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Abstract
This paper presents a bi-indicator-based surrogate-assisted evolutionary algorithm (BISAEA) formulti-objective optimization
problems (MOPs) with computationally expensive objectives. In BISAEA, a Pareto-based bi-indictor strategy is proposed
based on convergence and diversity indicators, where a nondominated sorting approach is adopted to carry out two-objective
optimization (convergence and diversity indicators) problems. The radius-based function (RBF) models are used to approx-
imate the objective values. In addition, the proposed algorithm adopts a one-by-one selection strategy to obtain promising
samples from new samples for evaluating the true objectives by their angles and Pareto dominance relationship with real
non-dominated solutions to improve the diversity. After the comparison with four state-of-the-art surrogate-assisted evolu-
tionary algorithms and three evolutionary algorithms on 76 widely used benchmark problems, BISAEA shows high efficiency
and a good balance between convergence and diversity. Finally, BISAEA is applied to the multidisciplinary optimization of
blend-wing-body underwater gliders with 30 decision variables and three objectives, and the results demonstrate that BISAEA
has superior performance on computationally expensive engineering problems.

Keywords Expensive multi-objective optimization · Pareto-based bi-indicator · One-by-one selection · Radial basis function

Introduction

Real-life engineering problems often need to simultaneously
optimizemultiple conflicting objectives [1],which are named
multi-objective optimization problems (MOPs).Aminimiza-
tion MOP can be defined as follows [2]:

min F(X) = ( f1(x), f2(x), . . . fM (x))T

s.t. Li ≤ xi ≤ Ui i ∈ {1, 2, . . . , d} (1)

where f1, f2, ... fM are M objective functions to be opti-
mized, Li and Ui are the lower and upper boundaries of
xi .x = {x1, x2, ..., xd}, and d is the number of decision
variables of the optimization problem.

As an important method to solve MOPs, multi-objective
optimization evolutionary algorithms (MOEAs) have been
developed rapidly in recent 20 years. MOEAs search for
a set of solutions to represent the whole Pareto front (PF).
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Commonly used MOEAs can be roughly divided into three
categories: indicator-based methods [3], dominance-based
methods [4], and decomposition-based methods [5, 6].

It is worth mentioning that MOEAs require a large num-
ber of function evaluations (NFEs) to obtain the true PF.
However, in some engineering optimization problems, the
fitness functions are quite time-consuming simulations, such
as Computational fluid dynamics (CFD) and Finite element
analysis (FEA). To reduce the overall NFEs, the mainstream
is to adopt surrogate models for approximation of expen-
sive physical models of expensive optimization [7]. Various
surrogates have been used to solve real engineering opti-
mization problems [8–10], such as polynomial response
surface (PRS) [11], Kriging [12], neural network (NN) [13],
radius-based function (RBF) [14] and so on. Surrogate-
assisted evolutionary algorithms (SAEAs) are proposed to
handle single-objective optimization using classification or
regression-based fitness approximation, which have been
adopted successfully in engineering optimization e.g., a
novel evolutionary sampling optimization method (ESAO)
[15], surrogate-assisted grey wolf optimization (SAGWO)
[16] and surrogate-assisted teaching and learning optimiza-
tion (SATLBO) [17].
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Inspired by these studies, numerous SAEAs for expen-
sive multi-objective optimization are proposed in the past
decades. Many surrogate models are used to approximate
the function values in SAEAs, which can be roughly divided
into two categories. In the first category, the surrogate
models are used to approximate the objective functions,
scalarized functions, and so on. The Kriging-assisted refer-
ence vector guided evolutionary algorithm (K-RVEA) [18]
and expected improvement (EI) matrix-based infill criteria
MOEA [19] for expensive multi-objective optimization are
representative methods. Liu et al. [20] suggested a reference
vector-assisted adaptiveKrigingmodelmanagement strategy
(RVMM) and Song et al. [21] developed a Kriging-assisted
two-archive evolutionary algorithm (KTA2) for surrogate-
assisted many-objective optimization. The Kriging models
are also used in MOEA-based decomposition (MOEA/D-
EGO) [22], MOEA/D-EGO applies a fuzzy clustering-based
modeling method in the decision space to build many local
surrogate models for each objective. In addition, an efficient
dropout neural network-assisted indicator-basedMOEAwith
reference point adaptation (EDN-ARMOEA) [23] and a
surrogate-assisted particle swarm optimization algorithm
with an adaptive dropout mechanism (ADSAPSO) [24] was
developed using the neural network. Meanwhile, the bag-
ging technology of the surrogate models is also adopted
to approximate function values, such as a heterogeneous
ensemble-based infill criterion for MOEA (HeE-MOEA)
[25].

In the second category, the classifiers are adopted as surro-
gate models. A classification-based SAEA (CSEA) [26] uses
feedforward neural networks (FNNs) to predict the domi-
nant relationship between candidate solutions and reference
solutions. Zhang et al. [27] suggest a classification-based
preselection for the multi-objective evolutionary algorithm
(CPS-MOEA).

Significantly, some of the above-mentioned surrogate-
assisted MOEAs use the indicator to improve their perfor-
mance, such as RVMM [20], KTA2 [21], EDN-ARMOEA
[23], and so on. To take full advantage of indicators,
we propose a bi-indicator-based surrogate-assisted MOEA
(BISAEA), where the RBF models are adopted to approx-
imate the expensive function evaluation, a Pareto-based
bi-indicator (convergence indicator, CI and diversity indi-
cator, DI) strategy is proposed to transform the MOPs into
a bi-objective (CI and DI) optimization problem, and a one-
by-one selection strategy is adopted to get expected samples
for re-evaluation. To verify the effectiveness of BISAEA,
it is compared with four state-of-the-art SAEAs and three
MOEAs on 76widely used benchmark problems and applied
to the multidisciplinary optimization design of Blend-Wing-
Body Underwater Gliders (BWBUGs). The contributions of
this work are summarized as follows:

1. A Pareto-based bi-indicator strategy is designed to obtain
new samples by using approximate objective values. A
convergence indicator and diversity indicator are calcu-
lated by approximating objective values, and which are
taken as the bi-objective optimization to select new sam-
ples based on Pareto sorting.

2. The one-by-one selection strategy is adopted to select
several promising samples for re-evaluation. The candi-
date samples are selected by evaluating the angle of their
approximate function values and exiting advantage sam-
ples successively.

3. The performance of BISAEA is evaluated on 76 bench-
mark functions and multidisciplinary design optimiza-
tion of BWBUGs with three objectives, the results show
that BISAEA outperforms the comparison algorithms.

The remainder of this article is organized as follows. In
“Related work”, we review the related work on indicator
and RBF models. The details of the proposed BISAEA are
presented in “The proposed algorithm”, and the results of
experiments on mathematical cases are shown in “Empir-
ical studies”. The engineering applications are reported in
“Application to engineering problem”, and “Conclusions”
concludes the article and draws the future work.

Related work

Indicator-basedMOEAs

As an important component of MOEAs, indicator-based
MOEAs adopt the evaluation indicator tomeasure the perfor-
mance of the solutions to obtain the final optimal solutions.
Several indicators have been proposed, such as hypervolume
[3, 28], IGD-NS [29], R2 [31, 32], Iε+ [32–35] and others
[36]. In this article, Iε+ is adopted as a convergence indica-
tor, and Iε+ reflects the smallest adjustment thatmay bemade
to allow one solution set to marginally outperform another
for each objective. It might be characterized as follows:

Iε+(X1, X2) = min {ε|∀x2 ∈ X2, ∃x1 ∈ X1 :
fi (x1) − ε ≤ fi (x2), for i = 1, 2, ..., M} (2)

where X1 and X2 are two solutions sets and M is the number
of objectives. Iε+ could be defined as follows:

I(x1, x2) = max(F(x1) − F(x2)) (3)

where F(x1) and F(x2) are objective values of x1 and x2. The
maximum indicator value for all xi ∈ X will be evaluated as
a scalar indicator by Eq. (4).

c(x j ) = max
xi∈X

∣
∣I(xi , x j )

∣
∣ (4)
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Finally, the fitness values can be computed for all xi ∈ X
in the following equation:

Fit(xi ) =
∑

x j∈X\{xi }
−e−I(xi , x j )/(c(x j )·K ) (5)

where K is the scaling factor.
Meanwhile, theminimum angle is used as a diversity indi-

cator, which was used in relevant research [9]. As shown in
Fig. 1, it is obvious that the new samples 3 and 4 have two
angles (γ , γ1 and λ, λ1) with the reference points, the angle
indicator between each new sample and the reference point
is shown in Fig. 1b) based on the minimum angle.

Different from the above indicator-based MOEAs,
BISAEA adopts two indicators (CI and DI) as bi-objective to
select the promising samples. Especially, the above MOEAs
[28–36] use the indicators to select the expected samples to
promote the convergence or diversity independently, the two
indicators (bi-indicator, minimum angle and Iε+ ) are used

as bi-objective optimization to enhance the convergence and
diversity simultaneously in BISAEA.

Radial basis function

In this article, the RBF model [14] is used as the surrogate
model. Studies [37] reveal that RBF can obtainmore accurate
approximations for high dimensional problems, and its mod-
eling speed is fast compared with the Kriging model. Given
the data points

{

(xi , yi )|xi ∈ �d , i = 1, 2, .., N
}

, the RBF
surrogate is defined as follows:

f̂ (x) =
n

∑

i=1

λiφ(‖x − xi‖) + p(x), x ∈ �d (6)

where ‖x − xi‖ is the Euclidean distance between the points
x and xi , φ(·) is the basic function. Many forms of the basis
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Fig. 1 The minimum angle with
reference points

function can be used here. In this article, the cubic form
(φ(r) = r3) is adopted because it was successfully employed
in several surrogate-based algorithms [17, 38]. In addition,
the weight vector λ = (λ1, λ2, ..., λN )T can be computed
as follows:

λ = (�T�)−1�T y (7)

where y = (y1, y2, ..., yN )T is the output vector and � is
the following matrix:

Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

φ(x1 − x1), φ(x1 − x2), . . . , φ(x1 − xN )

φ(x2 − x1), φ(x2 − x2), . . . , φ(x2 − xN )

...
...

. . .
...

φ(xN − x1), φ(xN − x2), . . . , φ(xN − xN )

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(8)

p(x) is a linear polynomial in d variables with d + 1
coefficients as in the formula:

p(x) = c0 + c1x1 + c2x2 + · · · + cd xd = cT · x (9)

The proposed algorithm

The framework of BISAEA

The framework of BISAEA is shown in Fig. 2, which
can be divided into three parts, initialization, Pareto-based
bi-indicator selection strategy, and one-by-one selection
strategy. In the first part, the initial population and reference
vector are obtained and the relevant parameters are set. In the

second part, a Pareto-based bi-indicator selection strategy is
used to obtain better candidate samples. Variation operation
is applied to produce offspring using the parent populations,
and theRBFmodel is used to approximate the function values
for each objective of offspring. The bi-indicator is calcu-
lated by the approximate function values and selecting better
samples for the next operation. Finally, the best samples are
selected by the one-by-one selection strategy to evaluate the
real function.

