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Abstract
Manufacturing resources allocation (MRA) is important area, and a significant challenge is encounteredwhen considering high
value, customized, complex structure and long lifespan of complex product system (CoPS). The relationship between uncer-
tainty factors (i.e., inputs and outputs) of processes in CoPS’smanufacturing, operation andmaintenance needs comprehensive
trade-offs in the preliminaryMRA stage. Meanwhile, the CoPS’s MRA schemes are contradictory from a customer’s perspec-
tive with different emphasis on operating cost related to operation and maintenance stage. These problems are unavailable in
traditional expressions for model and objective function. In this paper, a new variant of MRA multi-criteria decision-making
(MCDM) model of CoPS (MRA&CoPS) is developed to evaluate MRA schemes with considering CoPS’s lifecycle. Mean-
while, considering characteristics of CoPS and customer-involved MRA process, the three-layer criteria cumulative model
is established. In the proposed method, intuitionistic fuzzy sets (IFSs) based subjective–objective hybrid fuzzy method is
presented to deal with uncertainty of evaluation criteria. The weights of criteria are determined by the proposed intuitionistic
fuzzy information entropy (IFIE). The hybrid IFIE-TOPSIS method is proposed to obtain the optimumMRA scheme by rank-
ing results. An example of CoPS’s MRA in a case enterprise is addressed to verify the rationality and validity of the proposed
method. The results show that the proposed method is more preferable and robust in MCDM problem of MRA&CoPS.

Keywords Manufacturing resources allocation · Complex product system · Multi-criteria decision-making · Intuitionistic
fuzzy information entropy · TOPSIS

Introduction

Complex product system (CoPS) is a kind of technological
systemwith long processing cycle, high complexity and great
value ofmanufacturing resources,which are produced as cus-
tomized, one-off or small batched capital goods items, such
as aircraft engines, offshore oil equipment and cement equip-
ment, distinct from mass-produced commodity products [1].
The manufacturing resources allocation (MRA) problem
occurs in many respects for CoPS project, such as project
approval and deliver, project schedule, project profitabil-
ity and product service life, which relates to various types
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of manufacturing resources, such as equipment resources,
human resources, design resources, simulation resources and
data resources. The single or small batch, complicated struc-
tures and long processing cycle are main characteristics of
CoPSwhich leads to amore complexMRA in resource selec-
tion, sequencing and evaluation. Further, MRA occupied a
core position in the lifecycle of CoPS, so as to guarantee the
reliability and service life of CoPS with lower cost.

In traditional MRA activities, most decision-makers usu-
ally make their choice from an intuitive point of view or
partial information of CoPS lifecycle. However, for a CoPS,
the problems are often not so easy and it is necessary to
analyze the information inmore detailwith considering prod-
uct lifecycle. Moreover, most of the modeling efforts in
this area ensured MRA schemes smoothly only in manufac-
turing resources optimal stage (MROS) and manufacturing
resources execution stage (MRES), while without consid-
ering the influence of product maintenance stage (PMS) in
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lifecycle [2]. For CoPS in a real life, the complexity of man-
ufacturing resources set drives a higher demand for MRA
with less expensive cost and reliability requirements.

MROS-MRES-based strategy may lead to the increasing
of operating cost of CoPS which has generated customer’s
unnecessary expenses and has reduced the reputation of
CoPS manufacturing enterprise. Currently, MRA with con-
sidering PMS in lifecycle is far more concerned.

(1) Limited considering phase. Traditional MRA is lim-
ited within CoPS manufacturing enterprise and not
expanded to permeate in CoPS’s lifecycle. In addition,
it only focused on procurement cost optimization for
manufacturing enterprise but ignored the operating cost
optimization for CoPS’s lifecycle.

(2) MROS-MRES-based strategy. MROS-MRES-based
strategy evaluates MRA schemes with respect to manu-
facturing resources execution stage (MRES). It cannot
be enhancing CoPS’s quality with PMS which usually
drives customer’s choice of CoPS. Choosing the optimal
MRA scheme only with considering MROS and MRES
is not benefit for decreasing the lifecycle cost. Therefore,
MROS-MRES-based strategy cannot be guaranteed to
reduce CoPS’s cost in the whole lifecycle.

In terms of the problems mentioned above, motivations of
the research can be concluded as follows:

(1) Propose a multi-criteria MRA evaluation model for
CoPS with considering different phases of product life-
cycle.

(2) Develop techniques to solve the proposed MRAmodel,
where the CoPS’s multi-criteria are all interrelated in
intuitionistic fuzzy environment.

To our best knowledge, there has no research proposed
MRA model for CoPS from the view of product lifecycle.
This paper contributed a richer MRA&CoPS multi-criteria
decision-making (MCDM)model, which considering among
MROS, MRES and PMS in product lifecycle. The model
mainly focuses on MRA which simultaneously minimum
MROS cost, MRES cost and PMS cost when CoPS deliv-
ers to customer. An 8-tuple evaluation criteria with respect
to MROS, MRES and PMS are proposed to evaluate MRA
for CoPS. Meanwhile, a novel fuzzy technique based on
intuitionistic fuzzy sets (IFSs) is developed to express the
expert preference and the objectivity of criteria in intuition-
istic fuzzy environment.What ismore, for suchmulti-criteria
decision-making problem, it is desirable to employ informa-
tion entropy (IE) to obtain criteria weights in intuitionistic
fuzzy environment, rather than assign weights by expert
experience. Drawing upon this, hybrid intuitionistic fuzzy

information entropy (IFIE) and TOPSIS were often applied
to cope with customer-involved MRA process of CoPS.

The remainder of this paper is organized as follows. “Lit-
erature review” presents related works. An overview of the
background is summarized in “Background”. In “Three-layer
criteria cumulative model for MRA&CoPS”, a new vari-
ant of MRA multi-criteria decision-making model of CoPS
(MRA&CoPS) is proposed to evaluate MRA schemes from
CoPS’s lifecycle perspective with respect to MROS, MRES
and PMS. Themodel integrated a three-layer criteria cumula-
tive strategy for process layer, component layer and product
layer of CoPS. “The proposed approach” details the pro-
posed approach of IFIE-TOPSIS. An illustrative example is
validated in “Case illustration” and conclusions are given in
“Conclusion”.

Literature review

MRA is one of the most important strategic decisions in
manufacturing system that has received the growing atten-
tion by researchers [2]. Traditionally, the evaluation criteria
of MRA problem focus on MROS and MRES, such as
time (makespan, tardiness), stability, cost, and reliability.
Thekinen and Panchal [3] proposed aMRAevaluationmodel
for matching service seekers and service providers, such
as designers and machine owners, in cloud-based design
and manufacturing. Chu [4] introduced a MRA method
with knowledge-based fuzzy comprehensive evaluation for
aircraft structural parts. The capability of planners, com-
plexity of structural parts, reliability of machine tools and
reliability of cutting tools are evaluated in the fuzzy compre-
hensive evaluation method. Wang [5] considered the credit
of resource provider and constructed an resource allocation
model to improve the efficiency in the process of trading.
Liang [6] considered MRES in remanufacturing systems
where the stochastic multi-product disassembly line balanc-
ing problem with maximal disassembly profit were studied
and a chance-constrained programming model was formu-
lated. Xu [7] proposed a bi-level manufacturing resources
allocation model under fuzzy environment to satisfy cus-
tomers’ expectation and to maximize suppliers’ profit for
short lifecycles product. Fast non-dominated sorting genetic
algorithm is employed to solve their model. Considering the
ontology-based static manufacturing resource capabilities
and the statistical nature of the manufacturing supply chain.
Wu [8] proposed a novel Bayesian approach to produce the
optimal and robust manufacturing resource allocation plan.
Lee [9] presented an intelligent data management-induced
resource allocation systemwith fuzzy logic. Saidi-Mehrabad
[10] developed a liner programming for dynamic manu-
facturing resources allocation; the objective is to minimize
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Table 1 Methods and features of studies for MRA problem

References Methods Attributes Stage of lifecycle Problem environment

MROS MRES PMS

[8] Genetic algorithm 1 × √ × Uncertain

[7] Genetic algorithm 4
√ √ × Uncertain

[11] Particle swarm optimist 1 × √ × Uncertain

[12] DEA 3
√ √ × Certain

[4] Fuzzy comprehensive evaluation method 5 × × √
Uncertain

[10] Linear programming 7
√ √ √

Certain

[13] Best worst method
AHP

4
√ × × Uncertain

This paper MCDM 8
√ √ √

Uncertain

machine maintenance and overhead, system reconfigura-
tion, backorder and inventory holding, training and salary
of worker costs. Lin and Chiu [11] applied particle swarm
optimization algorithm to solve stochastic resource alloca-
tion problem for raising productivity. Bi [12] employed DEA
method to generate resource allocation and target setting plan
for each production unit. Ayyildiz [13] used the hybrid Best
Worst Method (BWM) and Pythagorean fuzzy AHP method
to determine the weight of metrics, in order to perform eval-
uation of the supply chain in the globalizing world.

