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Abstract
Lumbar disc herniation is a common disease that causes low back pain. Due to the high cost of medical diagnosis, as well
as a shortage and uneven distribution of medical resources, a system that can automatically analyze and diagnose lumbar
spine Magnetic Resonance Imaging (MRI) is becoming an urgent need. This study uses deep learning methods to establish
a classifier to diagnose lumbar disc herniation. An MRI classification dataset of lumbar disc herniation consisting of public
MRI images is presented and is used to train the proposed classifier. Because a common difficulty in applying computer vision
technology to medical images is labeling training data, we use a semi-supervised model training method, while multilayer
transverse axial MRI images are used as the model input. In this method, we first use unlabelled MRI images for random
self-supervised pre-training and the pre-trained model as a feature extractor for MRI images. Then, all marked cross-sections
of each intervertebral disc are used to calculate the feature vector through the feature extractor. The information of all feature
vectors is integrated, while a multilayer perceptron is used for classification training. After training, the model achieved
87.11% accuracy, 87.50% sensitivity, 86.72% specificity and 0.9487 AUC (Area Under the ROC Curve) index on the test
set. To analyze the rationality of the diagnostic results more quickly, we output the severity of degenerative changes in each
region using a heatmap.
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Introduction

The intervertebral disc consists of a nucleus pulposus, a
hydrous jelly-like substance, and an annulus fibrosus, which
limits the position of the nucleus pulposus [1]. Typically,
the annulus fibrosus confines the nucleus pulposus material
within the ring apophysis of the vertebra. Spinal nerves travel
outside the ring apophysis range, primarily in the central
spinal canal, and diverge to the body through the interver-
tebral foramen on both sides of the spine. However, the
intervertebral disc can break through the range of the ring
apophysis due to trauma, prolonged external pressure, or
dehydration caused by aging problems. Abnormal interver-
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tebral discs can be divided into many categories according to
their specific shapes, such as leakage of the nucleus pulpo-
sus material due to tearing of the annulus fibrosus, horizontal
bulging of the intervertebral disc, and vertical protrusion of
the Mohs nodules. The abnormal morphology of these discs
may cause compression of the nerves in the central spinal
canal or the nerve roots in the intervertebral foramen, which
may lead to symptoms such as low back pain, leg pain, numb-
ness, etc. [2]. Regardless of its specific shape, the similarity
among these different abnormalities is that the intervertebral
disc breaks through the ring apophysis and can compress the
nerve. This situation is likely to be diagnosed as lumbar disc
herniation [3].

The examination of lumbar intervertebral disc herniation
by MRI generally requires an experienced radiologist to
observe the shape of the intervertebral disc in theMRI image
[4,5], which is generally combined with sagittal images and
transverse axial images concurrently. The transverse axis
image primarily concerns the T2-weighted scanned image.
For the automatic diagnosis of the lumbar disc herniation
method, most existing studies only use the images of the
central sagittal plane [6–8] or the paradigm of object detec-
tion to design the model [9,10], labeling of intervertebral
disc tissues of different morphologies and design of assisted
diagnostic models using the paradigm of target detection and
segmentation [11,12], which may ignore much important
information. However, the cross-sectional image contains
more detailed information. The method of diagnosing lum-
bar disc herniation in the clinical guidelines is also defined
from the perspective of the transverse axis [3]. By extracting
multi-scale features from transaxial MRI, the spinal tissues
can be segmented more accurately, and a higher recognition
accuracy can be obtained [13,14]. Therefore, to receive more
practical information from the diagnostic model, we used
the transverse axial lumbar spine MRI image to design the
model. However, the images in the horizontal axis lack infor-
mation in the vertical direction. Although the sagittal image
can be introduced as it’s input, it may reduce themodel’s ease
of construction. Thus, we used another method by inputting
multiple-layer images along the horizontal axis. If a single
cross-section scanned image is used, the central cross-section
of the intervertebral disc would be selected, and the MRI
equipment will scan a cross-section with a given thickness,
such as 4mm. This cross-section will contain vertical infor-
mation with a thickness of 4mm. Also, if multiple layers of
cross-sections are superimposed to form a three-dimensional
scanned image, it can contain more vertical information.
When the thickness of the three-dimensional image is suffi-
ciently large, it can contain all sagittal images theoretically.
In the actual design, we use the images of the three layers
consisting of the central cross-section and its upper and lower
adjacent layers as the model’s input, a method that several
experiments have successfully verified.

In recent years, machine learning technologies repre-
sented by deep learning [15] have been increasingly applied
in the field of computer-aided diagnosis (CAD) [16–19]. One
of the most commonly used methods is supervised learning.
When applied in medical imaging diagnosis, a common dif-
ficulty is acquiring numerous standardized labeled data. The
data labeling process often requires the participation of radi-
ologists in cooperation with algorithm researchers. Doctors
may spend a large amount of time labeling data according
to the specifications designed by algorithm researchers. The
algorithmmay undergomultiple revisions and iterations dur-
ing the research process, and sometimes, the original data
may be relabelled. Also, if the model needs good generaliz-
ability, we could ensure that the amount of the training data is
sufficient; if insufficient, the model will be overfitted. There-
fore, we use a training paradigm of semi-supervised learning
[20] in this study. semi-supervised learning is a paradigm in
which labeled and unlabelled data are used formodel training
to reduce the number of labeled samples while maintain-
ing good generalizability. Semi-supervised learning need to
choose different strategies according to a specific task. Com-
pared with many realistic multimedia photos, MRI images
of the lumbar spine have unique characteristics. The first is
the significant similarity between images. All lumbar spine
MRI images have similar structures, such as an intervertebral
disc, a lamina, and surrounding adipose tissue. This type of
“invariance” between images often does not constitute the
basis for diagnosing diseases. However, the difference in
details between images is the key information for the diag-
nosis, such as the level of the nucleus pulposus signal and the
relationship between the intervertebral disc and the dural sac
location. Considering this feature, we use a two-stage semi-
supervised learning paradigm [21–23] based on contrastive
self-supervised methods. According to the design purpose of
the task, only the central cross-sectional scanned image of
a portion of the patient’s intervertebral disc and its adjacent
cross-sectional images will be labeled and used for classifi-
cation. There are also many unlabelled MRI images in the
training data. We thus conduct semi-supervised training of
the model by manually labeling some images and combining
a large amount of unlabelled data.

The difficulty in interpreting end-to-end models yields
certain limitations when we put this type of computer-aided
diagnosis algorithm into practice. Because it is impossible
to know the basis for the model to make judgments, the
only reliable way to manually perform a second review is to
diagnose again. However, reducing the workforce burden of
doctors has not been achieved, and computer-aided diagnosis
has not achieved its intended effect. Therefore, to improve
this situation, we integrate themodel analysis algorithm after
completing the training model. This type of algorithm can
label the key information on the image that the model relies

123



Complex & Intelligent Systems (2023) 9:5567–5584 5569

on to make a particular judgment. This method allows doc-
tors to perform a second review when the model is applied,
which improves the fidelity of the diagnosis results given by
the machine. Also, this method is convenient for researchers
to analyze the reasons for the errors of the model to decide
the direction of subsequent improvement. The model analy-
sis algorithm is based on model gradient analysis [24] that
considers that themore critical information is, themore likely
its small changes will affect the results, making the gradient
smaller. Conversely, the more unimportant the information,
the less likely its change will affect the result, making the
gradient smaller. We apply this algorithm to the proposed
disc herniation diagnosis algorithm. When the model yields
a positive judgment result, the vital information is marked
concurrently in the form of a heat map.