The pseudocode of BISAEA is given in Algorithm 1,
which can be divided into the following steps:

(1) Initialization (Lines 1–4): The initial population P is
generated using the Latin hypercube sampling (LHS)
[39, 40]. The initial reference vector V0 and the Pareto
non-dominated samples Pnd are obtained. Besides, the
parent population is determined.

(2) Pareto-based bi-indicator selection strategy (Lines
5–14): Generating offspring from parent populations by
crossover andmutation and approximating the objective
values of the offspring by RBF model. The bi-indicator
is evaluated using the approximate objective values of
offspring and the non-dominated method is adopted to
select better samples based on the bi-indicator.

(3) The one-by-one selection strategy (Lines 15–27): The
better samples are combined with Pnd , and a non-
dominated sorting method is employed to obtain the
new PFs of them, and the better samples are selected
from new PFs. If the size of the better sample is larger
than Nmax, select the Nmax best samples by Algorithm
4 and re-evaluate it to add into the database, otherwise
re-evaluate Xbetter to add into the database.

(4) Repeat (2)–(3) until the termination condition is
met.
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Pareto-based bi-indicator selection strategy

In BISAEA, a Pareto-based bi-indicator strategy is proposed
to select better samples fromoffspring. This strategy includes
two parts, i.e., bi-indicator calculation and selection based on
the Pareto relationship.

In the first part (Lines 1–8), we adopt the non-dominated
method to select the new PFs of offspring and their parent
populations. The new PFs (Xbetter and Ybetter ) are selected
using the Iε+ and the minimum angle. It should be noted that
the objective values (Ynew and Obj) are the approximate
values of the RBF model.

In the second part (Lines 9–10), the convergence indi-
cator (Iε+ ) and the diversity indicator (The opposite of the
minimum angle) is adopted as the bi-objective, and the non-
dominated method is used to obtain the PFs of them. In this
way, the selected samples will have a good convergence and
diversity at the same time.

The details of the Pareto-based bi-indicator selection strat-
egy can be found in Figs. 3 and 4. The offspring samples and

their parent samples are taken as a combination, and the non-
dominated sortingmethod is employed to obtain the new PFs
and the candidate samples are selected from new PFs.

To select the samples with better diversity and conver-
gence, thePareto-basedbi-indicator strategy is proposed.The
main idea of the Pareto-based bi-indicator strategy is to for-
mulate the selected samples as the MOP, where convergence
and diversity indicators are two objectives to be optimized. It
is worth noting that the convergence and diversity indicators
are evaluated by the approximate objective values of the RBF
model in BISAEA.

After obtaining two indicators, the Pareto-based bi-
indicator strategy can be written as:

minG(x) = (g1(x), g2(x))

g1(x) = DI

g2(x) = C I

(10)

The Pareto-based bi-indicator selection process is shown
in Fig. 4. The convergence and diversity indicators (Fig. 4b
and c) are evaluated by the candidate samples (Fig. 4a)
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Fig. 2 The framework of
BISAEA

Fig. 3 The non-domination
selection of the combination of
parent and offspring

Fig. 4 Selecting samples by bi-indicator
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based on Iε+ and minimum angle. It is clear that the conver-
gence indicator and diversity indicator have a big difference
for candidate samples. Sample 6 has the advantage of both
convergence and diversity indicators, but sample 7 has the
opposite performance. To give consideration to both con-
vergence and diversity, the bi-indicator is adopted as the
bi-objective as shown in Fig. 4d. The non-dominated sort-
ing method is used to carry out the bi-objective (CI and
DI) optimization problem, the new PFs of them are rep-
resented in Fig. 4e and the corresponding function values
are shown in Fig. 4f. It is obvious that the better sam-
ples have better performance compared to the candidate
samples.

The one-by-one selection strategy

The one-by-one selection is a selection strategy in MOEAs,
which has been proven to be effective in improving the per-
formance of corresponding algorithms [21, 23]. Inspired by
the relevant work [21, 23, 41–43], a one-by-one selection
strategy is adopted in BISAEA to improve its performance .

Especially, the one-by-one selection strategy has two parts,
Pareto-based selection and one-by-one selection. To obtain
better convergence, the Pareto-basedmethod is used to select
the samples from better samples. The one-by-one selection
is proposed to select the best samples based on the angle.
The details of the Pareto-based selection strategy are shown
in Fig. 5. The better samples and the existing non-dominated
samples (PFs samples) are taken as a combination. Then
Pareto-based method is employed to obtain the new PFs of
them and better samples are selected from new PFs.

The details of the one-by-one strategy are presented in
Algorithms 4. To obtain better diversity, the non-dominated
solutions of the current population are chosen as the reference
points (PFs samples), and the minimum angle between the
better samples and the PFs samples is calculated. As shown
in Fig. 6, taking the example of selecting the three best sam-
ples. The minimum angles between the better samples and
PFs samples are represented as colored sectors. Sample 1 cor-
responding to the maximum angle is first selected as the best
sample and merged with the PFs samples (Fig. 6b). Then,
samples 5 and 3 are selected with the maximum angle in turn
(Fig. 6c and d). The final selection result is shown in Fig. 6e.
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Fig. 5 The non-domination selection of the combination of PFs samples and better samples

Fig. 6 The process of the one-by-one strategy

Empirical studies

In this section, to validate the effectiveness of BISAEA, we
empirically compare it with several state-of-the-art multi-
objective optimization algorithms, including several SAEAs
(K-RVEA [18], HeEMOEA [25], EDN-ARMOEA [23],
KTA2 [21] and several MOEAs (NSGA-III [4], RVEA [6]
and IBEA [33]). All the test instances are implemented in
PlatEMO [44]. The seven compared algorithms are summa-
rized as follows.

1. K-RVEA [18] is a Kriging-assisted reference vector-
guided evolutionary algorithm, which uses Kriging to
approximate each objective and uncertainty information
is provided to balance convergence and diversity.

2. HeE-MOEA [25] is a heterogeneous ensemble-assisted
MOEA, in which a support vector machine and two RBF
networks are constructed to enhance the reliability of
ensembles for uncertainty estimation.

3. EDN-ARMOEA [23] is an efficient dropout neural net-
work (EDN) assisted indicator-based MOEA [29], in
which the EDN replaces the Gaussian process to achieve
a good balance between convergence and diversity.

4. KTA2 [21] is a Kriging-assisted two-archive evolution-
ary algorithm and uses one influential point-insensitive
model to approximate each function value. Moreover,
an adaptive infill criterion for convergence, diversity and
uncertainty is adopted to determine the promising sam-
ples for real function evaluation.
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5. NSGA-III [4] is an evolutionary multi-objective opti-
mization algorithm using a reference-point-based non-
dominated sorting approach.

6. IBEA [33] uses a binary additive ε−indicator (Iε+ ) as its
selection criterion install of the Pareto dominance crite-
rion.

7. RVEA [6] is a reference vector-guided evolutionary
algorithm for multi-objective optimization, and the ref-
erence vectors are used to decompose the original
multi-objective optimization problem into a number of
single-objective subproblems.

The experiments are conducted on 76 test instances from
test suite DTLZ [45] and ZDT [46] with 2 and 3 objectives.
For each test instance, theMFEs is set to 500, and thenumbers
of decision variables are set as 10, 15, 30 and 50.

We used the inverted generational distance (IGD) [47] as
the performance indicator to assess the performance of the
compared SAEAs. In general, the lower the IGD value is,
the better the solutions approximate the true PF. All experi-
ments are conducted using MATLAB with an Intel (R) Core
(TM) i7, 3.4 GHz CPU. The Wilcoxon rank-sum (WRS) is
used to conduct statistical tests at a significance level of 5%.
Symbols “+” and “−” indicate that BISAEA is significantly
superior and inferior to the compared algorithm, “≈” means
that there is no significant difference between BISAEA and
the compared algorithm.

Parameter setting

The common parameter settings of all the compared algo-
rithms are listed as follows:

1. The population size is set to 100.
2. The scaling factor (K ) is set as 0.05 consistent with the

original literature [33].
3. Themaximum number of expensive function evaluations

is set to 500.
4. The maximum number of iterations (wmax) is set as 20,

which is the same as K-RVEA[18].
5. The parameters for reproduction (crossover and muta-

tion) are set to Pc = 1.0, Pm = 1/d,ηc = 20,ηm = 20.
6. The dimension of the design variable is set as 10, 15, 30

and 50.

In addition, for a fair comparison, we adopt the rec-
ommended setting in the original literature for specific
parameters of compared algorithms.

Behavior study of the BISAEA

Sensitivity analysis of parameters in BISAEA

Themaximum number of new samples for real function eval-
uation each time (Nmax) is a key parameter in BISAEA. Nmax

is set as 1, 3, 5 and 7 to explore the influence of this parameter
on the BISAEA, which are name BISAEA_1, BISAEA_3,
BISAEA_5 andBISAEA_7. The average IGD results of each
algorithm based on 30 independent runs on DTLZ1, 2, 7 and
ZDT 1, 2 problems are shown in Table 1, where the WRS
test is also listed and the best results are highlighted.

As shown inTable 1,BISAEA_1has thebest performance,
followed byBISAEA_3. It is obvious that the performance of
algorithms deteriorates with the increase of Nmax. However,
the smaller values of Nmax will lead to a longer calculation
time, which can be found in Fig. 7. In Fig. 7, the mean run-
time of different problems on BISAEA_1 and BISAEA_3 is
displayed based on 30 independent runs. It is clear that the
mean runtime of BISAEA_3 is shorter than BISAEA_3, and
the performance of the two algorithms is similar as shown
in Table 1. Based on computational efficiency and overall
performance, Nmax is set as 3 in this article.

Effect of the Pareto-based bi-indicator strategy

In this part, we first investigate the effects of the Pareto-
based bi-indicator strategy ofBISAEA.Avariant ofBISAEA
named BISAEA(one), which does not adopts the Pareto-
based bi-indicator strategy and only uses the one-by-one
selection strategy. The average IGD results of BISAEA(one)
and BISAEA based on 30 independent runs on DTLZ1,
2, 7 and ZDT 1, 2 problems are shown in Table 2, where
the WRS test is also listed and the best results are high-
lighted.

In the benchmark problems of the above test, DTLZ1
has multi-model landscapes that is difficult to converge and
DTLZ2 is easy to converge but maintains diversity with diffi-
culty. DTLZ7 has irregular and discontinuous PF, ZDT1 and
ZDT2 have convex PF. As shown in Table 2, it is easy to that
BISAEA has better performance than BISAEA(one).