To show the differences of this paper from litera-
tures related to MRA problem, a systematic state-of-the-art
reviews the existing works on the MRA problem corre-
sponding to Table 1 in terms of methods, attributes, stage
of lifecycle and problem environment.

It can be seen that the current research mainly focuses
on manufacturing resources evaluation and optimization for
shorter product lifecycle and time-to-market product, which
concerns the MRA influence of manufacturing resources
optimal stage (MROS) ormanufacturing resources execution
stage (MRES) without considering the product maintenance
stage (PMS). However, CoPS has the characteristic of long
lifecycle. The neglection of PMS for CoPS, such as ignor-
ing the operating cost, may increase customer’s unnecessary
cost and reduce the competitiveness of CoPS manufactur-
ing enterprise. Thus, it is necessary to solve MRA problem
from the view of MROS, MRES and PMS for MRA&CoPS.
There are little previous studies related to MRA considering
MROS, MRES and PMS, for example, saidi-Mehrabad [10]
proposed a MRA model that considered the influence of the
whole product lifecycle. They only focused on solvingMRA
problem under certain environment, while information for
real-world MRA&CoPS are usually imprecise and vague.

Furthermore, decision of selecting the optimal man-
ufacturing resources options are regarded as a multi-
objective optimization problem in most studies. However,

MRA&CoPS relates to long lifecycle with various influ-
ence factors which commonly include qualitative criteria in
addition to quantitative criteria. Hence, MCDM is preferred
for proposed MRA&CoPS. Indeed, MRA decision-making
has been extensively studied in the community of expert
and intelligent systems. In contrast to optimization model
in previous studies with intelligent algorithms, qualitative
or quantitative criteria are used to make the most suit-
able decision among a large number of alternatives for the
MRA&CoPS problem. Compared to the linearizedmodel for
the assignment of available resources in dynamic manufac-
turing systems under certain environment [10], the proposed
model is integrated with CoPS’s complex structure and
uncertainty of decision information.

Recently, MCDM has received more attention for eval-
uation and selection problem. Considering uncertain envi-
ronment, intuitionistic fuzzy sets and TOPSIS are widely
used to solve MCDM problem with uncertain evaluation cri-
teria. Fu [14] proposed a new mechanism to re-construct
the published composite indicators, and an interval-valued
TOPSIS procedure in conjunction with Shannon entropy
objective weights was applied for modifying the value mea-
sure of health systems. Dwivedi [15] used a combination
of subjective weights and entropy weights for each crite-
rion. Then, added weights of PIS and NIS in the final step of
TOPSIS to rank candidates. Garg [16] defined a novel algo-
rithm to solve the MCDM process and illustrated numerical
examples related to watershed’s hydrological geographical
areas, global recruitments problem and so on. Niu [17] intro-
duced two mentality parameters to address the risk attributes
and mentality of decision-makers in MCDM process, which
was regarded as interval-valued intuitionistic fuzzy num-
bers. Ulucay [18] considered the occurrences were more
than one with the possibility of the same of the different
membership and non-membership functions, and defined
intuitionistic trapezoidal fuzzy-numbers (ITFM-numbers) in
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MCDM problem. Hussain [19] investigated the concept of
generalized q-rung orthopair fuzzy sets and group general-
ized q-rung orthopair fuzzy sets to reduce uncertain errors in
the original information to ensure the expert’s level of trust
and improve the accuracy of final decision inMCDMmethod
technique. Pourmehdi [20] used Analytic Network Process
(ANP) and fuzzy TOPSIS to address the performance level
of collection centers in reverse logistics, from perspective of
sustainability dimensions in supply selection. Roszkowska
[21]modifiedFuzzyTOPSIS to scoring the negotiation offers
in ill-structured negotiation problems. In their research, PIS
and NIS are derived from a negotiation theory concept which
called BATNA. Joshi [22] defined interval-valued intuition-
istic hesitant fuzzy Choquet integral operator to aggregate
interval-valued intuitionistic hesitant fuzzy sets (IVIHFS)
considering the inter-dependency among the decision cri-
teria, and then used TOPSIS method to rank alternatives in
IVIHFS environment. Zhang [23] proposed a rural logistics
center location model based on the theory of intuitionistic
fuzzy TOPSIS. They calculated weight of decision-makers
by rating fuzzy numbers and then determine theweight of the
evaluation criteria according to weight of decision-makers.
Aikhuele [24] proposed an intuitionistic fuzzy multi-criteria
decision-making method to solve failure detection prob-
lem. They employed a type of entropy method to calculate
weights of criteria, which only consider the membership
degree and non-membership degree. Then, they got the rel-
ative closeness coefficient based on TOPSIS in intuitionistic
fuzzy environment. Awasthi [25] presented a TOPSIS-based
MCDM approach for evaluating green supplier under fuzzy
environment. The employed linguistic terms to rate criteria
and alternatives. Kacprzak [26] used TOPSIS method twice
forMCDMproblem. The first time it is used to determine the
weights of decision-makers and the second time is used to
rank alternatives. Chen [27] proposed a MCDM and sim-
ilarity method between intuitionistic values. They ranked
alternatives based on the degree of indeterminacy of each
alternative with an extended TOPSIS method. Both the tri-
angular fuzzy number (TFN) and TOPSIS were applied to
rank the best alternatives of wind power potential in Weibull
distribution model coupled with power law [28].

The research listed above all employed IF-TOPSIS which
is mainly for solving selection problems with ranking alter-
natives by one-layer decision-making. For such problems,
the decision-making information can be obtained from the
evaluation object comprehensively. However, the structure of
CoPS is highly complicated, which is manufactured bymany
processes with a large number of manufacturing resource
alternatives. Assuming that a CoPS is composed of n com-
ponents {C1, C2, …,Cn}, and component Ci (i ≤ n) is
manufactured with mi process

{
P1
i , P

2
i , . . . , Pmi

i

}
, process

P
m j
i (m j ≤ mi ) can be manufactured with S

m j
i kinds of

manufacturing resources

{
Rmj
i1 , Rmj

i2 , . . . , Rmj

is
m j
i

}
and each

manufacturing resource has A
m j
i alternatives (A

m j
i ≥ S

m j
i ).

The number of MRA schemes alternatives for a CoPS can be
calculated as N�C

Sim j

A
m j
i

× P
m j
i ×n, which is a large quantity

of alternative manufacturing resources combination schemes
for a CoPSmanufacturing task. Thus, it is difficult for experts
to obtain comprehensive evaluation information of CoPS
directly, and leads to more complex and time-consuming
calculation and evaluation process of MRA&CoPS when
employing one-layermethod. Tomake the evaluation process
more suitable for MRA&CoPS problem, this paper pro-
posed a three-layer decision-making model, in which MRA
schemes are determined through process dimension, compo-
nent dimension and product dimension.

