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Abstract
For images corrupted for various reasons, the size of the corrupted area is often arbitrary and it has been a challenge to
inpainting the larger missing areas. Though popular multistage networks ease the inpainting difficulty by repairing damaged
image from coarse to fine, their common drawback is that the result of each stage is easily misguided by the wrong content
generated in the previous stage. To address this problem, we propose a novel progressive guidance decoding network. First,
multiple parallel decoding branches fill and refine the missing regions by top–down passing the reconstructed priors. This
inpainting way of progressive guidance avoids adverse effects of inappropriate premises, since the decoding branches can
learn what priors can be utilized. And convolution layers of decoder with different locations would pass down the different
priors. The joint guidance of features and gradient priors helps the inpainting result contains the correct structure and rich
details. The second fold of progressive guidance is achieved by our fusing strategy, combining ghost convolution and the
designed cascaded efficient channel attention (CECA) to fuse and reweight the features from different branches. CECA
explores the dependencies among adjant and non-adjant channels more effectively than popular ones. Finally, we merges the
different-scale feature maps reconstructed by the last decoding branch and mapping them to the image space, which further
improves the semantic plausibility of the restoration results. Extensive experiments verify the effectiveness of our method in
both subjective and objective evaluation.

Keywords Cascaded efficient channel attention (CECA) · Efficient multiscale fusion (EMF) · Image inpainting · Progressive
decoding network

Introduction

Broken images would hinder the correct representation and
transmission of information, and also increase the difficulty
of image recognition, tracking, and localization tasks, etc.
Thus, image inpainting is integrated into our lives and impor-
tant computer vision tasks, such as repairingmissing features,
removing unwanted objects from photos, and removing sub-
title. In the natural case, the damaged area of an image is
arbitrary, including shape and size. For the smaller and sparse
missing regions, repairing is relatively simple. For the larger
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and complex missing region, repairing is difficult due to the
drastic reduction of surrounding known information.

Image inpainting aims to recover missing pixels of an cor-
rupted image so as to generate a visually realistic image.
Recently, some multistage inpainting networks, such as two-
stage networks [1–7] and progressive recurrent networks
[8,9], experience multiple encoder–decoders to progres-
sively refer missing contents, which mitigate the difficulty
of directly predicting correct missing contents. For two-
stage networks, they first reconstruct constraints in the first
network, including blurry images [2,3], edges [4,5], and
structures [1,6]. Then, the completed constraints are fed
into the next network as additional clues. For progressive
recurrent networks [8,9], they gradually shrink the missing
holes by repeatingmultiple encoding-decoding stages,which
requires a large number of parameters and hard to control the
number of cycles. These multistage inpainting networks all
take result inferred by the previous stage as input and further
predict the remaining missing pixels. Therefore, the errors
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predicted in the previous stage easily influence the inpainting
of the next stage, resulting in distorted structures and texture
artifacts in the restoration images. And the larger the miss-
ing region, the more likely it is occurs. These methods have
serval drawbacks: (1) They only utilize only feature priors
[2,3,8,9] or gradient priors [1,4–6] to guide the inpainting
process, which does not consider the global contents and
local details together. (2) Priors are only used as input of
the next stage, and the deeper layer would forget these guid-
ance information. (3) All priors are used to directly guide the
inpainting process, whether or not helpful. Although papers
[10,11] design new architecture to address the problems of
multistage networks, not all of above-mentioned drawbacks
are resolved. MADF [10] progressively fill and refine the
missing contents through multilayer prior guidance, but it
only allows feature priors to be passed between the recov-
ery decoder and the refinement decoders. Paper [11] avoids
structural repair alone and points out that texture and struc-
tural information interact with each other during restoration.
However, structural and texture information directly guide
each other in multiple layers, and misinformation can easily
affect the whole reconstruction process.

Global and local information is equally important to
understand an image. Existing approaches, such as the multi-
column network (MC-Net) [6] andACGAN [12], aim tomap
an image to multiscale features by adopting parallel encod-
ing branches with various receptive fields. However, fewer
studies have explored how to effectively fuse and reconstruct
multiscale features into the image space. This is the fourth
issue to be solved: (4) mapping only the last feature maps to
the image space tends to cause semantic ambiguity in restora-
tion images.

To completely address these problems, we propose a new
end-to-end training model and design a progressive guid-
ance decoding network, whose multiple parallel decoding
branches can achieve coarse-to-fine restoration by progres-
sively passing down reconstructed priors. The reconstructed
maps of the previous decoding branch are passed to the next
decoding branch, providing priors for the reconstruction pro-
cess of the next decoding branch.

Our designed network improves the model performance
in three aspects. First, feature priors and gradient priors are
conveyed in multiple layers, rather than being the only input
of the next branch. The feature priors represent the global
semantics and the gradient priors reveal sharpness regions,
including edges and details,which help to enhance the promi-
nent information of the repaired image. Second, we adopt
ghost convolution [13] and designed cascaded effective chan-
nel attention (CECA) to further process stacked features
fromdifferent decodingbranches, enhancing the contributing
parts of the stacked features and suppress the inappropriate
contents. The specific operation is introduced in the sec-
tion “Progressive guidance decoding network”. Finally, our

paper not only utilizes the attention-based multiscale percep-
tual res2block (AMPR) [14] to extract multiscale features,
but also designs efficient multiscale fusion (EMF) to map
different-level features into the final image. Coarse-scale fea-
turemaps have large receptive fields, focusingmore on global
semantic information. Fine-level feature maps have small
receptive fields, focusing more on local detail information.

Our network effectively avoids the some drawbacks of
multistage networks and improves the stability in the inpaint-
ing process. Experimental results on the publicly available
datasets Places2 [15] and CelebA-HQ [16] demonstrate the
effectiveness of the proposedmodel, especiallywhen dealing
with large and complex holes. Our designed decoding work
mainly contains three contributions:

(1) The progressive guidance decoding network consists
of several parallel decoding branches. The previous decoding
branch provides multilayer feature priors and gradient priors
for the inpainting process of the next decoding branch. The
feature priors contain the global semantics and the gradient
priors contain the high-frequency information, such as details
and contours.

(2) We newly designed Cascaded Efficient Attention
Mechanism (CECA) to reweight fused feature maps or
gradient maps, which enhances the contributing parts and
suppresses the inappropriate parts.

(3) Our proposed EMF maps different-level features into
the final completed image. The inclusion of coarse-scale fea-
tures can enhance the global semantic information of the
restoration image.

Related work

Deep convolutional networks have shown strong potential
in computer vision tasks, and learning-based methods have
shown promising inpainting performance as well. In this sec-
tion, we divide the recent works related to our method into
three categories and describe them, including single-stage
inpainting, multistage inpainting, and multistream inpaint-
ing.