To better investigate the effects of the Pareto-based
bi-indicator strategy, the final non-dominated solutions
achieved by BISAEA(one) and BISAEA on 10D and 30D
are shown in Figs. 8 and 9. Moreover, the true PF of
DTLZ1 and DTLZ7 is shown in the last of Figs. 8 and
9. It is obvious that the results of BISAEA in DTLZ1
and DTLZ7 on 10D and 30D have better convergence that
BISAEA(one), which also could be found in ZDT1 and
ZDT2. The main reason is that the Pareto-based bi-indicator
strategy adopts a convergence indicator,which could improve
the convergence speed. From the results of DTLZ2 of
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Table 1 Statistic results for IGD values obtained by BISAEA_1, 3, 5 and 7

Problem M D BISAEA_1 BISAEA_3 BISAEA_5 BISAEA_7

DTLZ1 2 10 7.6395e+1 (4.05e+0) + 7.9292e+1 (7.83e+0) + 8.3909e+1 (9.75e+0) = 8.9763e+1 (1.32e+1)

3 10 5.7138e+1 (2.22e+0) + 5.8816e+1 (5.09e+0) + 6.4499e+1 (6.92e+0) = 6.6784e+1 (8.17e+0)

2 15 1.2353e+2 (1.02e+1) + 1.6472e+2 (3.83e+1) + 1.8823e+2 (4.17e+1) = 1.8716e+2 (4.38e+1)

3 15 1.0700e+2 (1.87e+1) + 1.4423e+2 (3.80e+1) = 1.4982e+2 (3.19e+1) = 1.4346e+2 (3.28e+1)

2 30 6.2740e+2 (8.71e+1) + 6.7235e+2 (1.14e+2) = 7.2240e+2 (9.27e+1) = 7.0506e+2 (9.39e+1)

3 30 5.0547e+2 (5.90e+1) + 5.5668e+2 (5.95e+1) = 5.6399e+2 (7.22e+1) = 5.7789e+2 (6.74e+1)

2 50 1.1429e+3 (9.22e+1) + 1.2407e+3 (1.09e+2) + 1.3336e+3 (1.18e+2) = 1.3337e+3 (1.19e+2)

3 50 9.8380e+2 (1.13e+2) + 1.0685e+3 (7.43e+1) + 1.1343e+3 (8.56e+1) = 1.1596e+3 (7.53e+1)

DTLZ2 2 10 1.6119e−3 (4.97e−5) + 2.0605e−3 (8.99e−5) + 2.4825e−3 (1.65e−4) + 2.8149e−3 (1.55e−4)

3 10 2.8983e−2 (4.03e−4) + 3.1300e−2 (7.08e−4) + 3.3755e−2 (1.25e−3) + 3.7209e−2 (1.39e−3)

2 15 2.0534e−3 (8.42e−5) + 2.7597e−3 (1.68e−4) + 3.3224e−3 (2.86e−4) + 3.7096e−3 (3.37e−4)

3 15 3.3585e−2 (9.57e−4) + 3.8020e−2 (1.43e−3) + 4.3887e−2 (3.41e−3) + 4.7173e−2 (2.56e−3)

2 30 4.2561e−3 (4.05e−4) + 6.4776e−3 (7.78e−4) + 8.6079e−3 (1.51e−3) + 9.6315e−3 (1.53e−3)

3 30 6.5736e−2 (6.69e−3) + 9.8970e−2 (2.02e−2) + 1.1387e−1 (2.45e−2) = 1.2563e−1 (2.56e−2)

2 50 1.3574e−2 (2.22e−3) + 3.7317e−2 (1.23e−2) + 4.7406e−2 (1.74e−2) = 4.7077e−2 (1.41e−2)

3 50 2.3184e−1 (4.56e−2) + 8.0474e−1 (3.92e−1) = 7.5884e−1 (3.06e−1) = 9.0249e−1 (3.79e−1)

DTLZ7 2 10 9.8359e−3 (1.51e−3) = 2.0743e−2 (5.96e−2) = 6.6836e−3 (1.62e−3) + 5.3642e−2 (1.32e−1)

3 10 5.7445e−2 (3.41e−2) = 6.0245e−2 (4.11e−2) + 8.2064e−2 (1.26e−2) − 6.4189e−2 (4.18e−2)

2 15 7.9948e−2 (1.65e−1) + 1.3797e−1 (2.03e−1) + 2.2131e−2 (7.28e−3) = 2.2330e−1 (2.19e−1)

3 15 6.0500e−2 (3.60e−2) + 7.7117e−2 (5.39e−2) + 8.4347e−2 (7.27e−2) + 1.2445e−1 (8.75e−2)

2 30 2.1170e−1 (2.20e−1) + 3.2023e−1 (1.89e−1) + 2.3700e−1 (2.06e−1) = 4.2848e−1 (2.40e−1)

3 30 1.3408e−1 (7.29e−2) + 2.6232e−1 (1.21e−1) + 5.7991e−1 (2.09e−1) − 4.2241e−1 (2.35e−1)

2 50 3.8510e−1 (1.36e−1) + 7.4459e−1 (3.84e−1) = 6.3779e−1 (4.18e−1) = 7.2501e−1 (4.07e−1)

3 50 8.1394e−1 (3.09e−1) + 1.8058e+0 (7.38e−1) = 2.2826e+0 (3.49e−1) = 2.1154e+0 (7.94e−1)

ZDT1 2 10 1.3184e−3 (5.09e−5) + 1.5550e−3 (2.15e−4) + 1.7780e−3 (1.17e−4) + 2.0839e−3 (1.74e−4)

2 15 1.4896e−3 (6.84e−5) + 1.8269e−3 (1.09e−4) + 2.2093e−3 (2.23e−4) + 2.5771e−3 (2.17e−4)

2 30 2.5832e−3 (2.12e−4) + 3.5880e−3 (4.18e−4) + 4.3492e−3 (5.87e−4) + 5.1582e−3 (6.00e−4)

2 50 5.0972e−3 (5.90e−4) + 8.8269e−3 (2.01e−3) + 1.2089e−2 (3.01e−3) = 1.3300e−2 (2.81e−3)

ZDT2 2 10 1.0644e−3 (2.69e−5) + 1.1999e−3 (4.37e−5) + 1.4134e−3 (6.23e−5) + 1.6400e−3 (8.92e−5)

2 15 1.2004e−3 (6.69e−5) + 1.3795e−3 (9.62e−5) + 1.5965e−3 (8.78e−5) + 1.9434e−3 (1.51e−4)

2 30 1.7183e−3 (1.59e−4) + 2.2287e−3 (3.16e−4) + 2.7661e−3 (3.91e−4) + 3.2757e−3 (3.67e−4)

2 50 2.9302e−3 (3.54e−4) + 4.4114e−3 (7.37e−4) + 5.4924e−3 (6.83e−4) + 6.1095e−3 (9.12e−4)

± / = 30/0/2 25/0/7 14/2/16

Bold values indicate better results than other compared algorithms

two algorithms in Figs. 8 and 9, both BISAEA(one) and
BISAEA could converge in 10D, BISAEA has the better
performance based on diversity. For the DTLZ2 on 30D,
BISAEA has advantages in convergence and diversity. From
the above results, it can be concluded that the Pareto-based
bi-indicator strategy of BISAEA not only accelerates con-
vergence but also play an important role in maintaining
diversity.

Effect of the one-by-one selection strategy

To further study the role of the one-by-one selection strategy
in BISAEA, we compare BISAEA with the BISAEA(pb)
andBISAEA(only_one),whereBISAEA(pb) only adopts the
Pareto-based bi-indicator strategy, and BISAEA(only_one)
uses the Pareto-based bi-indicator strategy and only one-time
selection strategy to choose the same number new samples.

The experiments are conducted on DTLZ1, 2, 7 and ZDT
1, 2 problemswith two and three objectives. The average IGD
results of three algorithms based on 30 independent runs are
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Fig. 7 The mean runtime with
different problems on
BISAEA_1 and BISAEA_3

is listed in Table 3, where the WRS test is also listed and the
best results are highlighted.

It can be observed that the BISAEA and
BISAEA(only_one) have better performance than
BISAEA(pb). The reason is that BISAEA(pb) only selects
the new samples through the Pareto-based bi-indicator
strategy, the selected sample size cannot be effectively con-
trolled, which will cause a waste of real function evaluation
times.

To better explain the effects of the one-by-one selec-
tion strategy, the true PF and final non-dominated solutions
achieved byBISAEA(pb), BISAEA(only_one) andBISAEA
on 10D and 30D are shown in Fig. 10. It is obvious that
the results of BISAEA(only_one) and BISAEA on 10D and
30D have the better convergence than BISAEA(pb), which
shows that reselection after Pareto-based bi-indicator strat-
egy could improve the convergence of the algorithm. From
the results ofDTLZ2 ofBISAEA(only_one) andBISAEAon
two and three objectives in Fig. 10, both BISAEA(only_one)
and BISAEA could converge in true PFs, and the results of
BISAEA has the better diversity. This can indicate that the
one-by-one selection strategy is of great significance for the
improvement of diversity.

Comparison with other algorithms

Results on DTLZ problems

The results of IGD values achieved by seven algorithms over
30 independent runs on DTLZ problems are summarized
in Tables 4 and 5, where the best results are highlighted.
Tables 4 and 5 show the statistical results of SAEAs and EAs
in DTLZ1-7 with two and three objectives on 10D, 15D, 30D
and 50D, respectively.

Both DTLZ1 and DTLZ3 have multi-model landscapes
that are difficult to converge. BISAEA and KTA2 have supe-
rior performance on DTLZ1 and DTLZ3, followed by IBEA
andK-RVEA. The true PF and final non-dominated solutions
achieved by the compared algorithms on DTLZ1 associated
with the median IGD values are shown in Fig. 11. The IGD
values and the final solutions are illustrative of the conver-
gence ofBISAEAandKTA2. ForDTLZ2,BISAEAachieves
a satisfactory result. As shown in Fig. 12, both K-RVEA,
KTA2andBISAEAconverge to the true PF, and the final non-
dominated solutions achieved by BISAEA are more evenly
distributed on the true PF. The reason is that the diversity
indicator and one-by-one selection strategy could improve
diversity.

DTLZ4 is modified from DTLZ2 and mainly used for
measuring the diversity of algorithms. As shown in Tables 4
and 5, BISAEA and KTA2 are the top two algorithms for
DTLZ4, BISAEA obtains the best average IGD values on
50D, and KTA2 gets the best results for other dimensions.
Themain reason is that one influential point-insensitiveKrig-
ing model is used in KTA2, which plays an important role in
low-dimensional problems. However, the accuracy of Krig-
ing models decreases with the increase of dimensions. The
PFs of DTLZ5-7 are irregular, which brings a challenge
to obtaining a set of diverse and well-converged solutions.
Among them, the PFs of DTLZ5 and DTLZ6 have degener-
ated curves, DTLZ6 is modified fromDTLZ5, and DTLZ7 is
discontinuous. It can be seen from Tables 4 and 5, BISAEA
achieve better results on these problems.