In summary, the existing algorithms for automatic diag-
nosis of lumbar disc herniation mainly have the following
two limitations:

1. Most methods focus on processing central sagittal lum-
bar MRI images and use target detection to achieve an
automatic diagnosis, while few use mid-layer transverse
lumbar MRI images. MRI is a three-dimensional scan-
ning data that can takemultilayer images from the sagittal
plane and intercept cross-sectional multilayer images.
Most previous studies on this issue only used MRI sin-
gle sagittal plane images without effectively utilizing the
information in MRI three-dimensional data.

2. The interpretability of the model. The model only pro-
vides the classification results without providing any
judgment basis, which makes it difficult for doctors to
make a second confirmation of the results generated by
the computer.

Due to the high cost of labeling data, labeling training
data is a general difficulty in applying computer technol-
ogy to the medical image. They are combined with the
limitations of existing automatic diagnosis algorithms for
disc herniation.In this paper, on the one hand, a two-stage
semi-supervised classification model is used to extract com-
prehensive semantic information to judge the intervertebral
disc morphology by taking multilayer intervertebral disc
cross-sectional scan images as input,which reduces the quan-
tity requirement and complexity of the labeled data. On the
other hand, The interpretability analysis algorithm of Grad-
CAM (Gradient-weighted Class Activation Mapping) can
make the judgment of the classificationmodel visualized and
displayed as a thermal map. To apply the Grad-CAM algo-
rithm to the model proposed in this paper, we make some
improvements. Themain contributions of this paper are sum-
marized as follows:

1. This paper proposes a novel model structure that allows
the model to simultaneously extract features from trans-
verse axial MRI images of three sections of each disc.
To alleviate the difficulty of insufficient labeled training
data, this paper uses a two-stage paradigm of semi-
supervised learning. In the first stage, the method of
comparative self-supervised learning is used to train on
the unlabeled dataset, In the second stage, general super-
vised learning is used to train on the manually labeled
training set.

2. To compensate for the interpretability problem caused by
the black-box nature of the end-to-end network model,
this paper uses a model visualization method based on
feature map gradient to display abnormal regions in lum-
bar MRI images in the form of thermal maps, making the
results of automatic diagnosis easier to reference.

3. In this paper, we produce a classification dataset of
lumbar disc herniation by manual annotation based on
publicly available lumbar MRI images and diagnostic
reports. This dataset fills the shortage of data resources
in the research field of automatic lumbar spine diagno-
sis algorithms and provides the primary conditions for
developing subsequent algorithm research. The dataset
is made public to facilitate peer verification and further
research.

The remainder of this paper is structured as follows: Sect.
Relevant work introduces relevant work, including Two-
stage semi-supervised Learning Paradigm, Contrast Self-
Supervised Learning, and Interpretability Analysis Algo-
rithms. Section Design of themodel introduces design of
the model, including unsupervised pre-training stage, super-
vised fine-tuning, and generation of heatmaps. Subsequently,
experimental procedures and evaluation data are provided in
Experiments. Lastly, the key findings of the study are sum-
marized in Conclusions.

Relevant work

Two-stage semi-supervised learning paradigm

The constructed dataset generally consists of two parts: sam-
ples and labels. For supervised learning, each sample should
correspond to at least one label. The data set used in the
complete training process of semi-supervised learning will
contain both unlabelled and labeled samples. To complete
the classification task, we logically divide the supervised
learning process into two steps: feature extraction and feature
classification. This feature extraction step can be performed
by human design, which was a common method before deep
learning became popular. This step can also be performed
automatically by deep neural networks. Feature classification
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aims to infer the label corresponding to the new sample fea-
ture through the paired data of the feature and the label in the
existing dataset. The conditional probability is being inferred
P(label|feature). Feature classification can be achieved by
multilayer perceptrons or support vector machines. The end-
to-end model based on the deep neural network is equivalent
to not distinguishing these two steps artificially and compos-
ing them as awhole, where all steps are performed “in a black
box”.

Contrastive feature extraction and feature classification
are two primary procedures. The key to feature extraction is
to extract features with semantic value, which is relatively
complicated and is one of the reasons why human-designed
features have been used until deep learning methods became
widespread. Feature classification will be relatively simple if
feature extraction is sufficiently good and contains sufficient
key semantic information. A simple support vector machine
or a perceptron consisting of a shallow neural network will
perform well. Therefore, in deep learning, many computer
resources are used to extract better features.

The larger the number of labels, the closer the classifier
results will be to the actual situation. Although labels are
necessary for feature classification, feature extraction does
not necessarily require the participation of labels. A typical
example is the tf-idf statistical method in the field of natural
language processing [25]. To classify the topic of an article, a
frequently usedmethodof constructing features is tf-idf (term
frequency-inverse document frequency), which consists of tf
and idf. Moreover, tf is also known as term frequency, which
is the frequency of a specific word appearing in a specific
article; idf, also known as inverse document frequency, is
the ratio of the number of articles with a specific word in
the entire corpus to the total number of articles. This feature
extraction method for articles has no label participation; the
primary idea is to use the statistical information of an article
in the entire corpus as a feature.

In the training process of the classificationmodel, we con-
sider that feature extraction will consume more resources,
and feature extraction does not necessarily require labels.
Therefore, we use a large amount of unlabelled data for fea-
ture extraction learning and then use labeled data for feature
classification learning. Hopefully, we can reduce the amount
of labeled data required, thereby reducing the cost of build-
ing the dataset; this is the primary idea behind two-stage
semi-supervised learning.

Therefore, the two-stage semi-supervised model consists
of a feature extractor and a feature classifier. The feature
extractor is a deep neural network because the feature extrac-
tion task is more complex than classification and should use
the solid fitting ability of deep neural networks to complete.
Feature classifiers can use multilayer perceptrons or support
vector machines.

Contrast self-supervised learning

The feature extractor aims to extract key semantic informa-
tion from input samples.A classic example is the autoencoder
[26]. Autoencoders belong to the encoder-decoder paradigm,
which includes an encoder and a decoder, as shown in Fig. 1.
The encoder is responsible for mapping an original input
image into a n-dimensional feature vector, represented by
fE : R

W×H → R
n . The decoder is responsible for mapping

the above n-dimensional feature vector into an image of the
same size as the input, represented by fD : R

n → R
W×H .

The feature vector output by the encoder is the vector repre-
sentation of the input sample, which is the result of feature
extraction as well. To ensure that the key semantic informa-
tion of the input image can be contained in the feature vector,
the image output by the decoder should be as identical as pos-
sible to the original image. The image output by the decoder
is also called the reconstructed image. Therefore, the training
goal of the autoencoder is to optimize the parameters fE and
fD so that the difference between the input image and the
reconstructed image is as small as possible.