Single-stage inpainting

Pathak et al. [17] proposed the Context Encoder (CE), where
we assume that the semantics of the holes can be learned by
a series of convolutional layers and reasonable losses (pixel-
level reconstruction loss and adversarial loss). Although the
inpainting results have somedefects, such as obvious artifacts
and ambiguity, they lay a foundation for subsequent research
work. Based on CE, Global & Local [18] use two discrimina-
tors, namely the global discriminator and local discriminator,
to ensure the global and local semantic consistency with
the surrounding areas, respectively. PEN-Net [19] leverages
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Fig. 1 The overall pipeline of the generator. It adopts a typical
encoder–decoder structure. In the encoder, Down-Blocks and AMPR,
for example, are used to understand the semantic information. In the
decoder, feature maps and gradient maps from the preceding branch
are passed to the next branch for further refinement and guidance. In
our paper, the gradient maps are extracted by depthwise convolution

(Depthconv) with fixed sobel kernels. In addition, Up-FuseBlocks are
utilized to effectively fuse maps from different branches. Finally, the
EMF is used to merge the multiscale feature maps, so that the recon-
struction image contain multiscale information. “Norm” represents the
Instance Normalization. “Conv” denotes the convolution. The details
of “k ∗-∗∗”. ∗ denotes the kernel size, and ∗∗ denotes the stride

U-Net with pyramid attention to progressively learn miss-
ing regions from the feature-level maps to image-level ones,
which ensures both visual and semantic coherence. SGENet
[20] iteratively updates the structural priors and the inpainted
image in an interplay framework. It utilizes semantic segmen-
tation map as guidance in each scale of inpainting. However,
semantic segmentation may has poor boundary segmenta-
tion, resulting in incorrect object edges in the restoration
images.

Multistage inpainting

Recently, multistage inpainting networks [1–5,7–9,21] have
became themainstay of solving the ill-posed inpainting issue.
The coarse-to-fine network proposed byYuet al. [2,3] divides
image inpainting into two steps: filling the holes roughly

through the coarse network, and refining the repaired blurry
image by the refinement network with the attention mecha-
nism. Some other methods utilize the inherent priors of an
image, such as edges [4,5], structures [7], and segmentation
maps [1,22], to provide structure priors for image completion
process. Usually, the first network is used to fill the missing
structural clues. Then, the complete clues are integrated in
the next network, as one of inputs, to guide the synthesis
of the missing contents. FRRN [8] progressively infers the
valid pixels by iteratively adopting the full residual block
with step loss. However, both input and inferred outputs are
represented in the image space, resulting in expensive com-
putation and less practical. RFR [9] gradually shrinks the
large holes of feature maps from the boundary to the cen-
ter through multiple recurrences. It repeatedly estimates the
hole boundaries and sends the repaired ones to the next recur-
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rence. Finally, the inferred feature maps per recurrence are
merged to generate the output. The drawbacks of multistage
inpainting network have discussed in the section “Introduc-
tion”.

Multistream inpainting

Unlike multistage networks that utilize several cascade net-
works to repairmissing areas, somemethods [6,10–12,23,24]
adopt multiple parallel networks to complete restoration,
and here, we categorize them as multistream networks.
Papers [6,12,23] realize that reasonable feature represen-
tation is important for image inpainting and use parallel
branches to extract multiscale features. Multicolumn [6]
adopts a multiscale encoder including three branches, and
different branches transform the image into features with
various receptive fields. ACFGAN [12] designs coarse-and-
fine structures. The coarse path learns the semantic content
with a larger receptive field by utilizing the cascaded dilated
convolutions, and the fine path can extract more details
with a smaller receptive field. JPGNet [24] utilizes paral-
lel predictive filtering and generative network to preserve
local structure and fill numerousmissing pixels, respectively.
It not suitable for restoring large missing areas, since the
accurate predictive filtering relies on a large number of neigh-
boring pixels. Paper [11] designs parallel encoder–decoder
to model the structure-constrained texture synthesis and
texture-guided structure reconstruction in a coupled manner
by parallel networks, which repairs structures and textures
at the same time. MADF [10] employs a series of parallel
refinement decoders with designed Pointwise Normalization
(PN) to progressively refine the missing contents through
multilayer prior guidance. Each layer takes the feature maps
from the next upsampling layer of the previous decoder as
priors. The drawbacks of paper [10,11] have discussed in the
section “Introduction”.

Proposedmethods

Our proposed end-to-end architecture consists of generator
and discriminator. The generator, as shown in Fig. 1, con-
sists of an encoding network and an progressive decoding
network including multiple parallel decoding branches. The
encoding network can learn multiscale features through our
designed AMPR. In the progressive decoding network, the
reconstructed features and gradients from preceding decod-
ing branch are utilized to guide the reconstruction of next
decoding branch, which progressively fill and refine the
masked regions.

Our discriminator follows the two PatchGANs as in [7],
predicting the authenticity of all image patches with different
sizes instead of the whole image. Spectral normalization is
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Fig. 2 The overall pipeline of the discriminator and two PatchGans
have the same structure. “Conv” denotes the convolution. The details
of“k ∗-∗∗”. ∗ denote the kernel size, and ∗∗ denotes the stride. Spectral
normalization is used in the discriminator

used in the discriminator to stabilize the training as well. The
overall pipeline of the discriminator is shown in Fig. 2.

In this section, we first describe the encoding network
and the details of the progressive decoding network in the
sections “Encoding network” and “L1 loss”, respectively.
Then, the corresponding loss function is presented in the
section “Loss function”.

Encoding network

The encoding network aims to compress the 256∗256 broken
image into multilevel feature maps, which allows the com-
puter to understand the semantic content. Damaged images
always contain multiscale objects, so suitable feature repre-
sentations play a vital role in understanding the relationship
between missing and known regions.

Receptive field block (RFB) [25] combines the unique
characteristics of Inception [26] and ASPP [27]. Inspired by
it, we have designed AMPR (Fig. 3) in paper [14], which
takes both the size and dilation rate of the convolution kernel
into account. In addition, parallel branches are connected to
each other using a skip connection like Res2net [28], which
not only extracts multiscale features at granular levels, but
also obtains an accurate object position. Finally, we use the
attention mechanism CBAM [29] to fuse multiscale features
from different branches. We apply this block in the last layer
of the encoding network as in [30] to extract multiscale fea-
tures.

Progressive guidance decoding network

One-shot decoding network is insufficient to reconstruct sat-
isfactory images, especially for large holes. To improve the
quality of reconstructed results, we design a progressive
decoding network (Fig. 1), including a sequence of decoding
branches used for progressive reconstruction and refinement
of missing contents. It mainly depends on feature and gra-
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Fig. 3 The structure of AMPR.
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dient guidance. In addition, contextual attention [2] builds
a long-term relationship between the complete features and
missing features. Thus, we use it in the first upsampling block
of the last decoding path to produce realistic and clear tex-
tures.