To better describe the performance of BISAEA in
DTLZ series problems, the IGD values iteration process
of BISAEA, K-RVEA, HeE-MOEA, EDNARMOEA and
KTA2 of DTLZ2 is shown in Fig. 13. It is clear that
BISAEA has the satisfactory convergence speed and perfor-
mance. Especially, BISAEA andKTA2 have similar iteration
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Table 2 Statistic results for IGD
value obtained by BISAEA and
BISAEA(one)

Problem M D BISAEA(one) BISAEA

DTLZ1 2 10 1.0362e+2 (2.37e+1) − 7.9292e+1 (7.83e+0)

3 10 7.8871e+1 (1.57e+1) − 5.8816e+1 (5.09e+0)

2 15 2.1190e+2 (3.61e+1) − 1.6472e+2 (3.83e+1)

3 15 1.7847e+2 (2.82e+1) − 1.4423e+2 (3.80e+1)

2 30 5.9339e+2 (5.83e+1) + 6.7235e+2 (1.14e+2)

3 30 5.5222e+2 (4.75e+1) = 5.5668e+2 (5.95e+1)

2 50 1.1759e+3 (6.56e+1) + 1.2407e+3 (1.09e+2)

3 50 1.1293e+3 (8.18e+1) − 1.0685e+3 (7.43e+1)

DTLZ2 2 10 1.3219e−2 (2.07e−3) − 2.0605e−3 (8.99e−5)

3 10 7.6350e−2 (6.79e−3) − 3.1300e−2 (7.08e−4)

2 15 3.3959e−2 (5.70e−3) − 2.7597e−3 (1.68e−4)

3 15 1.5031e−1 (1.65e−2) − 3.8020e−2 (1.43e−3)

2 30 1.9201e−1 (3.27e−2) − 6.4776e−3 (7.78e−4)

3 30 7.2481e−1 (1.13e−1) − 9.8970e−2 (2.02e−2)

2 50 7.8446e−1 (1.11e−1) − 3.7317e−2 (1.23e−2)

3 50 2.2359e+0 (1.91e−1) − 8.0474e−1 (3.92e−1)

DTLZ7 2 10 3.3689e−2 (9.68e−3) − 2.0743e−2 (5.96e−2)

3 10 1.6703e−1 (3.35e−2) − 6.0245e−2 (4.11e−2)

2 15 2.0450e−1 (1.45e−1) − 1.3797e−1 (2.03e−1)

3 15 3.7979e−1 (5.60e−2) − 7.7117e−2 (5.39e−2)

2 30 7.1570e−1 (1.31e−1) − 3.2023e−1 (1.89e−1)

3 30 1.2629e+0 (2.41e−1) − 2.6232e−1 (1.21e−1)

2 50 1.6216e+0 (3.19e−1) − 7.4459e−1 (3.84e−1)

3 50 2.5973e+0 (4.25e−1) − 1.8058e+0 (7.38e−1)

ZDT1 2 10 2.3325e−2 (4.93e−3) − 1.5550e−3 (2.15e−4)

2 15 7.0453e−2 (1.50e−2) − 1.8269e−3 (1.09e−4)

2 30 2.4689e−1 (2.65e−2) − 3.5880e−3 (4.18e−4)

2 50 4.7231e−1 (3.96e−2) − 8.8269e−3 (2.01e−3)

ZDT2 2 10 3.0129e−2 (8.29e−3) − 1.1999e−3 (4.37e−5)

2 15 1.1128e−1 (2.50e−2) − 1.3795e−3 (9.62e−5)

2 30 7.5782e−1 (1.88e−1) − 2.2287e−3 (3.16e−4)

2 50 1.3336e+0 (1.85e−1) − 4.4114e−3 (7.37e−4)

± / = 2/29/1

Bold values indicate better results than other compared algorithms

curves and performance, and the convergence speed of
BISAEA wins over KTA2. In addition, the runtime of the
above SAEAs is represented in Fig. 14. With the increase
of design dimensions, the runtime of K-RVEA, EDNAR-
MOEA and KTA2 increase dramatically, and HeE-MOEA
and BISAEA has small changes. The main reason is that
Kriging and EDN models are adopted in K-RVEA and
KTA2, and EDNARMOEA, the training time of the Krig-
ing model increases with the design dimension. Moreover,
the GD values of the above SAEAs, EAs and BISAEA
are shown in Tables 1 and 2 of the supplementary mate-
rials, and the runtime of four SAEAs and BISAEA are

shown in Table 5 of the supplementary materials. It can indi-
cate that KTA2 and BISAEA have similar performance in
DTLZ series problems, and BISAEA has advantages in run-
time.

We can draw a conclusion from the above analysis,
BISAEA and KTA2 can obtain competitive results in DTLZ
series problems with two and three objectives. From the
perspective of runtime, BISAEA has great advantages over
KTA2. Therefore, it is obvious that BISAEA has better per-
formance than the above comparison algorithms.
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Fig. 8 The PF of DTLZ1,2,7 and ZDT 1,2 associated with the median IGD value on 10D

Results on ZDT problems

To further analyze the performance of BISAEA in two
objectives problems, we use the ZDT problems as test
problems. ZDTproblems include six two-objective test prob-
lems, which introduce different difficulties for evolutionary

optimization[46]. We choose five unconstrained problems,
referred to as ZDT1-ZDT4 and ZDT6. The statistical results
of compared algorithms on ZDT problems are summarized
in Tables 6 and 7.

From Tables 6 and 7, it is obvious that BISAEA has the
best performance for ZDT1,2, 4 and 6. Both ZDT1 andZDT4
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Fig. 9 The PF of DTLZ1,2,7 and ZDT 1,2 associated with the median IGD value on 30D

have convex PF, while ZDT4 is harder to converge. As shown
in Fig. 15, only BISAEA and KTA2 can obtain the true PF
completely both on ZDT1 and 2 in 30D, and K-RVEA can
converge to the PF. Meanwhile, as shown in Table 6, with
the dimensions increasing, KTA2 and K-RVEA deteriorate
greatly both on convergence and diversity. The reason may
be the dimension limitation of the Kriging model.

Then we focus on ZDT2 and ZDT6, which have concave
PF, For ZDT2, only BISAEA and KTA2 can obtain the true
PF completely on 30D in Fig. 16. The last discussions occur
on ZDT3, whose disconnected PF brings a challenge for
diversity. From the average IGDvalues,wefind that BISAEA
still has a competitive lead.
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Table 3 Statistic results for IGD
values obtained by BISAEA,
BISAEA(pb) and
BISAEA(only_one)

Problem M D BISAEA(pb) BISAEA(only_one) BISAEA

DTLZ1 2 10 9.3320e+1 (1.34e+1) − 8.0130e+1 (8.46e+0) = 7.9292e+1 (7.83e+0)

3 10 6.7067e+1 (8.95e+0) − 6.3521e+1 (7.57e+0) − 5.8816e+1 (5.09e+0)

2 15 1.9863e+2 (5.29e+1) − 1.6221e+2 (2.51e+1) = 1.6472e+2 (3.83e+1)

3 15 1.5434e+2 (3.37e+1) = 1.3718e+2 (3.12e+1) = 1.4423e+2 (3.80e+1)

2 30 7.2322e+2 (7.00e+1) = 6.6021e+2 (8.95e+1) = 6.7235e+2 (1.14e+2)

3 30 6.0511e+2 (5.26e+1) − 5.4264e+2 (6.88e+1) = 5.5668e+2 (5.95e+1)

2 50 1.3416e+3 (1.27e+2) − 1.2781e+3 (1.39e+2) = 1.2407e+3 (1.09e+2)

3 50 1.1921e+3 (7.65e+1) − 1.1194e+3 (8.59e+1) − 1.0685e+3 (7.43e+1)

DTLZ2 2 10 4.3133e−3 (5.24e−4) − 2.6222e−3 (1.65e−4) − 2.0605e−3 (8.99e−5)

3 10 4.8984e−2 (2.45e−3) − 3.5168e−2 (8.21e−4) − 3.1300e−2 (7.08e−4)

2 15 4.6816e−3 (4.30e−4) − 3.2685e−3 (2.50e−4) − 2.7597e−3 (1.68e−4)

3 15 5.8785e−2 (2.82e−3) − 4.1540e−2 (1.41e−3) − 3.8020e−2 (1.43e−3)

2 30 1.1016e−2 (1.42e−3) − 7.3748e−3 (1.05e−3) − 6.4776e−3 (7.78e−4)

3 30 1.3500e−1 (2.95e−2) − 9.3773e−2 (1.17e−2) = 9.8970e−2 (2.02e−2)

2 50 5.8195e−2 (1.87e−2) − 3.7896e−2 (1.78e−2) = 3.7317e−2 (1.23e−2)

3 50 8.6123e−1 (2.50e−1) = 6.7043e−1 (2.60e−1) = 8.0474e−1 (3.92e−1)

DTLZ7 2 10 6.8003e−2 (1.49e−1) = 9.6600e−2 (1.76e−1) = 2.0743e−2 (5.96e−2)

3 10 8.4870e−2 (5.86e−2) − 5.8671e−2 (4.29e−2) = 6.0245e−2 (4.11e−2)

2 15 1.6813e−1 (2.12e−1) − 2.3919e−1 (2.21e−1) = 1.3797e−1 (2.03e−1)

3 15 9.9394e−2 (7.26e−2) − 9.1497e−2 (9.64e−2) = 7.7117e−2 (5.39e−2)

2 30 3.7272e−1 (2.01e−1) − 3.8673e−1 (2.06e−1) = 3.2023e−1 (1.89e−1)

3 30 4.1288e−1 (1.68e−1) − 3.0747e−1 (1.59e−1) = 2.6232e−1 (1.21e−1)

2 50 8.0160e−1 (5.24e−1) = 6.9216e−1 (3.53e−1) = 7.4459e−1 (3.84e−1)

3 50 1.9138e+0 (6.43e−1) = 1.4943e+0 (6.07e−1) = 1.8058e+0 (7.38e−1)

ZDT1 2 10 3.1413e−3 (3.30e−4) − 1.8144e−3 (1.24e−4) − 1.5550e−3 (2.15e−4)

2 15 3.5626e−3 (4.14e−4) − 2.2269e−3 (3.30e−4) − 1.8269e−3 (1.09e−4)

2 30 6.3949e−3 (9.24e−4) − 3.7603e−3 (5.03e−4) = 3.5880e−3 (4.18e−4)

2 50 1.4872e−2 (2.68e−3) − 9.6685e−3 (2.01e−3) = 8.8269e−3 (2.01e−3)

ZDT2 2 10 2.8182e−3 (3.42e−4) − 1.4728e−3 (5.57e−5) − 1.1999e−3 (4.37e−5)

2 15 2.9049e−3 (2.62e−4) − 1.6952e−3 (8.53e−5) − 1.3795e−3 (9.62e−5)

2 30 4.1529e−3 (3.83e−4) − 2.5173e−3 (2.23e−4) − 2.2287e−3 (3.16e−4)

2 50 7.8141e−3 (1.37e−3) − 4.7115e−3 (8.24e−4) = 4.4114e−3 (7.37e−4)

± / = 0/26/6 0/12/20

Bold values indicate better results than other compared algorithms

The IGD values iteration process is shown in Fig. 17, it
is clear that BISAEA and KTA2 can obtain the desired IGD
values quickly (less than 150 NFEs). Moreover, the GD val-
ues of four SAEAs, three EAs and BISAEA are shown in
Tables 3 and 4 of the supplementary materials, and the run-
time of four SAEAs and BISAEA are represented in Table
6 of the supplementary materials, which also indicates the
superior performance of BISAEA.

