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Abstract
Hypergraphs, as a powerful representation of information, effectively and naturally depict complex and non-pair-wise rela-
tionships in the real world. Hypergraph representation learning is useful for exploring complex relationships implicit in
hypergraphs. However, most methods focus on the 1-order neighborhoods and ignore the higher order neighborhood rela-
tionships among data on the hypergraph structure. These often result in underutilization of hypergraph structure. In this
paper, we exploit the potential of higher order neighborhoods in hypergraphs for representation and propose a Multi-Order
Hypergraph Convolutional Network Integrated with Self-supervised Learning. We first encode the multi-channel network of
the hypergraph by a high-order spectral convolution operator that captures the multi-order representation of nodes. Then, we
introduce an inter-order attention mechanism to preserve the low-order neighborhood information. Finally, to extract valid
embedding in the higher order neighborhoods, we incorporate a self-supervised learning strategy based onmaximizingmutual
information in the multi-order hypergraph convolutional network. Experiments on several hypergraph datasets show that the
proposed model is competitive with state-of-the-art baselines, and ablation studies show the effectiveness of higher order
neighborhood development, the inter-order attention mechanism, and the self-supervised learning strategy.
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Introduction

Hypergraphs [7] provide a natural way to model complex
patterns of component connectivity in the real world. In com-
parison to graphs, hypergraphs can connect non-pair-wise
relations, a pattern that contains more information. With
the development of deep network-based learning methods,
hypergraphs have been widely applied in many domains,
including pose estimation [16,29] and brain state classifi-
cation [6,32].

Recently, researchers propose several hypergraph-based
neural network frameworks [2,12,19,41,45,46]. Most of
these methods focus on hypergraph expansion or on extend-
ing different network structures. For the Hypergraph Neural
Network [12] (HGNN), message propagates by a hypergraph
Laplacian operator on a clique expansion hypergraph, and
follows a node-hyperedge-node propagation strategy. Hyper-
GCN [41] approximates hyperedges as pair-wise edges, and
thus, the hypergraph learning problem is converted to a graph
learning problem. Moreover, unified framework [19,46] of
hypergraphs and graphs is emerger as a trend in recent times.
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Fig. 1 Representation of higher order neighborhoods in hypergraphs.
The papers of an author from a hyperedge. Author 2 co-authored paper
P2 with author 1, meaning that hyperedge 2 constitutes a 1-order neigh-
bor of hyperedge 1. Similarly, by the connection of paper P3, hyperedge
3 is a 2-order neighbor of hyperedge 1

Generally, these methods are designed by message passing
process, making nodes and hyperedges confine to 1-order
neighborhood in single propagation. However, nodes and
hyperedges with the same attributes do not exist only in
the 1-order neighborhood. For example, multiple authors co-
authored a paper, which can be considered as a node, and
multiple papers containing the same author are connected to
a hyperedge. As shown in Fig. 1, Paper P2 in hyperedge 1 has
two common author, and hyperedge 2 is a 1-order neighbor
of hyperedge 1. Paper P3 in hyperedge 2 has two common
author, and hyperedge 3 is a 2-order neighbor of hyperedge
2. Such a connection provides a way to reveal patterns of
cross-domain collaboration. Therefore, hypergraphs serve as
a powerful representation method for retaining information
through deeper andmore complex connectivity relationships.
Furthermore, some works [1,31] on graph learning focus on
neighborhood expansion of adjacency matrix. Method [20]
uses powers of the incidence matrix to obtain higher order
relationships, but it cannot be adapted to hypergraphs with
arbitrary hyperedge sizes. Specifically, a larger receptive field
means that nodes may receive more performance-degrading
noises. Although the higher order neighborhood encapsu-
lates a rich representation, it also bringsmore challenges, and
it remains an open problem to effectively extract valuable
information from the complex higher order neighborhood
of objects while maintaining the lower order neighborhood
information.

To address the above challenges, we propose Multi-Order
Hypergraph Convolutional Networks Integrated with Self-
Supervised Learning (MO-HGCN), where the multi-order
representation maintains in the manner of a multi-channel
network. We first perform k-th expansions of Chebyshev
polynomials for spectral convolution to obtain spectral 2-
order and spectral 3-order hypergraph convolution operators.
Specifically, the operators are constructed as independent
hypergraph convolution layers and modeled as a 2-order
channel and a 3-order channel, respectively. In addition,

we adaptly adjust the nodes’ feature on the 1-order hyper-
graph convolution and utilize it as an enhanced information
channel. Then, we propose an inter-order attention mecha-
nism to learn the contrastive information among the different
order neighborhoods. By assigning the attention scores to
the node embedding of the higher order channel, the low-
order neighborhood information is brought into focus. To
extract valuable information of the higher order channels,
we learn distinct representations in an self-supervised man-
ner by incorporating maximizing mutual information-based
contrastive learning. Finally, we fuse the node embedding
learned from the 2-order and3-order channels to represent the
completedmulti-order embeddings and optimize the weights
of the network by joint learning. Compared with existing
methods, MO-HGCN is a semi-supervised node classifica-
tionmodel that combines self-supervised learning to obtain a
multi-order neighborhood representation of nodes. The main
contributions of this paper are as follows:

• We propose a Multi-Order Hypergraph Convolutional
Network Integratedwith Self-Supervised Learning (MO-
HGCN) to explicitly capture the complex relationships of
higher order neighborhood by spectral high-order hyper-
graph convolution operators, and obtain a multi-order
representation through a multi-channel network.

• We propose an inter-order attention mechanism to main-
tain the information of low-order neighborhoods and
learn the distinct representation of higher order neighbor-
hoods by a mutual information maximization strategy in
a self-supervised learning manner.

• Weconduct extensive experiments on several hypergraph
datasets, and the results show the effectiveness of MO-
HGCN compared with the state-of-the-art.

Related works

Hypergraph neural networks

In recent years, hypergraphs have gained attention among
researchers, and representation learning methods based on
hypergraph have been greatly developed. Feng et al. [12]
propose the Hypergraph Neural Network (HGNN), a general
framework which implements the message passing strategy
on the hypergraph with a hyperedge convolutional layer. To
avoid the limitations of inherent hypergraph structure, Jiang
et al. [22] propose a dynamic hypergraph neural network
that updates the hypergraph structure. Bai et al. [4] propose
two trainable operators, namelyHypergraphConvolution and
Hypergraph Attention, that can be extended and migrated in
neural networks. Besides, some studies propose new hyper-
graph representation learning frameworks, such as HNHN
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[10], Hyper-SAGNN [45], HyperSAGE [2], and HGC-RNN
[43].

In the exploration of hypergraph structure, HyperGCN
[41] makes hypergraphs to be trained on graph convolu-
tional networks by approximating hyperedges as pair-wise
edges. Bandyopadhyay et al. [5] apply graph convolution
on the line graph of the hypergraph to adapt variable-sized
hyperedges. Yang et al. [42] treat the vertices and hyperedges
equally to solve the symmetric information loss problem of
data co-occurrence. Various types of practices [13] based
on hypergraphs are also evolving, such as pose estimation
[16,29], link prediction [11], recommendation [23,38,39,44],
and brain state classification [6,32].

A recent trend combining hypergraphs with graph net-
work methods has emerged as a result of the advantages of
data modeling brought by non-pair-wise relations in hyper-
graphs. Huang et al. [19] propose a framework for modeling
the message passing process in graph and hypergraph neu-
ral networks. Zhang et al. [46] consider a hypergraph with
edge-related vertex weight, propose the generic hypergraph
spectral convolution networks (GHSC), and present various
variants of hypergraph neural networks.

Self-supervised learning

Self-supervised learning [21,24,30] is currently receiving
considerable attention in deep learning, serving downstream
tasks by learning useful information in unlabeled data. Self-
supervised learning has a wide range of applications in
computer vision [3,18], natural language processing [28],
and graph learning [17,25,34,37].

One popular approach on graph learning is mutual infor-
mation maximization, i.e., global–local contrast. Hjelm et al.
[18] introduce the application of mutual information maxi-
mization strategies on images by proposing Deep InfoMax
(DMI). DMI is adapted to different downstream tasks by
global–local contrast, e.g., local features are suitable for clas-
sification tasks. Veličković et al. [37] extend this paradigm to
graph learning and propose the Deep Graph Infomax (DGI).
DGI performs global and local neighborhood comparisons
on graphs, enabling nodes to learn global and local structural
information. InfoGraph [34] maximizes the mutual informa-
tion between graph-level representations and substructured
representations at different scales to learn the global graph
representation. Rich representations are also learned from
labeled and unlabeled datasets by semi-supervised learning.

Themutual informationmaximization strategy is extended
to certain tasks on hypergraphs. Xia et al. [39] propose a dual
channel hypergraph convolutional network, which employ
self-supervised learning as an auxiliary task to enhance the
performance of session recommendation. Yu et al. [44] use
the higher order relations of hypergraphs to obtain complex
relationships between users and compensates for the infor-

mation loss due to multi-channel networks with multi-layer
mutual information maximization. These works investigate
the impact of mutual information maximization for different
types of information, while our work explores the implica-
tions of mutual information maximization strategy in higher
order neighborhood.

