.

(2) A dynamic partition strategy is further devised to divide
the swarm into the two exclusive groups dynamically
during the evolution. Since particles in the elite group
are utilized to construct the neighbor elite environment,
the elite group size makes significant influence on the
performance of the optimizer, leading to this optimizer
being sensitive to the elite group size. To resolve this
dilemma, this paper further develops a dynamic parti-
tion strategy by gradually reducing the elite group size
to dynamically separate the swarm into the two groups
as the evolution iterates. In this way, more non-elite
individuals are evolved by gradually fewer elite ones,
leading to that the non-elite individuals gradually con-
centrate on intensive learning. As a result, the optimizer
gradually changes from exploring the solution space to
exploiting the found optimal zones without seriously
sacrificing swarm diversity as the iteration goes on.

(3) With the above twomechanisms, the designedREELSO
is expected to compromise search intensification and
diversification of the swarm at both the particle level (by
the REEL strategy) and the swarm level (by the dynamic
partition strategy). By the abovemeans, REELSO hope-
fully explores the vast solution space and exploits the
found optimal areas appropriately and thus expectedly
obtains good performance in solving high-dimensional
optimization problems.

To verify the effectiveness of REELSO, comprehensive
experiments are extensively performedon the public andpop-
ular CEC’2010 [40] and CEC’2013 [61] high-dimensional
problem sets by virtue of comparing REELSO with totally
14 popular and state-of-the-art evolutionary optimizers for
high-dimensional optimization. In addition, to investigate the
capability of REELSO to cope with optimization problems
with higher dimensionality, comparative experiments are fur-
ther executed on the CEC’2010 high-dimensional problem
set with 2000 dimensions.

The remaining part of this paper is arranged as follows.
In the following section, the classical PSO and recent large-
scale PSOs are reviewed. Next, the detailed elucidation of
the proposed REELSO is presented. Subsequently, compar-
ative experiments are executed to verify the effectiveness of
REELSO. Finally, the conclusion of this paper is provided.

Related works on large-scale PSO

Without loss of generality, minimization problems contain-
ing D variables are considered in this paper. Furthermore,
the objective value evaluated on the minimization problem
is taken as the fitness of a particle.

Classical PSO

The update formula of each particle in the classical PSO is
listed below:

vi � wvi + c1r1(xi_pbest − xi ) + c2r2(xgbest − xi ), (1)

xi � xi + vi , (2)

where vi and xi denote the velocity vector and the position
vector of the ith particle, respectively. w is termed as the
inertia weight. xi_pbest represents the best solution located
by the ith particle so far, while xgbest is the best solution
located by the entire swarm so far, which is actually the best
one among all best positions found by all particles. c1 and c2
are two acceleration coefficients, while r1 and r2 are two real
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vectorswith each element randomly and uniformly generated
within [0, 1].

In the literature [20], (xi_pbest − xi) in Eq. (1) is often con-
sidered as the individual cognitive learning behavior, which
is usually a way for the updated particle to learn from its
own successful experience. (xgbest − xi) in Eq. (1) is often
referred to as the swarm social learning behavior, which is
usually a process where the updated particle learns from the
successful experience of the swarm.

The classical learning strategy shown in Eq. (1) utilizes
the historically successful evolutionary information to direct
the update of particles. Though it has witnessed great success
in solving simple optimization problems [21, 62], like uni-
modal problems, its effectiveness and efficiency drastically
degrades when solving multimodal problems [22, 63, 64].
This is mainly because of the greedy dragging of the found
best position (xgbest) by the swarm. Aiming at improving the
optimization performance of PSO in copingwithmultimodal
problems, a lot of researchers have poured extensive atten-
tion to designing novel effective learning strategies by taking
inspiration from intelligent behaviors of gregarious animals
in nature and human society. As a result, many remarkable
learning strategies have sprung up [65], such as predominant
cognitive learning [66], comprehensive learning [67], orthog-
onal learning [19, 68], scatter learning [64], differential elite
learning [69], and rank-based learning [70].

With the advance of PSO, it is gradually realized that
it is the learning strategy for directing the update of par-
ticles that is the most crucial part of PSO [71]. However,
most learning strategies in existing PSO variants are mainly
designed for solving small-scale optimization problems. As
the dimensionality increases,most existing PSOvariants lose
their effectiveness or even feasibility [72] on account of the
“curse of dimensionality”. As a consequence, to tackle the
aforementioned challenges of large-scale optimization with
high effectiveness and efficiency, researchers concentrate
on developing novel learning strategies suitable for large-
scale optimization problems. Broadly speaking, research on
PSO variants for high-dimensional optimization is mainly
categorized into two classes, namely decomposition-based
large-scale PSOs [45, 46, 55, 56] and non-decomposition-
based large-scale PSOs [47, 50, 51, 73], which are elucidated
in the next two subsections, respectively.

Decomposition-based large-scale PSO

Decomposition-based PSOs are also named cooperative
co-evolutionary PSOs (CCPSOs). The basic thought of
CCPSOs is to utilize the divide-and-conquer technique
to decompose a high-dimensional problem into several
exclusive low-dimensional sub-problems and then optimize
each sub-problem separately by employing low-dimensional
PSOs [41]. In this way, traditional PSOs designed for

low-dimensional problems can be utilized to solve high-
dimensional optimization problems.

Bergh and Engelbrecht took the first attempt to design
CCPSO [45], where two cooperative PSO models, namely
CCPSO-SK andCCPSO-HK ,were proposed.The formerfirst
uses a random variable decomposition method to separate D
variables into K variable groups with each consisting ofD/K
variables. Then, it adopts traditional PSO to seek the optimal
values of each variable group. The latter model alternatively
utilizes traditional PSO to optimize all variables together
or adopts CCPSO-SK to separately optimize decomposed
groups of variables during the evolution. Though CCPSO
has shown effectiveness on some high-dimensional problems
[39], its performance heavily relies on the setting of the num-
ber of groups (namely K). To circumvent this predicament,
an improved version of CCPSO, named CCPSO2, was pro-
posed in Ref. [46] by predefining a set of group numbers.
Then, during the evolution, CCPSO2 first randomly chooses
a group number from the set at each generation and then
divides variables randomly into groups based on the selected
group number. Both CCPSO and CCPSO2 adopt the random
decomposition scheme to partition variables into groups.
Nevertheless, this strategy does not explicitly consider the
correlations between variables and thus both CCPSO and
CCPSO2 showpoor performance on non-separable problems
with many interacting variables.

In general, the optimization of interacting variables often
interferes with each other. Therefore, ideally, interacting
variables should be put into the same group to optimize.
This indicates that variable decomposition plays a key role
in CCPSOs [50]. As a result, in recent years, researches
on decomposition-based evolutionary algorithms, including
CCPSOs, mainly focus on excogitating effective decomposi-
tion strategies to divide a large-scale problem into small-scale
sub-problems as accurately as possible by discovering the
correlations between variables and thus a lot of remarkable
decomposition strategies have been developed [41, 74, 75].

As for the research on decomposition methods, the most
typical one is the differential grouping (DG) strategy [50].
Specifically, this method separates variables into several
groups by detecting pairwise correlations based on the par-
tial difference in function values of the associated shifted
solutions. Nevertheless, DG can only identify direct inter-
actions between variables with indirect interactions ignored.
As a result, its performance is limited on problems contain-
ing indirectly correlated variables. To alleviate this dilemma,
an extended DG (XDG) was devised in Ref. [74] by discov-
ering both indirect and direct relationships among variables.
Further, to resolve the issue that DG (including XDG) is sen-
sitive to its parameters, a global DG (GDG) was put forward
in Ref. [75] by devising an adaptive parameter adjustment
strategy. Another shortcoming of DG and its variants is that
they take too many fitness evaluations (up to O(D2) fitness

123



Complex & Intelligent Systems (2023) 9:5467–5500 5471

evaluations) to discover the interactions between variables.
This results in that given limited fitness evaluations, the opti-
mization of sub-problems is not sufficient enough.

To decline the fitness evaluation consumption in the
decomposition stage, a fast DG, named DG2 [76], was pro-
posed by reusing the sampled points to detect the interactions
between variables. In particular, it saves half of fitness eval-
uations on fully separable problems. Enlightened by the
mechanism of binary search, Sun et al. devised a recursive
DG (RDG) [51], which finally takesO(Dlog(D)) fitness eval-
uations in the decomposition stage. Subsequently, Sun et al.
further devised an adaptive threshold estimation method for
RDG, leading to RDG2 [77]. Based on the analysis of the
binary search process and the variable interaction detection
in RDG, Yang et al. proposed an efficient RDG [78] by
fully utilizing the historical information to detect correlations
between variables. This strategy avoids some redundant vari-
able interaction detection and thus reduces the consumption
of fitness evaluations to a large extent.

Although the aforementioned decomposition strategies
could help CCPSOs achieve promising performance in deal-
ing with high-dimensional problems, they still encounter
limitations in handling complex high-dimensional optimiza-
tion problems. First, on the basis of the theorem of No Free
Lunch, a universal decomposition method does not exist
to accurately decompose variables for all kinds of high-
dimensional optimization problems. Second, for large-scale
problems containing overlapping interactions between vari-
ables, most existing decomposition methods would place all
mutually interacting variables into one same group. As a con-
sequence, there might be a large group containing a lot of
interacting variables. Extremely, the worst case is that all
variables are placed into only one group. In this situation,
on the one hand, it is difficult for CCPSOs to optimize the
decomposed sub-problems effectively; on the other hand, a
lot of fitness evaluations are wasted in the decomposition
stage.

Non-decomposition-based large-scale PSO

To alleviate the above limitation of CCPSOs, researchers turn
to finding breakthrough of PSO in solving high-dimensional
optimization problems in another direction, namely non-
decomposition-based PSOs. Distinguished from CCPSOs,
this kind of large-scale PSO variants still optimize all vari-
ables simultaneously like the canonical PSO. To conquer
“the curse of dimensionality”, the key to non-decomposition-
based PSOs is to excogitate novel learning mechanisms with
high efficacy to update particles, such that they could search
the immense solution space properly during the evolution.
To this end, taking inspiration from the collective behav-
iors of human beings and natural animals, researchers have
designedvarious effective learning schemes for PSO to tackle

high-dimensional problems [55, 79, 80]. Since a lot of non-
decomposition-based large-scale PSOs have been proposed
in the literature, it is hardly possible to review themall. There-
fore, this subsection only reviews some representative and
latest methods.

In the early research, based on the observation that mul-
tiple populations could afford high diversity for species to
evolve, a dynamic multi-swarm PSO was devised in Ref.
[80] by dynamically separating the swarm into a number
of smaller sub-swarms in each generation and then evolv-
ing each sub-swarm separately but collaboratively to search
the vast solution space. Subsequently, Cheng et al. devised
a multi-swarm PSO according to a feedback mechanism to
strengthen the optimization capability of PSO [81]. In Ref.
[82], a hybrid PSO was devised by combining PSO with the
crossover operator and the mutation operator in genetic algo-
rithms (GA), such that a good balance between exploration
and exploitation can be maintained.

Inspired by the competitive behavior in human society, a
competitive swarm optimizer (CSO)was proposed in [47]. In
this method, particles are first randomly arranged into pairs.
Subsequently, in each pair of particles, this method does not
update the winner, but updates the loser by using the winner
and the mean position of the swarm. Getting hints from the
social behavior of animals, Cheng et al. developed a social
learning PSO (SL-PSO) [48]. Specifically, this optimizer first
assigns a learning probability to each particle, which is cal-
culated on the basis of its fitness ranking. Subsequently, each
particle is updated probabilistically by using a random pre-
dominant particle and the center of the swarm. Particularly,
different from traditional PSOs, which adopt historical evo-
lutionary information (like personal best positions pbests,
global best position gbest or neighbor best positions nbests)
to direct the evolution of particles, both CSO and SL-PSO
utilize superior individuals to direct the evolution of infe-
rior ones. Because particles are usually updated generation
by generation, both CSO and SL-PSO could maintain high
swarm diversity during the evolution and hence they achieve
good performance in handling high-dimensional optimiza-
tion problems.

Subsequently, inspired by the comprehensive learning
scheme devised for small-scale optimization problems [67],
a segment-based predominant learning mechanism for PSO
was devised, resulting in a segment-based predominant learn-
ing swarm optimizer (SPLSO) [83]. This optimizer first
randomly divides the dimensions into several exclusive seg-
ments for each inferior particle and then randomly chooses
a superior particle to update every dimension segment of
the inferior particle. In this way, several different predomi-
nant particles can be employed to guide the update of each
inferior one. Inspired by the teaching theory in pedagogy,
the authors in [49] proposed a level-based learning scheme
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for PSO, resulting in a level-based learning swarm opti-
mizer (LLSO) [49]. This algorithm first partitions particles
into several levels according to their fitness. Next, parti-
cles in lower levels are evolved by two different superior
ones randomly selected from two different higher levels. By
selecting guiding exemplars with maximized fitness differ-
ence to each updated particle, a ranking-based biased PSO
was proposed in Ref. [84] by devising two kinds of learning
schemes, that is the ranking paired learning scheme and the
biased center learning scheme. The former learning mecha-
nism updates worse particles by employing better ones to
afford fast convergence, while the latter learning method
updates each particle by utilizing a weighted center of the
whole swarm to enhance the swarm diversity.

Recently, taking hints from the collaborative behaviors
of human beings, Lan et al. proposed a two-phase learning
technique for PSO, resulting in a two-phase learning swarm
optimizer (TPLSO) [55]. Specifically, the learning of parti-
cles is separated into two phases. In the first phase, particles
are randomly combined into triads and the competitive strat-
egy is adopted to evolve the members of each triad. In the
second phase, several top best particles are selected from
the current swarm and then they are evolved by learning
from each other to exploit the found optimal regions. Fur-
ther, a stochastic dominant learning strategy was proposed
in [56], leading to a stochastic dominant learning swarm
optimizer (SDLSO). In this algorithm, for each particle to
be updated, two distinct particles are first randomly cho-
sen from the swarm, and then, only when the two selected
particles are superior to this particle, it is updated by learn-
ing from the two selected superiors; otherwise, it enters
directly the next generation. Besides, to well balance explo-
ration and exploitation during evolution, a learning structure
aiming at decoupling intensification and diversification was
developed in [57] for PSO to deal with high-dimensional
optimization.Tobe specific, the authorsfirst designed adiver-
sification learning scheme to guide particles to sparse regions
according to ameasurement used to evaluate local sparseness
degree, and then devised an adaptive intensification learning
mechanism to update particles by adjusting the fitness dif-
ferences between exemplars.

Additionally, in recent years, researchers have also paid
attention to developing distributed learning strategies for
PSO by incorporating distributed computing techniques. For
instance, an adaptive granularity learning distributed PSO
was devised in Ref. [85]. In this optimizer, the swarm is
first divided into several smaller sub-swarms. Then, the
master–slave distributed model is adopted to evolve the sub-
swarms in parallel. In Ref. [54], a distributed elite guided
learning swarm optimizer (DEGLSO) was developed by uti-
lizing the master–slave distributed model to evolve multiple
small swarms based on an elite guided learning strategy and

devising an adaptive communication scheme to exchange
evolutionary information among these swarms adaptively.