Background

Intuitionistic fuzzy sets

The theory of intuitionistic fuzzy sets (IFS) is always used in
decision-making problem [29]. In IFS theory, positive mem-
bership degree, negative membership degree and hesitancy
degree are used to describe the membership relationship
between individuals and sets [30, 31]. Let X be the universe
of discourses. Considering IFSs A in X, the aspects of IFSs
discussed by A can be described as follows:

An IFSs A in X is defined as A �
{(x , uA(x), vA(x)|x ∈ X , X � {x1, x2, . . . , xn} )}, where
uA(x) ∈ [0, 1] and vA(x) ∈ [0, 1] with the condition
0 ≤ uA(x) + vA(x) ≤ 1, ∀x ∈ X . The numbers uA(x) rep-
resent the membership degree of x to A, while the numbers
vA(x) represent the non-membership degree of x to A. For
each x toA, subject toπA(x) � 1−uA(x)−vA(x), represents
a hesitancy degree of x to A. Obviously, 0 ≤ πA(x) ≤ 1.

A small value of πA(x) implies that information about x
is more certain. On the other hand, a higher value of the
hesitancy degree πA(x) means the information thatx holds is
more uncertain [32].

Information entropy

Information entropy (IE) is proposed by Shannon to solve
effective measurement of information problem and evaluate
relative weights between information. In addition, the defi-
nition of IE is as follows [33–35].

Let X � {(xk |k � 1, 2, . . . , K )}, and the probability of
X occurrence is Pk . It is obvious that 0 ≤ Pk ≤ 1.

The uncertainty degree of probability can be defined as

I (xk) � ln
1

pk
� − ln pk (1)
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In addition, the information entropy of discrete random
variables can be calculated as

H (x) � H (p1 p2 . . . pk) �
K∑

k�1

pk I (xk) � −
∑K

k�1
pk ln pk

(2)

To calculate the weight of each probability event, each
information entropy should be transformed to weight value
as

wk � 1 − H (xk)

K − H (X )
(3)

where subject to 0 ≤ wk ≤ 1 and
∑K

k�1 wk � 1.

Classical TOPSIS method

The classical TOPSIS method is based on the idea that the
best alternative should have the shortest distance from the
positive ideal solution and the farthest distance from the
negative ideal solution [36, 37]. This method works in the
background that each attribute ismonotonically increasing or
decreasing [38]. Normalization is usually required for using
TOPSIS to solve MCDM problem [39, 40]. Assuming that
there are n criteria (C1, C2, …, Cn) and m alternatives (A1,
A2, …, Am), X � [xij]m×n represents the decision matrix. In
addition, xij (i � 1, 2,…, n; j � 1, 2,…,m) denotes the value
assigned to the i-th criterion of the j-th alternative.W � [w1,
w2, …, wn] is the weight of each criterion with the condition∑n

i�1 wi � 1. The detailed steps of TOPSIS are carried out
as follows.

Step 1: Normalize the decision matrix to obtain normal
matrix B � [bij].

Step2: Calculate the weighted normalized decision
matrix:

fi j � wi bi j (4)

where wi is the weight of the i-th criterion.
Step 3: Determine the positive ideal solution (PIS) and

negative ideal solution (NIS):

F+ � {
f +1 , f +2 , . . . , f +n

}
(5)

F− � {
f −
1 , f −

2 , . . . , f −
n

}
(6)

where F+ denotes the positive ideal solution and F− denotes
the negative ideal solution. If the i-th criterion is beneficial
criterion,

f +i � max
{
fi j , j � 1, 2, . . . , m

}
(7)

f −
i � min

{
fi j , j � 1, 2, . . . , m

}
(8)

On the contrary, if the i-th criterion is cost criterion,

f +i � min
{
fi j , j � 1, 2, . . . , m

}
(9)

f −
i � max

{
fi j , j � 1, 2, . . . , m

}
(10)

Step 4: Calculate the distances from each alternative to
positive ideal solution and negative ideal solution:

D+
j �

√√√√
n∑

i�1

( fi j − f +i )
2, j � 1, 2, . . . , m (11)

D−
j �

√√√√
n∑

i�1

( fi j − f −
i )2, j � 1, 2, . . . , m (12)

where D+
j denotes the distance between the j-th alternative

and the positive ideal solution, and D−
j denotes the distance

between the j-th alternative and the negative ideal solution.
Step 5: Calculate the relative closeness to the ideal solu-

tion:

D∗
j � D−

j

D+
j + D−

j

(13)

Step 6: Rank the alternatives sorting by the value D∗
j D

∗
j

in decreasing order.

Three-layer criteria cumulative model
for MRA&CoPS

CoPS is produced as customized, one-off, or small batched
capital goods items with higher complexity and value
[41]. CoPS industries is identified as involving technology-
intensive capital goods, systems integration, embedded and
largely tacit knowledge and skills, project-basedmanufactur-
ing, low-volume production (batch produced or individually
tailored for specific customers), etc. [42]. Based on these
studies of CoPS, reference [43] summarized typical manu-
facturing process of CoPS, i.e., designing activities oriented
by customer, technical preparing, procuring raw materials,
manufacturing, delivering and maintenance. The multi-level
BOMstructure is highly complexwithmanyprocesses,mate-
rials and components requirements. In addition, it needsmore
manufacturing resources to support for the processes, mate-
rials and components in demand, while the cost, quality
and time, etc. criteria of provided manufacturing resources
are various. Moreover, the CoPS’s manufacturing task is
decomposed into different sub-tasks and manufactured by
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Table 2 Stage division of product-lifecycle-oriented MRA&CoPS

Stage Stage description Evaluation criteria

I Manufacturing resources
optimal stage (MROS)

Select MRA schemes
based on the design
activities and technical
preparation

II Manufacturing resources
execution stage (MRES)

Manufacture CoPS by
selected manufacturing
resources according to
the customer’s needs,
design activities and
technical preparation

III Product maintenance stage
(PMS)

Maintain the CoPS in
case of quality issue

the internal or outsourcing providers. It is difficult to eval-
uate manufacturing resources allocation schema from the
overall perspective of CoPS lifecycle. Considering the multi-
level BOM structure of CoPS, the mathematical models have
been proposed to process layer, component layer and product
layer.

Although a number of research have proposed MRA
evaluation criteria, the currently studies mainly considers
criteria in MROS and MRES and neglect criteria in PMS,
such as operating cost. However, as mentioned in “Intro-
duction”, PMS is also important for MRA&CoPS problem.
Meanwhile, the current research only consider product layer
for MRA problem. In real-life MRA&CoPS problem, data
related to the problem are usually provided by resource sup-
pliers. However, it is very difficult for resource suppliers
providing data related to MRA&CoPS problem in product
layer directly after the complex manufacturing of CoPS.
Hence, the three-layer criteria cumulative model is proposed
from process layer, component layer and product layer to
evaluate manufacturing resources allocation of CoPS.

The CoPS’s lifecycle involves MROS, MRES and PMS,
so the proposed 8-tuple criteria are summarized from three
stages in this section. Further, the proposed evaluation criteria
are successively accumulated in process layer, component
layer and product layer.

Lifecycle-oriented evaluation criteria of MRA&CoPS

CoPShave long economic lives, lasting up to several decades.
Thus, product lifecycle should be considered in MRA activ-
ities. According to CoPS’s characteristics, this paper lists
three stages of product-lifecycle-oriented MRA&CoPS pro-
cess in Table 2.

As shown in Table 2, there are interactions in the effect of
three stages for CoPS. The selected MRA schema in Stage
I influence CoPS’s manufacturing process in Stage II and
Stage III. In the three stages, MRA plays an important role

in many respects of CoPS, such as timeliness and reliability.
Therefore, the influence of MRA is not isolated but should
be researched with the view of product lifecycle. Hence, the
interactive evaluation criteria of MRA&CoPS can be sum-
marized from the three stages, as shown in Fig. 1, where T
represents time, MC represents manufacturing cost, Q rep-
resents quality, R is reliability, SN represents synergy, SF
represents safety, OC represents operating cost and ST rep-
resents satisfaction.