Method

In this section, we describe in detail the proposed Multi-
Order Hypergraph Convolutional Network Integrated with
Self-Supervised Learning (MO-HGCN). As shown in Fig. 2,
MO-HGCN consists of a 2-order channel, a 3-order chan-
nel, and an enhanced information channel, with 2-order and
3-order channels as the outputs. Specifically, we design the
spectral 2-order and 3-order hypergraph convolution opera-
tors to obtain the higher order information. Considering the
importance of node features and the preservation of 1-order
neighborhoods, we propose an inter-order attention mech-
anism in the multi-order hypergraph convolution network.
Our goal is to fuse the multi-order information to obtain a
multi-level representation of the nodes. We further introduce
self-supervised learning on the hypergraph, i.e.,mutual infor-
mation maximization between different order to capture the
distinctive higher order information of the nodes.

Preliminaries

Given a hypergraph G = (V, E,W), V is a vertex set
{v1, v2, . . . , vn} with n nodes, and E is a hyperedge set
{e1, e2, . . . , em} with m hyperedges. The hyperedge weight
W represents a diagonal matrix which the hyperedge weight
set {W1,W2, . . . ,Wm} is the diagonal. Thus, hypergraph G
can be represented as an incidence matrixH ∈ R

|V |×|E |, and
the entries of H denote as

h(v, e) =
{
1, if v ∈ e,

0, if v /∈ e.
(1)

The Laplacian [47] � of a hypergraph G denotes as

� = I − D−1/2
v HWD−1

e HTD−1/2
v , (2)

where the Dv is a diagonal matrix of vertex degree and the
De is a diagonal matrix of hyperedge degree.

Alternatively, given a hypergraph G = (V, E,W,�) with
n nodes and m hyperedges, the hypergraph Laplacian � ∈
R
n×n can be decomposed into an orthonormal eigen vectors

� and a non-negative eigenvalue diagonal matrix �. For a
hypergraph G and a signal x, the spectral convolution of a
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Fig. 2 The framework of MO-HGCN

signal x on a filter g represents as

g�x = �g(�)�T x, (3)

where the symbol � represents the convolution operator, and
g(�) indicates the Fourier coefficients. The function g(�) is
further parameterized as K order polynomials which express
as the truncated Chebyshev expansion. The Chebyshev poly-
nomial is expanded as Tk(x) = 2xTk−1(x) − Tk−2(x), and
T0(x) = 1, T1(x) = x .With the truncated Chebyshev expan-
sion, the spectral convolution approximatively represents as

g�x ≈
K∑

k=0

θkTk(�̃)x, (4)

where Tk(�̃) indicates the K order Chebyshev polynomial,
and �̃ = 2

λmax
�− I is a scaled Laplacian. Moreover, λmax ≈

2 according to works [12,26]. Therefore, the spectral 1-order
hypergraph convolution can be defined as

X(l+1) = D−1/2
v HWD−1

e HTD−1/2
v X(l)θ (l). (5)

Multi-order hypergraph convolutional network

On the basis of the spectral convolution theory of hyper-
graphs, we further develop an operator that facilitates nodes
and hyperedges to interact in higher order neighborhoods.

For higher order hypergraph convolution, we extend the
order of the neighborhoods from the perspective of spectral

hypergraph convolution. According to the Chebyshev poly-
nomial in Eq. (4), k is set to 2 to obtain the spectral 2-order
hypergraph convolution operator as follows:

g�x ≈
2∑

k=0

θkTk(�̃)x

= θ0T0(�̃)x + θ1T1(�̃)x + θ2T2(�̃)x

= θ0x − θ
(2)
1 �x + 2θ2�

2x − θ2Ix,

(6)

where θ0, θ1, and θ2 denote the parameters of filters g, and
� = D−1/2

v HWD−1
e HTD−1/2

v . Following the way of works
[12,26] to avoid over-parameterization, we reduce multiple
parameters to a single parameter which is assumed as

⎧⎪⎨
⎪⎩

θ2 = − 1
2θ,

θ1 = −�θ,

θ0 = �2θ.

(7)

Thus, the spectral 2-order hypergraph convolution opera-
tor can be simplified as follows:

g�x ≈ θ

(
�2 + 1

2
I
)
x. (8)

With the spectral 2-order hypergraph convolution opera-
tor, the 2-order hypergraph convolution of signal X can be
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defined as

X(l+1) = θ(l)
(

�2 + 1

2
I
)
X(l), (9)

where θ ∈ R
Cin×Cout represents the learnable parameter.

Similarly, the spectral 3-order hypergraph convolution
operator represents as

g�x ≈
3∑

k=0

θ̂kTk(�̃)x

= θ̂0T0(�̃)x + θ̂1T1(�̃)x + θ̂2T2(�̃)x + θ̂3T3(�̃)x

= θ̂0x − θ̂1�x + 2θ̂2�
2x − θ̂2Ix − 4θ̂3�

3x + 3θ̂3�x,
(10)

where θ̂0, θ̂1, θ̂2, and θ̂3 denote the parameters of filters g. We
also uses a single parameter θ̂ to avoid over-parameterization
as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θ̂3 = 1
2 θ̂ ,

θ̂2 = 1
2�θ̂ ,

θ̂1 = 1
2�

2θ̂ ,

θ̂0 = − 1
2�

3θ̂ .