Application to engineering problem

Engineering problem description

As a new type of marine equipment, blend-wing-body
underwater gliders (BWBUGs) have been used for ocean
observation [48, 49]. BWBUGs adopt a smooth connec-
tion between their bodies and wings [50–54]. BWBUGs is
a complex multidisciplinary system involving shape, skele-
ton, pressure cabins, and other disciplines. The shape and
skeleton design are important parts of the BWBUGs system
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Fig. 10 The PF of DTLZ1,2 associated with the median IGD value on 10D
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Table 4 Statistic results of the four SAEAs and BISAEA on DTLZ1-7

Problem M D HeEMOEA EDNARMOEA KRVEA KTA2 BISAEA

DTLZ1 2 10 1.3409e+2
(2.38e+1) −

1.3750e+2
(2.11e+1) −

6.4500e+1
(1.41e+1) +

6.1609e+1 (2.69e+1) + 7.9292e+1
(7.83e+0)

3 10 1.0111e+2
(2.59e+1) −

8.7901e+1
(1.95e+1) −

7.5653e+1
(1.21e+1) −

3.4060e+1 (1.29e+1) + 5.8816e+1
(5.09e+0)

2 15 2.9125e+2
(3.70e+1) −

2.7473e+2
(2.39e+1) −

1.4602e+2
(2.51e+1) =

1.5740e+2 (3.25e+1) = 1.6472e+2
(3.83e+1)

3 15 2.2438e+2
(2.89e+1) −

2.0286e+2
(2.14e+1) −

1.7307e+2
(1.90e+1) −

1.0616e+2 (3.66e+1) + 1.4423e+2
(3.80e+1)

2 30 7.4978e+2
(5.51e+1) −

7.3458e+2
(5.97e+1) −

6.4423e+2
(5.74e+1) =

4.3683e+2 (8.43e+1) + 6.7235e+2
(1.14e+2)

3 30 6.1860e+2
(4.10e+1) −

5.8838e+2
(3.74e+1) −

5.7579e+2
(5.11e+1) =

3.9865e+2 (5.54e+1) + 5.5668e+2
(5.95e+1)

2 50 1.3854e+3
(8.17e+1) −

1.3965e+3
(7.37e+1) −

1.3896e+3
(9.23e+1) −

9.2188e+2 (1.08e+2) + 1.2407e+3
(1.09e+2)

3 50 1.1711e+3
(5.12e+1) −

1.1848e+3
(5.74e+1) −

1.1873e+3
(7.84e+1) −

8.4456e+2 (7.92e+1) + 1.0685e+3
(7.43e+1)

DTLZ2 2 10 1.2967e−1
(1.83e−2) −

1.2053e−1
(3.53e−2) −

2.0367e−2
(2.29e−3) −

3.3694e−3 (3.05e−4) − 2.0605e−3
(8.99e−5)

3 10 1.6947e−1
(1.26e−2) −

2.7634e−1
(2.47e−2) −

1.0249e−1
(1.57e−2) −

4.5212e−2 (1.64e−3) − 3.1300e−2
(7.08e−4)

2 15 1.8129e−1
(2.48e−2) −

2.3988e−1
(3.46e−2) −

3.9598e−2
(7.12e−3) −

5.0391e−3 (4.96e−4) − 2.7597e−3
(1.68e−4)

3 15 2.2358e−1
(1.20e−2) −

4.9724e−1
(4.64e−2) −

3.3699e−1
(5.27e−2) −

5.7977e−2 (3.07e−3) − 3.8020e−2
(1.43e−3)

2 30 3.2966e−1
(3.02e−2) −

1.0737e+0
(1.41e−1) −

1.1359e+0
(1.72e−1) −

2.8065e−1 (1.06e−1) − 6.4776e−3
(7.78e−4)

3 30 3.9421e−1
(3.38e−2) −

1.4456e+0
(1.02e−1) −

1.4185e+0
(9.61e−2) −

2.8956e−1 (6.81e−2) − 9.8970e−2
(2.02e−2)

2 50 2.6744e+0
(1.19e−1) −

2.7307e+0
(9.85e−2) −

2.6724e+0
(1.21e−1) −

7.0263e−1 (1.53e−1) − 3.7317e−2
(1.23e−2)

3 50 2.6972e+0
(1.33e−1) −

2.6590e+0
(1.21e−1) −

2.7440e+0
(1.17e−1) −

1.2306e+0 (2.14e−1) − 8.0474e−1
(3.92e−1)

DTLZ3 2 10 3.3926e+2
(5.32e+1) −

3.6902e+2
(5.39e+1) −

1.3702e+2
(3.30e+1) +

1.4734e+2 (4.81e+1) + 1.9313e+2
(1.07e+1)

3 10 2.5033e+2
(6.88e+1) −

3.0166e+2
(5.17e+1) −

2.0448e+2
(3.16e+1) −

9.5365e+1 (3.41e+1) + 1.7084e+2
(1.44e+1)

2 15 6.9527e+2
(8.95e+1) −

7.4491e+2
(7.81e+1) −

3.6291e+2
(6.86e+1) =

3.4983e+2 (9.44e+1) = 3.6953e+2
(6.64e+1)

3 15 5.9585e+2
(9.91e+1) −

6.3873e+2
(1.03e+2) −

4.6531e+2
(7.03e+1) −

3.0228e+2 (8.04e+1) = 3.5118e+2
(7.26e+1)

2 30 1.9496e+3
(1.07e+2) −

1.9836e+3
(1.49e+2) −

1.6836e+3
(1.83e+2) −

1.1065e+3 (1.74e+2) + 1.5176e+3
(2.67e+2)

3 30 1.8451e+3
(1.51e+2) −

1.8830e+3
(1.84e+2) −

1.6701e+3
(1.64e+2) =

1.1331e+3 (1.41e+2) + 1.5755e+3
(2.44e+2)

2 50 3.8596e+3
(1.67e+2) −

3.7981e+3
(1.99e+2) −

3.8093e+3
(1.31e+2) −

2.2774e+3 (2.17e+2) + 3.2828e+3
(3.00e+2)

3 50 3.7271e+3
(1.66e+2) −

3.7301e+3
(1.98e+2) −

3.7282e+3
(1.76e+2) −

2.4735e+3 (2.28e+2) + 3.4988e+3
(2.18e+2)

DTLZ4 2 10 6.5254e−1
(1.10e−1) −

2.7033e−1
(2.99e−1) =

2.4168e−1
(2.71e−1) =

1.9006e−1 (3.10e−1) + 2.6025e−1
(2.73e−1)
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Table 4 (continued)

Problem M D HeEMOEA EDNARMOEA KRVEA KTA2 BISAEA

3 10 7.7377e−1
(1.09e−1) −

2.1134e−1
(7.39e−2) +

3.0780e−1
(8.12e−2) −

1.6870e−1 (9.22e−2) + 2.6384e−1
(7.66e−2)

2 15 7.4173e−1
(6.39e−2) −

3.4113e−1
(2.17e−1) =

3.0043e−1
(1.16e−1) =

1.9603e−1 (3.07e−1) + 4.8457e−1
(2.96e−1)

3 15 9.1736e−1
(6.34e−2) −

3.8305e−1
(9.75e−2) =

5.7510e−1
(1.02e−1) −

3.0615e−1 (1.50e−1) = 3.5543e−1
(1.01e−1)

2 30 9.1738e−1
(3.78e−2) −

1.0087e+0
(1.97e−1) −

1.4127e+0
(2.01e−1) −

2.5725e−1 (1.03e−1) + 6.3280e−1
(2.90e−1)

3 30 1.0979e+0
(2.20e−2) −

1.3836e+0
(1.46e−1) −

1.4999e+0
(2.00e−1) −

8.1231e−1 (1.56e−1) = 8.3388e−1
(1.80e−1)

2 50 3.0126e+0
(1.35e−1)

2.9996e+0
(1.23e−1)

2.9724e+0
(1.79e−1)

1.1960e+0 (2.69e−1)− 1.0947e+0
(4.37e−1)

3 50 3.0709e+0
(1.39e−1) −

3.0493e+0
(1.74e−1) −

3.0706e+0
(1.48e−1) −

2.5623+0(2.36e−1)− 1.8947e+0
(3.71e−1)

DTLZ5 2 10 1.2715e−1
(2.44e−2) −

1.2490e−1
(3.67e−2) −

2.0320e−2
(2.47e−3) −

3.3111e−3 (2.25e−4) − 2.0776e−3
(6.19e−5)

3 10 1.2023e−1
(2.09e−2) −

1.3876e−1
(3.13e−2) −

5.9025e−2
(1.16e−2) −

4.1243e−3 (3.11e−4) + 6.6947e−3
(7.54e−4)

2 15 1.8143e−1
(2.99e−2) −

2.5536e−1
(5.19e−2) −

3.7728e−2
(6.60e−3) −

1.6142e−2 (6.16e−2) − 2.7275e−3
(1.84e−4)

3 15 1.6186e−1
(2.51e−2) −

3.4360e−1
(4.53e−2) −

2.4227e−1
(5.15e−2) −

1.1234e−2 (2.21e−3) + 1.2950e−2
(1.98e−3)

2 30 3.2941e−1
(2.59e−2) −

1.0677e+0
(1.27e−1) −

1.0505e+0
(2.26e−1) −

2.6262e−1 (1.19e−1) − 6.6529e−3
(9.90e−4)

3 30 3.0025e−1
(2.71e−2) −

1.3488e+0
(7.25e−2) −

1.2876e+0
(1.18e−1) −

2.9689e−1 (7.06e−2) − 5.1419e−2
(1.77e−2)

2 50 2.7186e+0
(1.40e−1) −

2.6881e+0
(1.49e−1) −

2.6498e+0
(1.31e−1) −

6.6110e−1 (1.11e−1) − 3.5339e−2
(1.21e−2)