For feature extraction, autoencoders are a more general
method.However, the feature vector extracted by thismethod
strongly considers the information integrity of the input
image at the pixel level and lacks practical semantic infor-
mation.We consider that the training goal of the autoencoder
is to reconstruct the image as close as possible to the orig-
inal input image at the pixel level. Therefore, the resulting
feature vectors tend to retain the low-frequency information
that represents the overall structure in the image, such as the
background, while discarding the high-frequency informa-
tion that represents the details, such as texture. Thismethod is
more like the compression of information than the extraction
of semantic information. However, for classification tasks,
high-frequency information representing details is often an
essential basis for making judgments and is even more criti-
cal for medical images. In most cases, when given a specific
diagnostic task, different medical image samples are similar
in the overall structure. The differences between the sam-
ples are primarily reflected in some details, which are often
a vital basis for diagnosing. Taking the lumbar intervertebral
disc as an example, some localized high signal points inMRI
images are often the characteristics of annulus fibrosus tears.
Therefore, autoencoders are not the best choice for medical
image diagnosis problems.

If we think about the feature extraction task differently
to facilitate classification, so the extracted features should
be able to reflect the semantic difference between samples as
much as possible. For example, the shape of the intervertebral
disc, the relative positional relationship with the dural sac,
etc. We can ignore the difference in the representation of the
same semantics, such as the image’s contrast and the camera’s
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Fig. 1 Typical structure of an autoencoder [26]

similar similar

different

Fig. 2 Image of contrast self-supervised learning: taking the case of two input images as an example, two transformations of the same image should
express similar semantics, and transformations of different images should express different semantics

angle. The feature extraction method designed based on this
goal is self-supervision [21,22]. As shown in Fig. 2.

First, we consider the case with only two input images,
A and B. We define a set of random transformation opera-
tions fT : R

W×H → R
W×H that can be applied to the input

image. fT consists of a series of transformation operations.
The definition can vary according to the real situation and
only requires that most semantic information will not be lost
due to the transformation operation. We can operate with
the following transformations: (1) random crop; (2) random
rotation; (3) random flip; (4) random change of brightness
or contrast; and (5) random Gaussian blur. So limiting the
degree of random transformation within a certain range is
necessary to train the model more efficiently. If the degree of
transformation is too drastic, the original semantic informa-
tion will be damaged. If the degree of transformation is too
small, the model cannot be effectively trained. Input images
A and B are thus transformed twice by fT . Due to the ran-
domness of fT , two transformed images will be obtained.

After two transformations, A becomes A1 and A2, and B
becomes B1 and B2.

We define an encoder fE : R
W×H → R

n using a deep
neural network, which can map two-dimensional images to
semantic feature vectors. A1, A2, B1, and B2 can be mapped
to their respective semantic feature vectors by the encoder
fE . This deep neural network is a good choice for using the
ResNet-50 network architecture for the encoder. The Sim-
CLRv2 model proposed by Chen et al. [22] uses ResNet-50
and three fully connected layers to form an encoder. The role
of the fully connected layer is to map the semantic feature
vectors to a smaller dimension.

We look forward to achieving the goal of ignoring the
difference in the representation of the same semantics; it is
necessary to make fE (A1) and fE (A2) as similar as possi-
ble, as well as fE (B1) and fE (B2). The vector inner product
is often used in machine learning to express the degree of
similarity between two vectors; thus, the above goal can be
achieved by simultaneously maximizing 〈 fE (A1), fE (A2)〉
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and 〈 fE (B1), fE (B2)〉. However, to prevent the neural net-
work from mapping all inputs to one point, the feature
vector is also required to achieve the above goal of reflect-
ing the semantic difference between samples as much as
possible. We also need to make the difference between
the feature vectors representing different semantics as large
as possible. Therefore, the training target of the model
also shouldminimize 〈 fE (A1), fE (B1)〉, 〈 fE (A1), fE (B2)〉,
〈 fE (A2), fE (B1)〉, and 〈 fE (A2), fE (B2)〉. To solve this
optimization problem, we can use a description method of
the classification problem to design a loss function. A total
of 4 feature vectors are involved in this problem: fE (A1),
fE (A2), fE (B1), and fE (B2). For fE (A1), there should be
one andonlyoneof the other three feature vectors that express
similar semantics, which is fE (A2). Therefore, fE (A1) can
be classified, which allows one of the other three feature vec-
tors to express similar semantics with fE (A1). The softmax
function can be used to describe the result of the classifi-
cation prediction of a pair of feature vectors. For example,
the probability that fE (A1) and other feature vectors express
similar semantics can be expressed as:

PA1A2 = exp 〈 fE (A1), fE (A2)〉/τ∑
x∈{A2,B1,B2}

exp 〈 fE (A1), fE (x)〉 /τ
(1)

PA1B1 = exp 〈 fE (A1), fE (B1)〉 /τ
∑

x∈{A2,B1,B2}
exp 〈 fE (A1), fE (x)〉 /τ

(2)

PA1B2 = exp 〈 fE (A1), fE (B2)〉 /τ
∑

x∈{A2,B1,B2}
exp 〈 fE (A1), fE (x)〉 /τ

(3)

where PA1A2 represents fE (A1) and fE (A2), which could
express similar semantics probability, while the others are
the same. τ is a commonly used hyperparameter in the soft-
max function that is typically referred to as temperature
and is used to adjust the absolute value of each exponen-
tial part. This hyperparameter prevents the softmax function
from being unavailable due to the order of magnitude of the
exponent being too large or too small. The true labels should
be PA1A2 = 1, PA1B1 = 0, and PA1B2 = 0. The cross-
entropy loss can be used as the objective function for model
training:

argmin
fE

{−1 · log PA1A2} (4)

There is no doubt that these formulae describe the case
where only two input images are considered. If the feature
extractor can obtain the desired effect on all input images, it
should be trained with a large amount of unlabelled image
data.

The set of all data in the training set is S, and the batch
size of batch training is n. Each step in the training pro-
cess randomly selects n images from S as input, and these

n images form the set B used in the training step, |B| = n.
If the above formula (1)–formula (4) is extended to the case
of n images, there will be 2n transformed images. We thus
let mi (1 � i � 2n) denote the i transformed image, where
m2h−1 and m2h are the h original input image two trans-
formations. We also let xi = fE (mi ) and xi represent the
semantic feature vector of mi after neural network mapping.
Therefore, the probability prediction value of the pair of fea-
ture vectors xi and x j expressing similar semantics can be
expressed as:

Pi, j = exp
〈
xi , x j

〉
/τ

∑2n
k=1
k �=i

exp 〈xi , xk〉 /τ
, i �= j (5)

The optimal training objective of the neural network is
expressed as:

argmin
fE

EB⊆S

⎡

⎢⎢⎣−
2n∑

i, j=1
i �= j

�{�i/2	=� j/2	} logPi, j

⎤

⎥⎥⎦ (6)

whereE represents expectations and�{Φ} represents an indi-
cator function, and Φ is a proposition. When Φ is true,
�{Φ} = 1; when Φ is false, �{Φ} = 0. �·	 means round
up. A feature extractor can be obtained by training a neural
network with a gradient descent algorithm.

A complete neural network is not always required when
using a trained neural network as a feature extractor. Thus,
we can choose the output of one of the layers as the output of
the feature extractor because, in the trained neural network,
the output of each layer contains semantic features. However,
the complexity of the features expressed by different layers
is different [27]. The SimCLRv2 model [22] consists of a
ResNet-50 network and three fully connected layers. After
training, the last two fully connected layers are discarded.
The output of the first fully connected layer is used as the
output of the feature extractor.

Interpretability analysis algorithms

The external performance of end-to-end convolutional neural
networks can be viewed as a black box. When complet-
ing a classification or detection task, people generally only
care about the input and output, and it is unclear how the
logic inside the network operates. Although an unexplain-
able model will generally not affect its daily use, it will have
many hidden dangers in medical imaging research.