(11)

With the single parameter, the spectral 3-order hypergraph
convolution operator can be simplified as

g�x ≈ −2θ̂

(
�3 − 1

2
�

)
x

= θ

(
�3 − 1

2
�

)
x.

(12)

Thus, the 3-order hypergraph convolution of signal X can
be defined as

X(l+1) = θ(l)
(

�3 − 1

2
�

)
X(l), (13)

where θ ∈ R
Cin×Cout represents the learnable parameter.

In MO-HGCN, l in Eqs. (9) and (13) is set to 2. There-
fore, the backbone network ofMO-HGCN is amulti-channel
network with two layers. This approach preserves the infor-
mation of different order neighborhoods and facilitates the
nodes to learn multi-order representations.

Inter-order attention

The spectral high-order hypergraph convolution operator
allows each node to aggregate information from distal nodes
and hyperedges. Such information may not be applicable
to learn directly, which presents a challenge in regulating

Fig. 3 The inter-order attention mechanism of MO-HGCN

the involvement of low-order information. Therefore, we
propose an inter-order attention mechanism to indicate the
similarity between higher order neighborhoods and low-
order neighborhoods. Unlike previous attentions, we focus
on the comparison of attention between different orders of
the same node, rather than among neighboring nodes. Par-
ticularly, we design an enhanced information channel based
on 1-order hypergraph convolution that augments the nodes’
own information. The convolution process of this channel is
as follows:

h = θD−1/2
v HWD−1

e HTD−1/2
v x + θβIx, (14)

where h represents the enhanced node embedding, and the
β ∈ R

N denotes a learnable parameter that assigns different
self-loop weights to each node.

As shown in Fig. 3, we obtain the node embeddings zo2

and zo3 of the 2-order and 3-order channels after the first layer
of convolution. Then, the attention mechanism is applied as
between zo2 and h , and between zo3 and h, respectively.

The attention scores of the nodes embeddings zli ∈ R
K

and zhi ∈ R
K in the j-th dimensional feature for the low-order

channel and the higher order channel are calculated by Eq.
15

αi j =
exp

(
LeakyReLU

(
MLP(zli j‖zhi j

))
∑

k∈i exp
(
LeakyReLU

(
MLP(zlik‖zhik

)) , (15)

where zli j and zhi j represent the j-th dimensional feature of

node i ,MLP(•) : R2×K → R
K is the featuremapping func-

tion which set as a multi-layer perceptron, and ‖ denotes the
concatenation operation. Therefore, the attention score αo2

between 2-order channel and enhanced information channel
calculated as

αo2 =
exp

(
LeakyReLU

(
MLP(hi j‖zo2i j

))
∑

k∈i exp
(
LeakyReLU

(
MLP(hik‖zo2ik

)) . (16)
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The attention score αo3 between 3-order channel and
enhanced information channel calculated as

αo3 =
exp

(
LeakyReLU

(
MLP(hi j‖zo3i j

))
∑

k∈i exp
(
LeakyReLU

(
MLP(hik‖zo3ik

)) . (17)

The attention scoresαo2 andαo3 are further assigned to the
higher order node embedding zo2 and zo3 as away to enhance
the most relevant node representation between channels, and
the processes are represented as

ẑo2 = αo2zo2, (18)

ẑo3 = αo3zo3. (19)

To preserve the original higher order message of node
embedding, we fuse node embeddings ẑo2 and ẑo3 with node
embeddings zo2 and zo3, respectively. The final obtained
higher order channel node embedding ẑo2 and ẑo3 are as
follows:

z̃o2 = λzo2 + (1 − λ) ẑo2, (20)

z̃o3 = μzo3 + (1 − μ) ẑo3, (21)

where the λ ∈ R
1 andμ ∈ R

1 denote the learnable parameter
restricted to [0,1], controlling the involvement of two node
embeddings.