Three-layer criteria cumulative model

The evaluation information for MRA&CoPS problem usu-
ally derives from resource suppliers. For the reason of the
high complexity of CoPS, it is difficult for resource sup-
pliers to provide the data related to resources in product
layer. Thus, the traditional evaluation method that evaluates
resources performance directly in product layer is not suit-
able forMRA&CoPS problem. CoPS are composed of series
component, which can be completed by some key processes.
The performance of CoPS can be accumulated from com-
ponents, whose performance can be accumulated from each
process. In addition, it is easier for resource suppliers to pro-
vide related information in process layer before the complex
CoPS manufacturing process. Thus, this section proposed a
three-layer criteria cumulative model based on the proposed
8-tuple criteria, i which evaluate the resources performance
from process layer, component layer and product layer.

Assuming that a CoPS: P consists m components Ci (i
� 1, 2, …. m), and a component can be produced by n pro-
cesses PRj (j � 1, 2, …, m). The manufacturing data of P
of each criterion can be accumulated from the m compo-
nents. In addition, the manufacturing data of a componentCi

of each criterion can be accumulated from the n processes.
The details of three-layer criteria cumulativemodel are intro-
duced as follows.

Stage I: manufacturing data in process layer.

T (PTaski j ) � T1(ri j ) + T2(ri j ) (14)

MC(PTaski j ) � MC1(ri j ) + MC2(ri j ) (15)

Q(PTaski j ) � Q1(ri j ) + Q2(ri j )

2
(16)

R(PTaski j ) � R1(ri j )R2(ri j ) (17)

SN (PTaski j ) � SN1(ri j ) + SN2(ri j )

2
(18)

SF(PTaski j ) � SF1(ri j ) + SF2(ri j )

2
(19)
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Fig. 1 Evaluation criteria of
MRA&CoPS

ST (PTaski j ) � ST1(ri j ) + ST2(ri j )

2
(20)

In the above equations, T1(rij) represent the time crite-
rion of manufacturing process, T2(rij) represents the time
criterion of manufacturing resources performance,MC1(rij)
represents the manufacturing costs criterion of manufactur-
ing process, MC2(rij) represents the manufacturing costs
criterion of manufacturing resources performance, Q1(rij)
represents the quality criterion of manufacturing process,
Q2(rij) represents the quality criterion of manufacturing
resources performance, R1(rij) represents the reliability
criterion of manufacturing process, R2(rij) represents the
reliability criterion of manufacturing resource performance,
SN1(rij) represents the synergy degree criterion of manu-
facturing process, SN2(rij) represents the synergy degree
criterion of manufacturing resources performance, SF1(rij)
represents the safety criterion of manufacturing process,
SF2(rij) represents the safety criterion of manufacturing
resources performance, ST1(rij) represents the customer sat-
isfaction criterion of manufacturing process, and ST2(rij)
represents the customer satisfaction criterion of manufac-
turing resources performance.

Stage II: manufacturing data in component layer.

T (MTaski ) �
n∑

j�1

T (CTaski j ) (21)

MC(MTaski ) �
m∑

i�1

MC(CTaski j ) (22)

Q(CTaski )

� 1

n

[
n1∑

k�1

Q(⊗PTaskik) +
n2∑

P�1

min Q(⊕PTaskip)

]

(23)

R(CTaski ) �
n1∏

k�1

R(⊗PTaskik)
n2∏

p�1

min(⊕PTaskip)

(24)

SN (MTaski ) �
∑n

j�1
SN (CTaski j )/n (25)

SF(MTaski ) �
n∑

j�1

SF(CTaski j )/n (26)

ST (MTaski ) �
n∑

j�1

ST (CTaski j )/n (27)

In the above equations, ⊗ refers to the series branch of
a manufacturing task CTaski, n1 means the total number of
process tasks on the series branch, ⊕ denotes the parallel
branch of amanufacturing taskCTaski, n2 is the total number
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of process tasks on the parallel branch, and n1 plus n2 is n,
whose specific value is related to the structure of CTaski.

Stage III: Criteria value in product layer.

T (MTask) �
m∑

i�1

T (CTaski ) (28)

MC(MTask) �
m∑

i�1

MC(CTaski ) (29)

Q(MTask) �
m∑

i�1

Q(CTaski )/m (30)

R(MTask) �
m∏

i�1

R(CTaski ) (31)

SN (MTask) �
m∑

i�1

SN (CTaski )/m (32)

SF(MTask) �
m∑

i�1

SF(CTaski )/m (33)

ST (MTask) �
m∑

i�1

ST (CTaski )/m (34)

In the above equations, OC is only calculated in product
maintenance stage. It cannot be accumulated as the other
seven criteria. In addition, formula (35) is the evaluation
methodology of OC [22]:

OC(MTask) � cpL + c f

L∑

i�1

Nl + cd

(

f1

L∑

i�1

Nl + f2L

)

(35)

Formulas (36–38) [25]can be used to describe N1:

Nl �
∫ lT

(1−l)T
λl (36)

Rl (MTask) � exp

(
−

∫ lT

(1−l)T
λldt

)
l � 1, 2, . . . , L (37)

Rl (MTask) � R(MTask) (38)

where Rl(MTask) is the reliability of product in the l-thmain-
tenance stages. λl is failure rate of CoPS. Note that formula
(36) expresses functional relationship between Nl and λl in
a preventive maintenance interval. Formula (37) expresses
functional relationship between Rl(MTask) and λl in the l-
th preventive maintenance interval. Formula (38) expresses
initial reliability of the CoPS and equals to accumulation
reliability criteria of product dimension.

The proposed approach

An improved MCDM approach for MRA&CoPS is pro-
posed, and the approach is mainly divided into the following
three stages: (1) preparation stage: DMs determine alterna-
tives (process layer, component layer and product layer), and
define evaluation criteria and collect information of criterion
for three layers ofCoPS. (2)Calculation stage:DMscalculate
fuzzy value by fuzzy method proposed in “Fuzzy process”
to construct normalized fuzzy decision matrix. Then IE is
extended to intuitionistic fuzzy environment as a weighting
method to calculate weight of each criterion. Finally, DMs
calculate D∗

j D
∗
j by TOPSIS in intuitionistic fuzzy environ-

ment. (3) Output stage: DMs sort the chosen alternatives by
value D∗

j D
∗
j in decreasing order and judge the dimension. If

the evaluation dimension is product layer, theminimum rank-
ing order is the optimal MRA schema for CoPS. Otherwise,
re-evaluate MRA process in next layer. Figure 2 illustrates
the conceptual framework of the proposed method.

Fuzzy process

Three-layer criteria proposed in “Three-layer criteria cumu-
lative model for MRA&CoPS” have different types with
number and dimension. For example, T is a numerical crite-
rion, while Q is a percentage criterion. Thus, normalization
of criteria is necessary for MRA&CoPS. Further, there are
various scenario that make the crisp numbers vague and
uncertain. For example, the crisp numbers for MRA&CoPS
problem is provided by resource suppliers, while the data are
usually not constant in actual scenarios. The evaluation data
provided by resource suppliers usually represent the average
value of the related manufacturing resource historical per-
formance, while the data of certain manufacturing resource
for a certain manufacturing process may be variables. Thus,
the evaluation criteria data usually have fuzzy phenomenon
for MRA&CoPS problem for CoPS enterprises. Meanwhile,
in real-life MRA&CoPS process, CoPS enterprises usually
have the expectation of each criterion. In this condition, intu-
itionistic fuzzy sets (IFSs) theory is used in this paper. In
addition, how to obtain the membership degree and non-
membership degree is the key step of using IFSs. There are
several methods to obtain the membership degree and non-
membership degree in previous research [44–46]. Moreover,
linguistic variable is a widely used method for providing
approximate characterization of phenomena that are too com-
plexor ill-defined tobedescribed in conventional quantitative
terms [47–49]. In traditional linguistic variable method, only
historical data and expert assessment are considered, which
leads to inadequate expressions of real-time objectivity data.
In this condition, a novel IFS based on subjective–objec-
tive hybrid fuzzy method to handle fuzzy phenomenon for
MRA&CoPS is proposed in this paper. Table 3 gives the
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Determine alternatives in this

evaluation dimension

Construct normalization fuzzy

decision matrix

Construct weighted norm matrix
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manufacturing information
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Input manufacturing resources
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Initialize evaluation dimension
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Preparation Calculation