For easier reading, the notations used in the following
text are described here. We utilize Dk,l to denote the l-level
upsampling block (Up-Block or Up-FuseBlock) of the kth
decoding branch, fk,l and gk,l to denote the corresponding
output feature maps and gradient maps, respectively, fe to
denote the compressed feature maps from the encoding net-
work, and fout to denote the output featuremaps of thewhole
network. In this paper, we set both k and l to 1, 2, 3.

Progressive feature and gradient guidance

In this section, we will introduce how to realize feature guid-
ance and gradient guidance, respectively.

Feature guidance: the recovered features fk,l of the branch
Dk,l are fed to the next branch Dk+1,l−1 and fused with the
fk+1,l−1. In this way, the reconstructed features can provide
feature priors for the subsequent restorations and being fur-
ther refined.

Gradient guidance: the gradient information reveals the
difference between the adjacent pixels. This means that flat
areas of an image have small gradient values, while sharp
areas, including edges and details, have large gradient val-
ues. Thus, gradient prior can enhance the edges and details of
the recovery image. Our proposed gradient guidance has two
parts. One is the gradient map guidance (shown in Fig. 1).
Rich gradient information of the last block from the pre-
ceding branch gk−1,l is passed to the next decoding branch
step by step, which helps the model concentrate more on the
reconstruction of sharp regions. And the other is gradient

Sx
C 1 3 3

Sy
C 1 3 3

eatu e maps
C

C

C

adient maps
C

E at on 1

Fig. 4 The implementation of gradient extraction

loss restriction (the section “Gradient loss”) for each recov-
ery image.

The process of gradient extraction is shown in Fig. 4. First,
we utilize the sobel operator [31] with different orientations
as the fixed convolution kernels Sx and Sy . The shape of sobel
kernels is [C, 1, 3, 3], representing output channels, input
channels, kernel size, and kernel size, respectively. Second,
we use the fixed sobel kernels Sx and Sy to convolve the
feature map by the nn.fuctional.conv2d function, in which
the groups are set to C. This step generates the horizontal
and vertical gradient maps Gx and Gy . Finally, each value
of gradient maps is calculated by (1)

G =
√
G2

x + G2
y . (1)

Fusing strategies

When fusing the feature maps and gradient maps from two
branches, we propose two strategies to fuse features more
effectively and efficiently. First, the ghost convolution, pro-
posed by Han et al. [13], achieves ordinary convolution in
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a more cost-efficient manner. Thus, we replace the convo-
lution of learning features with the ghost convolution. As
shown in Fig. 5, the process of the ghost convolution is split
into three steps. First, an ordinary convolution with fewer
kernels is used to obtain intrinsic features. Based on a gen-
erated batch, a series of cheap linear operations are then
adopted to obtain more feature maps, including redundant
maps. Finally, these two batches are stacked in the chan-
nel dimension to learn the data distributions. If both the
input and output channels of a convolution layer are set
to 256, the parameters of the k ∗ k ordinary convolution
are 256 × 256 × k × k + 256 = 65, 536k2 + 256, while
the parameters required for the ghost convolution are only
(256 × 128 × k × k + 128) + (128 × k × k + 128) =
32, 896k2+256. This value difference indicates that the com-
bination of reduced-dimensional convolution and the ghost
convolution is more practical.

The complete procedure of the progressive feature refine-
ment can be seen in Fig. 1. Starting from the second decoding
branch, the feature map fe, fk,l−1 or gk,l−1 is first stacked
with the reconstructed maps fk−1,l of the preceding branch
in the channel dimension. Then, these stacked features go
through a 1 ∗ 1 compress convolution following the ghost
convolution and CECA in order. Finally, the recalibrated fea-
tures are further reconstructed by Up-FuseBlock.

We then add extra protection: an attention mechanism,
which screens for high-value information frommassive ones.
When fusing features, we can utilize the attentionmechanism
to highlight critical features and prevents invalid features
from entering the upsampling block, which further avoids
the instability existing in multistage networks. The ECA [32]
replaces the 2D convolution or full-connected layer used
in the previous channel attention approaches with the 1D
convolution, avoiding the channel compression and showing
the potential ability to achieve cross-channel interaction in
a cost-efficient way. However, ECA only explores the fea-
ture relationship between adjacent channels and has smaller
receptive fields. To overcome this limitation, we introduce
the 1D dilated convolution and extend ECA to a novel atten-
tion module called Cascaded ECA (CECA). As shown in
Fig. 6, CECA consists of two consecutive 1D convolutions.
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Fig. 6 The implementation of CECA. In Conv1D, the colorful arrows
denote the different kernel weights

The first 1D convolution, with a dilated rate of 1, builds the
connections among adjacent channels; the second 1D dilated
convolution, with the dilate rate of 2, explores the long-term
connections among non-adjacent features. In addition, cas-
caded design can ensure adequate cross-channel interactions
while avoiding the inefficient capture of all channel depen-
dencies at once as in the traditional channel attention.

Efficient multiscale fusion

To enable the restored image to include different-scale infor-
mation, we integrate different-resolution maps in the last
decoding branch. Generally, feature maps with high reso-
lution often contain rich texture information that is crucial
to the subjective perception. And feature maps with low res-
olution contain global semantic information. As illustrated
in Fig. 7, our fusing strategy is named EMF. Inspired by
CRM [33], our EMF mainly contains two attention mecha-
nisms: Attnl and Attnco. One is to explore the dependencies
between features in a individual map, and the other aims to
collectively preserve important features in all different-scale
maps.

Feature map f3,l produced by the l blocks of the final
decoding path (l = 1,2,3) has different resolutions (64 ∗ 64,
128∗128, and 256∗256). These different-scale feature maps
are upsampled to the same resolution before fusing. We first
employ our designed CECA on f3,l and obtain the corre-
sponding channel attention vectors Attnl , which highlight
the contributing channels and suppress the useless ones. The
common attention vector Attnco is generated by adding all
unique Attnl along the channel dimension and entering the
Softmax function. Large values in the vector indicate that the
all cross-scale features from this channel are beneficial for
final reconstruction.