Self-supervised learning auxiliary task

Multi-order hypergraph convolutional networks enable nodes
to learn multiple levels of representations, further improving
model performance. However, the multi-channel structure is
independent of each other, and the higher order information
usually contains varying degrees of redundant information.
Therefore, it is worth considering how to extract the distinc-
tive message from the multi-order hypergraph convolutional
network. Inspired bymutual informationmaximization could
improve the Deep Graph Infomax (DGI) [37] performance.
We extend the mutual information maximization to the inter-
order to guide the model to reduce feature redundancy.
Specifically, we construct a contrastive learning between the
enhanced information channel and the higher order channel,
respectively. For the 2-order channel, the positive sample

pair is
(
hi j , z̃

o2
i j

)
and the negative sample pair is

(
ĥi j , z̃

o2
i j

)
,

where ĥi j denotes the negative sample with row-wise shuf-
fling. We utilize InfoNCE [18] as the loss function for

Algorithm 1 Algorithm of MO-HGCN.
Input:
1: Incidence matrix H, feature matrix X.
Output:
2: Predicted sample Ỹ .
Initialize:
3: Compute spectral 2-order hypergraph convolution operator via

Eq. (8);
4: Compute spectral 3-order hypergraph convolution operator via

Eq. (12);
5: while not converged do
6: Learn the node embeddings h, zo2, and zo3 of first layer via

Eqs. (14), (9), and (13) respectively;
7: Calculate the inter-order attention scoresαo2 andαo3 viaEqs. (16)

and (17), respectively;
8: Embed the enhanced node embeddings ẑo2 and ẑo3 via Eqs. (18)

and (19), respectively;
9: Establish the contrastive learning of h, z̃o2, and z̃o3 via Eqs. (20)

and (21);
10: Learn the node embeddings X(2) and X(3) of second layer via

Eqs. (9) and (13), respectively;
11: Fuse the node embeddings X(2) and X (3) into X̂ via Eq. (24);
12: Minimize L with gradient descent optimization algorithm via

Eq. (26);
13: end while

contrastive learning, as follows:

Ls1 = −
∑
i∈V

⎛
⎝∑

j∈k
log σ

(
S

(
hi j , z̃

o2
i j

))

+
∑
j∈k

log σ
(
1 − S

(
ĥi j , z̃

o2
i j

))⎞
⎠ ,

(22)

whereS (• � •) denotes the discriminator function as the dot
product.

For the 3-order channel, the positive sample pair is(
hi j , z̃

o3
i j

)
and the negative sample pair is

(
ĥi j , z̃

o3
i j

)
, where

ĥi j denotes the negative sample with row-wise shuffling. The
InfoNCE loss function Ls2 is defined as

Ls2 = −
∑
i∈V

⎛
⎝∑

j∈k
log σ

(
S

(
hi j , z̃

o3
i j

))

+
∑
j∈k

log σ
(
1 − S

(
ĥi j , z̃

o3
i j

))⎞
⎠ .

(23)

Model learning

The node embedding z̃o2 and z̃o3 input to the second layer of
multi-order hypergraph neural network. The outputs of sec-
ond layer are denoted as X(2) ∈ R

N×q , and X(3) ∈ R
N×q ,

where q is the number of classes. To conduct the node clas-
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Table 1 Summary of the
hypergraph datasets used

Dataset Co-authorship data Co-citation data
DBLP Cora PubMed Citeseer Cora

#Number of nodes 43,413 2708 19,717 3312 2708

#Number of hyperedges 22,535 1072 7963 1079 1579

#Average hyperedge size 4.7 ±6.1 4.2 ± 4.1 4.3 ± 5.7 3.2 ± 2.0 3.0 ± 1.1

#Number of features 1452 1433 500 3703 1433

#Number of classes 6 7 3 6 7

#Ratio of training set 0.040 0.052 0.008 0.042 0.052

sification, we adopt the summation strategy to achieve the
fusion of multi-channel information by Eq. (24)

X̂ = X(2) + X(3). (24)

Then, we adopt the softmax function to predict the label
Ŷ by X̂ . Thus, the cross-entropy loss function for node clas-
sification is defined as follows:

Lc = −
∑
i∈VL

q∑
j=1

Yi j ln Ŷi j , (25)

where the Yi j denotes the true labels of VL .
Therefore, the joint learning loss function is as follows:

L = Lc + η1Ls1 + η2Ls2, (26)

where η1 and η2 are hyperparameters that control the partic-
ipation of self-supervised learning. Algorithm1 reports the
overall process of MO-HGCN.

Experiments

In this section, we conduct experiments and validate our
model by answering the following questions.

• Q1: How does MO-HGCN perform on the node classifi-
cation task?

• Q2: How does high-order spectral hypergraph convolu-
tion perform compared to 1-order spectral hypergraph
convolution?

• Q3: How does the inter-order attention mechanism con-
tribute to the performance of MO-HGCN?

• Q4: How sensitive is the performance of MO-HGCN to
its parameter settings?

• Q5: How does the self-supervised learning component
affect the effectiveness of MO-HGCN?

Datasets

For the semi-supervised node classification task on hyper-
graphs, we use the five hypergraph datasets provided by
HyperGCN [41] for validation. These datasets include the co-
citation network and the co-authorship network. Summary of
the datasets is shown in Table 1 and details are as follows:

• Co-citation datasets: The original sources of the co-
citation network hypergraph dataset are cora, citeseer,
and PubMed. In the hypergraph construction, all docu-
ments are created as nodes, and documents cited by the
same document are grouped as a hyperedge. Hyperedges
containing only one node are removed and the node fea-
ture is the bag-of-words vector of documents.