Yes

No

Output

Fig. 2 The conceptual framework of the proposed approach

Table 3 11 levels variable for
fuzzy values Fuzzy scale Linguistic values [uA(x), vA(x)] Language interval

1 Extremely bad/extremely high A1 � [0.00, 1.00] [0.00, 0.00]

2 Very bad/very low A2 � [0.10, 0.80] [0.00, 0.15]

3 Pretty bad/pretty low A3 � [0.20, 0.70] [0.15, 0.40]

4 Bad/low A4 � [0.30, 0.60] [0.40, 0.45]

5 Medium bad/medium low A5 � [0.40, 0.50] [0.45, 0.50]

6 Fair/medium A6 � [0.50, 0.50] [0.50, 0.55]

7 Medium good/medium high A7 � [0.50, 0.40] [0.55, 0.60]

8 Good/high A8 � [0.60, 0.30] [0.60, 0.65]

9 Pretty good/pretty high A9 � [0.70, 0.20] [0.65, 0.90]

10 Very good/very high A10 � [0.80, 0.10] [0.90,1.00]

11 Extremely good/extremely high A11 � [1.00, 0.00] [1.00, 1.00]

11 levels linguistic variable and Eqs. (39–41) are employed
to calculate the number of membership degree and non-
membership degree:

LDm
n � Dm

n − Em
min

Em
max − Em

min
(39)

Em
min � Em

min1
+ Em

min2
+ . . . + Em

mine

e
(40)

Em
max � Em

max1 + Em
max2 + . . . + Em

maxe

e
(41)

where LDmn is the language value of criteria m for manu-
facturing resource n, Dmn is the evaluation value of criteria
m for manufacturing resource n, Em

min is the lower limit of
expected interval of criteria m, Em

max is the upper limit of
expected interval of criteria m, Em

mini
is the lower limit of

expected interval of criteria m given by the i-th expert (i �
1, 2, …e), and Em

maxi is the upper limit of expected interval
of criteriam given by the i-th expert. In addition, the process
of the hybrid fuzzy method to obtain [ua (x), va (x)] of Dm

n
is shown in Fig. 3.

Weight obtainingmethod

By the fuzzy processing in “Classical TOPSIS method”,
standard evaluation criteria are given. In addition, weight
of each evaluation criterion is vital for MCDM problem.
There are numerous research that have focused on obtain-
ing weights in MCDM problem [39, 46, 50]. Information
entropy (IE) theory is a useful tool to obtain weights of each
criterion. However, evaluation data of MRA are handled in
fuzzy environment. Thus, IE theory should be extended into
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Fig. 3 The process of the subjective–objective hybrid fuzzy method

intuitionistic environment and be used for evaluating fuzzy
criteria. The proposed IFIE method is described as follows:

Let intuitionistic fuzzy sets denote
A�{x , uA(x), vA(x)|x ∈ X}. In addition, characteris-
tics of sets A in different situations are shown in Table
4.

Let XA � {xk |k � 1, 2, . . . , K }, and Ak �
{(xk , uA(xk), vA(xk))|xk ⊂ X }, where Ak is intuitionistic
fuzzy sets of XA. Therefore, intuitionistic fuzzy information
entropy [23] H(A) can be defined as formula (42):

H (Ak)

⎧
⎪⎨

⎪⎩

−uA(xk) ln uA(xk) − vA(xk) ln vA(xk) − πA(xk) ln πA(xk) uA(xk) + vA(xk) ∈ (0, 1)

0 uA(xk) + vA(xk) � 1

0 uA(xk) + vA(xk) � 0

(42)

In addition, the weight of intuitionistic fuzzy information
entropy can be defined as

wA
k � 1 − H (Ak)

K − H (XA)
(43)

H (XA) �
K∑

k�1

H (Ak) (44)

The proposed IFIE-TOPSIS method

The novel IFIE-TOPSIS method for MRA&CoPS is pro-
posed in this section. First, an 8-tuple evaluation criteria of

MRA&CoPS is proposed with considering product lifecy-
cle. According to “Lifecycle-oriented evaluation criteria of
MRA&CoPS”, the criteria data of CoPS can be accumulated
from process layer, component layer and product layer in
a production logic sequence. Based on IFSs theory, the sub-
jective–objective hybrid fuzzy method is proposed in “Fuzzy
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Table 4 Characteristics of sets A
in different situations Characteristics uA(x) → 1vA(x) → 0 uA(x) → 0vA(x) → 1 uA(x) → 0vA(x) → 0

Membership degree high Low Low

Non-membership
degree

Low High Low

Hesitancy degree Low Low High

The probability of the
event

High Low ✕

Table 5 Manufacturing resources data matrix

Criteria r1 r2 … rq

T a11 a12 … a1q

MC a21 a22 … a2q

Q a31 a32 … a3q

R a41 a42 … a4q

SN a51 a52 … a5q

SF a61 a62 … a6q

OC a71 a72 … a7q

ST a81 a82 … a8q

process” to deal with the fuzzy problem for three-layer cri-
teria cumulative model of MRA&CoPS. Meanwhile, IE is
extended in fuzzy environment in “Weight obtainingmethod”
to obtain weights of evaluation criteria for IFIE-TOPSIS
approach. The proposed evaluation method consists of the
following steps.

Step 1 Initialize evaluation layer, i.e.,DM � process layer.
Step 2 Construct manufacturing resources data matrix.

Assuming that there are q manufacturing resources R � (r1,
r2,… rq) to be evaluated. In addition, the 8-tuple criteria (T ,
MC, Q, R, SN , SF, OC, and ST ) is used for MRA&CoPS.
The manufacturing resources data matrix A � [aij]8×q can
be constructed in Table 5.

Step 3 Construct normalized fuzzy decision matrix.
Calculate the intuitionistic fuzzy values [uA, vA] of each

evaluation resources for each criterion according to the pro-
cess in Fig. 3. In addition, the normalized fuzzy decision
matrix B � (bij)8×q � (uij, vij)8×q is given in Table 6,
where uij donates the membership degree of the i-th crite-
rion of the j-th manufacturing resources and vij represents
the non-membership degree of the i-th criterion of the j-th
manufacturing resources.

Step 4 Construct weighted normalized matrix based on
IFIE.

The wij represents the weight of the i-th criterion of the
j-th manufacturing resources can be calculated as

wi j � 1 − H (Ai )

8 − ∑8
i�1 H (Ai )

(45)

Table 6 Normalized fuzzy decision matrix

Criteria r1 r2 … rq

T (u11, v11) (u12, v12) … (u1q, v1q)

MC (u21, v21) (u22, v22) … u2q, v2q)

Q (u31, v31) (u32, v32) … (u3q, v3q)

R (u41, v41) (u42, v42) … (u4q, v4q)

SN (u51, v51) (u52, v52) … (u5q, v5q)

SF (u61, v61) (u62, v62) … (u6q, v6q)

OC (u71, v71) (u72, v72) … (u7q, v7q)

ST (u81, v81) (u82, v82) … (u8q, v8q)

where

H (Ai ) �
q∑

j�1

H (Ai j ) (46)

In addition, H(Aij) is the intuitionistic fuzzy information
entropy of manufacturing resources data of manufacturing
resources data mrij (i � 1,2, …, 8; j � 1, 2, …, q). wij are
subject to Eqs. (47) and (48):

8∑

i�1

wi j � 1 (47)

wi x � wiy x , y � (1, 2, ..., q) (48)

Then, weighted matrix [5] can be given by

(49)

fi j � (u fi j , v fi j )� wi j bi j � wi j (ui j , vi j )� (1−(1−ui j )
wi j ,

(vi j )
wi j ), (i � 1, 2, . . . , 8; j � 1, 2, . . . , q)

Step 5 Calculate positive ideal solution F+ and negative
ideal solution F−:

F+ � {
f +1 , f +2 , . . . , f +8

}
(50)

F− � {
f −
1 , f −

2 , . . . , f −
8

}
(51)
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In the 8-tuple criteria, Q, R, SN , SF and ST are beneficial
criteria, of whose f +i and f −

i can be calculated as

f +i � (u+fi , v+fi ) � max
{
ui j , vi j

}
, j � 1, 2, . . . , q (52)

f −
i � (u−

fi
, v−

fi
) � min

{
ui j , vi j

}
, j � 1, 2, . . . , q (53)

On the contrary, T , MC, OC are cost criteria, and the f +i
and f −

i can be calculated as

f +i � (u+fi , v+fi ) � min
{
ui j , vi j

}
, j � 1, 2, . . . , q (54)

f −
i � (u−

fi
, v−

fi
) � max

{
ui j , vi j

}
, j � 1, 2, . . . , q (55)

Note that the definition for determining maximum and
minimum of {uij, vij}. Assuming that two intuitionistic fuzzy
number a � (ua, va) and b � (ub, vb), whose intuitionistic
fuzzy information entropy are h(a) and h(b), respectively. If
h(a) < h(b), then a > b. Otherwise, if h(a) > h(b), then a < b.