First, researchers that train the models cannot determine
the models’ reliability. Data leakage can occur during model
training, which means that during data collection, some fea-
tures are highly correlated with the output of the model.
However, these characteristics are not the basis for cor-
rect judgment. For example, in a study, a neural network
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is required to predict whether a male patient has prostate
cancer. In the dataset used, most samples with prostate can-
cer are collected from patients who have undergone prostate
surgery, while the healthy patients do not undergo surgery.
Whether patients have received surgery becomes the basis
for the judgment. Thus, models can quickly achieve high
accuracy, but this feature does not serve as a basis for diagno-
sis, which is the mistake of considering consequences as the
causes. The introduction of this feature is amistake caused by
ill-consideration in sample collection. If the logic of model
judgment is not analyzed, it is possible to ignore this problem
and put a meaningless model into use by mistake.

The second point is the review of the results by model
users. We consider that the current deep learning technology
cannot wholly replace the diagnoses of human doctors. The
purpose of any current diagnostic algorithm model is to aid
in diagnosis; thus, a review of the results by human doctors is
necessary. If themodel is treated as a complete black box, the
only way to double-check its results is to perform the diag-
nosis again. Thus, doctors’ efficiency improvement through
computer-aided diagnosis will be limited.

The CNN (Convolutional Neural Network) in Fig. 3 rep-
resents the neural network to be analyzed. Taking the t
classification problem as an example, we input an image that
is to be analyzed into the neural network for the next propa-
gation. There will be t neurons in the output layer, and their
respective activation values will affect the prediction result.
The neuron activation value of the c-th category is h(c); the
activation value of each neuron will usually be processed by
the softmax function and become a probability value, indi-
cating the probability that the input image belongs to each
category, where h(c) is the value before the softmax function.
We extract the feature map output by the deepest convolu-
tional layer from the to-be-analyzed neural network and let
the k channel of the feature map be A(k). Next, we calculate
the gradient of y(c) with respect to each activation value in
the feature map, where the gradient of h(c) with respect to

the k channel of the feature map is
∂h(c)

∂A(k)
. In this step, we

perform calculations using the backpropagation algorithm,
and the obtained gradient tensor has the same dimension as
the feature map. We use a global average pooling algorithm
and calculate the weight value of each channel based on all
gradient values. Global average pooling calculates the global
average of each channel in the gradient tensor and obtains the
weight of each channel in the feature map affecting the c-th
category. The weight value of the k channel’s influence on
the c-th category can be expressed as:

w
(c)
k = 1

uv

u∑

i=1

v∑

j=1

∂h(c)

∂A(k)
i j

(7)

where u and v are the height and width of the deepest fea-
ture map, respectively. Thus, we can obtain the weight of
each channel of the feature map on the c-th category. After
the channels of the feature map are weighted and summed
with the corresponding weight values, we can obtain a heat
map representing each region’s importance in the space for
the judgment result by the c-th category. This weighted
summation is processed using the ReLu function to limit
its value to [0, 1], which represents the importance ratio
of each region; the final heatmap of the c-th category is
expressed as:

L(c)
grad−cam = ReLu

(
∑

k

w
(c)
k A(k)

)
(8)

The heatmap obtained by formula 8 has the exact resolution
u × v as the deepest feature map. This heatmap should be
upsampled to the same resolution as the original input image
for viewing convenience. Most upsampling algorithms will
work well, and it is common to use bicubic interpolation for
better perception.

Design of themodel

In this study, we use a two-stage semi-supervised classifica-
tion model to classify the morphology of the intervertebral
disc. The shape of the intervertebral disc is divided into
two categories: normal and abnormal. Abnormal conditions
included intervertebral disc herniation, intervertebral disc
bulge, herniation, and annulusfibrosus tear. Theoverall struc-
ture is shown in Fig. 4.

In the unsupervised pre-training phase, we use the unla-
belled sample set to train the feature extraction network. Each
unlabelled sample consists of a transverse-axial MRI image
of the lumbar spine, whose size is W × H . After the entire
feature extraction network training is completed, all fixed
feature extraction network parameters remain unchanged
and enter the supervised fine-tuning stage. The dataset in
the supervised fine-tuning phase uses an annotated dataset.
Each of these samples consists of three transverse-axial MRI
images of the lumbar spine, which are obtained from the
MRI-scanned images of three adjacent cross-sections in the
center of the same intervertebral disc. The input sample size
is W × H × 3. The feature extraction network processes the
samples to generate corresponding semantic feature vectors.
The semantic feature vector goes through a fully connected
layer and is mapped to the prediction result. The technical
design details of the two stages are described below.
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Fig. 3 Procedure of the grad-CAM algorithm
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Fig. 4 Overall intervertebral disc structure of the morphological classification model using a two-stage semi-supervised paradigm

Unsupervised pre-training stage

The feature extraction network training needs to be com-
pleted in the unsupervised pre-training stage. Because the
feature extraction network should extract the high-level
semantic features of the sample, it is generally constructed
using a deep neural network. Considering that deep neural
networks are accompanied by gradient disappearance or gra-
dient explosion problems, the network structure represented
by RestNet [28] is more commonly used. The SimCLRv2
[22] model also uses RestNet-50 as the basic feature extrac-
tion network structure. Thesemethods have only a few subtle
differences within their basic structures.

In the unsupervised pre-training stage, the deep neural
network consists of a ResNet50 network followed by four
fully connected layers. After the transformation function pro-
cesses the input image, it is input into the neural network. The
output of the last fully connected layer is a semantic feature
vector, while the neural network is then trained by the con-
trastive self-supervisionmethod described in 2.2. The overall
training process is shown in Fig. 5.

First, we define a random transformation function fT :
R
W×H → R

W×H . fT takes a lumbar spine MRI image on
the transverse axis as input, and each time, a transformed
image is randomly generated according to the specified rules.
The batch size used in the unsupervised pre-training phase
is n, meaning that each training step randomly selects n
images from the dataset S to form a set B. Each image in
the set B is transformed by fT twice, generating 2n trans-
formed images.mi (1 � i � 2n) represents the i transformed
image, where m2h−1 and m2h are the two images of the h-th
original input image after transformation. All 2n transforma-
tions are grouped into pairs and sent into the neural network
f̂ E : R

W×H → R
d . The neural network f̂E maps each image

to a d-dimensional semantic feature vector. Each set of inputs
will generate 2 semantic feature vectors. We let xi denote the
i th semantic feature vector, where x2h−1 and x2h are the two
semantic feature vectors corresponding to the h-th original
input image. Then, we calculate the probability that the two
vectors of each group express similar semantics according to
the formula 5. Then, we calculate the loss of the set B accord-
ing to the formula 6 and use the gradient descent method to
train the neural network to optimize it.