• Co-authorship datasets: The original sources of the co-
authorship network hypergraph dataset are DBLP and
cora. In the hypergraph construction, all papers are con-
sidered as nodes and papers authored by a author are
grouped as a hyperedge. The nodes are characterized by
the bag-of-words vector of papers.

Baselines

We compare the proposed method with state-of-the-art base-
lines that include a variety of hypergraph neural networks
combined with different neural network models. Details of
these approach are as follows:

• MLP+HLR [2]: The method is a multi-layer perceptron
using explicit hypergraph Laplacian for regularization.

• HyperGCN [2]: HyperGCN approximates the hyper-
graph learning problem to a graph problem by pair-wise
edges and provides a variant FastHyperGCN that reduces
the training time.

• HyperSAGE [2]: HyperSAGE utilizes a two-level neu-
ral messaging strategy to propagate information in the
hypergraph and combines different neighborhood aggre-
gation approaches of GraphSAGE [15].

• HGNN [12]: HGNN introduces the symmetric normal-
ized hypergraph Laplacian [47] operator by means of
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spectral hypergraph theory and provides a general frame-
work for hypergraph neural networks.

• UniGCN [19]: UniGNN unifies the message passing
process of graphs and hypergraphs into a framework,
extending the Graph Neural Networks design naturally
to hypergraphs.

• UniGAT [19]: The method extends the aggregation pro-
cess of Graph Attention Networks [36] to hypergraphs,
so that nodes learn the attention weights of neighboring
hyperedges.

• UniGIN [19]: The method uses the mechanism of Graph
Isomorphic Networks [40] to enhance the expressiveness
by aggregating the information of neighboring hyper-
edges by nodes.

• UniSAGE [19]: The method is a variant of GraphSAGE
[15], which adapts to different tasks bymeans of different
aggregation functions.

• H-ChebNet [46]: Combined with ChebNet [9], a variant
derived on the general hypergraph spectral convolution
framework.

• H-APPNP [46]: H-APPNP is a hypergraph convolu-
tional network with APPNP [27] as the backbone net-
work.

• H-SSGC [46]: The method extends the SSGC [48] to a
general hypergraph spectral convolution framework.

• H-GCN [46]: H-GCN is a general hypergraph spectral
convolution framework with Graph Convolutional Net-
works [26] as the backbone network.

• H-GCNII [46]:H-GCNII extends theGCNII [8] to a gen-
eral hypergraph spectral convolution framework, which
is a deep network structures.

Experiments settings

For the semi-supervised node classification task,we useACC
(Accuracy) to evaluate the performance of the model. In
the experimental setup, we utilize the Adma algorithm for
training and set it as 2000 epochs. For the Cora (includ-
ing Co-citation and Co-authorship) and Citeseer datasets, the
learning rate is 0.005 and L2 regularization is 0.05. For the
DBLP and Pubmed datasets, the learning rate is 0.05 and L2
regularization is 0.002. For the hyperparameters η1 and η2,
the Cora (including Co-citation and Co-authorship) are set to
0.005 and 0.005, respectively, while other datasets used are
set to 0.001. Each dataset has ten different split training-test
sets with consistent training-test ratios. We follow the way
of work [19] to test the datasets. For the baselines, we cite
the experimental results reported in the original paper, since
the compared datasets and evaluation metric are consistent.

Experimental results

Performance analysis

We report the mean accuracy and standard deviation of the
experimental results in Table 2, with the best results in bold
and the second best results underlined. The experimental
results show the advantage of our model in terms of its accu-
racy compared with the state-of-the-art, with improvements
of 2.0%, 4.0%, 3.1%, and 1.0% on the co-citation cora, cite-
seer, PubMed, and co-authorship cora datasets, respectively.
The best-performing method on the co-authorship DBLP
dataset is H-GCNII. The experimental results in Table 2