Step 6 Calculate the distance from each alternative to pos-
itive ideal solution and negative ideal solution:

D+
j �

√√√√1

8

8∑

i�1

{
(u fi j − u+fi

)2 + (v fi j − v+fi
)2 + (π fi j − π+

fi
)2

}
(56)

D−
j �

√√√√ 1

8

8∑

i�1

{
(u fi j − u−

fi
)2 + (v fi j − v−

fi
)2 + (π fi j − π−

fi
)2

}
(57)

π fi j � 1 − u fi j − v fi j (58)

π+
fi � 1 − u+fi − v+fi (59)

π−
fi

� 1 − u−
fi

− v−
fi

(60)

Step 7 Rank the alternatives by D∗
j .

D∗
j � D−

j

D+
j + D−

j

, j � 1, 2, . . . , n (61)

Step 8 Select optimum manufacturing resources in next
layer.

Step 9 Terminate judging. If the evaluation is not over,
turn to step 10, otherwise, turn to step 13.

Step 10 Judge the dimension of the upper level. If the
dimension of the upper level is the process dimension, letDM
� component layer and turn to step 11, and if the dimension
of the upper level is the component dimension, let DM �
product and turn to step 12.

Step 11 Combine component from the process layer, and
turn to step 2.

Step 12 Combine product from the component layer, and
turn to step 2.

Cantilever rotary

stacker

Stacker belt

conveyor
Process 2

Process 7

Process 1

Process 3

Process 4

Process 6

Process 9

Process 8

Process 5
Hydraulic

Lift

Speed

control

device

Fig. 4 The structure of the case product

Step 13Output ideal solutions: the ideal solution includes
the ideal scheme in the product dimension and corresponding
MRA schema in component layer and process layer.

Case illustration

This section illustrates a case example to demonstrate
the effectiveness of the proposed method to optimize
MRA&CoPS. In this study, the case product cantilever
rotary stacker produced by the case manufacturing enter-
prise in Tianjin of China is presented to test and to show
the applicability and effectiveness of proposed model. The
mainmanufacturing product of the casemanufacturing enter-
prise is complicated and costly equipment, such as cement
equipment, metallurgy equipment, and coal equipment. In
addition, the customer may refuse to pay the warranty if the
product broke down during one to two warranty periods. As
Fig. 4 shows, the case product is mainly composed of stacker
belt conveyor, hydraulic lift and belt speed control device,
each of which is mainly composed by three key processes.
In addition, each process can be completed by several kinds
of different resources. To simplify the explanation and make
this section easier to read, “Process layer” and “Component
layer”will only illustrate the resource combination optimiza-
tion process of stacker belt in process layer and component
layer. “Product layer” will illustrate the resource allocation
process of the case product.

Evaluation process of three-layer criteria cumulative
model

Process layer

Step 1 Determine criteria and obtain data in process layer.
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Table 7 The manufacturing data of the criteria for stacker belt conveyor

Process 1 Process 2 Process 3

R11 R12 R13 R14 R21 R22 R23 R24 R31 R32 R33 R34

T (h) 6.3 9.1 5.5 9.2 5.6 9.2 9.8 5.6 9.6 6.1 6.2 9.4

MC (¥ ) 216.5 218 202 204.5 202.5 204.5 216 202 203.5 203 203 205.5

Q 0.96 0.975 0.955 0.97 0.96 0.955 0.995 0.975 0.995 0.99 0.955 0.96

R 0.915 0.94 0.925 0.99 0.94 0.925 0.915 0.96 0.97 0.925 0.94 0.95

SN 0.75 0.94 0.96 0.70 0.65 0.65 0.78 0.67 0.69 0.70 0.66 0.98

SF 0.97 0.955 0.955 0.965 0.995 0.995 0.975 0.955 0.955 0.955 0.96 0.955

ST 0.85 0.81 0.96 0.90 0.90 0.90 0.96 0.85 0.82 0.81 0.95 0.97

Table 8 The expected interval of
each criterion Criteria T (h) MC (¥) Q R SN SF ST

Expect interval (0, 10) (180, 220) (0.9, 1) (0.8, 1) (0.2, 1) (0.9, 1) (0.5, 1)

Table 9 Weights of each
criterion in process dimension Criteria T MC Q R SN SF ST

Weights 0.1308 0.1509 0.1432 0.1462 0.1455 0.1496 0.1337

The evaluation criteria in process layer of the case compo-
nent are selected frommanufacturing resources optimization
criteria and manufacturing resources execution criteria, as
shown in Fig. 1, i.e., T ,MC, Q, R, SN , SF and ST . As Fig. 4
shows, the case component can be completed by three key
processes and each process has to be completed by 4 kinds
of manufacturing resources. Themanufacturing data of these
criteria for the case component is shown in Table 7.

Step 2 Fuzzy process.
As mentioned in “Fuzzy process”, the novel IFSs based

subjective–objective hybrid fuzzy is applied to handle the
fuzzy phenomenon of MRA. The decision-makers imple-
ment the process in Fig. 3 to transform the value shown in
Table 7 to fuzzy value described in Table 2. The expected
interval of each criterion is shown in Table 8 for fuzzy pro-
cess. In addition, the normalization fuzzy decision matrix
which is composed of the fuzzy value in “The proposed IFIE–
TOPSIS method” can be found in the Tables 15, 16.

Step 3 Determine criteria weights by IFIE method.

IFIE method is proposed to determine the weights of
each criterion in process layer. Criteria weights are obtained
according to the details in “Weight obtaining method”.
Resulting weights of the process layer are given in Table
9.

Step 4 Evaluation MRA schema by hybrid IFIE-TOPSIS
approach.

In this step, the ranking result of MRA is obtained by the
proposed IFIE-TOPSIS approach. Theweighted normmatrix
in process layer is calculated according to formula (49). The
ranking result in process layer is computed according to “The
proposed IFIE-TOPSIS method” and is shown in Table 10.

Component layer

Based on the evaluation result of process layer and bill of
material (BOM) structure of the case component, the top 2
optimal resources in each process, i.e., R13 and R14 in pro-
cess 1, R21 and R24 in process 2, R34 and R32 in process 3,

Table 10 Ranking result in
process dimension Process 1 Process 2 Process 3

Resources Di
* Rank Resources Di

* Rank Resources Di
* Rank

R11 0.4004 3 R21 0.5965 1 R31 0.4450 4

R12 0.3807 4 R22 0.5131 3 R32 0.5193 2

R13 0.6019 1 R23 0.4989 4 R33 0.4455 3

R14 0.5425 2 R24 0.5221 2 R34 0.5463 1
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Table 11 Ranking result in component dimension

Resources combinations D* i Rank

(R13, R21, R34) 0.4003 6

(R13, R21, R32) 0.3791 7

(R13, R24, R34) 0.4992 3

(R13, R24, R32) 0.4542 5

(R14, R21, R34) 0.3041 8

(R14, R21, R32) 0.4808 4

(R14, R24, R34) 0.5911 1

(R14, R24, R32) 0.5264 2

are selected for component layer accumulation. As the case
component is completed by the three key processes, then the
selected 6 resources can be combined into 8 resources com-
binations, i.e., (R13, R21, R34), (R13, R21, R32), (R13, R24,
R34), (R13, R24, R32), (R14, R21, R34), (R14, R21, R32), (R14,
R24, R34), (R14, R24, R32). In this paper, for the simplifica-
tion of evaluating process, the 8 resources combinations are
evaluated in component layer. The evaluation step in compo-
nent layer is the same as the evaluation step in process layer
as represented in “Process layer”. The normalization fuzzy
decision matrix in component layer is shown in Table 16.
The ranking result in component layer is shown in Table 11.