123



Complex & Intelligent Systems (2023) 9:5567–5584 5575

m1

m2

ResNet50 Loss

Feature Extraction 
CNN

x1

x2

Predicted 
Labels

Dense

(a) (b) (c)

Fig. 5 Unsupervised pre-training stage training process. Considering
two input images as an example: (a) each input image is processed twice
by a random transformation function, and each obtains two transforma-
tions; (b) all transformations are paired as a group and then input into

the feature extraction network, while each transformation will generate
a semantic feature vector; and (c) the two semantic feature vectors of
each group are used to predict the semantic similarity; thus, the loss can
be obtained, and training will minimize the loss
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Fig. 6 Fully connected block structure of the feature extraction net-
work: (a) the structure of the fully connected block in layers first to
third; (b) the structure of the fully connected block in the fourth layer

The neural network f̂ E used in the unsupervised pre-
training stage is not the final feature extractor. The end of the
neural network contains four fully connected blocks, whose
structure is shown in Fig. 6. The only difference between
the last fully connected block and the first to third fully con-
nected blocks is that no ReLu activation function is used. The
retention probability of the dropout layer is dr . The feature
extractor fE used in the subsequent supervised fine-tuning
phase discards the last three fully connected blocks. Thus,
with the same input, the output of fE takes the output of the
first fully connected block of f̂ E as a result. In addition, the
output dimensions of the four fully connected blocks in the
neural network designed in this study are all d and d = 256.
The output of each layer is thus a 256-dimensional vector.

To design the random transformation function, we need to
increase themagnitude and randomness of the transformation

as much as possible to retain most of the key information.
We use a series of transformation operations to compose a
random transformation function in the following order: (1)
random rotation; (2) random cropping; (3) random flip; (4)
random change of brightness & contrast; and (5) random
Gaussian blur.

Random rotation and random cropping are two coupled
operations. The following constraints are required: (1) The
cropped area should have overlapping parts in the two ran-
dom transformations of the same image; (2) The overlapping
area should have a high probability of being located in the
center of the original image; (3) In the two random trans-
formations of the same image, the rotation center point of
the random rotation operation is the same, and each ran-
dom cropping area should include the random rotation center
point; (4) During rotation, a 0-pixel filling areamay be gener-
ated around the image, while random cropping should avoid
these 0 pixels; (5) The aspect ratio of the random cropping
area in the original image should be within [3/4, 4/3]; (6)
The proportion of the random cropping area in the original
image should be larger than pcrop; Because the training goal
of contrastive self-supervision is to make two transforma-
tions of the same image express similar semantics, the two
transformations should contain standard information. The
information contained in each cannot be much less; thus,
constraints (1), (5), and (6) in this study can limit the clip-
ping area. Conversely, the rotation operation may interfere
with the implementation of the constraint that the two crops
have overlapping regions. If the center points of the two rota-
tions are different, the positions of the regions containing
standard information will also be different. Therefore, con-
straint (3) is used to eliminate this interference. Also, we
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consider that most essential information in the transverse-
axial MRI images of the intervertebral disc is located in the
image’s central region. Introducing too many regions near
the edges could make the neural network pay attention to
less important information; however, we cannot neglect this
information thoroughly. Therefore, constraint (2) increases
the probability of extracting key information. Finally, the
rotation operation may introduce random noise information,
which is 0-pixel padding around the image. The rotation of a
rectangular image will render some parts of the area outside
the rectangle, and the missing part inside the original rect-
angle will be filled with 0 pixels. To exclude these noises,
constraint (4) is introduced accordingly.

The implementation methods of random rotation and
clipping satisfying the above constraints are as follows.
First, we randomly select a point in the two-dimensional
space where the image is located as the “operation center
point” O(xc, yc). The distribution of points O follows a
two-dimensional Gaussian distribution. We let the random
variable s ∼ N (μ,Σ), where:

Σ =
[
σ 2 0
0 σ 2

]
(9)

μ = [0.5, 0.5]T (10)

Operation centre point O(xc, yc) is expressed as:

O = s ◦
[
W
H

]
=

[
sxW
syH

]
(11)

s is limited to [0, 1], which is equal to 1 when it is greater
than the upper limit and equal to 0 when it is less than the
lower limit. The coordinates of point O will be rounded to
integers.

Both random rotations of the same image take the opera-
tion center point O(xc, yc) as the rotation center. The angle
of rotation φ obeys a uniform distribution within [−θ, θ ],
which is φ ∼ U (−θ, θ). When φ > 0, it rotates anticlock-
wise; when φ < 0, it rotates clockwise. To alleviate the
jagged texture caused by the rotation, we use the bilinear
interpolation method to realize the interpolation processing
during rotation.

This area can be determined by identifying the coordinates
of the upper left corner and the bottom right corner of a
cropped region. The upper left point Pul is a point randomly
selected from the upper left of the centre point O with equal
probability, which is Pul ∈ {(x, y)|0 < x < xc, 0 < y <

yc}. The point Pbr is a point randomly selected from the
bottom right of the centre point O with equal probability,
which is Pbr ∈ {(x, y)|xc < x < W , yc < y < H}.

To ensure that constraint (4) is met, we let the four end-
points of the clipping area not be located in the 0-pixel filled
area; thus, the four endpoints should be checked. For any

point (x, y) to be checked, we can imagine that the point
around the point O rotates in the opposite direction of the
previous random rotation, which is the angle −φ, which can
be calculated as follows:

[
x ′
y′

]
=

[
cosφ − sin φ

sin φ cosφ

] [
x − xc
y − yc

]
+

[
xc
yc

]
(12)

Then, we check (x ′, y′). If 0 � x ′ � W and 0 � y′ � H ,
the to-be-checked point (x, y) is not located in the 0-pixel
filled area. Otherwise, checkpoint (x, y) is located in the
0-pixel filled area, and the clipping area does not meet the
requirements.

Additionally, we need to check the length and width of
the cropped area according to constraints (5) and (6). If the
cropped region does notmeet any of the constraints (4),(5), or
(6), it need to be randomly generated again. There is typically
an upper limit on the number of retries. If the upper limit
of the retrying number is reached while the transformation
result that conforms to the constraints cannot be obtained,
the rotation and clipping transformations are skipped. In this
study, the maximum number of retries is set to 100. The
cropped image is upsampled to the same resolution W × H
as the original image. The two transformations of the same
input image use the same operation center point to select the
cropping region.

The random flip operation only includes left and right
flips, and the probability of flipping is 50%. This operation
is relatively simple and will not be repeated in this study.

The random change in brightness makes all pixel values in
the image scale up or down by a random factor. The random
coefficient of the transformation is κbright ∼ U (0.6, 1.4).
Then, the values of all pixels in the image are multiplied by
κbright . Thus, the input image is processed using the follow-
ing function:

f (I ) = κbright I (13)

The random change of contrast makes the image’s his-
togram expand or shrink horizontally according to a random
coefficient. The random coefficients of the transformation
are κcontrast ∼ U (0.6, 1.4), and then the input image is pro-
cessed using the following function:

f (I ) = (I − Ī )κcontrast + Ī (14)

where Ī is the average value of all pixel values in the image
because the image in this study is a grayscale image with
only one channel. Ī can be calculated as:

Ī = 1

W × H

W∑

i=1

H∑

j=1

Ii j (15)
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Fig. 7 Supervised fine-tuning flow chart

The Gaussian blur algorithm uses a Gaussian convolution
kernel to convolve the input image. We fix the convolution
kernel size in the horizontal and vertical directions as 0.05W
and 0.05H . The convolution kernel σ value of the random
Gaussian blur is a random variable. σ follows a uniform dis-
tribution: σ ∼ U (0.1, 2.0).