Table 2 Test accuracy (%) of
node classification on
hypergraph datasets

Dataset Co-authorship data Co-citation data
DBLP Cora PubMed Citeseer Cora

MLP + HLR 63.6 ± 4.7 59.8 ± 4.7 64.7 ± 3.1 56.1 ± 2.6 61.0 ± 4.1

FastHyperGCN 68.1 ± 9.6 61.1 ± 8.2 65.7 ± 11.1 56.2 ± 8.1 61.3 ± 10.3

HyperGCN 70.9 ± 8.3 63.9 ± 7.3 68.3 ± 9.5 57.3 ± 7.3 62.5 ± 9.7

HyperSAGE 77.4 ± 3.8 72.4 ± 1.6 72.9 ± 1.3 61.8 ± 2.3 69.3 ± 2.7

UniGAT 88.7 ± 0.2 75.0 ± 1.1 74.7 ± 1.2 63.8 ± 1.6 69.2 ± 2.9

UniGCN 88.8 ± 0.2 75.3 ± 1.2 74.4 ± 1.0 63.6 ± 1.3 70.1 ± 1.4

UniGIN 88.6 ± 0.3 74.8 ± 1.3 74.4 ± 1.1 63.3 ± 1.2 69.2 ± 1.5

UniSAGE 88.5 ± 0.2 75.1 ± 1.2 74.3 ± 1.0 63.8 ± 1.3 70.2 ± 1.5

H-ChebNet 87.9 ± 0.24 70.6 ± 2.1 74.3 ± 1.5 63.5 ± 1.3 69.7 ± 2.0

H-APPNP 89.4 ± 0.18 76.4 ± 0.8 75.3 ± 1.1 64.5 ± 1.4 70.9 ± 0.7

H-SSGC 88.6 ± 0.16 72.0 ± 1.2 74.5 ± 1.3 60.5 ± 1.7 68.8 ± 2.1

H-GCN 89.0 ± 0.19 74.8 ± 0.9 75.4 ± 1.2 62.7 ± 1.2 69.5 ± 2.0

H-GCNII 89.8 ± 0.20 76.2 ± 1.0 75.8 ± 1.2 64.5 ± 1.0 72.5 ± 1.2

HGNN 88.09 ± 0.15 71.77 ± 1.58 73.47 ± 1.30 62.71 ± 1.16 68.17 ± 1.12

MO-HGCN 88.65 ± 0.19 77.47 ± 0.66 77.88 ± 1.18 68.56 ± 1.30 75.60 ± 0.74

The best results are marked in bold, while the second best results are underlined
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Fig. 4 Performance of different channels and components in MO-
HGCN. The vertical axis denotes the accuracy and the horizontal axis
represents the different channels and components. For the horizontal
axis, the 1-order represents the 1-order approximation of the hyper-
graph convolution, meaning HGNN [12]. The 2-order and 3-order

represent the 2-order and 3-order channels in MO-HGCN, respectively.
TheMulti-order denotes the MO-HGCN only consisting of 2-order and
3-order channels. The inter-order attention represents the MO-HGCN
involving the inter-order attention component, and the Self-Supervised
denotes the MO-HGCN with all channels and components

(a) Cora(Cocitation) (b) Citeseer (c) Pubmed

(d) Cora(Coauthor) (e) DBLP

Fig. 5 Distribution of inter-order attention scores

answer the question Q1: The proposed model outperforms
the state-of-the-art baselines.

Comparatively to the pair-wise edge approximation of
HyperGCN,MO-HGCNutilizes clique expansion to approx-
imate the hypergraph structure asHGNN, and themulti-order
approximation neighborhood further enlarges the receptive
field of nodes and hyperedges. It is for this reason that MO-
HGCN performs better than HyperGCN and HGNN. Com-
pared to models combining the hypergraph with other GNN

methods, although these models absorb the advantages of
different GNN structures and perform well, the results show
that multi-order hypergraph convolutional networks com-
bining inter-order attention mechanisms and self-supervised
learning can fully exploit the structural information of the
hypergraph. The standard deviation results on multiple split
sets also demonstrate that MO-HGCN achieves similar sta-
bility as the model that incorporates hypergraph and GNN
methods.

Ablation study

We report in Fig. 4 the performance of different channels
and different components of MO-HGCN as a way to inves-
tigate the contribution. As shown in Fig. 4, the 1-order
of horizontal axis is a 1-order approximation of the hyper-
graph convolution, which is compared with the higher order
channels. The 2-order and 3-order denote hypergraph con-
volutional networks using only the 2-order channel and
the 3-order channel, respectively. The Multi-order repre-
sents the MO-HGCN only consisting of 2-order and 3-order
channels. The Inter-order attention denotes a multi-order
hypergraph convolutional network that involves inter-order
attention. The Self-supervised represents a multi-order
hypergraph network consisting of inter-order attention and
self-supervised learning.

As can be observed from Fig. 4, the 2-order channel
always performs better than the 3-order channel, while the 2-
order channel outperforms the 1-order channel in most cases
but is inferior to the 2-order channel. This also indicates
that the long-range information in higher order neighbor-
hoods is not always directly applicable. The results of the
Multi-order show that the fusion of multi-order informa-
tion allows models to learn multiple levels of representation,
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Fig. 6 Node classification
results for MO-HGCN with
different assignments on the η1
and η2 . The horizontal axis
represents η2 . The vertical axis
represents η1

(a) Cora(Cocitation) (b) Citeseer

(c) Pubmed (d) Cora(Coauthor)

(e) DBLP

thus further improving the performance. The self-supervised
learning component delivers a significant boost compared to
inter-order attention, suggesting a more prominent role for
extracting the distinctive information of higher order infor-
mation. The results in Fig. 4 answer question Q2: Channels
and components in the model contribute differently, with
inter-order attention and self-supervised learning taking full
advantage of the natural information brought by multi-order
neighborhoods.