The obtained Attnl and Attnco are applied on the input
feature maps f3,l in a channel-wise multiplication opera-
tion, which generates the recalibrated maps f a3,l and f co3,l ,
respectively. Subsequently, each discriminative feature map
f ∗
3,l is produced by adding f a3,l and f co3,l , which contain both
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self-unique and co-critical information. Finally, all enhanced
maps f ∗

3,l are concatenated and fused by a 1 ∗ 1 convolution
layer to create the final reconstructionmaps Fout . The experi-
ment described in the section “Experiment” can demonstrate
the superiority of our fusion module over CRM. The proce-
dure [33] can be defined as

f a3,l = Attnl ⊗ f3,l = CECA( f3,l) ∗ f3,l (2)

f co3,l = Attnco ⊗ f3,l = Sof tmax

(
3∑

l=1

Attnl

)
∗ f3,l (3)

f ∗
3,l = f a3,l + f co3,l (4)

fout = Convk1 − 1(Concatenate( f ∗
3,1, f ∗

3,2, f ∗
3,3)). (5)

Loss function

First, we utilize the different losses as in paper [7] to converge
ourmodel, includingL1loss, perceptual loss [34], adversarial
loss [35], and style loss [34]. In addition, we add the gradi-
ent loss for restricting the gradient space of the reconstructed
image and the pyramid loss [14] to supervise the intermedi-
ate features. During the training process, the last branch is
applied on all losses, while other branches are constrained
by L1loss and gradient loss.

Pyramid loss

We perform pyramid perceptual loss on the f3,1 and f3,2
of the last decoding branch, which refines the predictions
for missing regions at each scale so as to reconstruct final
images in the right direction. We first use the activation lay-
ers {relu3_1}and {relu2_1} ofVGG19 [36] to extract feature
maps with two resolutions from an real image, and then cal-

culate the loss L pyramid between the extracted real features
and the features predicted by our corresponding generation
layer ( f3,1 and f3,2). The loss calculation is given in (6)

L pyramid =
3∑

i=2

‖�i (Igt ) − f3,l‖1. (6)

Here, Igt denotes the real image. �idenotes the ith selected
activation layer of the pretrained VGG network. f3,l denotes
the l-level featuremaps of the last decoding branch. Note that
the size of f3,l is the same as �i (Igt ).

L1 loss

Given the reconstructed features f1,3, f2,3, f3,3 and fout , we
first transform them into an image space and use the notation
Ik(k = 1, 2, 3) and Iout to represent each, respectively. In
addition to constraining the output image Iout , the L1 loss
also constrains the generated images Ik from each branch.
The L1 loss is defined as the mean absolute error between
each completion image Ik and ground truth Igt . The calcula-
tion is seen in (7) and (8)

Lk
1 =

3∑
k=1

‖Ik − Igt‖1 (7)

Lout
1 = ‖Iout − Igt ]‖1. (8)

Perceptual loss

The perceptual loss and style loss are based on the pretrained
VGG network, which forces the generated semantic struc-
tures and rich textures to be similar to the ground truth. Let
�i (x) represent the features of the ith activation layer in a
VGG19 [36] networkwhen given the image x.We use activa-
tion layers {relu1_1}, {relu2_1}, {relu3_1}, {relu4_1}, and
{relu5_1} for our loss calculation

Lout
per = E

[
5∑

i=1

‖�i (Iout ) − �i (Igt )‖1
]

. (9)

Style loss

The style loss is shown in (10). We employ a corresponding
Gram matrix (G j ) on each selected feature map generated
by VGG19, and use L1 loss to calculate the error

Lout
sty = E j

[
5∑

i=1

‖G�i
j (Iout ) − G�i

j (Igt )‖1
]

. (10)
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Adversarial loss

The generator aims to generate as realistic an image as pos-
sible to fool the discriminator. The goal of discriminator is to
endeavor to judge whether the input is from the ground truth
or not. This process of the game will make the generator out-
put increasingly high-quality. PatchGAN and spectral norm
are always used to train the inpainting model, which solves
the problem of model collapse and stabilizes the converge
process of the discriminator

Lout
adv = E[log(1 − D(G(Iin, M)))] + E[log(D(Igt ))].

(11)

Here, Iin represents the input image covered with corre-
sponding mask. M represents the mask, and the value 1
denotes the missing pixels. G and D are the generator and
discriminator, respectively.

Gradient loss

Gradient loss is the second part of gradient guidance, which
is applied on the final recovery image of the each branch.
Under the gradient constraint, both the reconstructed inter-
mediate images Ik(k = 1, 2, 3) and final image Iout contain
rich and correct details and edges, which benefits the gradi-
ent maps guidance in the decoding network (section “Fusing
strategies”), as well. As shown in (12)–(13), we formulate
the gradient loss by narrowing the distance between the gra-
dient maps extracted from the recovery image and ones from
the ground truth. The implementation of gradient extraction
is shown in Fig. 6

Lk
gra =

3∑
i=1

‖Gra(Ik) − Gra(Igt )‖1 (12)

Lout
gra =‖Gra(Iout ) − Gra(Igt )‖1, (13)

where Gra represents the process of gradient extraction.

Overall loss

The total loss is defined in (14). For theweight setting ofmost
losses, we refer to the paper [7]. And for the Lout

gra , L
k
1 and

Lk
gra , we define their weights by experiment (Section“Dis-

cussion on the weights of Lout
gra, L

k
1 and Lk

gra’)

Ltotal = 0.01L pyramid + Lk
1 + 5Lout

1 + 0.1Lout
per + 180Lout

sty

+ Lout
adv + Lk

gra + 3Lout
gra . (14)

Experiment

In this section, we start by providing the detailed experimen-
tal settings. Then, we compare our proposed models with
previous state-of-the-art algorithms through objective quan-
titative experiments and subjective qualitative experiments.

Experimental settings

Datasets

We train and evaluate our model on two well-known public
datasets with different characteristics.

Places 2 [15] is a collection that contains 365 nature
scenes and over millions images. Our model is trained on
the standard training splits, including 1.8 million images,
and evaluated on 10 k images chosen from validation splits.

CelebA-HQ [16] is a dataset that focuses on high-quality
human faces with the size of 512 ∗ 512. 27 K images are
selected for training, and the remaining images are used for
evaluation.

Mask dataset [37] is a dataset that provides 12 k irregular
mask images. These masks can be classified into different
categories based on the hole-to-image area ratios (e.g., (0.1,
0.2] and (0.2, 0.3]).

Training settings

During training,we train themodelwith the batch size 8 using
the Adam [38] optimizer, and the corresponding parameters
(β1, β2) and learning rate are set to 0.9, 0.999, and 0.0002,
respectively. All experiments are conducted on an RTX 3090
GPU (24G), and the training process of CelebA-HQ and
Places2 takes about 2.5 days and 9 days, respectively. All
the masks and images for training and testing are the size
256 ∗ 256. Our model does not require any post-processing.