Product layer

In order to simplify the problem, the top 2 optimal resources
combination schemes in each component are selected to be
evaluated in product layer. Based on the evaluation result
of component layer of the case component in Table 11, the
two chosen resources combination schemes of stacker belt
conveyor are (R14, R24, R34) and (R14, R24, R32). As shown
in Fig. 4, the case product is composed of three key com-
ponents. Based on the manufacturing data of the other two
components (see in Tables 18 and 19) and calculated as the
case component shown in “Process layer” and “Component
layer”, the two chosen resources combination schemes of
hydraulic lift are (R42, R51, R61) and (R42, R51, R64), as the
two chosen resources combination schemes of speed control
device are (R74, R81, R92) and (R73, R84, R92). Thus, there
are 8 resources combination schemes, i.e.,RC1 � {(R14,R24,
R34), (R42, R51, R61), (R74, R81, R92)}, RC2 � {(R14, R24,
R34), (R42, R51, R61), (R73, R84, R92)}, RC3 � {(R14, R24,
R34), (R42, R51, R64), (R74, R81, R92)}, RC4 � {(R14, R24,
R34), (R42, R51, R64), (R73, R84, R92)}, RC5 � {(R14, R24,
R32), (R42, R51, R61), (R74, R81, R92)}, RC6 � {(R14, R24,
R32), (R42, R51, R61), (R73, R84, R92)}, RC7 � {(R14, R24,
R32), (R42, R51, R64), (R74, R81, R92)}, RC8 � {(R14, R24,
R32), (R42,R51,R64), (R73,R84,R92)} to be evaluated in prod-
uct layer. The evaluation step of product layer is the same as

Table 12 Ranking result by IFIE-TOPSIS

Scheme Di
* Rank

RC1 0.6134 1

RC2 0.5195 3

RC3 0.5370 2

RC4 0.3549 5

RC5 0.3113 7

RC6 0.3429 6

RC7 0.2604 8

RC8 0.3959 4

the evaluation step of process layer as described in “Process
layer”. Note that criterion operating cost (OC) is classified
in operating cost criteria and it is only evaluated in product
layer. The normalization fuzzy decision matrix in product
layer is shown in Table 17. In addition, the ranking result in
product layer is shown in Table 12.

The final results of the proposed method are summarized
in Tables 12. The ranking order of resources combination
schemes to manufacture the case product is as follows:

RC1 > RC3 > RC2 > RC8 > RC4 > RC6 > RC5 > RC7.
Hence, it can conclude that the optimal resources combi-

nation scheme for the case product is RC1, i.e., {(R14, R24,
R34), (R42, R51, R64), (R74, R81, R92)}.

IFIE-TOPSIS compared with the traditional TOPSIS

The traditional TOPSIS approach, for which language val-
ues are calculated by formula (39) as the elements of the
normalization decision matrix and weights of criteria are
determined by information entropy, are compared with the
proposed IFIE-TOPSIS approach in this section. In the com-
paring test, the traditional TOPSIS approach is employed in
process layer, component layer and product layer to rank the
MRA schema for the same product evaluated in “Evalua-
tion process of three-layer criteria cumulative model”. The
details of traditional TOPSIS approach in each dimension are
introduced in “Classical TOPSIS method” and the steps of
weights determination by information entropy are detailed in
“Information entropy”. The manufacturing resources data to
be evaluated by the traditional TOPSIS approach is same as
the data calculated in “Evaluation process of three-layer cri-
teria cumulative model” and shown in Table 7. The selected
resources combination schemes to be evaluated in product
layer after evaluation in process layer and component layer
are shown inTable 13. The normalization real decisionmatrix
expressed by language value of these resources’ combination
schemes of each criterion in product layer are shown in Table
20. The optimal resources combination scheme evaluation by
the traditional TOPSIS is RC’7.
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Table 13 The selected resources combination schemes

Schemes Resources combinations

RC’1 (R14, R21, R31) (R42, R51, R63) (R74, R83, R91)

RC’2 (R14, R21, R31) (R42, R51, R63) (R72, R83, R91)

RC’3 (R14, R21, R31) (R42, R53, R63) (R74, R83, R91)

RC’4 (R14, R21, R31) (R42, R53, R63) (R72, R83, R91)

RC’5 (R13, R21, R31) (R42, R51, R63) (R74, R83, R91)

RC’6 (R13, R21, R31) (R42, R51, R63) (R72, R83, R91)

RC’7 (R13, R21, R31) (R42, R53, R63) (R74, R83, R91)

RC’8 (R13, R21, R31) (R42, R53, R63) (R72, R83, R91)

0

0.2

0.4

0.6

0.8

1
T

MC
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SN

SF
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OC

IFIE-TOPSIS TOPSIS AHP VIKOR

Fig. 5 Comparing of MRA schemes between IFIE-TOPSIS, TOPSIS,
AHP and VIKOR

Figure 5 illustrates the comparison of the ranked #1
resources combination schemes RC1 and RC’7, respectively,
ranked by the proposed IFIE-TOPSIS and the traditional
TOPSIS. Note that criteria T , MC and OC are cost crite-
ria, while the other criteria are beneficial criteria. In our
comparison test, linguistic value LDi-RC’7 are employed to
express the standard comparison value of RC’7 of beneficial
criteria. Membership degree uiRC1 are employed to express
the standard comparison value of RC1 of beneficial criteria.
The value (1-LDi-RC’7) are employed to express the stan-
dard comparison value of RC’7 of cost criteria. The values
(1-uiRC1) are employed to express the standard comparison
value of RC1 of cost criteria. Therefore, all criteria can be
considered as beneficial criteria in comparison test, which
means that the approach for the larger area of the graph
enclosed by the optimal resources combination scheme in
Fig. 5 is a better evaluation approach. The area of the graph

in Fig. 5 enclosed by the IFIE-TOPSIS is 1.23, enclosed
by TOPSIS is 0.91, enclosed by AHP is 0.84, enclosed by
VIKOR is 0.89. That means the proposed IFIE-TOPSIS is
more suitable than TOPSIS, AHP and VIKOR for evaluation
of MRA&CoPS in the proposed model.

Sensitivity analysis

Sensitivity analysis is a technique to observe the affection
of change from some parameters of model on other ele-
ments [51]. The evaluation data of each resources in Table 7,
Tables 18 and 19 are crisp number provided by resource sup-
pliers, while the data usually are fluctuation. Data of a certain
resource usually fluctuate near the corresponding area evalu-
ated in “Evaluation process of three-layer-criteria cumulative
model”. In this condition, there is a motivation to conduct a
sensitivity analysis to obtain the ranking under different val-
ues of each criterion in the final product layer in terms of the
traditional TOPSIS and the proposed IFIE-TOPSIS. For each
criterion, seven different sets of tests of each criterion of RC1

to RC8 for IFIE-TOPSIS sensitivity analysis and seven dif-
ferent set of linguistic value ofRC’1 toRC’8 of each criterion
for TOPSIS sensitivity analysis are calculated, while data of
other criteria are constant as evaluated in “Evaluation process
of three-layer criteria cumulative model” and “IFIE-TOPSIS
compared with the traditional TOPSIS”. Note that the sum
of corresponding change value of RC1 to RC8 for tests 2 ~
7 of each criterion is − 15%, − 10%, − 5%, 5%, 10% and
15% of the expected interval of the tested criterion in prod-
uct layer. In addition, the sum is randomly assigned to RC1

to RC8 in each test. Test 1 for each criterion is the ranking
result calculated in “Evaluation process of three-layer crite-
ria cumulative model”. The test value configuration principle
of RC1