Although the above mentioned large-scale PSO variants
have exhibited promising performance in tackling certain
kinds of high-dimensional problems, they still encounter
great challenges on complicated large-scale optimization
problems [38, 78], like those containing a lot of interacting
variables and the ones with numerous local or saddle regions.
As a consequence, there is an increasingly urgent demand
for simple yet effective large-scale PSO methods in tack-
ling complex high-dimensional optimization problems. This
is why the research on PSO for high-dimensional optimiza-
tion is still a vibrant and ad hoc topic in the computational
intelligence community.

To the above end, this paper proposes a random elite
ensemble learning swarm optimizer (REELSO) to cope with
high-dimensional optimization by taking inspiration from the
human observational learning theory proposed by Bandura
[58, 60].

Random elite ensemble learning swarm
optimizer

To tackle high-dimensional optimization with high effective-
ness and efficiency, we seek inspiration from the learning
behaviors of human beings. Specifically, according to the
learning theory proposed by Bandura et al. [58–60], human
beings usually adopt observational learning to imitate the
actions and behaviors of others in their surroundings. Then,
valuable information could be gained from the surroundings
to discover the ways things work, which is in turn employed
to direct us to do them by ourselves. This demonstrates that
the behaviors of human beings are deeply influenced by our
surrounding environment. Taking inspiration from this, this
paper proposes a random elite ensemble learning swarmopti-
mizer (REELSO) to tackle high-dimensional optimization,
which is elucidated in detail in the following.

Random elite ensemble learning

Considering each particle in the swarm as an individual, this
paper devises a randomelite ensemble learning (REEL) strat-
egy to let each particle learn effectively. Specifically, given
that the swarmmaintainsNPparticles to iteratively search the
solution space, the overall framework of the devised REEL
mechanism is presented in Fig. 1 and it works as follows:

(1) In each generation, as shown in Fig. 1, to provide posi-
tive learning environment for particles, this scheme first
divides particles into two separate groups, namely the
elite group (represented asEG), and the non-elite group
(represented as NEG). To be specific, given the size of
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Fig. 1 The framework of
REELSO
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Random Elite Ensemble 
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EG is EGS, EG is made up by the best EGS particles
in the current swarm based on their fitness, while NEG
consists of the remaining (NP-EGS) non-elite particles.

(2) Since the elite particles in EG are the fittest ones in
the current swarm, they preserve valuable evolutionary
information to evolve the swarm. Therefore, on the one
hand, these elites can be employed to guide the evolution
of the particles in NEG, so that each particle in NEG
could take positive observational learning to approach
promising areas fast; on the other hand, these elite par-
ticles in EG should not be updated, such that valuable
evolutionary information could be preserved to keep the
swarm from being trapped into local areas.

(3) To provide positive learning environment for each par-
ticle inNEG, as displayed in Fig. 1, the proposed REEL
randomly selects a number of different elites from EG
to form a random elite neighbor region for the non-elite
particle. In particular, the number of the selected elites
is called the elite neighbor size, and denoted as ENS.
By this means, each particle in NEG is surrounded by
elites and thus it can acquire positive learning.

(4) Based on the observational learning theory by Bandura
[58, 60], each particle in NEG evolves by watching the
behaviors of the elites in its surrounding. In particular,
as shown in Fig. 1, REEL updates the non-elite particle
by letting it cognitively learn from the best elite and
collectively learn from all elites in the neighbor region.
To be specific, each non-elite particle xi is updated as
follows:

vi � R1vi + R2(xEbest − xi ) + R3φ

ENS∑

t�1

(xEt − xi ),

(3)

xi � xi + vi , (4)

where vi and xi are the velocity vector and the position vector
of the ith individual in NEG, respectively. xEbest is the best
elite in the random elite neighbor region and is the guiding
exemplar in the cognitive learning. xEt (t � 1, 2, . . . , ENS)

is a randomly selected elite from EG to form the random elite
neighbor region (namely, the learning environment of xi) and
they are the collective exemplars in the ensemble learning;
ENS is the number of the selected elites; R1, R2 and R3 are
three real random numbers uniformly generated from [0, 1]
and φ is a real parameter in [0, 1] used to control the effect
of the ensemble learning part on the updated particles.

FromFig. 1 and the above four steps, the features of REEL
are summarized as follows:

(1) REEL directly employs the elite particles (namely, the
members in EG) in the swarm to guide the update of the
non-elite ones (namely, the members in NEG). There-
fore, the working principle of REEL is very different
from traditional PSOs devised for small-scale problems,
which utilize historical evolutionary information (like
pbest and gbest) to direct the update of particles. Thanks
to the continuous update of particles generation by gen-
eration, the members in both EG and NEG are also
likely updated generation by generation. As a result,
not only the elites used as candidate exemplars to direct
the evolution of non-elite particles in NEG are different
in different generations, but also the updated particles
are different in different generations.

(2) Each particle in NEG is surrounded by a number (ENS)
of randomly selected elites from EG. On the one hand,
based on the learning theory proposed by Bandura
[58–60], these elites form a positive learning environ-
ment for the associated non-elite particle to observe and
imitate. Hence, the non-elite particle could acquire pos-
itive learning to approach promising areas. In this way,
fast convergence of the swarm to promising areas could
be implicitly guaranteed. On the other hand, the elite
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neighbor region (namely the learning environment) is
constructed by randomly selecting elites from EG for
each non-elite particle. This indicates that for different
non-elite particles, their elite neighbor regions are likely
different. This matches the human observational learn-
ing theoryproposedbyBandura [58–60] that individuals
could learn different skills and behaviors in different
environments. Besides, it also matches the expectation
that the non-elite particles should be guided to promis-
ing zones fast without sacrificing swarm diversity.

(3) As shown in Eq. (3), REEL utilizes the best elite in
the elite neighbor region to direct the cognitive learn-
ing and adopts all elite neighbors to direct the ensemble
learning of each particle in NEG. On the one hand, the
best elite preserves the strongest attraction in the elite
neighbor region, and thus by watching its behaviors, the
non-elite particle can gain specific skills and approach
promising areas fast; on the other hand, the elites in the
neighbor region preserve different skills and capabili-
ties, and thus by watching their behaviors, the non-elite
particle can gain comprehensive skills to improve its
search ability. In particular, the cognitive learning part
is mainly responsible for the convergence, because the
guiding exemplar in this part is the best elite in the elite
neighbor region. On the contrary, the ensemble learn-
ing takes charge of the diversity maintenance, because
all elites in the region are used to guide the evolution
of the associated particle. By this means, it can prevent
the updated particle fromgreedily approaching the areas
where the best elite lies. With the collaboration between
the cognitive learning and the ensemble learning, the
swarm could find promising zones without drastic loss
of swarm diversity.

(4) With the abovemechanisms, it is found that the proposed
REEL could compromise convergence and diversity of
the swarm well to explore the vast space and exploit
the found promising zones appropriately. Therefore, it
is expected that the proposed REEL strategy could help
PSO to effectively solve high-dimensional problems.

Adaptive swarm partition

In the proposed REEL strategy, since the elites in EG are
utilized to form the random elite neighbor regions (namely,
the learning environment) of the particles inNEG, the size of
EG, namely EGS, has great influence on the construction of
their learning environment. Specifically, a large EGS exerts
the following two influences: (1) The elite group EG con-
tains a large number of elite particles, and thus the diversity
of these elites is high. This leads to that the diversity of the
random elite neighbor regions (the learning environments)

for non-elite particles is high, and therefore different non-
elite particles could learn to seek promising areas diversely.
This is quite profitable for particles to explore the large-scale
space. (2) The number of non-elite particles inNEG is small,
which indicates that fewer particles are updated during the
evolution. In this situation, slow convergence is obtained. On
the contrary, a small EGS results in two inverse effects: (1)
the number of candidate elites in EG to form the learning
environment of non-elite particles is small. In this situation,
the diversity of the random elite neighbor regions is low,
leading to that the updated non-elite particles tend to assem-
ble together to exploit the search space. This is profitable for
the swarm to exploit promising areas to acquire high-quality
solutions. (2) More non-elite particles in NEG are updated
with lower diversity of learning environments. In this case,
the swarm may converge fast to promising zones.

In general, in the early evolution period of an EA, high
population diversity is usually preferred to fully explore the
high-dimensional space to seek promising regions, while in
the late evolution stage, good exploitation is usually preferred
to intensively exploit the found optimal regions to find high-
quality solutions [62, 86]. Based on the above considerations,
this paper devises an adaptive EGS adjustment strategy to
dynamically partition the swarm into the two groups. Specif-
ically, in each generation, EGS is calculated as follows:

EGSi �
[
EGSmax − (EGSmax − EGSmin) ×

(
FEsi

FEsmax

)α]

× NP, (5)

where EGSi is the elite group size in the ith iteration, EGSmax

and EGSmin are the maximum and the minimum values of
EGS. FEsi is the accumulated number of fitness evaluations
consumed before the ith iteration, FEsmax is the preset max-
imum number of fitness evaluations, NP is the swarm size,
and α is a parameter controlling the decreasing speed of EGS
as the evolution goes on. In this paper, we set EGSmax �
0.8*NP, EGSmax � 0.4*NP, and α � 0.8 based on investiga-
tion experiments conducted in the following section.

From Eq. (5), it is found that as the evolution goes on, the
elite group EG becomes smaller and smaller. This indicates
that as the iteration continues, the swarm gradually changes
from exploring the high-dimensional space to exploiting the
found optimal areas. Specifically, in the early stage, EG is
very large with nearly 0.8 × NP elite particles. In this situa-
tion, the learning environments of particles in NEG are very
different from each other and thus they can search for promis-
ing areas in different directions. As the evolution proceeds,
EG becomes smaller and smaller, and in the late evolution
stage, the size of EG becomes close to 0.4×NP. In this case,
particles slightly tend to exploit the found optimal areas to
refine the found solutions. However, it deserves mentioning
that though the swarm biases to exploiting the found optimal
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regions as the evolution continues, the swarm diversity is not
seriously sacrificed because during the evolution,EG always
contains more than 0.4 × NP elite particles. With such many
elites in EG, the diversity of the learning environments for
non-elite particles is still relatively high.

Algorithm 1 The complete procedure of REELSO

Input: The swarm size NP, the maximum fitness evaluations FESmax, and the elite neighbor size ENS;
1:
2:

3:
4:
5:

6:
7:
8:

9:
10:
11:

12:
13:

Uniformly and randomly sample NP points in the solution space to initialize the swarm, calculate its fitness, and set fes = NP;
While (fes FESmax) do

Sort particles from the best to the worst in terms of their fitness;
Calculate EGS according to Eq. (5);
Divide the swarm into two groups: EG and NEG;

For (each particle in NEG) do
Randomly select ENS elites from EG;
Find the best elite  in the elite neighbor region;

Update the particle according to Eq.(3) and Eq.(4);
Evaluate the updated particle and fes++;

End For
End While
Find the best particle x in the swarm.

Output: The best particle x and its fitness f(x);

In conclusion, with this adaptive partition strategy, the
proposed REEL gradually changes from exploring the large-
scale solution space to exploiting the found optimal zones
subtly without serious sacrifice of swarm diversity. Such
a property is very beneficial for PSO to explore the high-
dimensional space and exploit the found promising zones
appropriately and at the same time avoid falling into local
areas.

Overall framework and complexity analysis

Combining the above two strategies together, we develop
REELSO, whose pseudocode is outlined in Algorithm 1.
From this algorithm, it is found that without consideration of
the function evaluation time, the computing time of REELSO
is O(NP × D) in each iteration, which is ineluctable for the
update of particles. Specifically, it takes O(NP × logNP) to
sort particles in the ascending order of their fitness as shown
in Line 4, and takes O(NP) to separate particles into two
groups as shown in Line 6 (actually in implementation this
step can be saved). Then, it consumes O(NP × (ENS + ENS
+ ENS × D)) to update the particles in NEG as shown in
Lines 7–12 (Line 8 and Line 9 take O(ENS) to construct the
learning environment for each particle in NEG and find the
best elite in the environment; Line 10 consumesO(ENS×D)
to update each particle in NEG). Since ENS is much smaller
than NP, and both are usually smaller than D, the final com-
putational time of REELSO in each generation is O(NP ×
D).

As for the consumption of memory, REELSO only needs
to store the velocities and the positions of particles, which
both take O(NP× D). Compared with traditional PSO vari-
ants based on historical evolutionary information (like pbest
and gbest), O(NP × D) space can be saved, because in
REELSO, no historical evolutionary information needs to
be stored.

In brief, REELSO remains as efficient as classical PSOs in
time consumption, but is more efficient in space occupation.

Difference between REELSO and existing large-scale
PSOs

In the literature, some large-scale PSO variants also directly
utilize superior particles in the current swarm to evolve
inferior ones. To the best of our knowledge, CSO [47], SL-
PSO [48], DLLSO [49], TPLSO [55], and SDLSO [56] are
the most similar large-scale PSO variants to the proposed
REELSO. In comparison with these five variants, REELSO
distinguishes from them in the following aspects:

(1) REELSO randomly constructs an elite neighbor region
for each member in NEG. In particular, since the elites
used to build the elite neighbor region are randomly
chosen from EG, the elite neighbor region is likely dis-
tinct for differentmembers inNEG. Besides, these elites
afford positive learning for the non-elite particle and
are all employed to direct the evolution of this particle.
However, in the five large-scale PSO variants, each infe-
rior particle is only guided by one or two superior ones.
For example, in CSO, particles are paired together and
the loser is evolved by learning from the winner, while
the winner is not updated; in SL-PSO, each particle is
triggered to update by a learning probability and once
it is triggered to update, it only learns from a random
superior particle; inDLLSO, TPLSO, and SDLSO, each
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inferior particle is updated by two superior ones in the
swarm. Based on the observational learning theory in
[58–60], the surrounding environment of inferior par-
ticles in the five existing large-scale PSO variants is
limited for them to observe and imitate. Therefore, infe-
rior particles in REELSO are expected to preserve better
learning ability than those in the five existing variants
and thus REELSO is expected to achieve more promis-
ing optimization performance than the five large-scale
PSO variants, which will be demonstrated by experi-
ments in the later section.

(2) REELSOutilizes the best elite in the randomelite neigh-
bor region as the guiding exemplar to direct the cognitive
learning and adopts all elites to guide the ensemble
learning to update each particle in NEG. From this per-
spective, the non-elite particles could acquire positive
learning to approach promising areas fast and thus fast
convergence could be guaranteed. In addition, since the
elite neighbor region is distinct for different particles in
NEG, the exemplars in the cognitive learning and the
ensemble learning are likely different as well for differ-
ent non-elite particles. From this perspective, REELSO
could preserve high diversity during the evolution.How-
ever, bothCSOand SL-PSOutilize one random superior
particle to direct the cognitive learning and the center of
the swarm to direct the social learning to update inferior
particles. Though the guiding exemplar in the cognitive
learning is likely different for different inferior parti-
cles, the guiding exemplar in the social learning is the
same for all inferior particles. From this respect, both
CSO and SL-PSO preserve lower diversity in particle
updating than REELSO. In addition, the exemplars in
both the cognitive learning and the social learning are
expectedly worse than those in REELSO. In this view
of point, CSO and SL-PSO may preserve slower con-
vergence than REELSO. Likewise, in DLLSO, TPLSO,
andSDLSO, since theydirectly utilize two superior indi-
viduals in the current swarm to update inferior ones,
there is no explicit social learning in these three PSO
variants. Though the two exemplars are likely differ-
ent for different inferior particles, they are expectedly
worse than those in REELSO. Therefore, the learning
ability of inferior particles in the three PSO variants is
limited, leading to that they may preserve slower con-
vergence than REELSO. Based on the above analysis, it
is expected that REELSO could compromise high diver-
sity and fast convergence better than these five existing
large-scale PSO variants and thus REELSO is expected
to obtain better optimization performance than the five
PSO methods, which will be demonstrated by experi-
ments in the later section as well.