To make a fair comparison, we train our model with the
same mask type as used in pretrained state-of-the-art models
(the section “State-of-the-art algorithms for comparison”),
including the center square mask, random rectangular mask,
and irregular mask. The center square mask means that all
images are masked with a 128 ∗ 128 square bounding box in
the center position. The random rectangular mask represents
that the image images are randomly covered with a blank
rectangular, and the size between 64∗ 64 and 128∗ 128. The
irregular mask originates from the mask dataset provided by
Nvidia [37].

State-of-the-art algorithms for comparison

We compare our model with eight recent state-of-the-art
ones: Multicolumn network (MC-Net) (ECCV 2018) [37],
EdgeConnect (EC) (ICCVW 2019) [5], PEN-Net (CVPR
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Table 1 Quantitative results comparison between our proposed model
and MC-Net. We test the incomplete image with center holes on the
CelebA-HQ dataset

Central holes

DATASET MODEL SSIM PSNR LPIPS

CelebA-HQ MC-Net [6] 0.916 26.63 0.0454

Ours 0.920 27.12 0.0433

2019) [19], Gated Conv (GC) (ICCV 2019) [3], Struc-
tureFlow (SF) (ICCV 2019) [7], RFR (CVPR 2020) [9],
ACFGAN (Neurocomputing 2020) [12], and MADF (TIP
2021) [10]. To be fair, all the comparison algorithms are eval-
uated by their officially released pretrainedmodel as much as
possible. However, for EC [5], SF [7], RFR [9], and MADF
[10], they do not validate their performance on the CelebA-
HQ dataset, so we retrain them using the default parameters
provided in their source code. For the Places2 dataset, the
pretrained model of MC-Net [37] and RFR [9] is not avail-
able, so we only compare them on the CelebA-HQ dataset
with our model owing to the restriction of the training time.

Based on center square holes, we compare our model with
MC-Net [6]. Based on random rectangular holes,we compare
it with PEN-Net [19] and ACFGAN [12]. When filling the
irregular holes, we compare it with EC [5], SF [7], GC [3],
RFR [9], and MADF [10].

Quantitative evaluation

As in previous image inpainting works, we measure the
models’ inpainting performance in various scenes using the
PSNR, SSIM, and LPIPS [39] indexes. PSNR measures the
L2 distance between the real image and repaired image at
the pixel level. SSIM measures structural similarity between
two sources by calculating the mean, standard deviation, and
covariance, which reflect human perceptions more precisely
compared with PSNR. LPIPS first uses Alexnet to extract the
features from the real image and generated image, respec-
tively, and then calculates their feature distance. Tables 1, 2,
3, and 4 show the evaluation results over CelebA-HQ and
Places2 dataset. For PSNR and SSIM, the higher the better,
while, for LPIPS, the lower the better.

Evaluation results with the regular holes

MC-Net consists of multiscale encoder and single decoder.
As shown in Table 1, our model outperforms MC-Net in all
metrics. This demonstrates that multiple decoding branches
are beneficial for inpainting. As shown in Table 2, for the
random holes, our models produce better results than PEN-
Net and are comparable to ACFGAN on the Places2 dataset.
For the larger center holes, our model performs better than

the comparison models in various scenes, indicating that our
model can fill the larger holes effectively.

Evaluation results with the irregular holes

Tables 3, 4, and 5 show performance comparison between
different methods under irregular holes. For the CelebA-HQ
dataset (Table 3), when the mask ratio increases, our model
outperforms state-of-the-art models except for MADF [10]
in terms of PSNR and SSIM, but our LPIPS is best among
all methods. We posit that this is because the MADF is
not trained on adversarial loss, and the PSNR is substan-
tially higher than ours. For the Places2 dataset (Table 4), the
advantage of our model emerges as the mask ratio increases,
and LPIPS index is comparable to MADF. In addition, we
compare the parameters between ours and MADF (shown in
Table 5). Although MADF performs well on some objective
metrics, our model has fewer parameters than MADF and
more practical. Taking performance and cost into account,
our model is a better choice for restoring damaged image.

Qualitative evaluation

Quantitative metrics cannot fully reflect humans’ subjective
feelings, so qualitative evaluation is introduced as an another
judgment criterion. Image inpainting technique is not only
used to complete missing features, but also to edit images. In
this section, we demonstrate the superiority of our approach
in both two applications.

Completing missing features

Completing missing features aims to recover the real struc-
ture and texture in the missing areas, as similar as possible
to the groundtruth. Figures8, 9, and 10 show the repairing
results of our method and other methods on the people faces
(CelebA-HQ dataset). Figures11 and 12 show the repairing
results on the nature scenes (Places2 dataset).

When filling center holes (Fig. 8) in the CelebA-HQ
dataset, the faces generated by our model are more simi-
lar to those of the real image compared to MC-Net. When
filling random holes (Fig. 9), PEN-Net and ACFGAN gen-
erate unreasonable structures. Filling irregular holes is more
challenging than filling regular holes. As shown in Fig. 10,
the repaired regions of EC, SF, andGC always contain unrea-
sonable structures and texture artifacts. For example, in the
first row, the left eye generated by the EC and SF is asym-
metric with the original right eye. In the third row, the skin
produced by GC has obvious texture artifacts. RFR is able
to generate plausible structures, but the results still contain
low-quality regions, for example, the ears of the last row.
The MADF shows the strong potential of generating rea-
sonable structures and clear textures without artifacts, but it
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Table 2 Quantitative results of the different methods with random rectangular holes on CelebA-HQ dataset and Places2 dataset

Central holes Random holes

DATASET MODEL SSIM PSNR LPIPS SSIM PSNR LPIPS

CelebA-HQ PEN-Net (CVPR 2019) [19] 0.900 25.88 0.0615 0.929 27.09 0.0610

ACFGAN (Neurocomputing 2020) [12] 0.906 26.16 0.0497 0.931 27.09 0.0413

Ours 0.913 26.49 0.0469 0.938 27.80 0.0392

Places2 PEN-Net (CVPR 2019) [19] 0.732 20.63 0.1949 0.818 22.46 0.1314

ACFGAN (Neurocomputing 2020) [12] 0.759 20.73 0.1457 0.837 22.62 0.0994

Ours 0.765 21.20 0.1380 0.831 22.87 0.1108

Table 3 Quantitative results of our model and state of-the-art models with irregular holes on the CelebA-HQ dataset

0−0.2 0.2−0.4 0.4−0.6

DATASET MODEL SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS

CelebA-HQ GC (ICCV 2019) [5] 0.982 33.80 0.0212 0.938 27.12 0.0693 0.846 22.58 0.1261