3 50 2.6686e+0
(1.44e−1) −

2.6602e+0
(1.16e−1) −

2.6620e+0
(1.51e−1) −

1.1191e+0 (1.87e−1) − 4.8702e−1
(2.36e−1)

DTLZ6 2 10 7.4777e+0
(1.89e−1) −

4.6700e+0
(5.11e−1) −

2.7382e+0
(5.30e−1) −

1.6696e+0 (5.16e−1) − 1.2833e+0
(6.16e−1)

3 10 6.6758e+0
(1.36e−1) −

5.0008e+0
(4.32e−1) −

2.4475e+0
(4.53e−1) −

9.3281e−1 (3.38e−1) = 1.1076e+0
(4.22e−1)

2 15 1.1804e+1
(2.45e−1) −

8.6550e+0
(4.65e−1) −

5.7639e+0
(6.60e−1) −

3.4433e+0 (8.35e−1) = 2.9998e+0
(8.80e−1)

3 15 1.0979e+1
(1.54e−1) −

9.5937e+0
(3.62e−1) −

5.4353e+0
(5.73e−1) −

2.8091e+0 (6.36e−1) + 3.2537e+0
(7.91e−1)

2 30 2.4999e+1
(1.78e−1) −

2.2192e+1
(7.25e−1) −

2.0118e+1
(1.14e+0) −

1.1491e+1 (1.17e+0) = 1.2193e+1
(2.05e+0)

3 30 2.4093e+1
(1.81e−1) −

2.3004e+1
(3.63e−1) −

1.8396e+1
(1.24e+0) =

1.3571e+1 (1.09e+0) + 1.8120e+1
(1.54e+0)

2 50 4.2689e+1
(2.33e−1) −

4.2664e+1
(1.77e−1) −

4.2717e+1
(2.54e−1) −

2.7917e+1 (1.53e+0) + 3.7312e+1
(2.62e+0)

3 50 4.1847e+1
(2.64e−1) −

4.1895e+1
(2.96e−1) −

4.1816e+1
(2.23e−1) −

3.0710e+1 (1.23e+0) + 3.8086e+1
(9.05e−1)

DTLZ7 2 10 2.4596e+0
(3.52e−1) −

3.8341e−1
(2.18e−1) −

1.4410e−2
(1.31e−3) +

1.6487e−1 (2.15e−1) = 2.0743e−2
(5.96e−2)

3 10 3.6692e+0
(7.47e−1) −

9.6622e−1
(4.65e−1) −

9.7619e−2
(1.17e−2) −

3.9541e−1 (2.93e−1) − 6.0245e−2
(4.11e−2)
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Table 4 (continued)

Problem M D HeEMOEA EDNARMOEA KRVEA KTA2 BISAEA

2 15 3.3430e+0
(2.61e−1) −

6.9979e−1
(2.73e−1) −

2.0047e−2
(2.31e−3) +

1.3559e−1 (2.05e−1) + 1.3797e−1
(2.03e−1)

3 15 5.4267e+0
(5.40e−1) −

1.4048e+0
(5.03e−1) −

1.1011e−1
(1.96e−2) −

4.8675e−1 (2.52e−1) − 7.7117e−2
(5.39e−2)

2 30 4.7311e+0
(2.53e−1) −

1.5376e+0
(4.88e−1) −

6.9000e−2
(1.08e−2) +

9.3187e−2 (1.78e−1) + 3.2023e−1
(1.89e−1)

3 30 7.6319e+0
(4.90e−1) −

2.8999e+0
(6.97e−1) −

2.2106e−1
(3.22e−2) =

4.3813e−1 (2.67e−1) − 2.6232e−1
(1.21e−1)

2 50 6.2358e+0
(3.06e−1) −

6.1476e+0
(2.69e−1) −

6.2055e+0
(2.08e−1) −

2.1595e−1 (7.70e−1) + 7.4459e−1
(3.84e−1)

3 50 9.3212e+0
(5.28e−1) −

9.4918e+0
(4.14e−1) −

9.2960e+0
(4.09e−1) −

4.9007e−1 (2.74e−1) + 1.8058e+0
(7.38e−1)

± / = 0/56/0 1/52/3 4/44/8 27/20/9

Bold values indicate better results than other compared algorithms

Table 5 Statistic results of the three EAs and BISAEA on DTLZ1-7

Problem M D IBEA NSGAIII RVEA BISAEA

DTLZ1 2 10 8.9705e+1 (1.92e+1) − 1.1169e+2 (2.03e+1) − 1.1403e+2 (2.08e+1) − 7.9292e+1 (7.83e+0)

3 10 6.1169e+1 (1.49e+1) = 7.5513e+1 (1.79e+1) − 7.3201e+1 (1.74e+1) − 5.8816e+1 (5.09e+0)

2 15 2.0436e+2 (3.59e+1) − 2.3368e+2 (3.25e+1) − 2.4955e+2 (3.97e+1) − 1.6472e+2 (3.83e+1)

3 15 1.6065e+2 (2.33e+1) = 1.8778e+2 (2.59e+1) − 1.8539e+2 (2.83e+1) − 1.4423e+2 (3.80e+1)

2 30 6.4079e+2 (4.11e+1) + 6.8150e+2 (5.00e+1) = 7.0809e+2 (5.84e+1) = 6.7235e+2 (1.14e+2)

3 30 5.0965e+2 (4.84e+1) + 5.6609e+2 (4.31e+1) = 5.7020e+2 (4.88e+1) = 5.5668e+2 (5.95e+1)

2 50 1.2267e+3 (6.33e+1) = 1.3201e+3 (7.51e+1) − 1.3405e+3 (1.19e+2) − 1.2407e+3 (1.09e+2)

3 50 1.0508e+3 (6.16e+1) = 1.0957e+3 (5.82e+1) = 1.1288e+3 (6.85e+1) − 1.0685e+3 (7.43e+1)

DTLZ2 2 10 1.6697e−1 (2.13e−2) − 2.1632e−1 (3.07e−2) − 2.4720e−1 (3.77e−2) − 2.0605e−3 (8.99e−5)

3 10 2.0839e−1 (2.00e−2) − 2.4287e−1 (2.26e−2) − 2.7418e−1 (2.53e−2) − 3.1300e−2 (7.08e−4)

2 15 3.5507e−1 (4.06e−2) − 4.1835e−1 (4.68e−2) − 4.6346e−1 (5.10e−2) − 2.7597e−3 (1.68e−4)

3 15 3.9019e−1 (4.18e−2) − 4.3309e−1 (4.09e−2) − 4.7060e−1 (5.67e−2) − 3.8020e−2 (1.43e−3)

2 30 1.0386e+0 (1.05e−1) − 1.2409e+0 (1.14e−1) − 1.2846e+0 (1.02e−1) − 6.4776e−3 (7.78e−4)

3 30 1.1158e+0 (7.43e−2) − 1.2255e+0 (9.33e−2) − 1.2486e+0 (8.47e−2) − 9.8970e−2 (2.02e−2)

2 50 2.2410e+0 (1.08e−1) − 2.4751e+0 (1.54e−1) − 2.5457e+0 (1.51e−1) − 3.7317e−2 (1.23e−2)

3 50 2.2662e+0 (1.51e−1) − 2.4563e+0 (1.38e−1) − 2.5064e+0 (1.56e−1) − 8.0474e−1 (3.92e−1)

DTLZ3 2 10 2.3746e+2 (5.48e+1) − 2.8508e+2 (5.72e+1) − 2.9069e+2 (5.41e+1) − 1.9313e+2 (1.07e+1)

3 10 1.9465e+2 (3.81e+1) − 2.2716e+2 (4.31e+1) − 2.0111e+2 (4.23e+1) − 1.7084e+2 (1.44e+1)

2 15 5.3677e+2 (9.09e+1) − 6.0598e+2 (9.92e+1) − 6.4872e+2 (8.90e+1) − 3.6953e+2 (6.64e+1)

3 15 4.6432e+2 (8.14e+1) − 5.2688e+2 (7.72e+1) − 5.1939e+2 (7.74e+1) − 3.5118e+2 (7.26e+1)

2 30 1.6690e+3 (1.02e+2) − 1.8324e+3 (1.24e+2) − 1.8855e+3 (1.18e+2) − 1.5176e+3 (2.67e+2)

3 30 1.5921e+3 (1.20e+2) = 1.6545e+3 (1.47e+2) = 1.6994e+3 (1.49e+2) = 1.5755e+3 (2.44e+2)

2 50 3.3337e+3 (2.07e+2) = 3.5211e+3 (1.81e+2) − 3.6072e+3 (2.05e+2) − 3.2828e+3 (3.00e+2)

3 50 3.2769e+3 (1.77e+2) + 3.4302e+3 (1.67e+2) = 3.4019e+3 (2.07e+2) = 3.4988e+3 (2.18e+2)

DTLZ4 2 10 4.4127e−1 (2.52e−1) − 4.4991e−1 (1.44e−1) − 2.8553e−1 (7.51e−2) − 2.6025e−1 (2.73e−1)

3 10 4.6196e−1 (1.20e−1) − 5.4432e−1 (1.11e−1) − 3.1638e−1 (7.13e−2) − 2.6384e−1 (7.66e−2)

2 15 6.5213e−1 (2.31e−1) − 6.8995e−1 (1.39e−1) = 5.0468e−1 (1.26e−1) = 4.8457e−1 (2.96e−1)
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Table 5 (continued)

Problem M D IBEA NSGAIII RVEA BISAEA

3 15 6.8419e−1 (1.30e−1) − 7.6928e−1 (1.41e−1) − 5.3273e−1 (9.05e−2) − 3.5543e−1 (1.01e−1)

2 30 1.3396e+0 (1.56e−1) − 1.5413e+0 (1.40e−1) − 1.3186e+0 (1.34e−1) − 6.3280e−1 (2.90e−1)

3 30 1.3947e+0 (1.34e−1) − 1.5587e+0 (1.58e−1) − 1.2860e+0 (1.38e−1) − 8.3388e−1 (1.80e−1)

2 50 2.4330e+0 (1.99e−1) − 2.7520e+0 (1.72e−1) − 2.4952e+0 (2.32e−1) − 1.0947e+0 (4.37e−1)

3 50 2.4970e+0 (1.71e−1) − 2.7413e+0 (1.95e−1) − 2.5091e+0 (1.94e−1) − 1.8947e+0 (3.71e−1)

DTLZ5 2 10 1.6975e−1 (2.47e−2) − 2.1532e−1 (2.67e−2) − 2.5035e−1 (3.47e−2) − 2.0776e−3 (6.19e−5)

3 10 1.4922e−1 (2.60e−2) − 1.7030e−1 (2.52e−2) − 2.1576e−1 (3.21e−2) − 6.6947e−3 (7.54e−4)

2 15 3.4219e−1 (2.61e−2) − 4.2387e−1 (4.96e−2) − 4.6903e−1 (6.37e−2) − 2.7275e−3 (1.84e−4)