Experiments

To demonstrate the feasibility and effectiveness of the
devised REELSO, this section carries out abundant exper-
iments on two public high-dimensional benchmark sets,
namely the CEC’2010 [40] and the CEC’2013 [61] high-
dimensional problem sets. The optimization problems in the
CEC’2013 set are much harder to solve than those in the
CEC’2010 set because they are generated by introducing
more complex properties, such as imbalance and overlap-
ping [61]. For more detailed information of these two sets,
please refer to Refs. [40] and [61].

To comprehensively validate the effectiveness and effi-
ciency of REELSO, we compare REELSO with 14 state-
of-the-art optimizers designed for high-dimensional opti-
mization. To be specific, the 14 state-of-the-art methods are
TPLSO [55], SDLSO [56], DLLSO [49], CSO [47], SL-PSO
[48], DECC-DG [50], DECC-XDG [74], DECC-GDG [75],
DECC-DG2 [76], DECC-RDG [51], DECC-RDG2 [77],
jDEsps [87], CO [88], and eWOA [89]. The former five algo-
rithms and the last three methods are all non-decomposition
large-scale optimizers proposed in recent years.However, the
former five optimizers are all large-scale PSO variants, while
the last three optimizers are the large-scale variants of other
evolutionary algorithms, such as the differential evolution
algorithm, the cheetah optimizer, and the whale optimization
algorithm. The medium six methods are decomposition-
based large-scale approaches. It should be mentioned that
in the six decomposition-based methods [50, 51, 74–77], DE
was utilized instead of PSO, because in the literature [50], DE
has been experimentally demonstrated to be more promising
than PSO in solving high-dimensional optimization prob-
lems under the decomposition frameworks. Besides, in the
experiments, for fairness, the recommended settings (in the
associated papers) of the parameters in the compared meth-
ods are directly adopted.

In the experiments, without otherwise stated, we set the
maximum number of function evaluations as 3000 × D (D
denotes the dimension size) for all algorithms. For fair and
comprehensive comparisons, this paper runs each algorithm
independently 30 times, and then utilizes the median value,
the mean value, and the standard deviation (Std) value over
the 30 independent runs to measure the optimization perfor-
mance of each method.

Furthermore, during the compassions between REELSO
and the 14 compared large-scale methods, theWilcoxon rank
sum test at the significance level of α � 0.05 is performed
to tell whether there is significant difference between the
optimization result of the proposed REELSO and that of
each compared method on each optimization problem. After
the execution, the p value is output. If the p value is larger
than 0.05, the devised REELSO performs equivalently with

123



Complex & Intelligent Systems (2023) 9:5467–5500 5477

the associated compared method on the corresponding opti-
mization problem. Otherwise, there is significant difference
between the optimization result of REELSO and that of the
associated compared method. Based on this principle, in the
following tables, the mark “+” above the p values implies
that REELSO significantly outperforms the corresponding
compared methods, and “−” means that REELSO is signif-
icantly inferior to the associated compared methods, while
“=” implies that REELSO achieves equivalent performance
with the corresponding compared methods. Accordingly,
“w/t/l” count the numbers of “+”, “=” and “−”, respectively.
Besides, the Friedman test at the significance level of α �
0.05 is performed to acquire the overall ranks of all methods
on one whole benchmark set, so that the overall optimiza-
tion performance of all methods can be compared. After the
execution, the average rank of each algorithm is output. In
particular, the smaller the rank value of one algorithm is,
the better overall optimization performance the algorithm
attains.

Lastly, it deserves mentioning that we run all experiments
on a PC with 8 Intel Core i7-10700 2.90-GHz CPUs, 8-GB
memory and the 64-bit Ubuntu 12.04 LTS system.

Investigation of REELSO

1. Parameter settings In REELSO, three parameters need
special fine-tuning, that is, the swarm size NP, the parameter
φ in Eq. (3), and the elite neighbor size ENS. The swarm
size NP is a common parameter of all PSOs and it is usually
problem-dependent. The elite neighbor size ENS determines
the size of the learning environment of each particle in the
non-elite group. Specifically, as ENS increases, more and
more elites are involved in the elite neighbor region of each
particle in the non-elite group. As a result, the attraction of
the best elite in the cognitive learning becomes greedier and
greedier andmore andmore elites participate in the ensemble
learning. Therefore, with ENS increasing, the swarm grad-
ually biases to exploiting the solution space at the risk of
losing the swarm diversity. Hence, to properly explore and
exploit the search space, such a parameter needs fine-tuning
for REELSO to obtain satisfactory performance. As for the
control parameter φ, it takes charge of the influence of the
ensemble learning. A large φ enhances the influence of the
ensemble learning part. In this situation, the attraction of the
best elite in the cognitive learning part could be weakened,
and thus the swarm diversity could be improved. However,
this may slow down the convergence of the swarm, which is
not profitable for the swarm to promote the accuracy of the
found solutions. By contrast, a small φ declines the impact of
the ensemble learning part. In this case, the updated particle
obtains more observation from the best elite in the cognitive

learning part, which is profitable for it to quickly approach
the area where the best elite lies. However, once the best elite
falls into a local area, the updated particle may also fall into
the local area. Therefore, the control parameter φ needs to be
set properly for REELSO to search the space appropriately to
find high-quality solutions. Based on the above analysis, it is
found that ENS and φ may interfere with the proper setting
of each other because both of them make direct influence
on the ensemble learning. Therefore, in the following, we
first investigate the optimal setting of NP and then seek the
optimal settings of ENS and φ simultaneously.

First, to investigate the proper setting of NP, we perform
experiments on the CEC’2010 set with NP varying from 400
to 1000. Table S1 in the supplementary material displays the
comparison results among REELSO with different settings
of NP. In this table, the average rank of each setting is shown
in the last row by conducting the Friedman test on the whole
20 problems. Besides, the best optimization results are also
bolded in the table.

FromTable S1, the following observations can be attained.
(1) From the perspective of the average rank obtained from
the Friedman test, REELSO with NP � 800 achieves the
lowest rank. This indicates that such a setting of NP helps
REELSOperform the best over thewhole 1000-DCEC’2010
benchmark problem set. (2) Specifically, with NP � 800,
REELSO obtains the best performance on 8 problems, while
with the other settings of NP, it achieves the best results on
at most 6 problems. In particular, taking deep comparison
between REELSOwithNP� 800 and the ones with the other
settings, we find that on the other 12 problems, the difference
between the optimization results obtained by REELSO with
NP�800 and those obtainedbyREELSOwith the associated
optimal NP is very small. Based on these observations, this
paper sets the swarm size NP as 800 for REELSO to solve
1000-D problems.

Subsequently, to investigate the optimal settings of the
elite neighbor size ENS and the control parameter φ simul-
taneously, this paper carries out experiments on the 1000-D
CEC’2010 optimization problem set with φ varying from
0.05 to 0.30 and ENS varying from 6 to 11. Table S2 in
the supplementary material displays the comparison results
among REELSO with different configurations of these two
parameters. Specifically, in this table, for each setting of
ENS, the average optimization results of REELSO with dif-
ferent settings ofφ over 30 independent runs on each problem
are reported. In particular, for each setting of ENS, the best
results obtained byREELSOwith the optimal setting ofφ are
highlighted in bold. To observe the overall optimization per-
formance of REELSO with each combination of ENS and φ,
the Friedman test is conducted over all optimization results
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obtained by REELSO with all combinations of ENS and φ

at the significance level of α � 0.05.
Taking deep observation on Table S2, we can attain the

following findings:

• As displayed in the last row of each part, in view of the
average rank, it is found that REELSO with ENS � 9
and φ � 0.10 achieves the lowest rank. This indicates
that REELSO with such a combination of ENS and φ

obtains the best overall optimization performance among
all configurations of ENS and φ on the whole CEC’2010
benchmark set.

• For each setting of ENS, it is interesting to find that nomat-
ter with respect to the average rank or from the view point
of the number of the problems where REELSO acquires
the best performance, REELSO with φ � 0.10 achieves
much better performance than the ones with the other set-
tings of φ. In particular, it is found that when φ exceeds
0.10 or is lower than 0.10, the performance of REELSO
sharply deteriorates no matter what ENS is. Therefore, we
keep φ � 0.10 for REELSO to solve any optimization
problems.

• As for ENS, it is found that with φ � 0.10, when ENS is
too large, such as ENS � 11, or ENS is too small, such
as ENS � 6, the optimization performance of REELSO
degrades. This is because a too large ENS or a too small
ENS could not help REELSO compromise the diversity
and the convergence well to search the large-scale space.
Based on the average rank, this paper keeps ENS � 9 for
REELSO to solve any optimization problems.

To summarize, based on the above investigation experi-
ments, NP � 800, ENS � 9 and φ � 0.10 are adopted for
REELSO to solve 1000-D problems.

2. Influence of the adaptive partition strategy To further help
REELSO achieve a good compromise between search diver-
sification and intensification, this paper devises an adaptive
partition strategy (as shown inEq. (5)) bydynamically adjust-
ing the size of the elite group, namely EGS. In this strategy,
three parameters are involved, namely, EGSmin, EGSmax and
α. Therefore, we first conduct experiments on the CEC’2010
benchmark set to investigate the appropriate settings of these
parameters before the verification of the effectiveness of this
adaptive strategy.

Firstly, to investigate the appropriate range of EGS, 12
different combinations of EGSmin and EGSmax are config-
ured for REELSO with EGSmin varying from 0.3 to 0.6 and
EGSmax varying from 0.7 to 0.9. The experimental results
of REELSO with different configurations of EGSmin and
EGSmax on the CEC’2010 set are shown in Table S3 in

the supplementary material. In this table, the best results are
bolded and the average rank of each configuration attained
from the Friedman test is shown in the last row.

With careful observation onTable S3, from the perspective
of the average rank, it is found that REELSO with EGSmin

� 0.4 and EGSmax � 0.8 achieves the lowest rank and such
a rank is much smaller than those of REELSO with the other
settings of EGSmin and EGSmax. This implies that REELSO
with such a combination of EGSmin and EGSmax obtains the
best overall optimization performance among all combina-
tions of EGSmin and EGSmax and such a combination shows
significant superiority to other combinations. Based on these
observations, this paper sets EGSmin � 0.4 andEGSmax � 0.8
for REELSO to solve high-dimensional optimization prob-
lems.

Subsequently, to investigate the optimal setting of the
parameter α, this paper carries out experiments with α vary-
ing from 0.1 to 0.9. Table S4 in the supplementary material
displays the comparison results among REELSOwith differ-
ent configurations of α on the CEC’2010 benchmark set.

From Table S4, it is found that REELSO with α � 0.8
achieves the lowest rank and such a rank is much smaller
than those of REELSO with the other settings of α. This
shows that REELSO with such a setting of α obtains the best
overall optimization performance among all settings of α on
the whole CEC’2010 benchmark set.

To summarize, based on the above investigation experi-
ments, EGSmin � 0.4, EGSmax � 0.8 and α � 0.8 are adopted
in Eq. (5) for REELSO to solve high-dimensional optimiza-
tion problems.

Subsequently, to testify the usefulness of the devised
adaptive strategy, this paper executes experiments on the
CEC’2010 benchmark problems to compare REELSO with
this adaptive strategy and those with different fixed EGS.
Specifically, six different fixed settings of EGS are adopted,
namely EGS � 0.4*NP, EGS � 0.5*NP, EGS � 0.6*NP,
EGS � 0.7*NP, EGS � 0.8*NP and EGS � 0.9*NP. Table
1 presents the experimental results of REELSO with the
adaptive strategy and different fixed EGS on the CEC’2010
benchmark problems.

Taking a close look at Table 1, we acquire the following
findings:

(1) From the perspective of the average rank attained from
the Friedman test, it is found that REELSO with the
adaptive partition strategy achieves the lowest rank and
such a rank is much smaller than those of REELSO
with the six fixed settings of EGS. This indicates that
REELSO with the adaptive partition scheme performs
the best among all versions of REELSO over all the
twenty 1000-D CEC’2010 problems.
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Table 1 Comparison results
between REELSO with and
without the adaptive strategy on
the 1000-D CEC’2010
benchmark problems

F EGS

Adaptive
EGS

EGS �
0.4*NP

EGS �
0.5*NP

EGS �
0.6*NP

EGS �
0.7*NP

EGS �
0.8*NP

EGS �
0.9*NP

F1 1.36E−24 1.44E−24 2.63E−24 3.53E−24 5.51E−24 7.27E−24 7.64E−24

F2 1.22E+03 1.54E+03 1.39E+03 1.33E+03 1.27E+03 1.24E+03 1.18E+03

F3 1.99E−14 2.02E−14 1.99E−14 1.81E−14 1.71E−14 1.77E−14 1.82E−14

F4 5.27E+10 5.69E+10 5.70E+10 5.51E+10 5.56E+10 5.92E+10 5.67E+10

F5 6.84E+06 9.96E+06 9.32E+06 7.80E+06 7.50E+06 1.57E+07 2.44E+07

F6 1.69E+01 1.97E+01 1.97E+01 1.96E+01 1.98E+01 1.89E+01 1.12E+01

F7 3.10E−12 1.38E+00 3.83E−02 3.01E−01 1.24E−10 2.90E−11 4.63E−11

F8 1.40E+04 1.41E+04 1.24E+04 1.27E+04 1.40E+04 1.53E+04 1.23E+04

F9 6.71E+06 6.97E+06 5.92E+06 6.01E+06 6.12E+06 6.43E+06 6.58E+06

F10 1.29E+03 1.60E+03 1.48E+03 1.40E+03 1.34E+03 1.29E+03 1.23E+03

F11 1.99E+01 2.12E+01 2.02E+01 2.02E+01 2.05E+01 2.02E+01 2.05E+01

F12 5.05E+01 1.91E+02 8.19E+01 8.38E+01 8.71E+01 8.19E+01 8.23E+01

F13 2.07E+02 2.67E+02 2.06E+02 1.80E+02 1.99E+02 2.27E+02 2.42E+02

F14 1.68E+07 1.91E+07 1.66E+07 1.62E+07 1.70E+07 1.74E+07 1.87E+07

F15 1.34E+03 1.69E+03 1.54E+03 1.44E+03 1.36E+03 2.83E+03 6.16E+03

F16 5.04E+00 1.09E+01 6.76E+00 6.17E+00 6.35E+00 3.85E+00 4.26E+00

F17 1.54E+03 1.43E+03 1.65E+03 1.73E+03 2.44E+03 2.90E+03 4.17E+03

F18 7.07E+02 9.05E+02 7.40E+02 7.29E+02 7.55E+02 7.43E+02 8.29E+02

F19 1.35E+06 7.94E+05 9.49E+05 1.30E+06 2.51E+06 3.87E+06 4.77E+06

F20 8.93E+02 1.01E+03 9.36E+02 9.25E+02 9.06E+02 9.04E+02 8.97E+02

Rank 2.38 5.73 3.93 3.40 4.05 4.20 4.33

The best results are highlighted in bold

(2) In-depth investigation on the comparison results demon-
strates that the adaptive strategy helps REELSO achieve
the best optimization performance on nine benchmark
problems, while REELSO with the fixed settings of
EGS performs the best on no more than four problems.
Besides, it is also found that on the other 11 prob-
lems, where REELSOwith the adaptive strategy obtains
inferior performance, the difference between the opti-
mization results obtained by REELSOwith the adaptive
strategy and those obtained by REELSO with the asso-
ciated optimal settings of EGS is very small.