EC (ICCVW 2019) [3] 0.985 34.85 0.0146 0.944 27.79 0.0480 0.842 22.72 0.1097

SF (ICCV 2019) [7] 0.983 34.05 0.0173 0.941 27.42 0.0530 0.843 22.81 0.1261

RFR (CVPR 2020) [9] 0.985 35.17 0.0133 0.947 27.97 0.0443 0.861 23.30 0.0979

MADF (TIP 2021) [10] 0.987 35.63 0.0170 0.954 28.59 0.0580 0.877 23.92 0.1299

Ours 0.985 34.55 0.0143 0.949 27.41 0.0442 0.870 23.61 0.0954

Table 4 Quantitative results of the our model and other state-of-the-art models with irregular holes on the Places2 dataset

0−0.2 0.2−0.4 0.4−0.6

DATASET MODEL SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS

Places2 EC (ICCVW 2019) [38] 0.969 31.41 0.0270 0.880 24.08 0.1071 0.707 19.72 0.2250

GC (ICCV 2019) [3] 0.969 30.36 0.0546 0.875 23.65 0.1406 0.711 19.41 0.1921

SF (ICCV 2019) [7] 0.959 29.58 0.0359 0.870 23.24 0.1008 0.731 19.75 0.1916

MADF (TIP 2021) [10] 0.969 31.50 0.0243 0.879 23.98 0.0840 0.728 20.13 0.1751

Ours 0.968 31.04 0.0277 0.882 24.27 0.0878 0.731 20.48 0.1790

Table 5 Parameters of the our model and MADF

MODEL Parameters

MADF(TIP 2021) [10] 347.6M

Ours 103M

is prone to generating smooth details and edges. Compared
with the results of these baselines, our results have distinct
and more coherent structures as well as fine textures, even
though the holes are relatively large and complex. In addi-
tion, for the partial occlusion face recognition (e.g., mask
occlusion) task, a common solution is to repair the occluded
faces before recognizing them. Therefore, the performance
of face restoration indirectly determines the accuracy of face
recognition.

The Places2 dataset contains various scenes, both indoors
and outdoors.As shown in Fig. 11, compared to those of other

Fig. 8 Completing results on CelebA-HQ dataset with 128∗128 center
holes

models, our inpainting results have fewer noticeable mask
artifacts and less bad textures. As shown in Fig. 12, when
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Fig. 9 Completing results on
the CelebA-HQ dataset with
random regular holes of a size
between 64 ∗ 64 and 128 ∗ 128

Fig. 10 Completing results on the CelebA-HQ dataset with irregular holes

Fig. 11 Completing results on
the Places2 dataset with random
rectangular holes of a size
between 64 ∗ 64 and 128 ∗ 128
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Fig. 12 Completing results on Places2 dataset with irregular holes

Fig. 13 Editing results of different models

filling irregular holes, our model produces better structures,
and the results look clearer than those of other models.

Image editing

Image editing aims to remove unwanted objects from an
image (such as objects or a captions) without leaving any
trace of it. This is done by masking unwanted objects with
a mask and then filling the mask with a background that
matches the surrounding environment. The editing examples
are shown in Fig. 13. The purpose of the first line of Fig. 13

is to remove time marker, and the second line is to remove
the cup on the table. Observing the editing results, we can
see that the outputs generated by our designed model have
the least artifacts, are smoother, and are most consistent with
the background area (zoom in for better comparison).

Ablation study

We conduct ablation experiments to demonstrate the effec-
tiveness of our contributions. These experiments are per-
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Table 6 Ablation results of
each design choice

0.2–0.6

DATASET MODEL SSIM PSNR LPIPS

CelebA-HQ Baseline 0.889 25.15 0.0773

Baseline+AMPR 0.891 25.21 0.0763

Baseline[gc]+AMPR 0.891 25.20 0.0765

Baseline[gc]+AMPR+CECA 0.893 25.28 0.0747

Baseline[gc]+AMPR+CECA+EMF 0.895 25.34 0.0755

Baseline[gc]+AMPR+CECA+EMF+GG 0.897 25.50 0.0751

Table 7 The effectiveness of CECA. We utilize ECA and our designed
CECA to recalibrate the fused features from different branches

0.2−0.6

DATASET MODEL SSIM PSNR LPIPS

CelebA-HQ ECA 0.894 25.38 0.0761

CECA 0.897 25.50 0.0751

formed on the CelebA-HQ test set with irregular masks with
the mask ratio 20%–60%.

The effect of design choice

We carry out some experiments to demonstrate the effec-
tiveness of each design choice of our network, including
AMPR, ghost convolution, CECA, EMF, and gradient guid-
ance. In Table 6, the “Baseline” is a basic architecture that
contains only basic feature refinement, without the other
design choices mentioned above. “GC” and “GG” denote the
ghost convolution and gradient guidance, respectively. Base-
line [GC] is a basic architecture that replaces an ordinary

convolution with a ghost convolution for fusion, the details
of which are described in the section “Progressive feature
and gradient guidance”.

From Table 6, we can see that the addition of AMPR,
CECA, EMF, and gradient guidance improves the network
performance. The results in the second row and third row
show that the replacement of the ghost convolution drops
the performance slightly, yet this design reduces a lot of
parameters. To achieve a good balance between efficiency
and effectiveness, we still choose the ghost convolution.

CECA vs ECA

As mentioned in the section “Progressive feature and gradi-
ent guidance”,CECAcaptures dependencies between feature
channels more effectively compared to ECA [32]. To verify
this, we utilize CECA and ECA to reweight the fused fea-
ture maps in the Up-FuseBlock, respectively. The objective
results are shown in Table 7. Following the same training
strategies and experimental settings, the PSNR and SSIM
index of CECA are increased by 0.12 dB and 0.03, respec-

Fig. 14 Visual results of ECA,
CMR, and our proposed model
(From left to right) on the
CelebA-HQ dataset
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Table 8 The effectiveness of
EMF. We test the model
performance using CRM and
EMF in the last decoding branch

0.2−0.6

DATASET MODEL SSIM PSNR LPIPS

CelebA-HQ CRM 0.894 25.41 0.0766

EMF 0.897 25.50 0.0751

Table 9 The effectiveness of
gradient guidance

0.2−0.6

DATASET MODEL SSIM PSNR LPIPS

CelebA-HQ Feature maps guidance (w/o gradient loss) 0.892 25.22 0.0774

w/o gradient loss 0.894 25.30 0.0745

Gradient guidance 0.897 25.50 0.0751

tively. The LPIPS index decreases by 0.01. The visual results
are shown in Fig. 14, and we can see that the ECA fails to
understand the semantic information of the eyes and mouth.