When the feature extraction neural network is trained via
the above process, a validation set consisting of a small num-
ber of samples randomly selected from the unlabelled sample
set in advance will be used concurrently. The accuracy of the
predicted results is used as the test metric. After a training
period, the accuracy no longer continues to improve, and
the unsupervised pre-training phase can be ended. We use
this resulting feature extractor for the next step of supervised
fine-tuning.

Supervised fine-tuning

As shown in Fig. 4, the samples in the supervised fine-tuning
stage consist of 3 lumbar spines transverse axial MRI images
corresponding to 3 cross-sections in the center of the inter-
vertebral disc. Each sample has a label that indicates whether
the disc has an abnormal or normal morphology. The super-
vised fine-tuning phase aims to train a classifier to distinguish
intervertebral discs. Therefore, it is necessary to input the
information of all the cross-sections together into the clas-
sifier. The images corresponding to the three sections will
pass through the feature extractor to obtain three semantic
feature vectors. We connect the three semantic feature vec-
tors to obtain the semantic feature vector of the intervertebral
disc sample. The flowchart for this training phase is shown
in Fig. 7.

During supervised fine-tuning, the classifier we use to
classify the feature vectors is a neural network consisting of
only one simple, fully connected layer. The input of the fully
connected layer is a feature vector of 3 × 256 dimensions,
while the input is one-dimensional (scalar). No other layers,

such as random deactivation or batch regularization layers,
are required before or after the fully connected layer. The
output value of the fully connected layer will be mapped to
a value between [0, 1] through the sigmoid function, which
is required to represent the probability that the sample is
positive. Throughout the process, all parameters in the fea-
ture extractor are fixed and maintained in the state when the
pre-training is completed. Only the parameters in the fully
connected layers will change with training.

We consider that there may be some meaningless noise
information around the edges of the input image. We apply a
simple data augmentation strategy to the input image during
training to give the model better generalizability. This data
augmentation strategy performs random transformations on
the input image. The transformation strategy we use in this
stage of training is different from that used in the unsuper-
vised pre-training stage and does not require overly complex
transformations. Its primary purpose is only to remove a por-
tion of the surrounding area of the input image but it cannot
lose the content of the primary part of the image. This study
uses a specific cropping strategy to transform the image.

We randomly select a point Pul as the upper-left corner of
the cropped area and a point Pbr as the bottom-right corner of
the cropped area. For the upper left point, Pul ∈ {(x, y)|0 <

x < 0.25W , 0 < y < 0.25 H}, we randomly select a point
in this area with equal probability as Pul . For the lower right
corner point, Pbr ∈ {(x, y)|0.75W < x < W , 0.75H <

y < H}, we randomly select a point in this area with equal
probability as Pbr . These two points can determine a rect-
angular area. Therefore, we crop the three sections in the
same sample according to this area and then upsample to the
resolution W × H of the input image.

Generation of heatmaps

For positive samples, we can generate a heat map showing
the location of the key information for the model to make a
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positive judgment. This location can be used to assist doctors
in judgment and reviewwhile negative samples are not gener-
ated. Thismethod is based onGrad-CAMwith improvements
and adaptations. The general Grad-CAM algorithm is intro-
duced in the Interpretability analysis algorithms section, and
the algorithm obtains a heatmap for each input image.

In the forward propagation process of the inference pro-
cess, the feature map output by the deepest convolutional
layer in the RestNet network is denoted as A, which contains
all the feature maps of the three images as input. Assuming
that each input image corresponds to n feature maps, the k
feature map is A(k). Then, we use the backpropagation algo-
rithm to calculate the gradient of the activation value in this
layer with respect to the classifier output value h before the

sigmoid function, denoted byG, whereG = ∂h

∂A
. According

to the classic Grad-CAM approach, we should use the global
average pooling algorithm to calculate theweight value of the
gradient G and then weight the feature map according to the
weight value. Finally, we use the ReLu function to obtain the
heatmap, such as formula (7) and formula (8). However, first,
we consider that the element values in the gradient tensor G
have both positive and negative values. For the gradient val-
ues with the same absolute values, both positive and negative
should have the same importance. Therefore, to prevent pos-
itive and negative values from canceling each other, we use
|G| to calculate the weight value of the feature map. Next,
we generate a corresponding heatmap for each input image
because the classifier built into this study takes MRI scan
images of 3 intervertebral disc sections as input. Addition-
ally, we present the weight ratio of each of the three images;
thus, the weight of each feature map is calculated as:

αk = 1

uv

u∑

i=1

v∑

j=1

|G(k)
i j | (16)

ŵ = α

σ(α)
(17)

w = softmax(ŵ1, ŵ2, . . . , ŵ3n) (18)

where σ(·) represents the standard deviation. The for-
mula (17) is used to normalize the calculated weight value.
The weight of each feature map is obtained via the softmax
function. Then, we weighted the n feature maps corre-
sponding to each image by their weight values. We finally
normalize each heatmap separately, limiting it to [0,1] to
obtain a standard heatmap. The calculation occurs as fol-
lows:

H = ReLu

(
∑

k

wk A
(k)

)
(19)

Hi = H [(i−1)n+1,in]

max(H [(i−1)n+1,in])
, i = 1, 2, 3 (20)

where H [a,b] represents the tensor composed of channels a
to b of H . Themax function aims to find the maximum value
in the entire tensor.

Experiments

Construction of the dataset

The raw data we used originated from Sudirman et al.’s pub-
lished lumbar spine MRI data [29], which included sagittal
and transverse axial lumbar spineMRI scans of 515 patients.
Most scanned images are recorded with the patient in the
head-first supine position, and the scans are organized in
DICOM(Digital Imaging andCommunications inMedicine)
format. Both sagittal and transverse axial scans have T1-
and T2-weighted images. The data for each patient covered
scans of the lowest 3–6 intervertebral discs. For the scan
results of the transverse axis, each intervertebral disc has 4–
5 cross-section scan data. All the cross-sections in the same
intervertebral disc are parallel to each other, and the scanning
range of the cross-section is a regular quadrilateral area with
a side length of 220mm. The thickness of the cross-sections
varies from 3.0mm to 5.0mm, and the distance between
two adjacent cross-sections of the same intervertebral disc
varies from 3.3mm to 6.5mm. Each patient is described by
a diagnostic report from the radiologist, which uses natural
language to describe the patient’s abnormal disc position,
abnormal appearance in the image, and diagnostic conclu-
sion. The entire dataset contains 48,345 images, of which
there are 17,219 transverse axial images. Most images have
a resolution of 320 × 320, and a small part is 320 × 310.
All images are grayscale, and each pixel is represented with
12-bit precision.

We can determine that the format of this dataset is non-
standardized. Therefore, we organized it into a standardized
dataset and manually annotated some data combined with
the doctor’s diagnosis report.

Thefirst is the construction of the dataset used for unsuper-
vised pre-training (“the pre-training dataset”), which uses all
transverse-axial cross-sectional MRI scans of the interverte-
bral disc, including T1- and T2-weighted images. We extract
all images and include them in the pre-training dataset, and
each image is considered a sample. All images are down-
sampled to a resolution of 300 × 300. After all images are
randomly shuffled, we sample 512 images as the validation
set. Because the pre-training dataset is task-agnostic, there is
no need for testing. Therefore, we do not need a test set; the
remaining 16,707 images are used as training sets.