3 15 3.1667e−1 (4.34e−2) − 3.8163e−1 (5.27e−2) − 4.1837e−1 (5.33e−2) − 1.2950e−2 (1.98e−3)

2 30 1.0414e+0 (1.03e−1) − 1.2638e+0 (7.65e−2) − 1.2921e+0 (9.26e−2) − 6.6529e−3 (9.90e−4)

3 30 1.0649e+0 (1.05e−1) − 1.1770e+0 (1.07e−1) − 1.2001e+0 (1.26e−1) − 5.1419e−2 (1.77e−2)

2 50 2.2324e+0 (1.25e−1) − 2.4856e+0 (1.25e−1) − 2.5112e+0 (1.45e−1) − 3.5339e−2 (1.21e−2)

3 50 2.2331e+0 (1.57e−1) − 2.3818e+0 (2.03e−1) − 2.4091e+0 (1.88e−1) − 4.8702e−1 (2.36e−1)

DTLZ6 2 10 5.9682e+0 (3.37e−1) − 6.5187e+0 (3.80e−1) − 6.6901e+0 (3.00e−1) − 1.2833e+0 (6.16e−1)

3 10 5.2989e+0 (4.28e−1) − 5.6166e+0 (3.34e−1) − 5.8568e+0 (3.11e−1) − 1.1076e+0 (4.22e−1)

2 15 1.0218e+1 (3.34e−1) − 1.0687e+1 (3.92e−1) − 1.1094e+1 (2.61e−1) − 2.9998e+0 (8.80e−1)

3 15 9.5146e+0 (4.52e−1) − 1.0039e+1 (3.63e−1) − 1.0232e+1 (4.00e−1) − 3.2537e+0 (7.91e−1)

2 30 2.3092e+1 (5.40e−1) − 2.3733e+1 (3.89e−1) − 2.4277e+1 (4.13e−1) − 1.2193e+1 (2.05e+0)

3 30 2.2480e+1 (4.91e−1) − 2.3092e+1 (4.62e−1) − 2.3318e+1 (4.74e−1) − 1.8120e+1 (1.54e+0)

2 50 4.0453e+1 (6.06e−1) − 4.1096e+1 (5.72e−1) − 4.1778e+1 (4.60e−1) − 3.7312e+1 (2.62e+0)

3 50 4.0341e+1 (5.13e−1) − 4.0755e+1 (4.30e−1) − 4.0834e+1 (5.06e−1) − 3.8086e+1 (9.05e−1)

DTLZ7 2 10 2.4935e+0 (4.85e−1) − 2.9541e+0 (5.28e−1) − 2.5411e+0 (6.42e−1) − 2.0743e−2 (5.96e−2)

3 10 3.5856e+0 (7.75e−1) − 3.9470e+0 (9.24e−1) − 2.6243e+0 (9.71e−1) − 6.0245e−2 (4.11e−2)

2 15 3.2111e+0 (7.17e−1) − 4.0825e+0 (5.41e−1) − 3.5442e+0 (5.01e−1) − 1.3797e−1 (2.03e−1)

3 15 5.3629e+0 (7.94e−1) − 5.5426e+0 (1.04e+0) − 4.3252e+0 (7.94e−1) − 7.7117e−2 (5.39e−2)

2 30 4.6749e+0 (5.09e−1) − 5.1326e+0 (4.72e−1) − 5.0683e+0 (4.37e−1) − 3.2023e−1 (1.89e−1)

3 30 7.1924e+0 (6.81e−1) − 7.5326e+0 (6.63e−1) − 6.4971e+0 (7.41e−1) − 2.6232e−1 (1.21e−1)

2 50 5.5111e+0 (2.59e−1) − 5.7764e+0 (3.71e−1) − 5.6319e+0 (4.14e−1) − 7.4459e−1 (3.84e−1)

3 50 8.2928e+0 (6.01e−1) − 8.7589e+0 (5.62e−1) − 8.1387e+0 (6.35e−1) − 1.8058e+0 (7.38e−1)

± / = 3/47/6 0/50/6 0/51/5

Bold values indicate better results than other compared algorithms

design. For the multidisciplinary design for shape and skele-
ton, a larger lift-drag ratio (L/D), smaller skeleton volume
ratio (Vs/V ) and better skeleton strength (σs) are expected.
The L/D is affected by the shape, angle of attack (AOA) and
velocity. The AOA and velocity are set as 2

◦
and 1.028 m/s

in this article. The larger L/D means the glider has a larger
glide angle, which is of great significance to improve the
glide range. The smaller the skeleton volume ratio, means
the smaller the ratio of skeleton volume to glider volume,
the more energy and other equipment it can carry when the
glider’s gravity and buoyancy are balanced. Moreover, the
strength of the skeleton shall be as large as possible to ensure
that the glider has higher safety.

The multidisciplinary design of the shape and skeleton
for BWBUGs is shown in Fig. 18. The geometry models of
the shape and skeleton are obtained by using the parametric
methods. The CFD technology is adopted to evaluate the
performance of shape by pretreatment and CFD, the FEA
technology is used to evaluate the strength of the skeleton.
In addition, the shape design is the basis of the skeleton,
which means that shape affects the strength of the skeleton in
the same thickness of the skeleton. The shape of BWBUGs
can be divided into plane shape and wing shape. Both the
fuselage profile and the transition mode of the fuselage and
wing reflect the wing-body fusion arrangement. The plane
shape of the fuselage is created in this part using the Bezier
curve.
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Fig. 11 The PF of DTLZ1 associated with the median IGD value on 30D

For the design of the shape, the layouts of 4 sections
are adopted as shown in Fig. 18, where L and D1 are set
as 1500 mm and 1000 mm respectively, and the other nine
parameters are design variables. Among them, the locations
of section 1 and section 4 are fixed. And the locations of the
other sections are related to the variable Z2, Z3 andL. Select-
ing NACA0022, NACA0019, NACA0016 and NACA0012
as the reference airfoil for sections 1, 2, 3, and 4, respectively.
The Class-Shape function Transformation (CST) method is
used for wing parameterization [55], and the airfoil is con-
trolled by five design variables. There are 29 design variables
for the shape design, and the range is shown in Eq. (11)–(16).

Sect ion1

{

ALow = [−0.0860, - 0.0741, −0.0835, - 0.0574, −0.0861]
AUp = [0.0860,0.0741, 0.0835,0.0574, 0.0861]

(11)

Section2

{

ALow = [−0.0717, - 0.0618, −0.0696, - 0.0478, −0.0718]
AUp = [0.0717,0.0618, 0.0696,0.0478, 0.0718]

(12)

Section3

{

ALow = [−0.0573, - 0.0494, −0.0557, - 0.0383, −0.0574]
AUp = [0.0573,0.0494, 0.0557,0.0383, 0.0574]

(13)

Section4

{

ALow = [−0.0287, - 0.0247, −0.0278, - 0.0191, −0.0287]
AUp = [0.0287,0.0247, 0.0278,0.0191, 0.0287]

(14)
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Fig. 12 The PF of DTLZ2 associated with the median IGD value on 30D

Fig. 13 The IGD values iteration
process of five algorithms in
DTLZ2
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Table 6 Statistic results of the four SAEAs and BISAEA on ZDT1-4 and ZDT6

Problem M D HeEMOEA EDNARMOEA KRVEA KTA2 BISAEA

ZDT1 2 10 1.0281e+0
(1.01e−1) −

1.8917e−1
(5.90e−2) −

1.1312e−2
(1.06e−3) −

1.1820e−2 (4.66e−2)
−

1.5550e−3 (2.15e−4)

2 15 1.3351e+0
(1.22e−1) −

2.4880e−1
(4.62e−2) −

1.5800e−2
(1.65e−3) −

3.2916e−2 (1.08e−1)
−

1.8269e−3 (1.09e−4)

2 30 1.8132e+0
(1.02e−1) −

5.2488e−1
(5.61e−2) −

5.0245e−2
(6.41e−3) −

5.3424e−2 (9.74e−2)
−

3.5880e−3 (4.18e−4)

2 50 2.2679e+0
(1.26e−1) −

2.2570e+0
(9.37e−2) −

2.2121e+0
(1.29e−1) −

8.3931e−2 (9.06e−2)
−

8.8269e−3 (2.01e−3)

ZDT2 2 10 1.6423e+0
(1.34e−1) −

5.6629e−1
(1.18e−1) −

1.8198e−2
(1.22e−2) −

2.6712e−3 (1.97e−4)
−

1.1999e−3 (4.37e−5)

2 15 2.1389e+0
(1.35e−1) −

6.7696e−1
(1.00e−1) −

2.1282e−2
(3.75e−3) −

2.9352e−3 (2.04e−4)
−

1.3795e−3 (9.62e−5)

2 30 2.9447e+0
(1.05e−1) −

1.1408e+0
(5.72e−2) −

6.3094e−2
(2.40e−2) −

3.5756e−2 (1.70e−1)
−

2.2287e−3 (3.16e−4)

2 50 3.6615e+0
(1.43e−1) −

3.6217e+0
(1.36e−1) −

3.5843e+0
(1.79e−1) −

3.0886e−1 (3.87e−1)
−

4.4114e−3 (7.37e−4)

ZDT3 2 10 7.9179e−1
(8.50e−2) −

1.8172e−1
(7.71e−2) =

1.9172e−2
(3.23e−3) +

1.2023e−1 (1.40e−1)
+

1.7556e−1 (1.28e−1)

2 15 1.0220e+0
(9.51e−2) −

2.5109e−1
(9.07e−2) +

2.4015e−2
(4.52e−3) +

3.3851e−2 (3.32e−2)
+

3.6723e−1 (1.45e−1)

2 30 1.3921e+0
(1.32e−1) −

4.3252e−1
(4.23e−2) +

8.5094e−2
(2.91e−2) +

5.7714e−2 (5.57e−2)
+

8.6531e−1 (2.56e−1)

2 50 1.8685e+0
(9.83e−2)

1.7883e+0
(1.07e−1)

1.8129e+0
(1.24e−1)

8.8091e−2 (4.88e−2)
+

1.3010e+0(2.55e−1)

ZDT4 2 10 4.0543e+1
(7.78e+0) −

5.1264e+1
(8.02e+0) −

2.2411e+1
(7.26e+0) =

2.5554e+1(8.41e+0) = 2.3471e+1 (1.27e+1)

2 15 9.8411e+1
(9.92e+0) −

9.9193e+1
(1.13e+1) −

5.7013e+1
(1.79e+1) =

5.8623e+1(3.56e+1) = 5.3084e+1 (3.47e+1)

2 30 3.1577e+2
(1.77e+1) −

2.5631e+2
(1.65e+1) −

2.7171e+2
(4.45e+1) −

2.2315e+2(5.69e+1) = 2.1170e+2 (6.90e+1)