All in all, according to the above findings, the designed
adaptive partition scheme is very profitable for REELSO to
attain promising performance in solving high-dimensional
problems.

Comparison with state-of-the-art methods

This section conducts experiments on the CEC’2010 and the
CEC’2013 benchmark sets to compare REELSO with the 14
compared large-scale optimizers. Table 2 shows the summa-
rized statistical comparison results betweenREELSOand the

14 compared methods on different types of benchmark prob-
lems in the two benchmark sets, while Tables 3 and 4 show
the detailed experimental results on the 1000-D CEC’2010
and the 1000-D CEC’2013 benchmark sets, respectively.

From Tables 2 and 3, we can obtain the following findings
on the twenty 1000-D CEC’2010 benchmark problems:

(1) From the perspective of the average rank achieved from
the Friedman test, it is found that REELSO achieves
the lowest rank among the 15 algorithms. This implies
that REELSO performs the best over the whole 1000-D
CEC’2010 benchmark set.

(2) With respect to “w/t/l” counted on the basis of the
Wilcoxon rank sum test, REELSO significantly out-
performs the 14 compared methods on more than 13
problems, and only displays inferiority to them on no
more than 6 problems. In particular, compared with
the five non-decomposition-based large-scale PSOs,
namely TPLSO, SDLSO, DLLSO, CSO, and SL-PSO,
REELSO exhibits significant superiority to them on 16,
13, 14, 16, and 19 problems, respectively. As com-
pared to the six state-of-the-art decomposition-based
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Table 3 Performance comparison between REELSO and the 14 compared large-scale optimizers on the 1000-D CEC’2010 problems

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F1 Median 1.21E−24 1.94E−18 2.44E−23 2.80E−22 4.63E−12 7.51E−18 3.88E+02 6.40E+02

Mean 1.36E−24 1.88E−18 2.76E−23 3.00E−22 4.75E−12 5.75E+01 7.34E+03 5.76E+04

Std 7.69E−25 3.02E−19 1.07E−23 7.15E−23 7.90E−13 1.82E+02 1.87E+04 2.42E+05

p value – 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.54E−05+ 6.47E−08+ 6.47E−08+

F2 Median 1.19E+03 1.07E+03 9.06E+02 9.68E+02 7.51E+03 1.85E+03 4.36E+03 4.47E+03

Mean 1.22E+03 1.07E+03 9.09E+02 9.79E+02 7.48E+03 1.85E+03 4.37E+03 4.44E+03

Std 5.87E+01 6.80E+01 3.88E+01 5.53E+01 2.63E+02 1.61E+01 1.64E+02 1.99E+02

p value – 3.11E−07− 6.46E−08− 5.50E−09− 6.46E−08+ 2.31E−05+ 6.46E−08+ 6.46E−08+

F3 Median 2.18E−14 1.40E+00 2.53E−14 2.89E−14 2.56E−09 2.01E+00 1.67E+01 1.67E+01

Mean 1.99E−14 1.41E+00 2.52E−14 2.73E−14 2.57E−09 2.01E+00 1.67E+01 1.67E+01

Std 2.96E−15 1.25E−01 1.74E−15 2.40E−15 1.85E−10 6.32E−06 2.94E−01 2.48E−01

p value – 5.45E−08+ 7.25E−08+ 3.63E−09+ 5.45E−08+ 1.16E−05+ 5.45E−08+ 5.45E−08+

F4 Median 4.90E+10 2.72E+11 1.38E+11 4.35E+11 6.92E+11 2.95E+11 5.27E+12 6.92E+11

Mean 5.27E+10 2.85E+11 1.42E+11 4.43E+11 6.87E+11 5.25E+11 5.20E+12 7.45E+11

Std 8.43E+09 9.32E+10 3.21E+10 1.19E+11 1.79E+11 5.37E+11 1.70E+12 2.65E+11

p value – 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F5 Median 6.97E+06 1.54E+07 7.96E+06 1.09E+07 2.00E+06 2.59E+07 1.50E+08 1.57E+08

Mean 6.84E+06 1.56E+07 7.99E+06 1.14E+07 2.46E+06 2.59E+07 1.56E+08 1.57E+08

Std 2.02E+06 4.53E+06 2.10E+06 2.62E+06 1.35E+06 1.26E+02 1.98E+07 2.45E+07

p value – 2.74E−07+ 3.42E−01= 3.90E−06+ 9.60E−07− 2.32E−05+ 6.47E−08+ 6.47E−08+

F6 Median 1.93E+01 2.05E+00 4.00E−09 4.00E−09 8.18E−07 3.53E+00 1.63E+01 1.64E+01

Mean 1.69E+01 2.17E+00 4.00E−09 4.00E−09 8.16E−07 4.99E+00 1.63E+01 1.63E+01

Std 6.46E+00 3.77E−01 8.41E−25 3.47E−15 2.60E−08 4.05E+00 3.44E−01 3.23E−01

p value – 7.47E−05− 1.17E−10− 1.64E−10− 6.47E−08− 2.12E−03− 7.47E−05− 7.47E−05−

F7 Median 4.70E−13 9.00E+02 6.62E−02 7.82E+00 2.13E+04 1.25E+05 7.14E+03 3.67E+02

Mean 3.10E−12 5.73E+03 5.80E−01 4.21E+01 2.13E+04 5.33E+05 9.77E+03 1.31E+03

Std 9.02E−12 1.03E+04 2.78E+00 1.53E+02 4.60E+03 1.10E+06 7.54E+03 2.11E+03

p value – 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F8 Median 1.22E+04 4.74E+05 2.32E+04 2.33E+07 3.86E+07 1.13E+07 1.66E+07 1.50E+01

Mean 1.40E+04 4.93E+05 2.36E+04 2.33E+07 3.86E+07 1.49E+07 2.39E+07 3.99E+05

Std 5.17E+03 1.46E+05 2.97E+03 2.56E+05 8.33E+04 1.55E+07 1.95E+07 1.22E+06

p value – 6.47E−08+ 5.66E−06+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 1.55E−05+

F9 Median 6.72E+06 4.20E+07 2.29E+07 4.55E+07 6.64E+07 3.76E+07 5.70E+07 1.12E+08

Mean 6.71E+06 4.28E+07 2.30E+07 4.49E+07 6.68E+07 5.97E+07 5.76E+07 1.15E+08

Std 5.22E+05 4.17E+06 2.24E+06 3.57E+06 4.47E+06 5.70E+07 8.26E+06 1.48E+07

p value – 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F10 Median 1.30E+03 9.60E+02 8.26E+02 8.88E+02 9.58E+03 3.00E+03 4.48E+03 5.21E+03

Mean 1.29E+03 9.68E+02 8.33E+02 8.86E+02 9.58E+03 5.27E+03 4.49E+03 5.15E+03

Std 5.56E+01 6.88E+01 4.17E+01 3.90E+01 6.68E+01 3.30E+03 1.31E+02 1.35E+02

p value – 6.47E−08− 6.45E−08− 5.50E−09− 6.47E−08+ 3.47E−05+ 6.47E−08+ 6.47E−08+

F11 Median 1.99E+01 3.44E+00 1.43E−13 2.36E+00 3.97E−08 2.08E+01 1.03E+01 1.09E+01

Mean 1.99E+01 3.45E+00 1.43E−13 4.51E+00 3.98E−08 2.09E+01 1.03E+01 1.07E+01

Std 1.21E−01 1.33E+00 4.79E−15 4.83E+00 3.25E−09 5.22E−01 9.23E−01 9.09E−01

p value - 6.47E−08− 4.03E−08− 7.93E−09− 6.47E−08− 3.59E−05+ 6.47E−08− 6.47E−08−
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Table 3 (continued)

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F12 Median 3.59E+01 1.17E+04 5.90E+03 1.23E+04 4.25E+05 1.77E+04 2.36E+03 1.28E+04

Mean 5.05E+01 1.18E+04 5.93E+03 1.22E+04 4.37E+05 6.39E+04 2.85E+03 1.25E+04

Std 4.71E+01 1.26E+03 6.23E+02 1.26E+03 6.61E+04 1.09E+05 1.01E+03 2.10E+03

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F13 Median 1.77E+02 7.22E+02 4.81E+02 7.81E+02 4.68E+02 9.74E+02 4.24E+03 2.85E+03

Mean 2.07E+02 7.49E+02 5.30E+02 8.18E+02 5.53E+02 1.53E+03 5.58E+03 3.21E+03

Std 7.52E+01 1.09E+02 1.53E+02 2.64E+02 1.78E+02 9.01E+02 3.40E+03 1.04E+03

p value - 6.47E−08+ 7.40E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F14 Median 1.67E+07 1.27E+08 6.50E+07 1.22E+08 2.46E+08 8.07E+07 3.43E+08 5.94E+08

Mean 1.68E+07 1.27E+08 6.61E+07 1.22E+08 2.46E+08 1.29E+08 3.42E+08 5.96E+08

Std 9.95E+05 8.25E+06 4.07E+06 7.91E+06 1.31E+07 1.26E+08 2.30E+07 3.14E+07

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F15 Median 1.33E+03 1.01E+04 5.98E+02 8.32E+02 1.01E+04 1.13E+04 5.89E+03 6.34E+03

Mean 1.34E+03 8.56E+03 9.00E+02 8.71E+02 1.01E+04 1.13E+04 5.87E+03 6.37E+03

Std 4.92E+01 3.33E+03 1.66E+03 2.75E+02 5.84E+01 2.48E+01 1.01E+02 9.90E+01

p value - 1.55E−05+ 4.54E−07− 2.17E−08− 6.46E−08+ 2.32E−05+ 6.47E−08+ 6.47E−08+

F16 Median 2.08E+00 1.72E+01 1.94E−13 3.98E+00 5.64E−08 1.04E+01 7.37E−13 1.74E−08

Mean 5.04E+00 1.86E+01 1.94E−13 4.20E+00 5.68E−08 1.08E+01 7.33E−13 1.79E−08

Std 8.50E+00 7.44E+00 4.61E−15 2.11E+00 6.32E−09 1.20E+00 4.09E−14 1.77E−09

p value - 1.55E−05+ 2.80E−01= 5.12E−02= 2.84E−01= 2.11E−03+ 2.84E−01= 2.84E−01=

F17 Median 1.42E+03 9.61E+04 9.23E+04 9.14E+04 2.18E+06 9.28E+04 4.11E+04 1.24E+05

Mean 1.54E+03 9.64E+04 9.19E+04 9.15E+04 2.21E+06 2.37E+05 4.11E+04 1.24E+05

Std 4.27E+02 8.15E+03 3.83E+03 5.14E+03 2.10E+05 3.32E+05 2.45E+03 6.58E+03

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F18 Median 6.90E+02 2.27E+03 1.26E+03 2.51E+03 1.38E+03 3.73E+03 1.46E+10 1.39E+03

Mean 7.07E+02 2.31E+03 1.31E+03 2.55E+03 1.64E+03 5.43E+03 1.48E+10 1.37E+03

Std 1.37E+02 4.27E+02 2.43E+02 7.25E+02 8.27E+02 4.88E+03 2.45E+09 1.55E+02

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F19 Median 1.33E+06 3.88E+06 4.86E+06 1.85E+06 9.78E+06 7.36E+06 1.76E+06 1.71E+06

Mean 1.35E+06 3.86E+06 4.86E+06 1.83E+06 9.86E+06 9.10E+06 1.74E+06 1.73E+06

Std 7.37E+04 2.76E+05 2.81E+05 9.21E+04 5.13E+05 4.56E+06 1.02E+05 7.02E+04

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

F20 Median 8.87E+02 2.00E+03 1.23E+03 1.90E+03 9.87E+02 1.93E+03 6.39E+10 2.04E+04

Mean 8.93E+02 2.04E+03 1.22E+03 1.92E+03 1.07E+03 2.14E+03 6.45E+10 2.19E+06

Std 1.81E+01 1.89E+02 1.16E+02 2.62E+02 1.72E+02 6.20E+02 8.66E+09 9.79E+06

p value - 6.47E−08+ 6.47E−08+ 5.51E−09+ 6.47E−08+ 3.59E−05+ 6.47E−08+ 6.47E−08+

w/t/l - 16/0/4 13/2/5 14/1/5 16/1/3 19/0/1 17/1/2 17/1/2

Rank 3.40 7.05 3.50 5.70 8.60 10.30 9.65 10.60

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

F1 Median 3.42E−10 3.49E+00 5.73E−01 1.39E−01 6.48E−21 3.99E−01 1.73E+11

Mean 3.89E−10 2.23E+01 3.10E+01 2.85E+01 2.01E−16 4.04E−01 1.73E+11

Std 1.37E−10 7.08E+01 1.20E+02 1.15E+02 9.09E−16 6.37E−02 7.14E+09

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 2.14E−05+ 3.59E−05+ 5.44E−08+

F2 Median 4.98E+02 4.45E+03 4.42E+03 4.40E+03 4.38E+01 9.07E+01 1.62E+04
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Table 3 (continued)

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

Mean 5.00E+02 4.43E+03 4.39E+03 4.40E+03 6.87E+01 9.55E+01 1.62E+04

Std 1.92E+01 1.89E+02 1.94E+02 1.45E+02 7.22E+01 8.93E+00 1.07E+02

p value 6.46E−08− 6.46E−08+ 6.46E−08+ 6.45E−08+ 6.30E−08− 3.58E−05− 1.23E−03+

F3 Median 1.68E+01 1.67E+01 1.67E+01 1.66E+01 2.62E−13 3.39E−04 2.09E+01

Mean 1.67E+01 1.67E+01 1.67E+01 1.66E+01 6.13E−12 3.34E−04 2.09E+01

Std 3.27E−01 2.80E−01 3.01E−01 2.89E−01 3.18E−11 1.39E−05 1.62E−02

p value 5.45E−08+ 5.45E−08+ 5.45E−08+ 5.45E−08+ 5.45E−08+ 1.91E−05+ 5.45E−08+

F4 Median 7.00E+13 8.68E+11 7.11E+11 6.58E+11 1.90E+11 1.34E+11 1.32E+15

Mean 6.83E+13 8.49E+11 7.58E+11 7.03E+11 4.98E+11 1.43E+11 1.22E+15

Std 1.14E+13 2.61E+11 2.40E+11 2.69E+11 1.06E+12 4.04E+10 4.45E+14

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 3.59E−05+ 6.47E−08+

F5 Median 3.58E+08 1.37E+08 1.27E+08 1.27E+08 7.07E+07 2.58E+08 6.95E+08

Mean 3.53E+08 1.39E+08 1.28E+08 1.29E+08 6.99E+07 2.89E+08 6.83E+08

Std 1.98E+07 2.42E+07 2.17E+07 2.13E+07 1.69E+07 1.06E+08 4.66E+07

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 3.59E−05+ 6.47E−08+

F6 Median 3.44E+02 1.53E+01 1.61E+01 1.63E+01 4.27E−09 8.66E+06 2.02E+07

Mean 3.63E+02 1.53E+01 1.61E+01 1.63E+01 5.95E−04 1.04E+07 2.02E+07

Std 9.17E+01 3.06E−01 3.29E−01 4.09E−01 3.14E−03 4.91E+06 2.22E+05

p value 6.47E−08+ 7.47E−05− 7.47E−05− 7.47E−05− 6.47E−08− 3.59E−05+ 6.47E−08+

F7 Median 1.71E+10 2.81E+01 1.03E+01 4.41E+00 1.88E+04 3.19E+00 4.88E+11

Mean 1.73E+10 3.61E+02 8.47E+01 9.29E+01 6.39E+05 3.20E+00 4.84E+11

Std 2.78E+09 7.77E+02 2.88E+02 2.32E+02 2.10E+06 7.41E−01 1.48E+11

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 3.59E−05+ 6.47E−08+

F8 Median 1.00E+08 5.22E+01 7.50E+00 6.13E+00 8.04E−12 4.84E+06 3.14E+16

Mean 1.26E+08 6.65E+05 2.66E+05 1.33E+05 1.75E+00 2.69E+07 3.02E+16

Std 1.15E+08 1.51E+06 1.01E+06 7.28E+05 9.59E+00 3.45E+07 7.45E+15

p value 6.47E−08+ 3.19E−04+ 2.83E−06+ 4.56E−07+ 6.47E−08− 4.28E−03+ 6.47E−08+

F9 Median 3.87E+08 6.93E+07 4.65E+07 4.80E+07 9.29E+06 2.43E+07 2.05E+11

Mean 3.90E+08 7.19E+07 4.75E+07 4.75E+07 2.78E+07 2.44E+07 2.04E+11

Std 2.27E+07 1.07E+07 9.58E+06 5.51E+06 6.08E+07 1.74E+06 8.33E+09

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 2.32E−03+ 3.59E−05+ 2.80E−07+