Effectiveness of inter-order attention

We use box plots in Fig. 5 to report the distribution of atten-
tion scores in the inter-order attentionmechanism as a way to
investigate the question Q3. The 2-order and 3-order in Fig.
5 represent the attention scores distributions between the 2-
order channel and the enhanced information channel, and
between the 3-order channel and the enhanced information
channel, respectively.

As shown in Fig. 5, the distribution of attention scores gen-
erated by the inter-order attentionmechanism is concentrated
in the lower score region, which indicates a large discrep-
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(a) HyperGCN (b) HGNN (c) MO-HGCN(w/o) (d) MO-HGCN

(e) HyperGCN (f) HGNN (g) MO-HGCN(w/o) (h) MO-HGCN

(i) HyperGCN (j) HGNN (k) MO-HGCN(w/o) (l) MO-HGCN

Fig. 7 2D visualization of T-SNE for node embedding on co-citation
and co-authorship datasets. The first row represents the co-citation cora
dataset, the second row represents the co-citation citeseer dataset, and

the third row represents the co-authorship cora dataset. Note that we
named the MO-HGCNwithout self-supervised learning as MO-HGCN
(w/o)

ancy between the node embedding generated by the higher
order channel and the enhanced information channel. This
also verifies that the nodes are able to receive information
fromhigher order neighborhoods. Higher order channel node
embeddings that are more similar to those of the enhanced
information channel are assigned higher scores. As a result,
information with low similarity to 1-order neighbors (con-
taining the node’s information) has a lower weight in the
fusion of embeddings.

Effectiveness of self-supervised learning

We conduct parameter sensitivity experiments on the hyper-
parameters of the self-supervised learning, i.e., problemQ4.
For η1 and η2, which were chosen in the range. Figure 5
reports the node classification accuracy of MO-HGCN for
different η1 and η2 ranges. Figure 5 shows the stable perfor-
mance of the MO-HGCN when η1 and η2 are chosen in a

suitable range. Moreover, since self-supervised learning as
an auxiliary task, η1 and η2 contribute more to the perfor-
mance of the MO-HGCN at smaller valuesb (Fig. 6).

To investigate the impact of self-supervised learningon the
multi-order hypergraph convolutional network, i.e., question
Q5, we visualize the node embeddings generated by Hyper-
GCN, HGNN,MO-HGCNwithout self-supervised learning,
and MO-HGCN, respectively. As shown in Fig. 7, we use
T-SNE [35] to reduce the dimension of the node embed-
dings and perform projection of 2D coordinates to draw
clusters, with each color representing a different class of
nodes, respectively. To produce clear distributions, we test
on the Cora and Citesseer datasets with a small number of
nodes and report the clustering coefficients in Table 3.

In Fig. 7, the MO-HGCN produces clear clusters as a
result of the node embeddings, and it also produces higher
contour coefficients in Table 3 than the MO-HGCN with-
out self-supervised learning. This shows that self-supervised
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Table 3 Clustering coefficients on co-citation and co-authorship
datasets

Dataset Co-citation Co-citation Co-authorship
Cora Citeseer Cora

HyperGCN − 0.064 0.005 − 0.054

HGNN 0.112 0.108 0.135

MO-HGCN (w/o) 0.151 0.083 0.161

MO-HGCN 0.185 0.112 0.158

learning helps the node embeddings to learn distinctive infor-
mation, which enables the separation of node embeddings to
be improved.

Conclusions

In this paper, we propose a Multi-Order Hypergraph Con-
volutional Network incorporating self-supervised learning
(MO-HGCN) to explore the potential of hypergraphs on
higher order neighborhoods. MO-HGCN consists of a multi-
channel network structure, where the higher order channels
are composed of spectral 2-order and spectral 3-order hyper-
graph convolution operators, respectively. Through inter-
order attention, we design an enhanced information channel
that preserves low-order neighborhood information. To mine
distinctive information in the higher order channels, we intro-
duce self-supervised learning as an auxiliary task to enhance
the performance ofMO-HGCN. Experiments show thatMO-
HGCN is competitive with state-of-the-art baselines, and
MO-HGCN develops the potential of higher order neigh-
borhoods through inter-order attention and self-supervised
learning components. In future work, we would like to
explore hypergraphs with heterogeneous nodes to investi-
gate higher order neighborhood problems on heterogeneous
hypergraphs.
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