EMF vs. CRM

To further demonstrate the performance of our proposed
EMF, we additionally conduct an experiment with replac-
ing EMF with CRM [33]. As shown in Table 8, the CMR
achieves an average PSNR of 25.41 dB, SSIM of 0.894, and
LPIPS of 0.0766, which are inferior to those for the adop-
tion of EMF. The visual results are given in Fig. 14. The
last row produced by CMR shows the wrong color in the
mouth, which is inconsistent with ground truth. The first row
generates more blurry artifacts around the head.

The effectiveness of gradient guidance

The gradient guidance contains two parts: gradient maps
guidance and gradient loss. To show the contribution of each
part, we additionally conduct two experiments with feature
maps’ guidance and without gradient loss. Feature maps’
guidancemeans that in the last Up-Block andUp-FuseBlock,
the feature map is used instead of the gradient map for guid-
ance.

Of note, the experiments with feature maps’ guidance are
performed without gradient loss, as well. First, observing the
results in the first and the second row of Table 9, we see that
the PSNRandSSIM indexes are significantly improvedwhen
using gradient map guidance. This is because the deepest
block of the decoding networkmay needmore gradient priors
(e.g., details and edges) rather than fuzzy features. Taking the
D1,3 as an example, Fig. 14 shows some output feature maps
and gradient maps. We can see that gradient maps have a
stronger response in edges and details compared to feature
maps.

Second, the results in the second and third row demon-
strate the contribution of gradient loss. The PSNR and SSIM

indexes of the model with gradient loss are increased. This
indicates that the gradient loss constrains the network to
produce gradient maps with accurate high-frequency infor-
mation, which better guides the detail reconstruction of next
decoding branches.

Discussion on the weights of Loutgra, L
k
1 and L

k
gra

In this section, we first fix the weights of both Lk
1 and Lk

gra
to 1, and set the weight of Lout

gra to be 1, 2, 3, 4 and 5, respec-
tively. Table 10 shows the effect of differentweights onmodel
performance, and the model has best inpainting performance
when the loss weight is set to 3.

Then, we fix the weight of Lout
gra to 3, and set the weights

of branch losses Lk
1 and L

k
gra to be the same as the weights of

final losses Lout
1 and Lout

gra , i.e., 5 and 3, respectively. Table 10
shows the experimental results, andwe can see that themodel
performs better when the branch weights both Lk

1 and Lk
gra

are set to 1.

Conclusion

In this paper, we have extended the single decoding branch
to multiple decoding branches and proposed a progressive

Table 10 The weight discussion of Lout
gra . And the weights of both Lk

1

and Lk
gra are fixed to 1

0.2−0.6

DATASET Weight SSIM PSNR LPIPS

CelebA-HQ 1 0.893 25.29 0.0754

2 0.895 25.44 0.0751

3 0.897 25.50 0.0751

4 0.894 25.37 0.0785

5 0.896 25.49 0.0761
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Fig. 15 Visual contrast diagram between feature maps and gradient
maps

Table 11 The weights discussion of Lk
1 and Lk

gra . And the weight of
Lout
gra is fixed to 3

0.2−0.6

DATASET Weights SSIM PSNR LPIPS

CelebA-HQ 3 and 5, respectively 0.894 25.28 0.0799

1 and 1, respectively 0.897 25.50 0.0751

decoding network, which progressively fills and refinesmiss-
ing regions. Specifically, considering characteristics of the
different convolutional layers in the decoder, the recovery
features (representing global semantic information) and gra-
dients (representing local sharpness information) from the
preceding branch are fed to the shallow layers and deep layer
of the next branch, respectively. When fusing the intermedi-
ate maps from different branches, the ghost convolution and
CECA are adopted to reduce the model parameters and avoid
the forward propagation of incorrect information, respec-
tively. In addition, ourmodel exploresmultiscale information
of an image by adopting AMPR in the encoder and EMF in
the decoder. The proposed AMPR extracts multiscale fea-
tures and improve feature representation ability. The EMF
fuses the multiscale reconstructed features of the last decod-
ing branch into final feature maps, which helps model to
output the image containing global and local information in
the image space. The effectiveness of the proposed frame-
work has been validated both quantitative and qualitative
experiments (Fig. 15, Table 11).

In this paper, themask representing the shape and location
of the missing region is given. However, in real world, the
mask is likely to be unknown. Thus, our future works will
focus on image blind inpainting.

Acknowledgements This work is supported by the National Natu-
ral Science Foundation of China (11872069), Central Government
Funds of Guiding Local Scientific and Technological Development
for Sichuan Province (2021ZYD0034), the National Ministry of
Education“Chunhui Plan” Scientific Research Project (Z2017076),
the Chengdu Science and Technology Program (2016-YF04-00044-
JH), and Natural Science Foundation of Sichuan Province [Grant
No.22022NSFSC0914].

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Shao H, Wang Y, Fu Y, Yin Z (2020) Generative image inpainting
via edge structure and color aware fusion. Signal Process Image
Commun 87:115929

2. Yu J, Lin Z, Yang J, Shen X, Lu X, Huang TS (2018) Generative
image inpainting with contextual attention. In: Proceedings of the
2018 CVPR, pp 5505–5514

3. Yu J, Zhe L, Yang J, Shen X, Lu X, Huang T (2019) Free-form
image inpainting with gated convolution. In: Proceedings of the
2019 ICCV, pp 4470–4479

4. Xiong W, Yu J, Lin Z, Jiang J, Lu X, Barnes C, Luo J (2019)
Foreground-aware image inpainting. In: Proceedings of the 2019
CVPR, pp 5833–5841

5. Nazeri K, NgE, Joseph T,Qureshi F, EbrahimiM (2019) EdgeCon-
nect: generative image inpainting with adversarial edge learning.
In: Proceedings of the 2019 ICCVW

6. Wang, Y, Tao X, Qi X, Shen X, Jia J (2018) Image inpainting
via generative multi-column convolutional neural networks. Adv
Neural Inf Process Syst 331–340

7. Ren Y, Yu X, Zhang R (2019) Structureflow: image inpainting
via structure-aware appearance flow. In: Proceedings of the 2019
ICCV, pp 181–190

8. Guo Z, Chen Z, Yu T, Chen J, Liu S (2019) Progressive image
inpaintingwith full-resolution residual network. In: Proceedings of
the 27th ACM International Conference on Multimedia, pp 2496–
2504

9. Li J, Wang N, Zhang L, Du B, Tao D (2020) Recurrent feature
reasoning for image inpainting. In: Proceedings of the 2020 CVPR,
pp 7757–7765

10. Zhu M, He D, Li X, Li C, Li F, Liu X, Ding E, Zhang Z (2021)
Image inpainting by end-to-end cascaded refinement with mask
awareness. IEEETransactions on Image Processing, pp 4855–4866