F10 Median 3.40E+03 4.68E+03 4.38E+03 4.37E+03 3.06E+03 5.08E+03 1.65E+04

Mean 3.40E+03 4.69E+03 4.33E+03 4.34E+03 3.04E+03 5.10E+03 1.65E+04

Std 7.24E+01 1.49E+02 1.39E+02 1.08E+02 4.07E+02 2.65E+02 2.02E+02

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 5.94E−08+ 3.59E−05+ 1.24E−03+

F11 Median 1.04E+01 1.05E+01 1.03E+01 1.04E+01 5.08E−13 2.17E+02 2.30E+02

Mean 1.04E+01 1.04E+01 1.04E+01 1.05E+01 3.79E−03 2.16E+02 2.30E+02

Std 8.03E−01 1.07E+00 9.35E−01 6.32E−01 2.07E−02 2.01E+00 2.31E−01

p value 6.47E−08− 6.47E−08− 6.47E−08− 6.47E−08− 6.46E−08− 3.59E−05+ 4.61E−08+

F12 Median 1.39E+05 4.35E+03 1.42E+03 1.32E+03 1.40E+03 2.15E+02 1.84E+07
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Table 3 (continued)

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

Mean 1.39E+05 4.50E+03 1.52E+03 1.42E+03 3.19E+04 2.11E+02 1.81E+07

Std 6.67E+03 1.13E+03 3.67E+02 2.77E+02 1.13E+05 1.70E+01 2.64E+06

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 1.43E−07+ 5.78E−05+ 1.24E−03+

F13 Median 8.97E+02 1.24E+03 6.06E+02 7.21E+02 1.98E+01 1.23E+03 6.47E+11

Mean 8.77E+02 1.53E+03 6.58E+02 8.45E+02 1.44E+02 1.41E+03 6.47E+11

Std 1.58E+02 1.09E+03 1.94E+02 5.54E+02 2.79E+02 5.49E+02 1.48E+10

p value 6.47E−08+ 6.47E−08+ 7.40E−08+ 6.47E−08+ 2.51E−03− 3.59E−05+ 2.91E−08+

F14 Median 4.71E+08 4.58E+08 3.42E+08 3.42E+08 2.90E+07 8.18E+07 2.16E+11

Mean 4.68E+08 4.52E+08 3.45E+08 3.39E+08 6.52E+07 8.18E+07 2.19E+11

Std 2.85E+07 2.65E+07 2.47E+07 2.00E+07 1.06E+08 5.15E+06 1.55E+10

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 1.55E−02+ 3.59E−05+ 1.26E−05+

F15 Median 6.06E+03 6.11E+03 5.86E+03 5.86E+03 5.99E+03 1.08E+04 1.66E+04

Mean 6.06E+03 6.10E+03 5.86E+03 5.88E+03 6.05E+03 1.07E+04 1.66E+04

Std 1.00E+02 1.08E+02 8.44E+01 9.85E+01 1.13E+03 5.80E+02 1.50E+02

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.46E−08+ 3.59E−05+ 3.37E−08+

F16 Median 5.49E−11 5.41E−11 2.66E−13 2.70E−13 5.13E+01 3.96E+02 4.18E+02

Mean 4.23E−02 5.43E−11 2.73E−13 2.70E−13 4.85E+01 3.96E+02 4.18E+02

Std 2.32E−01 5.72E−12 2.44E−14 1.25E−14 6.33E+00 6.93E−01 1.48E-01

p value 2.84E−01= 2.84E−01= 2.83E−01= 2.83E−01= 4.89E−08+ 3.56E−05+ 1.23E−03+

F17 Median 7.35E+04 7.39E+04 4.00E+04 4.07E+04 5.57E+03 2.65E+03 4.57E+07

Mean 7.43E+04 7.42E+04 4.02E+04 4.05E+04 6.21E+04 2.73E+03 4.43E+07

Std 4.34E+03 4.29E+03 2.75E+03 2.15E+03 1.71E+05 2.38E+02 4.65E+06

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 8.26E−05+ 1.81E−04+ 1.26E−05+

F18 Median 1.24E+03 1.30E+03 1.16E+03 1.17E+03 1.43E+03 3.17E+03 1.42E+12

Mean 1.24E+03 1.31E+03 1.14E+03 1.17E+03 1.85E+03 3.47E+03 1.43E+12

Std 1.52E+02 1.59E+02 1.10E+02 1.03E+02 1.87E+03 1.02E+03 8.76E+09

p value 8.45E−08+ 6.47E−08+ 7.40E−08+ 6.47E−08+ 6.63E−07+ 3.59E−05+ 1.24E−03+

F19 Median 1.86E+06 1.84E+06 1.71E+06 1.73E+06 8.66E+05 6.63E+05 9.01E+07

Mean 1.87E+06 1.85E+06 1.72E+06 1.73E+06 9.34E+05 6.77E+05 1.04E+08

Std 1.09E+05 1.02E+05 8.45E+04 8.58E+04 3.41E+05 3.53E+04 2.41E+07

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 2.95E−05− 3.59E−05− 2.47E−04+

F20 Median 7.04E+03 6.80E+03 3.97E+03 3.99E+03 7.09E+02 1.81E+03 1.59E+12

Mean 1.54E+05 2.38E+04 7.34E+03 1.94E+04 7.05E+02 1.80E+03 1.58E+12

Std 6.14E+05 4.28E+04 9.22E+03 8.04E+04 5.43E+02 1.88E+02 2.42E+10

p value 6.47E−08+ 6.47E−08+ 6.47E−08+ 6.47E−08+ 1.66E−01= 3.59E−05+ 1.24E−03+

w/t/l 17/1/2 17/1/2 17/1/2 17/1/2 13/1/6 18/0/2 20/0/0

Rank 10.20 9.15 6.80 7.20 5.25 7.60 15.00

The bolded p values mean that REELSO is significantly better than the corresponding compared methods
*The p value of the Friedman test is 1.93E−20

methods, namely DECC-DG, DECC-XDG, DECC-
GDG, DECC-DG2, DECC-RDG, and DECC-RDG2,
REELSO performs significantly better than them all on
17 problems. As compared to the three state-of-the-art
other large-scale evolutionary algorithms, namely jDE-
sps, CO, and eWOA, REELSO performs significantly

better than them on 13, 18, and 20 problems, respec-
tively. These observations substantiate that REELSO is
of more effectiveness than the 14 compared approaches
in solving the 1000-D CEC’2010 benchmark problems.
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Table 4 Performance comparison between REELSO and the 14 compared large-scale optimizers on the 1000-D CEC’2013 problems

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F1 Median 2.40E−25 2.93E−18 4.71E−23 3.85E−22 7.91E−12 1.04E−17 3.86E+02 5.32E+02

Mean 1.27E−24 3.08E−18 4.69E−23 3.92E−22 7.88E−12 5.80E+02 5.05E+03 5.03E+03

Std 1.79E−24 1.26E−18 1.44E−23 9.07E−23 1.21E−12 1.83E+03 1.85E+04 1.60E+04

p value – 5.37E−08+ 2.61E−09+ 2.61E−09+ 2.61E−09+ 8.00E−06+ 2.61E−09+ 2.61E−09+

F2 Median 1.53E+03 1.18E+03 9.95E+02 1.16E+03 8.57E+03 2.09E+03 1.27E+04 1.28E+04

Mean 1.51E+03 1.20E+03 9.94E+02 1.15E+03 8.58E+03 2.10E+03 1.26E+04 1.26E+04

Std 1.15E+02 1.26E+02 4.05E+01 7.27E+01 1.79E+02 2.74E+01 6.99E+02 6.55E+02

p value – 3.84E−07− 2.97E−09− 3.79E−09− 2.99E−09+ 8.91E−06+ 2.99E−09+ 2.99E−09+

F3 Median 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.14E+01 2.14E+01

Mean 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.16E+01 2.14E+01 2.14E+01

Std 7.79E−03 6.36E−03 4.87E−03 7.20E−03 5.99E−03 1.58E−02 1.36E−02 1.34E−02

p value – 3.65E−01= 3.08E−01= 5.66E−01= 9.61E−01= 3.90E−01= 2.99E−09− 2.99E−09−

F4 Median 3.01E+08 3.23E+09 3.02E+09 6.05E+09 1.22E+10 4.53E+09 6.47E+10 8.51E+09

Mean 2.95E+08 3.45E+09 3.02E+09 5.94E+09 1.35E+10 6.28E+09 7.50E+10 8.52E+09

Std 1.03E+08 1.23E+09 6.28E+08 1.47E+09 3.17E+09 5.08E+09 3.90E+10 2.81E+09

p value – 6.80E−08+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05+ 3.01E−09+ 3.01E−09+

F5 Median 5.18E+05 6.39E+05 6.50E+05 6.54E+05 5.90E+05 1.09E+06 5.80E+06 5.40E+06

Mean 5.27E+05 6.42E+05 6.71E+05 6.61E+05 5.97E+05 1.09E+06 5.69E+06 5.42E+06

Std 8.18E+04 8.65E+04 1.28E+05 1.11E+05 1.04E+05 4.01E+02 5.17E+05 4.25E+05

p value – 5.56E−04+ 9.15E−05+ 1.49E−04+ 7.28E−03+ 9.69E−06+ 2.99E−09+ 2.99E−09+

F6 Median 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06

Mean 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.06E+06

Std 9.38E+02 1.17E+03 1.23E+03 9.38E+02 1.20E+03 5.24E+02 1.40E+03 1.62E+03

p value – 8.39E−01= 4.76E−01= 1.98E−01= 1.43E−01= 2.80E−01= 1.57E−01= 8.04E−01=

F7 Median 3.71E+05 7.50E+05 2.70E+05 1.54E+06 5.45E+06 2.07E+06 4.24E+08 1.70E+07

Mean 4.20E+05 8.66E+05 3.47E+05 2.45E+06 5.81E+06 1.32E+07 4.78E+08 1.71E+07

Std 2.36E+05 5.02E+05 3.05E+05 3.62E+06 3.09E+06 2.56E+07 2.38E+08 6.16E+06

p value – 1.78E−03+ 1.02E−01= 8.78E−09+ 3.01E−09+ 3.90E−05+ 3.01E−09+ 3.01E−09+

F8 Median 1.14E+13 5.14E+13 4.58E+13 1.16E+14 2.42E+14 8.80E+13 4.31E+15 2.94E+14

Mean 1.22E+13 5.69E+13 4.91E+13 1.28E+14 2.46E+14 1.83E+14 4.32E+15 3.21E+14

Std 5.01E+12 2.30E+13 1.57E+13 4.70E+13 8.86E+13 2.09E+14 2.10E+15 1.86E+14

p value – 1.06E−07+ 6.17E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05+ 3.01E−09+ 3.01E−09+

F9 Median 3.84E+07 4.51E+07 1.07E+08 1.05E+08 5.94E+07 6.57E+07 4.86E+08 5.37E+08

Mean 3.98E+07 4.29E+07 1.11E+08 1.17E+08 6.08E+07 6.76E+07 4.91E+08 5.35E+08

Std 5.40E+06 8.32E+06 3.08E+07 4.22E+07 1.31E+07 5.56E+06 2.77E+07 2.26E+07

p value – 1.98E−01= 2.99E−09+ 2.99E−09+ 9.39E−08+ 1.17E−05+ 2.99E−09+ 2.99E−09+

F10 Median 9.40E+07 9.42E+07 9.40E+07 9.41E+07 9.41E+07 9.40E+07 9.45E+07 9.46E+07

Mean 9.39E+07 9.42E+07 9.40E+07 9.40E+07 9.40E+07 9.40E+07 9.45E+07 9.45E+07

Std 2.01E+05 2.52E+05 1.89E+05 2.28E+05 2.25E+05 1.03E+05 3.23E+05 2.68E+05

p value – 3.04E−03+ 1.11E−01= 2.09E−01= 4.04E−02+ 4.09E−01= 3.41E−06+ 5.42E−08+

F11 Median 2.37E+06 1.02E+08 9.22E+11 9.25E+11 9.25E+11 9.20E+11 1.98E+10 5.23E+08

Mean 2.49E+06 1.17E+08 9.28E+11 9.29E+11 9.29E+11 9.20E+11 4.17E+10 5.34E+08

Std 1.69E+06 7.52E+07 1.59E+10 9.30E+09 9.80E+09 5.79E+07 7.02E+10 1.19E+08

p value – 6.80E−08+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.15E−05+ 3.01E−09+ 3.01E−09+
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Table 4 (continued)

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F12 Median 9.11E+02 1.96E+03 1.25E+03 1.78E+03 1.04E+03 2.00E+03 1.67E+11 2.10E+04

Mean 9.12E+02 1.96E+03 1.27E+03 1.79E+03 1.08E+03 2.26E+03 1.65E+11 1.13E+06

Std 6.59E+01 1.80E+02 1.15E+02 1.18E+02 7.51E+01 7.14E+02 1.61E+10 5.79E+06

p value – 6.78E−08+ 3.01E−09+ 3.01E−09+ 3.11E−08+ 1.20E−05+ 3.01E−09+ 3.01E−09+

F13 Median 3.37E+06 6.69E+07 2.55E+08 3.66E+08 7.08E+08 2.89E+09 1.99E+10 1.07E+09

Mean 5.51E+06 1.09E+08 2.65E+08 3.80E+08 7.48E+08 3.43E+09 2.04E+10 1.11E+09

Std 6.32E+06 1.21E+08 1.21E+08 1.59E+08 2.89E+08 3.97E+09 5.56E+09 2.48E+08

p value – 6.01E−07+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05+ 3.01E−09+ 3.01E−09+