The second is the construction of the dataset used for
supervised fine-tuning. The purpose of this dataset is to clas-
sify intervertebral discs (“the disc classification dataset”).
The construction of this dataset is relatively complex because
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in reality, radiologists generally only use T2-weighted MRI
images of the transverse axis when diagnosing lumbar spine
diseases. Thus, the disc classification dataset is constructed
using only T2-weighted images. Conversely, in the inter-
vertebral disc classification dataset, one sample corresponds
to one intervertebral disc and contains three cross-sectional
images of the intervertebral disc. Ideally, these three sections
should be in the vertical center of the intervertebral disc.
However, considering that the form of the original data set is
nonstandard, for example, an intervertebral disc may contain
four or five cross-sections of varying numbers, the distance
between the cross-sections may not be constant. We use the
following strategy when constructing the disc classification
dataset to obtain a model that generalizes as well as possible.
First, for an intervertebral disc with five cross-sections, take
the central three layers, where the second, third, and fourth
layers are intervertebral disc samples; for an intervertebral
disc with four cross-sections, take the first three layers as
intervertebral disc samples, and then take the back three lay-
ers as another disc sample. For such a disc, two-disc samples
are generated. Second, we only selected the lumbar interver-
tebral discs as samples and discarded all the data of thoracic
and sacral intervertebral discs. In addition, theremaybe some
duplicate data in the original data; thus, deduplication need to
be performed when constructing an intervertebral disc clas-
sification dataset.

To label the intervertebral disc classification dataset, we
use the diagnostic report given by the radiologist as the basis
and label each intervertebral disc after manually reading the
report. An intervertebral disc will be marked as a positive
sample if bulging, herniation, nerve root compression, dural
sac compression, or annulus fibrosus tearing are noted. If it
is a typical patient or a patient unrelated to the intervertebral
disc, such as a patient with lower extremity arthritis, frac-
ture, and other conditions, the intervertebral disc data will be
marked as a negative sample.

The annotated disc classification dataset contains 3676
samples, including 1706 positive and 1970 negative samples.
After randomly shuffling the intervertebral disc classification
data set, 256 positive and negative samples were randomly
selected to form the test set, and 64 positive and negative
samples were randomly selected to form the validation set.

Experimental environment and training parameters

The programming environment used in this experiment
is Python−3.7.6. We use the CUDA11.3+TensorFlow−2.3
model to build a neural network. Training is performed using
a GTX3090 graphics card. The optimizer uses the adaptive
moment estimation optimizer (Adam), the learning rate is
lr , and the batch size of batch training is b. Both stages
of training will perform L2 regularization on all the weight
coefficients in the network, and the regularized weight coef-

Table 1 Hyperparameter values for unsupervised pre-training stage

Hyperparameter lr b w τ dr θ pcrop

Values 1 × 10−4 32 1 × 10−4 100 0 18◦ 0.1

Table 2 Hyperparameter values for supervised pre-training stage

Hyperparameter lr b w

Values 1 × 10−4 32 0

ficient is w. The experimental hyperparameters used in the
unsupervised pre-training stage are shown in Table 1, and
the experimental setting values of the hyperparameters in the
supervised fine-tuning stage are shown in Table 2:
The input to the model is a grayscale image of 300 × 300,
i.e., W = H = 300. The dropout layer is only effective
in the unsupervised pre-training stage. However, it has been
experimentally verified that the resultswill be betterwhen the
retention probability of the dropout layer is 0. This factwill be
explained in detail in the experimental section. θ is the range
of the random rotation in the random transformation process,
and pcrop is the proportion of the randomly cropped area.
Both are valid only in the unsupervised pre-training stage.
The training continues until the accuracy on the validation
set no longer improves and the loss function value of the
model no longer decreases.

Model evaluationmethods

We primarily use the following metrics to evaluate the per-
formance of the model. Accuracy (ACC) is the proportion of
samples whose predicted value is the same as the real value
in all samples:

ACC = Number of true positive samples + Number of true negative samples

Total number of samples

(21)

Sensitivity, also known as the true positive rate (TPR), is the
ratio of true positive samples to real positive samples:

T PR = Number of true positive samples

Number of true positive samples + Number of false negative samples

(22)

Specificity, also known as the true negative rate (TNR), is the
ratio of true negative samples to real negative samples:

T N R = Number of true negative samples

Number of false positive samples + Number of true negative samples

(23)

Because the confusion matrix of the binary classifier is
dependent on the classification threshold, to exclude the
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Table 3 Performance of the classifier obtained by the feature extractor at different regularization levels

Regularization parameter Accuracy Sensitivity Specificity AUC

w = 0, dr = 0 0.8613 0.9180 0.8047 0.9467

w = 1 × 10−4, dr = 0 0.8711 0.8750 0.8672 0.9487

w = 1 × 10−4, dr = 0.25 0.8711 0.8750 0.8672 0.9364

w = 1 × 10−4, dr = 0.5 0.8184 0.8320 0.8047 0.9159

(a) (b)

(c) (d)

Fig. 8 Classifier ROC curves obtained by feature extractors at different regularization levels (a) w = 0, dr = 0 (b) w = 1 × 10−4, dr = 0 (c)
w = 1 × 10−4, dr = 0.25 (d) w = 1 × 10−4, dr = 0.5

threshold from the evaluation system and to reflect the com-
prehensive performance of the classifier under all possible
classification thresholds, the ROC curve [30] can be used.
For an ideal binary classifier, the area under the ROC curve
should be 1. We use an indicator AUC (Area Under the ROC
Curve) to represent the area under the ROC curve, which can
well reflect the overall performance of the two classifiers.

Effect of regularization level on feature extractor
performance

In the unsupervised pre-training stage, we use a strategy of
L2 regularization and dropout regularization for the model.
The weight parameter w of L2 regularization and the reten-
tion probability of dropout dr can describe the strength of
the regularization level. For a classifier, a suitable regulariza-
tion level will give themodel better generalizability, while an
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excessive regularization levelwill lead to underfitting. For the
proposed feature extractor, an appropriate level of regulariza-
tion will allow the feature extractor to extract higher-quality
feature vectors.

We set 4 different sets of regularization parameters, keep-
ing the other hyperparameters unchanged, and train four
different feature extractors. We train each feature extrac-
tor via supervised tuning using the same settings for 200
epochs. The obtained classifiers are tested on the test set, and
the respective performances are compared and analyzed. The
results are shown in Table 3. The respective ROC curves of
the 4 different cases are shown in Fig. 8.

Because the test set in this study is balanced, both accu-
racy and AUC can comprehensively measure the classifier’s
performance. Based on the experimental results, with the
improvement of the regularization level, both the accuracy
and AUC experienced a process of increasing first and then
decreasing. When w = 0 and dr = 0 (i.e., no regularization
is performed), the accuracy and AUC are not optimal. In the
two cases ofw = 1×10−4, dr = 0 andw = 1×10−4, dr =
0.25, the results of the classifier on the test set are nearly
identical. There is some chance that accuracy, sensitivity,
and specificity are identical. However, the classification per-
formance of the two is similar, while the AUC of the latter
has decreased markedly. When a strong regularization level
is used, such as w = 1 × 10−4 and dr = 0.5 in the exper-
iment, the classifier’s performance will decrease markedly.
Therefore, choosing appropriate regularization parameters
is critical to training feature extractors. In reality, there is
no universally applicable optimal setting for the regulariza-
tion parameter due to certain differences between different
datasets.We should fine-tune the model for different datasets
because small L2 regularweights and dropout parameters can
typically achieve good results. In the model developed in this
study, we choosew = 1×10−4, dr = 0 as the regularization
parameter setting.