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


4570 Complex & Intelligent Systems (2023) 9:4555–4570

11. Guo X, Yang H, Huang D (2021) Image inpainting via conditional
texture and structure dual generation. In: Proceedings of the 2021
ICCV, pp 14114–14123

12. Chen M, Liu Z, Ye L, Wang Y (2020) Attentional coarse-and-fine
generative adversarial networks for image inpainting. Neurocom-
puting 405:259–269

13. Han K, Wang Y, Tian Q, Guo J, Xu C (2020) GhostNet: More Fea-
tures From Cheap Operations. in: Proceedings of the 2021 CVPR.
pp. 1580-1589

14. Jiang J, Dong X, Fan Li, Zhang T, Qian H, Chen G (2022) Par-
allel Adaptive Guidance Network for Image Inpainting. Applied
Intelligence. https://doi.org/10.1007/s0489-022-03387-6

15. ZhouB, LapedrizaA,KhoslaA,OlivaA, TorralbaA (2017) Places:
A 10Million Image Database for Scene Recognition. IEEE TPAM
40(6):1452–1464

16. Karras T, Aila T, Laine S, Lehtinen J (2017) Progressive growing
of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196

17. Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016),
Context Encoders: Feature Learning by Inpainting, in:Proceedings
of the 2016 CVPR, pp. 2536-2544

18. Iizuka S, Simo-Serra E, Ishikawa H (2017) Globally and locally
consistent image completion, ACM Trans.Graphics(TOG) 36(4)
107

19. Zeng Y, Fu J, Chao H, Guo B (2019), Learning Pyramid-Context
Encoder Network for High-Quality Image Inpainting, in: Proceed-
ings of the 2019 CVPR, pp. 1486-1494

20. Liao L, Xiao J, Wang Z, Lin C-W, Satoh S (2020), Guidance and
evaluation: semantic-aware image inpainting for mixed scenes. in:
Proceedings of the 2020 ECCV, pp. 683-700

21. Wang J, Chen S, Wu Z, Jiang Y-G (2022), FT-TDR: Frequency-
guided Transformer and Top-Down Refinement Network for Blind
Face Inpainting. IEEE Transactions on Multimedia

22. Pei Z, Jin M, Zhang Y, Ma M, Yang Y-H (2021) All-in-focus syn-
thetic aperture imaging using generative adversarial network-based
semantic inpainting. Pattern Recognit. 111:107669

23. Wang N, Wang W, Hu W, Fenster A, Li S (2021) Thanka Mural
Inpainting Based onMulti-Scale Adaptive Partial Convolution and
Stroke-Like Mask. IEEE TIP 30:3720–3733

24. Guo Q, Li X, Juefei-Xu F, Yu H, Liu Y, Wang S (2021), JPGNet:
joint predictive fifiltering and generative network for image inpaint-
ing, in: Proceedings of the 29th ACM International Conference on
Multimedia, pp. 386-394

25. Liu S, Huang D, Wang Y (2018), Receptive Field Block Net for
Accurate and Fast Object Detection, in: Proceedings of the 2018
ECCV, pp. 404-419

26. Christian S, Vincent V, Sergey I, Jonathon S, Zbigniew W (2016)
Rethinking the inception architecture for computer vision, In :Pro-
ceedings of the 2016 CVPR, pp. 2818-2826

27. Chen L-C, Zhu Y, Papandreou G, Schroff F, Adam H (2018),
Encoder-decoder with atrous separable convolution for semantic
image segmentation, in: Proceedings of the 2018 ECCV,pp. 801-
818

28. Gao H, Chen M, Zhao K, Zhang Y, Yang H, Torr P (2019)
Res2Net: ANewMulti-Scale BackboneArchitecture. IEEETPAM
43(2):652–662

29. Woo S, Park J, Lee JY (2018) CBAM: Convolutional block atten-
tion module, in: Proceedings of the 2018 ECCV, pp. 3-19

30. Li T, Dong X, Lin H (2020) Guided Depth Map Super-Resolution
Using Recumbent Y Network, IEEE Access, pp. 122695-122708

31. Duda RO, Hart PE (1973) in Pattern Classification and SceneAnal-
ysis. John Wiley and Sons, New York, pp 271–272

32. Wang Q, Wu B, Zhu P, Li P, Hu Q (2020), ECA-Net: Efficient
Channel Attention for Deep Convolutional Neural Networks, in:
Proceedings of the 2020 CVPR, pp. 95-106

33. Ji W, Li J, Yu S, Zhang M, Piao Y, Yao S, Cheng L (2021), Cal-
ibrated RGB-D Salient Object Detection. in: Proceedings of the
2021 CVPR, pp. 9471-9481

34. Johnson J, Alahi A, Fei-Fei L (2016), Perceptual losses for real-
time style transfer and super-resolution, in:Proceedings of the 2016
ECCV, pp. 694-711

35. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D
(2014) Generative adversarial nets, in: Proceedings of the 2014
NeurIPS, pp. 2672-2680

36. Simonyan K, Zisserman A (2014) Very Deep Convolutional Net-
works for Large-Scale Image Recognition, in: Proceedings of the
2014 ICLR

37. Liu G, Reda FA, Shih KJ, Wang TC, Tao A, Catanzaro B (2018),
Image Inpainting for Irregular Holes Using Partial Convolutions,
in: Proceedings of the 2018 ECCV, pp. 85-100

38. Kingma DP, Adam JBa (2015) A method for stochastic optimiza-
tion, in: Proceedings of the 2015 ICLR

39. Zhang R, Isola P, Efros AA, Shechtman E, Wang O (2018), The
Unreasonable Effectiveness of Deep Features as a Perceptual Met-
ric. in:Proceedings of the 2018 CVPR, pp.586-595

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s0489-022-03387-6
http://arxiv.org/abs/1710.10196

	Inpainting larger missing regions via progressive guidance decoding network
	Abstract
	Introduction
	Related work
	Single-stage inpainting
	Multistage inpainting
	Multistream inpainting

	Proposed methods
	Encoding network
	Progressive guidance decoding network
	Progressive feature and gradient guidance
	Fusing strategies
	Efficient multiscale fusion

	Loss function
	Pyramid loss
	L1 loss
	Perceptual loss
	Style loss
	Adversarial loss
	Gradient loss
	Overall loss


	Experiment
	Experimental settings
	Datasets
	Training settings
	State-of-the-art algorithms for comparison

	Quantitative evaluation
	Evaluation results with the regular holes
	Evaluation results with the irregular holes

	Qualitative evaluation
	Completing missing features
	Image editing


	Ablation study
	The effect of design choice
	CECA vs ECA
	EMF vs. CRM
	The effectiveness of gradient guidance
	Discussion on the weights of Lgraout,L1k and Lgrak

	Conclusion
	Acknowledgements
	References