F14 Median 9.61E+06 3.77E+07 5.20E+07 8.99E+07 2.90E+09 1.43E+08 2.05E+10 2.62E+09

Mean 9.89E+06 4.43E+07 6.91E+07 1.21E+08 3.67E+09 1.39E+09 2.29E+10 3.05E+09

Std 2.43E+06 1.79E+07 4.84E+07 8.75E+07 3.38E+09 2.61E+09 1.32E+10 1.84E+09

p value – 6.80E−08+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05+ 3.01E−09+ 3.01E−09+

F15 Median 2.73E+06 1.03E+07 1.21E+07 4.40E+06 7.60E+07 6.30E+07 9.32E+06 9.11E+06

Mean 2.81E+06 1.06E+07 1.20E+07 4.47E+06 7.61E+07 6.70E+07 9.78E+06 9.65E+06

Std 1.09E+06 2.18E+06 8.00E+05 4.12E+05 6.24E+06 1.09E+07 1.79E+06 1.79E+06

p value – 6.80E−08+ 3.01E−09+ 1.05E−07+ 3.01E−09+ 1.20E−05+ 3.01E−09+ 3.01E−09+

w/t/l – 11/3/1 10/4/1 11/3/1 13/2/0 12/3/0 13/1/1 13/1/1

Rank 3.13 5.33 5.93 6.00 7.53 8.40 11.07 9.20

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

F1 Median 5.04E−10 1.65E+01 1.97E−01 5.72E−01 1.43E−20 4.05E−01 1.81E+11

Mean 5.12E−10 9.61E+04 5.17E+00 5.50E+01 2.30E−14 4.19E−01 1.80E+11

Std 1.12E−10 5.25E+05 2.13E+01 1.96E+02 1.25E−13 4.45E−02 7.92E+09

p value 2.61E−09+ 2.61E−09+ 2.61E−09+ 2.61E−09+ 2.66E−07+ 8.19E−06+ 3.91E−11+

F2 Median 4.56E+02 1.28E+04 1.26E+04 1.26E+04 6.12E+01 2.03E+02 4.24E+04

Mean 4.60E+02 1.28E+04 1.27E+04 1.26E+04 1.03E+02 2.06E+02 4.23E+04

Std 2.13E+01 5.99E+02 6.37E+02 5.42E+02 1.10E+02 1.66E+01 2.67E+02

p value 2.99E−09− 2.99E−09+ 2.99E−09+ 2.99E−09+ 2.98E−09− 1.17E−05− 3.20E−08+

F3 Median 2.14E+01 2.14E+01 2.14E+01 2.14E+01 2.00E+01 2.00E+01 2.16E+01

Mean 2.14E+01 2.14E+01 2.14E+01 2.14E+01 2.00E+01 2.00E+01 2.16E+01

Std 1.51E−02 1.63E−02 1.77E−02 1.75E−02 1.22E−02 3.11E−04 1.11E−02

p value 2.99E−09− 2.99E−09− 2.99E−09− 2.99E−09− 2.99E−09− 1.18E−05− 2.59E−01=

F4 Median 2.47E+11 5.53E+10 5.08E+10 4.70E+10 1.13E+09 1.29E+09 5.93E+12

Mean 2.50E+11 6.06E+10 4.95E+10 4.80E+10 1.89E+09 1.39E+09 6.53E+12

Std 6.89E+10 2.31E+10 1.57E+10 1.34E+10 2.81E+09 5.88E+08 2.46E+12

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.11E−08+ 1.20E−05+ 1.54E−07+

F5 Median 7.83E+06 5.19E+06 5.12E+06 5.19E+06 3.20E+06 1.15E+07 3.63E+07

Mean 7.83E+06 5.24E+06 5.13E+06 5.21E+06 3.22E+06 1.19E+07 3.63E+07

Std 4.31E+05 4.21E+05 4.50E+05 4.34E+05 3.82E+05 2.07E+06 2.05E+06

p value 2.99E−09+ 2.99E−09+ 2.99E−09+ 2.99E−09+ 2.99E−09+ 1.17E−05+ 9.97E−08+

F6 Median 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.05E+06 1.04E+06 1.06E+06

Mean 1.06E+06 1.06E+06 1.06E+06 1.06E+06 1.05E+06 1.04E+06 1.06E+06

Std 1.50E+03 1.50E+03 1.20E+03 1.61E+03 2.37E+03 1.18E+04 3.42E+03

p value 4.19E−07+ 1.06E−01= 3.96E−05+ 1.75E−01= 3.00E−09− 1.19E−05− 2.97E−03−

F7 Median 3.93E+08 4.43E+07 8.89E+07 5.40E+07 7.81E+08 9.34E+04 4.72E+13
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Table 4 (continued)

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

Mean 4.03E+08 4.42E+07 9.82E+07 5.69E+07 8.72E+08 8.81E+04 6.20E+13

Std 9.76E+07 1.54E+07 4.17E+07 2.05E+07 3.47E+08 2.63E+04 3.37E+13

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05− 3.24E−08+

F8 Median 9.13E+15 5.73E+15 4.96E+15 3.98E+15 9.31E+12 4.25E+13 2.83E+17

Mean 9.51E+15 5.68E+15 4.83E+15 4.31E+15 3.34E+13 4.59E+13 2.64E+17

Std 3.21E+15 1.99E+15 1.71E+15 1.61E+15 7.02E+13 1.53E+13 9.12E+16

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 7.44E−01= 1.20E−05+ 6.16E−06+

F9 Median 5.15E+08 5.21E+08 4.87E+08 4.93E+08 2.54E+08 1.02E+09 3.04E+09

Mean 5.09E+08 5.16E+08 4.88E+08 4.87E+08 2.80E+08 1.09E+09 3.07E+09

Std 3.16E+07 2.97E+07 2.45E+07 3.28E+07 9.45E+07 1.41E+08 2.67E+08

p value 2.99E−09+ 2.99E−09+ 2.99E−09+ 2.99E−09+ 2.99E−09+ 1.17E−05+ 1.17E−05+

F10 Median 9.46E+07 9.46E+07 9.46E+07 9.45E+07 9.30E+07 9.23E+07 9.34E+07

Mean 9.46E+07 9.45E+07 9.45E+07 9.45E+07 9.29E+07 9.24E+07 9.34E+07

Std 2.16E+05 1.95E+05 2.89E+05 2.45E+05 3.43E+05 5.09E+05 5.13E+05

p value 7.76E−09+ 1.75E−08+ 2.23E−07+ 3.47E−08+ 2.99E−09− 1.76E−05− 3.21E−02−

F11 Median 6.50E+08 3.35E+09 5.53E+08 1.78E+09 9.33E+11 3.59E+07 1.90E+15

Mean 6.68E+08 4.95E+09 6.67E+08 4.17E+09 9.34E+11 3.94E+07 1.82E+15

Std 1.63E+08 4.82E+09 5.36E+08 6.33E+09 1.14E+09 2.81E+07 8.58E+14

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.21E−09+ 1.20E−05+ 1.20E−04+

F12 Median 6.22E+03 6.24E+03 3.97E+03 4.05E+03 7.39E+02 1.77E+03 1.66E+12

Mean 2.73E+04 7.92E+03 4.83E+03 7.62E+03 8.13E+02 1.80E+03 1.65E+12

Std 8.84E+04 4.20E+03 3.30E+03 1.86E+04 5.16E+02 4.10E+02 2.02E+10

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 2.47E−01= 1.20E−05+ 3.01E−09+

F13 Median 1.50E+09 1.27E+09 2.92E+09 6.78E+08 1.97E+10 7.31E+06 1.91E+15

Mean 1.58E+09 1.30E+09 3.13E+09 6.93E+08 2.10E+10 7.77E+06 2.01E+15

Std 4.48E+08 3.16E+08 8.61E+08 2.00E+08 5.81E+09 2.09E+06 1.20E+15

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 2.09E−02+ 1.20E−04+

F14 Median 5.82E+09 6.02E+09 2.74E+09 3.05E+09 9.93E+10 2.31E+07 2.73E+15

Mean 6.59E+09 5.72E+09 3.40E+09 3.06E+09 1.10E+11 2.33E+07 2.96E+15

Std 4.05E+09 2.74E+09 2.23E+09 1.51E+09 5.33E+10 2.91E+06 3.98E+14

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05+ 7.08E−03+

F15 Median 1.13E+07 1.11E+07 9.48E+06 9.32E+06 2.39E+07 1.48E+06 1.17E+11

Mean 1.19E+07 1.14E+07 1.03E+07 9.59E+06 2.74E+07 1.49E+06 1.32E+11

Std 3.01E+06 2.29E+06 2.18E+06 1.66E+06 1.12E+07 7.13E+04 5.14E+10

p value 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 3.01E−09+ 1.20E−05− 1.20E−04+

w/t/l 13/0/2 13/1/1 14/0/1 13/1/1 9/2/4 9/0/6 12/1/2

Rank 10.60 10.80 9.73 8.53 6.67 4.00 13.07

The bolded p values mean that REELSO is significantly better than the corresponding compared methods
*The p value of the Friedman test is 5.74E−12

(3) Making a deep observation on the comparison results
in terms of different kinds of optimization problems,
we can see that (a) on the one fully separable unimodal
problem, REELSO shows significant dominance to all
14 compared algorithms; (b) on the two fully separa-
ble multimodal problems, REELSO shows significantly
better performance than 8 compared methods, namely
CSO, SL-PSO, DECC-DG, DECC-XDG, DECC-DG2,
DECC-RDG, DECC-RDG2 and eWOA and is com-
petitive to the other 6 compared methods; (c) on the

six partially separable unimodal problems, REELSO
presents significant dominance to all 14 compared algo-
rithms; (d) on the nine partially separable multimodal
problems, REELSO presents significant superiority to
12 compared methods on more than five problems and
is competitive to SDLSO and DLLSO; (e) on the one
fully non-separable unimodal problem, REELSO shows
significant dominance to 12 compared algorithms; (f)
on the one fully non-separable multimodal problem,
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REELSO is significantly superior to 13 comparedmeth-
ods and achieves competitive performance to jDEsps.
As a whole, it is interesting to find that REELSO
shows significantly better performance than the 14
compared methods nearly on all unimodal problems.
This is because REELSO preserves faster convergence
to optimal solutions than the 14 compared methods,
which mainly benefits from the cooperation between
the cognitive learning and the ensemble learning in
the REEL learning scheme. Such a learning strategy
ensures that each updated particle takes positive learn-
ing from its environment to approach optimal regions
fast. Besides, on multimodal problems, REELSO also
exhibits great superiority to most compared algorithms.
This is mainly attributed to that REELSO is capable of
better balancing exploration and exploitation to search
the solution space. Specifically, the randomconstruction
of the learning environment for each non-elite particle
affords high search diversity for the swarm to traverse
the immense space in diverse directions. Besides, the
cognitive learning and the ensemble learning in REEL
provide fast convergence for the swarm to move toward
optimal regions. Together, the devised REEL strategy
endows the swarm with a good capability to explore the
solution space with slight intensification and exploit the
found optimal regions with slight diversification.

(4) To summarize, it is found that REELSO exhibits consid-
erably equivalent performancewith or even significantly
better optimization performance than the 14 compared
algorithms on different kinds of optimization prob-
lems. In particular, on partially separable problems,
which are quite difficult to optimize but very common
in real-world engineering, REELSO shows significant
superiority to the 14 compared algorithms. This demon-
strates that REELSO is very promising for solving
complicated optimization problems.

From Tables 2 and 4, the following findings can be
obtained on the 1000-D CEC’2013 benchmark problems:

(1) In terms of the average rank achieved from the Fried-
man test, it is found that on such difficult optimization
problems, REELSO still obtains the smallest average
rank among all 15 algorithms and its rank value is still
far smaller than those of the 14 compared methods. This
indicates that REELSO still performs the best over the
whole 1000-D CEC’2013 benchmark set and its opti-
mization performance is much superior to those of the
14 compared methods.

(2) With respect to “w/t/l” counted on the basis of the
Wilcoxon rank sum test, on the 15 difficult problems,
REELSO significantly outperforms the 14 compared

methods on more than 9 problems, and only displays
inferiority to them on no more than 6 problems. In par-
ticular, compared with TPLSO, SDLSO, DLLSO, CSO,
and SL-PSO, REELSO exhibits significant superiority
to them on 11, 10, 11, 13, and 12 problems, respec-
tively. Competed with the six decomposition-based
methods, REELSO significantly wins the competition
onmore than 13 problems. As for three other large-scale
evolutionary algorithms, REELSO achieves significant
superiority to them on 9, 9, and 12 problems, respec-
tively. These observations verify that REELSO is much
better than the 14 compared large-scale approaches
in solving the difficult 1000-D CEC’2013 benchmark
problems.

(3) In terms of different kinds of optimization problems,
we can see that (a) on different types of unimodal
problems, like the fully separable unimodal problems,
the partially separable unimodal problems, the overlap-
ping unimodal problems, and the fully non-separable
unimodal problems, REELSO consistently obtains sig-
nificantly better optimization results than nearly all 14
compared approaches; (b) on different kinds of multi-
modal problems, REELSO achieves significantly better
performance than8 comparedmethods, and attains com-
petitive performance with 6 compared methods on the
two fully separable multimodal problems; it obtains no
worse optimization results than 11 compared methods
on the five partially separable multimodal problems;
besides, it significantly outperforms 13 comparedmeth-
ods on the one overlapping multimodal problem; (c)
in particular, it is found that on the complicated over-
lapping problems and the complex fully non-separable
problems, REELSO is significantly better than the 14
compared methods. Such superiority of REELSO to
the 14 compared methods mainly profits from the
devised REEL strategy. Such a learning strategy lets
REELSO search the vast problem space with dynamic
balance between exploration and exploitation. Con-
fronted with unimodal problems, REELSO inclines the
balance to exploitation of the optimal regions with
slight diversification, so that the swarm could find the
optimal regions fast and then intensively mines the
found optimal regions subtly to get high-accuracy solu-
tions. By contrast, in face of multimodal problems,
REELSO first inclines the balance to exploration of the
immense solution space with slight intensification to
locate more promising areas and then inclines the bal-
ance to exploitation of the found optimal regions with
slight diversification to find high-quality solutions.

(4) To sum up, REELSO exhibits considerably equiva-
lent performance with or even significant superiority
to the 14 compared algorithms on different types of
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benchmark problems. In particular, confrontedwith par-
tially separable problems and overlapping problems that
are quite complicated but very common in real-world
engineering, REELSO shows significant superiority to
the 14 compared algorithms. This demonstrates that
REELSO is very promising for tackling complicated
optimization problems.

To further verify the effectiveness and efficiency of the
devised REELSO, this paper further conducts experiments
to observe the convergence behaviors of REELSO by com-
paring it with the 14 compared optimizers on the CEC’2010
and CEC’2013 sets. Figures 2 and 3 exhibit the convergence
behaviors of REELSO and the 14 compared methods on the
two high-dimensional problem sets, respectively.