2 50 6.6238e+2
(2.82e+1) −

6.6665e+2
(2.35e+1) −

6.7149e+2
(2.18e+1) −

4.7555e+2(7.64e+1) = 4.6919e+2 (4.71e 1)

ZDT6 2 10 6.0048e+0
(1.70e−1) −

3.3810e+0
(3.49e−1) −

6.6671e−1
(1.41e−1) −

2.5080e−1 (1.31e−1)
=

2.5396e−1 (6.76e−2)

2 15 6.4747e+0
(9.21e−2) −

4.5413e+0
(3.04e−1) −

8.8849e−1
(1.50e−1) −

4.4565e−1 (1.69e−1)
=

4.5887e−1 (1.30e−1)

2 30 7.0091e+0
(5.86e−2)

5.8895e+0
(1.84e−1)

4.6339e+0
(5.69e−1)

1.4004e+0
(2.33e−1)−

1.0318e+0 (2.38e−1)

2 50 7.3938e+0
(8.08e−2) −

7.3965e+0
(4.74e−2) −

7.3917e+0
(7.99e−2) −

2.5689e+0
(3.33e−1)−

1.9276e+0 (3.81e−1)

±/= 0/20/0 2/17/1 3/16/1 4/10/6

Bold values indicate better results than other compared algorithms

Plane

{

Plow = [350, 150, 350, 1000, 150, 300, 500, 300, 150]mm

Pup = [450, 300, 400, 1200, 250, 450, 600, 450, 250]mm

(D2, D3, D4, D5, Z1, Z2, Z3, Z4, Z5)

(15)

Ashape = [section1, section2, section3, section4, Plane]
(16)

The skeleton is generated based on the shape. Subse-
quently, the skeleton is defined by 7 geometric parameters in
Fig. 18. To be specific, t denotes the thickness of the skele-
ton, and others related to the geometrical parameters of the
shape are given by using Eqs. (17)–(19).

rh1 = Z1

rh2 = Z3 − Z1
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Table 7 Statistic results of the three EAs and BISAEA on ZDT1-4 and ZDT6

Problem M D IBEA NSGAIII RVEA BISAEA

ZDT1 2 10 8.7593e−1 (1.41e−1) − 1.0637e+0 (2.16e−1) − 9.7894e−1 (1.48e−1) − 1.5550e−3 (2.15e−4)

2 15 1.1380e+0 (1.46e−1) − 1.3951e+0 (1.99e−1) − 1.3390e+0 (1.96e−1) − 1.8269e−3 (1.09e−4)

2 30 1.6866e+0 (1.63e−1) − 1.8020e+0 (1.93e−1) − 1.8489e+0 (1.60e−1) − 3.5880e−3 (4.18e−4)

2 50 1.9660e+0 (1.21e−1) − 2.1150e+0 (1.12e−1) − 2.0787e+0 (1.21e−1) − 8.8269e−3 (2.01e−3)

ZDT2 2 10 1.7053e+0 (2.96e−1) − 1.8406e+0 (2.38e−1) − 1.6528e+0 (2.67e−1) − 1.1999e−3 (4.37e−5)

2 15 2.2121e+0 (2.74e−1) − 2.3846e+0 (1.73e−1) − 2.2743e+0 (2.70e−1) − 1.3795e−3 (9.62e−5)

2 30 2.9188e+0 (2.02e−1) − 3.0900e+0 (1.99e−1) − 2.9336e+0 (1.52e−1) − 2.2287e−3 (3.16e−4)

2 50 3.3341e+0 (1.89e−1) − 3.5145e+0 (1.60e−1) − 3.4235e+0 (1.63e−1) − 4.4114e−3 (7.37e−4)

ZDT3 2 10 7.2864e−1 (1.47e−1) − 9.4271e−1 (1.82e−1) − 8.0754e−1 (1.39e−1) − 1.7556e−1 (1.28e−1)

2 15 9.5246e−1 (1.18e−1) − 1.0936e+0 (1.47e−1) − 1.1496e+0 (1.57e−1) − 3.6723e−1 (1.45e−1)

2 30 1.2698e+0 (1.66e−1) − 1.4742e+0 (1.49e−1) − 1.4374e+0 (1.84e−1) − 8.6531e−1 (2.56e−1)

2 50 1.5288e+0 (1.43e−1) − 1.6983e+0 (1.74e−1) − 1.6540e+0 (1.86e−1) − 1.3010e+0 (2.55e−1)

ZDT4 2 10 5.6893e+1 (9.70e+0) − 6.3144e+1 (9.08e+0) − 4.3003e+1 (8.81e+0) − 2.3471e+1 (1.27e+1)

2 15 1.1943e+2 (1.63e+1) − 1.2502e+2 (1.42e+1) − 9.8758e+1 (1.13e+1) − 5.3084e+1 (3.47e+1)

2 30 3.2021e+2 (1.72e+1) − 3.3539e+2 (1.93e+1) − 2.8763e+2 (2.06e+1) − 2.1170e+2 (6.90e+1)

2 50 6.1078e+2 (2.89e+1) − 6.3009e+2 (2.57e+1) − 5.6607e+2 (3.24e+1) − 4.6919e+2 (4.71e+1)

ZDT6 2 10 5.8567e+0 (3.55e−1) − 6.2337e+0 (2.07e−1) − 6.1199e+0 (2.27e−1) − 2.5396e−1 (6.76e−2)

2 15 6.3480e+0 (1.59e−1) − 6.5646e+0 (2.09e−1) − 6.5756e+0 (2.27e−1) − 4.5887e−1 (1.30e−1)

2 30 6.9154e+0 (1.11e−1) − 7.1103e+0 (9.63e−2) − 7.0477e+0 (1.07e−1) − 1.0318e+0 (2.38e−1)

2 50 7.1834e+0 (8.61e−2) − 7.3058e+0 (6.37e−2) − 7.3032e+0 (8.56e−2) − 1.9276e+0 (3.81e−1)

±/= 0/20/0 0/20/0 0/20/0

Bold values indicate better results than other compared algorithms

Fig. 14 The runtime of five algorithms of DTLZ2-2M with different
dimension

rh3 = Z4 − Z3

4
(17)

rv1 = D4

2

rv2 = D4

2
+ D2

4

rv3 = D2

4

(18)

t ∈ [5, 10]mm (19)

BWBUGs pump water in/out of the reservoir when
moving, and the pressure on its outer surface is very small.
This article mainly considers the stress in the process of
dipping into the water, the distributed force is set as 1000 N
in all skeleton.

To obtain better performance of the multidisciplinary
design for shape and skeleton, L/D), Vs/V and σs are set
as the objective. Hence, a 30-dimensional multi-objective
optimization problem is summarized below:

min F(x) = {−L/D, Vs/V , σs}T
s.t . xi ∈ [Ashape, Askeleton], i = 1, 2, ..., 30

Ashape ∈ [AshapeLow, AshapeUp], Askeleton ∈ t

(20)

Optimization results

BISAEA, K-RVEA, and HeE-MOEA are all operated with
500 NFEs, with a population size of 100, for the multidisci-
plinary design of the shape and skeleton of BWBUGs. The
same 200 initial sample points from BISAEA, K-RVEA,
and HeE-MOEA are shared for fair comparison and are dis-
played in Fig. 19. Following the run, the obtained solutions
are shown in Fig. 20.
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Fig. 15 The PF of ZDT1 in the run associated with the median IGD value on 30D

To further compare the performance mathematically,
hypervolume is adopted because the actual PF is unknown.
The hypervolume values of K-RVEA, HeE-MOEA and
BISAEA are 0.6098, 0.5876 and 0.5986, respectively. It is
obvious that K-RVEA and BISAEA are at the same level.
In addition, the influence of calculation time on optimiza-
tion efficiency is considered. The computation time of three
algorithms under the different number of samples in the opti-
mization process is shown in Fig. 21. The computation times
only include the modeling and evolution of the optimiza-
tion process, leaving out the evaluation of true functions.
It is obvious that the time of K-RVEA utilized in different
numbers of samples differs greatly, and the time grows as

the number of samples rises. HeE-MOEA also has a rule
that is somewhat similar to that of K-RVEA. In compari-
son to K-RVEA andHeE-MOEA, BISAEA shows negligible
time variation over a range of sample sizes. The superiority
of BISAEA in the multidisciplinary design optimization of
BWBUGs can be demonstrated by combining hypervolume
values and computation time.

Besides, the three non-domination solutions of common
PF from the three algorithms are selected in Fig. 20, and
the pressure nephogram of shape, stress nephogram of the
skeleton, and multidisciplinary system model are shown in
Figs. 22 and 23.
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Fig. 16 The PF of ZDT2 in the run associated with the median IGD value on 30D

Fig. 17 The IGD values iteration
process of five algorithms in
ZDT1 and 2
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Fig. 18 The multidisciplinary design of BWBUGs

Fig. 19 The initial sample points

Conclusions

In this paper, a bi-indicator-based surrogate-assisted multi-
objective evolutionary algorithm named BISAEA is pro-
posed based on two strategies. Pareto-based bi-indicator
strategy employs the convergence and diversity indicator as
the bi-objective to enhance the convergence anddiversity, and
the bi-indicator is calculated by the approximate objective
values of theRBFmodel. To further improve the performance

of the selected samples, a one-by-one selection strategy is
adopted to filter samples. Besides, BISAEA is comparedwith
the four state-of-art SAEAs and three EAs inDTLZ and ZDT
benchmark problems on the dimensions of 10, 15, 30 and 50,
BISAEA shows high efficiency and a good balance between
convergence and diversity. Finally, BISAEA is applied to the
multidisciplinary optimization of blend-wing-body under-
water gliders with 30 decision variables and three objectives,
and the results show its effectiveness on the engineering prob-
lem. The overall experiment results and application show that
BISAEA has significant competitiveness for some state-of-
art algorithms.

For future research, BISAEA may get a further study on
the many-objectives optimization and this algorithm will be
applied to more engineering problems. Moreover, we will
attempt to use the surrogate models to approximate the indi-
cator values directly and adopt some latest technologies in
artificial intelligence and machine learning to improve the
accuracy of the approximation of surrogate models.
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Fig. 20 The obtained solutions of K-RVEA, HeE-MOEA and BISAEA

Fig. 21 The computation time of three algorithms under 200, 300 and
400 samples
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Point 1 

(K-RVEA) 

Point 2 

(HeE-MOEA) 

Point 3 

(BISAEA) 

Pressure nephogram of the upper surface Pressure nephogram of the lower surface 

Fig. 22 Three typical pressure nephogram of shape

Point 1 

(K-RVEA) 

Point 2 

(HeE-MOEA) 

Point 3 

(BISAEA) 

noteleksehtfomargohpenssertSledommetsysyranilpicsiditluM

Fig. 23 Three typical schemes and their nephogram
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