Effect of the number of labels

Howmuch the two-stage semi-supervised learning paradigm
can reduce the dependence on the number of labels in the
training data set and howmuch the advantage is compared to
classic supervised learning are questionsworth investigating.

First, we train multiple different classifiers by varying the
number of labeled samples used in the supervised fine-tuning
phase. All classifiers use the exact same feature extractor.
The feature extractor obtained from the unsupervised pre-
training stage remains unchanged. In the supervised fine-
tuning phase, we randomly sample parts of the data from the
disc classification dataset. The multiple classifiers trained
in this experiment are randomly selected from the original
dataset with 1024, 1536, 2016, and 2528 samples as training
subsets. The other training conditions and parameters are

the same as those given in Experimental environment and
training parameters, and the training lasts for 200 epochs. The
original full disc classification dataset contains 3036 training
samples, and the four classifiers using the training subset
will be compared with the models obtained using the entire
training set.

In addition, to facilitate the comparison of the proposed
model with the classic supervised learning model, we use the
ResNet50 model [28] to train a classifier by fully supervised
training on the disc classification dataset with a learning rate
of 1×10−4 for 370 epochs. Othermodels using the two-stage
semi-supervised learning paradigm will be compared.

After testing the above models on the test set, we obtained
the accuracy (ACC) and AUC of each model. The data are
shown in Fig. 9. The horizontal axis in the figure is the num-
ber of labels, which represents the number of labeled data
used, while the vertical axis represents the accuracy andAUC
index. For the convenience of comparison, we also put the
supervised model using ResNet50 into the figure, which is
represented by “supv” on the horizontal axis.

As shown in the figure, as the number of labels increases,
both the accuracy andAUCof the classifier increase. Concur-
rently, when the variation in the number of labels is marginal,
the performanceof the classifier under a certain indicatormay
also change marginally, such as the accuracy of the two clas-
sifiers when the number of labels is 2528 and 3036, and the
AUC of the two classifiers when the number of labels is 1024
and 1536. However, when the number of labels increases
markedly, a prominent improvement in model performance
occurs. This result also shows that the performance of the
two-stage semi-supervised learning model has certain stabil-
ity when using the training subset.

Conversely, the training data used by the trained, super-
vised model are also the original training set. The trained,
supervised model contains 3036 labels, while the semi-
supervised learning model in this paper only requires
1024 labels to achieve similar performance. When a semi-
supervised learning model is trained on the original training
set, the overall performance is much better than that of
classical supervised learning. This result indicates that the
two-stage semi-supervised learning paradigm can extract
effective semantic information from a large amount of
unlabelled intervertebral disc MRI data, thereby enhancing
supervised classification learning and enabling the classifier
to achieve better results.

Classifier heatmap visualization experiment

Wevisualize the heat map of all the data in the test set that are
judged as positive samples by the classifier, some of which
are shown in Fig. 10. The heat map can indicate the cross-
sectional location with more severe degenerative changes for
the positive intervertebral disc samples and display it with a
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(a)

(b)

Fig. 9 Performance comparison of classifiers with different numbers
of labeled samples and classic supervised classifiers: (a) Accuracy of
each model, (b) AUC of each model

higher heat value. The classification basis of the classifier
is generally the intervertebral disc area in the image, which
indicates that the classifier can read the effective semantic
information in the image. For a herniated or bulging inter-
vertebral disc, the heat map can clearly show the location of
the herniated or bulged disc, which is worthy of reference.

Conclusions

Themedical basis of the automatic diagnosis of lumbar inter-
vertebral disc herniation is to determine the shape of the
intervertebral disc. Its standard method in artificial intel-
ligence is to use a supervised method to train an object
detectionmodel, which primarily has two difficulties in prac-
tice. The first point is the high cost of labeling data. The
object detection model could be clearly marked with a large

Fig. 10 Visualization of intervertebral disc classification heatmap. The
figure shows the heatmap of three samples; each sample has three cross-
sections, the odd-numbered rows show the input image, and the even-
numbered rows show the image of the superimposed heatmap

number of bounding boxes and the corresponding interver-
tebral disc shape categories. Generally, at least thousands of
labeled samples are required to train a more usable model.
The second point is the difficulty in interpreting the end-
to-end model. Doctors will spend more time reviewing the
model results when an uninterpretable model is used as a
computer-aided diagnosismodel. It is also not easy formodel
researchers to determine the rationality of such a model’s
results. To address these two difficulties, we use a two-stage
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semi-supervised classification model, consider the multilay-
ered intervertebral disc cross-sectional scanned images as
input, and extract comprehensive semantic information to
determine the intervertebral disc shape, which reduces the
quantity and complexity of labeling data. Conversely, we
improve and adapt the Grad-CAM interpretability analysis
algorithm so that it can be applied to the proposed model to
visualize the judgment basis of the classification model in
the form of a heatmap.

This study annotates publicMRIdata to create training and
testing datasets. The trained model can achieve an accuracy
of 87.11%on the test set, a sensitivity of 87.50%, a specificity
of 86.72%, and an AUC index of 0.9487.

After describing the effect of the regularization level on the
performance of the feature extractor, we notice that a suitable
regularization level enables the feature extractor to extract
higher-quality semantic feature vectors and the classifier to
obtain better results. Generally, relatively small regulariza-
tion parameters can achieve better results. By training the
model with subsets with different numbers of labels, the
two-stage semi-supervised training model can achieve better
performance for the discMRI image classification task. Even
with few labels, the resulting classifier performance remains
stable. It is possible to achieve comparable levels with classi-
cal supervised models using only approximately one-third of
the number of labeled training subsets. After visualizing the
data in the test set in the form of a heat map, the classification
basis of the classifier can be clearly shown. The position of
the intervertebral discwithmore severe degenerative changes
is also shown with a higher heat value.

The diagnosis model of intervertebral disc herniation in
this study can thus produce favorable results that can play
a critical role in auxiliary diagnosis to a certain extent.
The proposed model can reduce the burden on radiologists,
improve the efficiency of diagnosis, and provide a reference
for follow-up research. Simultaneously, there are still some
limitations in the study of computer-aided diagnosis of lum-
bar disc herniation in this paper, which is worthy of further
study:

1. This paper’s auxiliary diagnostic model of lumbar disc
herniation cannot specifically distinguish the specific cat-
egories of lesions. Future work will refine the categories
of degenerative changes so that themodel can distinguish
the specific categories of various degenerative changes
such as bulging, protrusion, prolapse, Schmoy’s nodule,
and annulus fibrosus tear.

2. Try to use other semi-supervised algorithms to design
the model, compare its performance, and optimize the
model proposed in this paper. A sufficient number of
MRI images of typical cases were collected from multi-
ple hospitals to train the model to improve its accuracy
and practicability.

3. In this paper, sagittal and transverse imageswere selected
artificially when establishing the data set. In the future,
MRI scan data in complete DICOM format will be used
as the input of the diagnostic system, and all data will be
analyzed without artificial separation.

4. In the future, we need to study the relationship between
the morphological manifestations on imaging and the
appropriate treatment plan. It is expected that through the
automatic diagnosis algorithm, the proposed treatment
plan for patients can be directly given, and the evaluation
and implementation of the prevention and rehabilitation
plan of lumbar disc herniation can be guided.
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