FromFig. 2, close observation on the eight unimodal prob-
lems (F1, F4, F7, F9, F12, F14, F17 and F19) shows that
REELSO attains significantly higher solution quality along
with faster convergence than the 14 compared methods on 5
problems (F1, F4, F7, F9, F14). On F12 and F17, REELSO
achieves better performance in terms of solution quality and
convergence speed at the early stage than the 14 compared
methods. However, at the late stage, it is slightly inferior to
one or two compared methods, but is still much better than
the other compared methods. On the 12 multimodal prob-
lems (F2, F3, F5, F6, F8, F10, F11, F13, F15, F16, F18, and
F20), REELSO achieves higher solution quality and faster
convergence speed than at least 12 compared methods on 8
problems (F3, F5, F8, F10, F13, F15, F18, and F20).

From Fig. 3, similar conclusions can be drawn on the
CEC’2013 problem set. Specifically, on the seven unimodal
problems (F1, F4, F8, F11, and F13–F15), REELSO shows
much better performance than the 14 compared methods in
terms of both the solution quality and the convergence speed
on five problems (F1, F4, F8, F11, F14). On the other two
problems (F13 and F15), REELSO presents significantly bet-
ter performance than 13 compared methods. On the eight
multimodal problems (F2, F3, F5–F7, F9, F10, and F12),
REELSO shows significant superiority to at least 13 com-
pared methods with respect to the solution quality and the
convergence speed on four problems (F5, F9, F7, and F12).

As a whole, we find that REELSO presents significantly
better performance than the 14 comparedmethods on the uni-
modal problems in the two benchmark sets, Such superiority
of REELSO mainly benefits from the devised REEL strat-
egy, which ensures that each updated particle takes positive
learning from its surroundings. With the cognitive guid-
ance of the best elite and the ensemble guidance of all
elites in the randomly constructed learning environment,
the updated particles are expected to move toward optimal
regions fast in diverse directions. Confronted with such a
kind of optimization problems, REELSO inclines the bal-
ance between exploration and exploitation to search the vast

space with slight intensification. As a result, the swarm could
fast locate optimal regions and then intensively exploit the
found optimal areas subtly to find high-quality solutions. On
the multimodal problems, REELSO also presents significant
superiority to most of the 14 compared methods. This is
mainly contributed by the high search diversity maintenance
endowed by the devised REEL strategy. In particular, in this
learning strategy, each particle in the non-elite group is pro-
vided with a positive learning environment formed by elite
particles randomly chosen from the elite group in the cur-
rent swarm. The random construction of the positive learning
environment of each particle in the non-elite group leads to
that different non-elite particles have different learning envi-
ronments and thus they can take the cognitive learning and
the ensemble learning from different elites. As a result, high
learningdiversity ismaintained amongparticles,which likely
ensures that particles inREELSOare capable of searching the
multimodal space in diverse directions. Cooperated with the
cognitive learning and the ensemble learning mechanisms,
REELSO could explore the immense solution space with
slight intensification to locate promising regions fast and
exploit the found optimal areas with slight diversification
to subtly find high-quality solutions.

Scalability investigation

After the above extensive comparisons between REELSO
and the 14 compared large-scale approaches on the two sets
of 1000-D benchmark problems, it is interesting to further
investigate the scalability of REELSO to deal with opti-
mization problems with higher dimensionality. To this end,
we carry out experiments on the CEC’2010 problem set by
changing the dimension size to 2000 and compare REELSO
with the 14 compared large-scale methods. In this experi-
ment, the swarm size NP for REELSO is set as 900 and the
other parameters are set the same as those used to solve the
1000-D problems in the last subsection. With respect to the
compared large-scale optimizers,weonlyfine-tune their pop-
ulation sizes with the other parameters set according to the
recommendation in the associated papers. Table 5 presents
the summarized comparison results in terms of the two sta-
tistical tests, while Table 6 displays the detailed comparison
results.

FromTables 5 and 6, the following findings on the 2000-D
CEC’2010 problems can be obtained:

(1) Regarding the average rank achieved from the Friedman
test, it is found that on such high-dimensional problems,
REELSO still ranks the first among all 15 algorithms.
This indicates that REELSO still performs the best on
the whole 2000-D CEC’2010 benchmark set.

(2) With respect to “w/t/l” calculated from the results of the
Wilcoxon rank sum test, on the 20 difficult problems,
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(a) F1:  fully separable and unimodal (b) F2:  fully separable and multimodal (c) F3:  fully separable and multimodal (d) F4:  partially separable and unimodal

(e) F5:  partially separable and multimodal (f) F6:  partially separable and multimodal (g) F7:  partially separable and unimodal (h) F8:  partially separable and multimodal

(i) F9:  partially separable and unimodal (j) F10:  partially separable and multimodal (k) F11:  partially separable and multimodal (l) F12:  partially separable and unimodal

(m) F13:  partially separable and multimodal (n) F14:  partially separable and unimodal (o) F15:  partially separable and multimodal (p) F16:  partially separable and multimodal

(q) F17:  partially separable and unimodal (r) F18:  partially separable and multimodal (s) F19:  fully non-separable and unimodal (t) F20:  fully non-separable and multimodal

Fig. 2 Convergence behavior comparison between REELSO and the 14 compared methods on the 1000-D CEC’2010 problems
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(a) F1: fully separable and unimodal (b) F2: fully separable and multimodal (c) F3: fully separable and multimodal (d) F4: partially separable and unimodal

(e) F5: partially separable and multimodal (f) F6: partially separable and multimodal (g) F7: partially separable and multimodal (h) F8: partially separable and unimodal

(i) F9: partially separable and multimodal (j) F10: partially separable and multimodal (k) F11: partially separable and unimodal (l) F12: overlapping and multimodal

(n) F14: overlapping and unimodal (o) F15: fully non-separable and unimodal
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Fig. 3 Convergence behavior comparison between REELSO and the 14 compared methods on the CEC’2013 problems

REELSO significantly outperforms the 14 compared
optimizers onmore than 14 problems, and only displays
inferiority to them on no more than 6 problems. In par-
ticular, compared with TPLSO, SDLSO, DLLSO, CSO,
and SL-PSO, REELSO exhibits significant superiority
to them on 16, 14, 14, 16, and 20 problems, respectively.
Competed with the six decomposition-based methods
and the three other evolutionary algorithms, REELSO
significantly wins the competition on more than 14
problems, and only displays inferiority to them on no
more than 4 problems. These observations verify that

REELSO is still more effective than the 14 compared
large-scale approaches in solving the difficult 2000-D
CEC’2010 benchmark problems.

(3) Regarding different kinds of optimization problems,
we can see that (a) on the one fully separable uni-
modal problem, the six partially separable unimodal
problems, and the one fully non-separable multimodal
problem, REELSO consistently shows significant dom-
inance to all 14 compared approaches; (b) on the
two fully separable multimodal problems, REELSO
achieves competitive performance with 5 compared
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Table 6 Performance comparison between REELSO and the 14 compared methods on the 2000-D CEC’2010 problems

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F1 Median 3.48E−21 6.82E−03 7.20E−21 1.73E−20 2.57E−11 1.43E+08 4.53E+07 3.70E+07

Mean 3.47E−21 2.05E−01 7.35E−21 1.75E−20 2.63E−11 1.40E+08 6.49E+07 5.70E+07

Std 2.04E−22 7.69E−01 5.74E−22 8.86E−22 2.53E−12 2.89E+07 7.08E+07 5.47E+07

p value – 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F2 Median 3.44E+03 3.00E+03 1.69E+03 1.38E+03 5.20E+03 4.13E+03 4.91E+04 4.90E+04

Mean 3.43E+03 3.02E+03 1.68E+03 1.40E+03 5.31E+03 4.15E+03 4.91E+04 4.90E+04

Std 9.56E+01 1.74E+02 4.82E+01 5.17E+01 8.14E+02 1.75E+02 3.23E+02 3.47E+02

p value – 4.93E−04− 4.44E−04− 4.44E−04− 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F3 Median 2.18E−14 3.14E+00 3.24E−14 3.95E−14 3.46E−09 6.30E+00 2.15E+01 2.15E+01

Mean 2.18E−14 3.12E+00 3.08E−14 3.94E−14 3.46E−09 6.34E+00 2.15E+01 2.15E+01

Std 0.00E+00 1.45E−01 1.80E−15 6.49E−16 1.83E−10 3.24E−01 7.86E−03 8.87E−03

p value – 2.31E−04+ 1.25E−04+ 8.11E−08+ 4.37E−04+ 4.37E−04+ 4.37E−04+ 4.37E−04+

F4 Median 4.45E+10 3.20E+11 1.95E+11 3.80E+11 6.25E+11 2.32E+12 1.00E+16 8.69E+15

Mean 4.22E+10 3.27E+11 2.03E+11 3.62E+11 6.29E+11 2.32E+12 1.03E+16 9.57E+15

Std 8.82E+09 1.04E+11 3.32E+10 7.02E+10 8.73E+10 3.97E+11 3.41E+15 3.22E+15

p value – 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F5 Median 7.97E+06 1.74E+07 5.97E+06 6.97E+06 4.98E+06 1.89E+07 1.52E+08 1.59E+08

Mean 7.77E+06 1.73E+07 5.58E+06 6.00E+06 4.62E+06 2.02E+07 1.50E+08 1.56E+08

Std 1.64E+06 4.60E+06 1.96E+06 1.74E+06 1.54E+06 5.90E+06 1.72E+07 2.17E+07

p value – 3.39E−04+ 1.02E−02− 1.51E−02− 1.72E−03− 4.44E−04+ 4.45E−04+ 4.45E−04+

F6 Median 1.93E+01 3.76E+00 4.00E−09 4.00E−09 2.16E−06 1.99E+01 2.13E+07 2.13E+07

Mean 1.21E+01 3.80E+00 4.00E−09 4.00E−09 2.15E−06 1.99E+01 2.13E+07 2.13E+07

Std 9.99E+00 3.49E−01 1.68E−24 8.24E−14 4.66E−08 2.33E−02 8.15E+04 6.90E+04

p value – 4.68E−01= 7.92E−09− 4.40E−04− 4.45E−04− 4.45E−04+ 4.45E−04+ 4.45E−04+

F7 Median 2.29E−19 5.14E+04 2.29E−02 1.29E+01 3.39E+04 2.22E+08 1.27E+12 1.25E+12

Mean 5.98E−18 5.86E+04 2.93E−02 1.17E+01 3.64E+04 2.45E+08 1.71E+12 1.75E+12

Std 1.26E−17 5.79E+04 1.71E−02 5.74E+00 1.07E+04 1.05E+08 1.06E+12 1.24E+12

p value – 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F8 Median 6.95E+03 3.60E+06 1.37E+05 2.61E+07 3.78E+07 4.81E+07 2.33E+17 2.30E+17

Mean 8.81E+03 1.62E+07 4.85E+05 3.15E+07 3.78E+07 6.82E+07 2.35E+17 2.28E+17

Std 1.07E+04 3.70E+07 1.90E+06 2.11E+07 6.02E+04 3.49E+07 3.96E+16 4.36E+16

p value – 2.33E−04+ 4.45E−04+ 4.44E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F9 Median 1.66E+07 1.43E+08 6.03E+07 1.05E+08 1.66E+08 1.61E+09 2.63E+08 1.77E+09

Mean 1.70E+07 1.48E+08 6.15E+07 1.06E+08 1.67E+08 1.60E+09 2.77E+08 1.82E+09

Std 8.52E+05 5.23E+07 3.45E+06 6.93E+06 7.57E+06 1.10E+08 4.87E+07 1.64E+08

p value – 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F10 Median 3.56E+03 2.82E+03 1.36E+03 1.16E+03 1.85E+04 4.15E+03 1.31E+04 4.95E+04

Mean 3.52E+03 2.83E+03 1.36E+03 1.16E+03 1.85E+04 4.27E+03 1.31E+04 4.94E+04

Std 1.53E+02 1.10E+02 4.99E+01 5.00E+01 1.61E+02 3.62E+02 3.65E+02 3.77E+02

p value – 3.86E−03− 5.32E−03− 5.32E−03− 5.32E−03+ 5.32E−03+ 5.32E−03+ 5.32E−03+

F11 Median 2.02E+01 3.47E+01 3.97E−13 5.69E−13 1.21E−07 1.05E+02 1.86E+01 4.52E+02

Mean 2.03E+01 3.53E+01 3.96E−13 5.72E−13 1.19E−07 1.06E+02 1.86E+01 4.52E+02

Std 3.99E−01 4.57E+00 1.01E−14 2.10E−14 7.22E−09 9.55E+00 3.33E−01 1.98E−01

p value − 2.33E−04+ 4.13E−04− 4.37E−04− 4.45E−04− 4.45E−04+ 4.45E−04− 4.45E−04+
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Table 6 (continued)

F Quality REELSO TPLSO SDLSO DLLSO CSO SL-PSO DECC-DG DECC-XDG

F12 Median 1.70E+02 1.02E+05 7.53E+04 1.13E+05 4.41E+05 1.37E+06 7.56E+05 9.90E+07

Mean 1.99E+02 1.05E+05 7.52E+04 1.12E+05 4.39E+05 1.38E+06 7.58E+05 9.93E+07

Std 1.08E+02 6.97E+04 4.15E+03 5.91E+03 1.21E+04 7.82E+04 2.54E+04 1.13E+07

p value − 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F13 Median 6.44E+02 2.87E+03 1.23E+03 1.43E+03 1.53E+03 1.07E+07 2.02E+09 4.03E+05

Mean 6.87E+02 4.38E+03 1.33E+03 1.48E+03 1.79E+03 1.07E+07 2.15E+09 4.02E+05

Std 1.94E+02 5.26E+03 3.26E+02 3.13E+02 7.28E+02 2.53E+06 7.12E+08 2.58E+04

p value − 2.33E−04+ 6.32E−04+ 5.31E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F14 Median 3.84E+07 3.85E+08 1.79E+08 2.89E+08 5.19E+08 3.21E+09 6.69E+08 8.63E+11

Mean 3.90E+07 3.99E+08 1.79E+08 2.88E+08 5.19E+08 3.35E+09 6.71E+08 8.67E+11

Std 2.70E+06 1.41E+08 7.98E+06 9.71E+06 1.53E+07 5.69E+08 2.58E+07 2.44E+10

p value − 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F15 Median 3.65E+03 4.18E+03 2.01E+04 2.06E+04 2.02E+04 4.67E+03 1.19E+04 4.96E+04

Mean 3.66E+03 1.19E+04 2.01E+04 2.06E+04 2.02E+04 4.86E+03 1.18E+04 4.96E+04

Std 1.73E+02 9.15E+03 9.60E+01 7.63E+01 8.04E+01 5.25E+02 1.03E+02 3.83E+02

p value − 9.31E−01= 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F16 Median 2.23E+01 9.69E+01 5.47E−13 8.79E−01 1.66E−07 3.15E+02 4.97E−12 8.61E+02

Mean 2.68E+01 9.28E+01 5.51E−13 8.51E−01 1.66E−07 3.17E+02 4.99E−12 8.61E+02

Std 1.59E+01 1.40E+01 8.00E−15 9.79E−01 8.99E−09 1.32E+01 3.45E−13 3.70E−01

p value − 2.32E−04+ 3.64E−04− 4.38E−04− 4.45E−04− 4.45E−04+ 4.44E−04− 4.45E−04+

F17 Median 3.86E+03 4.14E+05 5.70E+05 5.86E+05 2.60E+06 2.56E+06 8.52E+04 8.29E+05

Mean 4.46E+03 4.29E+05 5.76E+05 5.83E+05 2.62E+06 2.62E+06 8.50E+04 8.31E+05

Std 1.85E+03 2.29E+05 1.90E+04 1.54E+04 1.04E+05 2.49E+05 3.42E+03 1.78E+04

p value − 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F18 Median 2.39E+03 9.02E+03 3.56E+03 5.04E+03 4.77E+03 2.14E+09 7.09E+10 1.64E+13

Mean 2.29E+03 9.51E+03 3.69E+03 5.31E+03 5.22E+03 2.23E+09 7.11E+10 1.64E+13

Std 2.51E+02 4.50E+03 7.26E+02 1.42E+03 2.34E+03 3.59E+08 7.19E+09 2.80E+11

p value − 2.33E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+

F19 Median 6.75E+06 1.64E+07 2.72E+07 2.77E+07 3.01E+07 1.04E+07 5.43E+06 1.10E+09

Mean 7.99E+06 1.70E+07 2.74E+07 2.78E+07 2.98E+07 1.05E+07 5.52E+06 1.09E+09

Std 2.47E+06 3.12E+06 1.64E+06 1.53E+06 1.70E+06 5.27E+05 3.05E+05 2.31E+08

p value − 2.56E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 3.20E−02+ 7.50E−04− 4.45E−04+

F20 Median 1.94E+03 5.50E+03 2.43E+03 2.78E+03 2.09E+03 2.41E+09 1.69E+11 1.71E+13

Mean 1.92E+03 5.37E+03 2.47E+03 2.79E+03 2.19E+03 2.54E+09 1.69E+11 1.71E+13

Std 8.77E+01 8.37E+02 1.37E+02 2.45E+02 2.51E+02 5.03E+08 1.49E+10 4.16E+11

p value – 2.33E−04+ 4.45E−04+ 4.45E−04+ 1.72E−03+ 4.45E−04+ 4.45E−04+ 4.45E−04+

w/t/l – 16/2/2 14/0/6 14/0/6 16/0/4 20/0/0 17/0/3 20/0/0

Rank 2.60 6.25 3.40 5.00 6.65 9.55 10.30 13.45

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

F1 Median 9.31E−06 2.81E+06 9.25E+04 7.15E+04 3.70E−22 7.91E+04 3.74E+11

Mean 9.40E−06 5.24E+06 6.74E+06 3.80E+05 7.90E−22 6.88E+04 3.73E+11

Std 1.53E−06 8.12E+06 3.24E+07 5.93E+05 1.21E−21 3.87E+04 8.80E+09

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 1.05E−03− 7.94E−03+ 9.99E−04+

F2 Median 3.68E+03 1.21E+04 1.20E+04 1.20E+04 4.75E+02 1.16E+04 3.30E+04
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Table 6 (continued)

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

Mean 3.68E+03 1.22E+04 1.20E+04 1.20E+04 7.96E+02 1.16E+04 3.29E+04

Std 5.04E+01 2.42E+02 2.68E+02 3.97E+02 7.39E+02 6.20E+03 5.85E+01

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04− 5.19E−02= 7.94E−03+

F3 Median 2.15E+01 2.15E+01 1.89E+01 1.89E+01 1.71E−13 6.87E+01 2.10E+01

Mean 2.15E+01 2.15E+01 1.89E+01 1.89E+01 2.06E−13 6.87E+01 2.10E+01

Std 8.29E−03 9.66E−03 6.94E−02 7.62E−02 2.01E−13 3.66E+01 1.11E-02

p value 4.37E−04+ 4.37E−04+ 4.36E−04+ 4.37E−04+ 4.35E−04+ 4.33E−03+ 1.03E−03+

F4 Median 9.51E+15 9.34E+15 3.57E+11 3.69E+11 1.27E+11 3.03E+12 1.20E+15

Mean 9.87E+15 9.46E+15 3.93E+11 4.00E+11 1.72E+11 3.21E+12 1.48E+15

Std 2.40E+15 2.80E+15 1.93E+11 1.29E+11 1.32E+11 1.27E+12 6.66E+14

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 6.32E−04+ 7.94E−03+ 7.94E−03+

F5 Median 3.74E+08 1.11E+08 9.43E+07 9.59E+07 6.20E+07 9.25E+08 5.48E+08

Mean 3.72E+08 1.11E+08 9.47E+07 9.89E+07 6.34E+07 9.29E+08 5.50E+08

Std 1.74E+07 2.13E+07 1.82E+07 1.94E+07 8.43E+06 4.29E+08 3.75E+07

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 7.94E−03+ 2.33E−04+

F6 Median 2.16E+06 1.82E+01 1.90E+01 1.90E+01 4.85E−09 4.34E+07 2.04E+07

Mean 2.13E+06 1.82E+01 1.90E+01 1.91E+01 6.31E−09 4.16E+07 2.05E+07

Std 2.37E+05 2.00E−01 7.46E−02 8.68E−02 3.52E−09 2.40E+07 7.63E+04

p value 4.45E−04+ 4.94E−01= 4.94E−01= 4.94E−01= 4.44E−04− 7.94E−03+ 7.94E−03+

F7 Median 1.80E+12 1.30E+12 1.21E+04 6.14E+04 9.34E+02 3.50E+04 1.98E+11

Mean 2.10E+12 1.60E+12 1.29E+04 5.89E+04 2.74E+03 3.51E+04 2.21E+11

Std 1.38E+12 8.53E+11 6.56E+03 1.13E+04 4.07E+03 1.48E+04 7.10E+10

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 7.94E−03+ 9.99E−04+

F8 Median 2.15E+17 2.10E+17 1.55E+04 5.58E+04 3.13E−15 7.39E+07 3.67E+16

Mean 2.18E+17 2.15E+17 1.60E+04 7.22E+05 4.60E+06 6.75E+07 3.67E+16

Std 3.64E+16 3.96E+16 6.73E+03 1.51E+06 1.74E+07 2.93E+07 1.63E+15

p value 4.45E−04+ 4.45E−04+ 6.95E−02= 4.45E−04+ 6.72E−03+ 4.33E−03+ 1.59E−02+

F9 Median 1.03E+09 4.51E+08 1.71E+08 1.61E+08 2.07E+07 1.32E+09 3.75E+11

Mean 1.03E+09 4.50E+08 1.84E+08 1.80E+08 4.46E+07 1.31E+09 3.73E+11

Std 3.98E+07 4.89E+07 5.30E+07 6.06E+07 7.64E+07 7.27E+08 7.89E+09

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 1.95E−01= 7.94E−03+ 1.55E−03+

F10 Median 9.12E+03 1.72E+04 1.08E+04 1.08E+04 8.05E+03 3.69E+04 3.34E+04

Mean 9.11E+03 1.72E+04 1.07E+04 1.08E+04 8.32E+03 3.68E+04 3.34E+04

Std 8.72E+01 2.66E+02 3.03E+02 3.02E+02 1.02E+03 1.93E+04 2.13E+02

p value 5.32E−03+ 5.32E−03+ 5.32E−03+ 5.32E−03+ 5.32E−03+ 3.57E−02+ 5.71E-02=

F11 Median 4.52E+02 4.52E+02 1.74E+01 1.73E+01 2.90E+01 1.25E+03 4.40E+02

Mean 4.52E+02 4.52E+02 1.73E+01 1.73E+01 3.59E+01 1.25E+03 4.40E+02

Std 2.58E−01 2.28E−01 4.84E−01 3.39E−01 9.79E+00 6.57E+02 3.73E-01

p value 4.45E−04+ 4.45E−04+ 4.45E−04− 4.45E−04− 1.19E−04+ 7.94E−03+ 9.99E−04+

F12 Median 1.02E+08 1.01E+08 8.77E+04 8.69E+04 4.01E+03 8.30E+05 5.48E+07

Mean 9.98E+07 9.92E+07 9.02E+04 8.74E+04 4.98E+04 8.36E+05 5.48E+07

Std 1.21E+07 1.02E+07 1.91E+04 1.42E+04 1.20E+05 4.29E+05 6.15E+06

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 1.59E−02+ 9.52E-02=

F13 Median 2.29E+03 1.66E+05 8.61E+04 8.43E+04 8.83E+02 4.55E+04 1.49E+12

Mean 2.31E+03 1.66E+05 8.60E+04 8.42E+04 8.51E+02 5.34E+04 1.49E+12

Std 3.92E+02 2.05E+04 1.32E+04 1.34E+04 4.04E+02 3.53E+04 7.75E+09
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Table 6 (continued)

F Quality DECC-GDG DECC-DG2 DECC-RDG DECC-RDG2 jDEsps CO eWOA

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.37E−01= 7.94E−03+ 2.33E−04+

F14 Median 2.31E+09 2.32E+09 6.45E+08 6.59E+08 6.33E+07 4.02E+09 4.25E+11

Mean 2.30E+09 2.32E+09 6.47E+08 6.55E+08 1.21E+08 4.07E+09 4.23E+11

Std 6.97E+07 1.05E+08 2.84E+07 3.09E+07 1.60E+08 2.08E+09 5.78E+09

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 7.94E−03+ 1.59E−02+

F15 Median 4.98E+04 4.97E+04 1.18E+04 1.18E+04 1.48E+04 7.00E+04 3.36E+04

Mean 4.98E+04 4.97E+04 1.18E+04 1.18E+04 1.48E+04 6.97E+04 3.36E+04

Std 3.87E+02 4.32E+02 1.41E+02 1.23E+02 1.66E+01 3.62E+04 1.49E+02

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 3.02E−05+ 7.94E−03+ 9.99E−04+

F16 Median 8.61E+02 8.61E+02 9.88E−13 9.68E−13 2.38E+02 2.38E+03 8.38E+02

Mean 8.61E+02 8.61E+02 9.89E−13 9.75E−13 2.48E+02 2.38E+03 8.38E+02

Std 3.13E−01 3.12E−01 5.94E−14 4.13E−14 9.00E+01 1.25E+03 3.96E-01

p value 4.45E−04+ 4.45E−04+ 4.35E−04− 4.42E−04− 3.55E−04+ 7.94E−03+ 3.57E−02+

F17 Median 2.76E+05 2.73E+05 8.36E+04 8.35E+04 2.09E+04 2.57E+06 9.38E+07

Mean 2.76E+05 2.73E+05 8.38E+04 8.36E+04 1.32E+05 2.58E+06 9.43E+07

Std 1.09E+04 9.11E+03 3.10E+03 3.71E+03 3.27E+05 1.39E+06 4.76E+06

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 6.72E−03+ 1.59E−02+ 1.59E−02+

F18 Median 4.67E+03 4.78E+03 2.35E+03 2.34E+03 3.38E+03 1.88E+05 3.03E+12

Mean 4.66E+03 4.72E+03 2.39E+03 2.37E+03 5.72E+03 1.78E+05 3.03E+12

Std 3.73E+02 4.41E+02 1.95E+02 1.81E+02 1.14E+04 8.35E+04 1.86E+10

p value 4.45E−04+ 4.45E−04+ 8.69E−01= 9.81E−01= 7.73E−03+ 7.94E−03+ 9.52E-02=

F19 Median 1.02E+09 9.84E+08 5.30E+06 5.37E+06 3.40E+06 1.27E+07 3.75E+08

Mean 1.01E+09 9.87E+08 5.32E+06 5.38E+06 3.44E+06 1.27E+07 3.68E+08

Std 2.12E+08 2.43E+08 2.91E+05 2.71E+05 8.98E+05 6.12E+06 4.48E+07

p value 4.45E−04+ 4.45E−04+ 6.32E−04− 4.45E−04− 6.32E−04− 3.81E−01= 3.57E−02+

F20 Median 1.71E+13 1.72E+13 3.35E+07 8.17E+06 2.64E+03 3.18E+04 3.17E+12

Mean 1.71E+13 1.71E+13 2.32E+08 7.52E+07 2.55E+03 3.13E+04 3.17E+12

Std 3.77E+11 3.65E+11 5.97E+08 1.56E+08 6.22E+02 1.60E+04 2.57E+10

p value 4.45E−04+ 4.45E−04+ 4.45E−04+ 4.45E−04+ 1.73E−02+ 4.33E−03+ 7.94E−03+

w/t/l 20/0/0 19/1/0 14/3/3 15/2/3 14/2/4 18/2/0 17/3/0

Rank 11.00 11.00 6.30 6.35 4.25 11.30 12.60

The bolded p values mean that REELSO is significantly better than the corresponding compared methods
*The p value of the Friedman test is 3.70E−29

methods (TPLSO, SDLSO, DLLSO, jDEsps and CO),
but is significantly superior to the other nine compared
optimizers; (c) on the nine partially separable multi-
modal problems, REELSO significantly outperforms 11
compared algorithms on more than five problems and
achieves highly competitive performance with SDLSO
and DLLSO.

(4) Overall, it is found that confronted with such high-
dimensional problems, REELSO still exhibits consider-
ably equivalent performance with or even significantly
better optimization results than the 14 compared algo-
rithms on different kinds of optimization problems. In
particular, on partially separable problems that are quite
common in real-world engineering, REELSO shows
significant superiority to the 14 compared algorithms.

This further demonstrates REELSO is very promising
for solving complex optimization problems.

Based on the above experiments, it is found that REELSO
preserves a good scalability to solve large-scale problems.
Such a good property of REELSO also profits from the
devised REEL scheme, which provides powerful strength for
REELSO to compromise the diversity and the convergence
of the swarm well to search high-dimensional space.

Conclusion

Taking inspiration from the human observational learning
theory proposed by Bandura [60], this paper has proposed a
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random elite ensemble learning swarm optimizer (REELSO)
to copewith high-dimensional optimization problems. In this
approach, the swarm is first partitioned into the elite group
and the non-elite group according to the fitness of particles.
Then, for each particle in the non-elite group, several elites
are randomly selected from the elite group to form a random
elite neighbor region, which acts as the learning environ-
ment of the non-elite particle. Then, the non-elite particle
takes positive learning by watching and imitating the behav-
iors of its surroundings by cognitively learning from the
best elite and then collectively learning from all elites in the
learning environment. With this mechanism, each particle
in the non-elite group is expected to compromise explo-
ration and exploitation well to seek the global optimum in the
large-scale space. To further help the optimizer make a good
compromise between diversity and convergence, this paper
additionally designed an adaptive swarm partition scheme
by dynamically adjusting the size of the elite group. With
this strategy, REELSO gradually changes from exploring the
solution space to exploiting the found optimal zones without
seriously sacrificing the search diversity.

Extensive experiments have been carried out on thewidely
used CEC’2010 and CEC’2013 high-dimensional bench-
mark sets to substantiate the effectiveness and efficiency of
REELSO. In competition with 14 state-of-the-art optimiz-
ers designed for high-dimensional optimization, REELSO
exhibits significant dominance to them. Additionally, exper-
iments on higher-dimensional problems have also demon-
strated that REELSO preserves a good scalability to deal
with large-scale optimization. Particularly, it is experimen-
tally found that REELSO is very promising for complicated
high-dimensional problems, like partially separable prob-
lems and overlapping problems as demonstrated by the
extensive experiments.

In the future, we will focus on advancing REELSO in two
directions. One is to develop adaptive parameter adjustment
strategies to reduce the effort in fine-tuning parameters by
utilizing the evolutionary information of the swarm and par-
ticles. The other is to employ REELSO to tackle real-world
optimization problems in engineering and academics, like
constrained optimization problems [25–28], expensive opti-
mization problems [13], andmulti-objective optimization [3,
4].

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s40747-023-00993-w.
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