′ to RC8
′ for traditional TOPSIS is same as RC1 to

RC8 for IFIE-TOPSIS.
Figure 6 depicts the change in ranking of MRA schemes

calculated by the TOPSIS and the proposed IFIE-TOPSIS in
product layer. The most frequent ranked #1 RC’ of each cri-
terion and the percentage of the ranked #1 times of the most
frequent ranked #1 RC’ to test times of each criterion for
traditional TOPSIS and IFIE-TOPSIS can be found in Table
14. For the TOPSIS approach, changing the linguistic value
of each criterion significantly changes the calculated MRA
scheme ranking from test to test. The percentage of the test
of criterion T ,Q, R, SN and SF for traditional TOPSIS are all
only 43%, while the percentage of the test of the same crite-
ria for IFIE-TOPSIS are 86%, 100%, 100%, 86% and 86%.
For the proposed IFIE-TOPSIS approach, it is clear that the
results are not sensitive to the changes of fuzzy value of each
criterion.AsTable 14 shows,RC1 is always themost frequent
ranked #1RC of the tests for each criterion,whileRC’4,RC’7
and RC’8 are the most frequent ranked #1 RC’ of tests of dif-
ferent criterion. Further, RC1 ranked #1 in all the seven tests
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Fig. 6 Sensitivity analysis with respect to different criterion TOPSIS and IFIE-TOPSIS

Table 14 Frequency of ranked #1 resources combination schemes for TOPSIS and IFIE-TOPSIS

Criterion T MC Q R SN SF ST OC

TOPSIS RC′ ranked #1
most times

RC’4 and
RC’8

RC’7 RC’8 RC’8 RC’7 and
RC’8

RC’7 and
RC’8

RC’8 RC’7

Ranked #1
times
(percentage)

3 (43%) 5 (71%) 3 (43%) 3 (43%) 3 (43%) 3 (43%) 4 (57%) 4 (57%)

IFIE-TOPSIS RC ranked #1
most times

RC1 RC1 RC1 RC1 RC1 RC1 RC1 RC1

Ranked #1
times
(percentage)

6 (86%) 7 (100%) 7 (100%) 7 (100%) 6 (86%) 6 (86%) 5 (71%) 7(100%)

of criterionMC,Q,R andOC. Figure 6 andTable 14 illustrate
the ranking changes for the TOPSIS and the IFIE-TOPSIS in
their test, and they clearly prove the IFIE-TOPSIS approach
is more robust than the TOPSIS with respect to the possible
statistical error of data of each criterion.

Conclusion

MRA is essential in manufacturing resources decision-
making of CoPS. However, the complex structure, long
lifecycle and combined explosion, as well as incompleteness

and fluctuation of decision information often resulted in
the manufacturing resources decision-making a challeng-
ing task. It is highly desired to obtain MRA schemes, in
terms of trade-off among CoPS’s manufacturing, operation
and maintenance from the viewpoint of CoPS’s lifecycle. In
this investigation, a MCDM model for MRA&CoPS is pro-
posed with considering lifecycle-oriented 8-tuple evaluation
criteria via three-layer accumulation. In addition, a hybrid
IFIE-TOPSIS method by combining information entropy
and TOPSIS has been extended in intuitionistic fuzzy envi-
ronment to deal with the proposed MRA&CoPS model.
The model is demonstrated with an example in a complex
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cement equipment manufacture company. Simulation results
and sensitivity analysis have shown the effectiveness and
superiority of proposed IFIE-TOPSIS method over classical
TOPSIS.

MRA decision-making is increasingly becoming an inte-
gral component of the fully functioning expert and intelligent
systems with applications across various manufacturing sys-
tems, especially for CoPS. Among various MRA models,
the proposed MRA&CoPS model pays attention to MRA
of CoPS with the viewpoint of trade-off among manufac-
turing, operation and maintenance of CoPS’s lifecycle. The
proposedmathematicalmodel canbe categorized as a straight
fuzzyMCDM (FMCDM) strategy according to themanufac-
turing resources evaluation framework. As a result, various
alternatives of manufacturing resources should be identified
to support different processes, components and products for
a CoPS. In practice, medium-/long-term contracts should be
made with the selected groups of manufacturing resources
suppliers for the stable cooperation.

In the aspect concerning the limitations of this paper,
it is important to notice that the 8-tuple evaluation crite-
ria performance is possibly changed dynamically. Further,
the proposed method stands in the view of manufacturers,
whereas the CoPS’s lifecycle involves other parts, such as
supplier, designer and costumer. Mover, the selected optimal
MRA is a constant result for CoPS, while some manufactur-
ing resources may change over time, such as the workers’
and production facilities’ productivity. Concerning the limi-
tations of this method proposed in previous, the suggestions
for further research are listed as follows.

(1) Adding time variable in the accumulation of indices
according to the change value of resources to adjust the
timeliness of evaluation.

(2) Making decision for MRA&CoPS with game perspec-
tive among multiple participants, such as supplier,
designer and costumer.

(3) Considering the change of some manufacturing
resources such as the productivity of workers and pro-
duction facilities and constructing a risking model for
the MRA evaluated by the proposed method in previous
section.
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Table 15 Normalization fuzzy decision matrix in process layer of the case component

Criteria Process 1 Process 2 Process 3

R11 R12 R13 R14 R21 R22 R23 R24 R31 R32 R33 R34

T (0.6, 0.3) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1) (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.8, 0.1) (0.6, 0.3) (0.6,0.3) (0.8,0.1)

MC (0.8, 0.1) (0.8, 0.1) (0.5, 0.4) (0.6, 0.3) (0.5, 0.4) (0.5, 0.4) (0.8, 0.1) (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0.5,0.4) (0.6,0.3)

Q (0.6, 0.3) (0.7, 0.2) (0.5, 0.4) (0.7, 0.2) (0.6, 0.3) (0.5, 0.4) (0.8, 0.1) (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.5,0.4) (0.6,0.3)

R (0.5, 0.4) (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3) (0.5, 0.4) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.7, 0.2) (0.7, 0.2)

SN (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.6, 0.3) (0.5, 0.4) (0.5, 0.4) (0.7, 0.2) (0.5, 0.4) (0.6, 0.3) (0.6, 0.3) (0.5, 0.4) (0.8, 0.1)

SF (0.7, 0.2) (0.5, 0.4) (0.5, 0.4) (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.5, 0.4) (0.5, 0.4) (0.5, 0.4) (0.6, 0.3) (0.5, 0.4)

ST (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) (0.7, 0.2) (0.7, 0.2) (0.7, 0.2) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1)

Table 16 Normalization fuzzy decision matrix in component layer of the case component

Resources
combinations

(R13, R21,
R34)

(R13, R21,
R32)

(R13, R24,
R34)

(R13, R24,
R32)

(R14, R21,
R34)

(R14, R21,
R32)

(R14, R24,
R34)

(R14, R24,
R32)

T (0.7, 0.2) (0.5, 0.4) (0.6, 0.3) (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1)

MC (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1)

Q (0.7, 0.2) (0.5, 0.4) (0.8, 0.1) (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1) (0.8, 0.1)

R (0.7, 0.2) (0.5, 0.4) (0.7, 0.2) (0.5, 0.4) (0.7, 0.2) (0.8, 0.1) (0.7, 0.2) (0.6, 0.3)

SN (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) (0.5, 0.4) (0.6, 0.3) (0.5, 0.4) (0.5, 0.4) (0.8, 0.1)

SF (0.5, 0.4) (0.6, 0.3) (0.6, 0.3) (0.7, 0.2) (0.6, 0.3) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1)

ST (0.7, 0.2) (0.5, 0.4) (0.5, 0.4) (0.6, 0.3) (0.7, 0.2) (0.8, 0.1) (0.6, 0.3) (0.7, 0.2)

Table 17 Normalization fuzzy decision matrix in product layer

Resources combinations RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8

T (0.8, 0.1) (0.6, 0.3) (0.7, 0.2) (0.7, 0.2) (0.8, 0.1) (0.6, 0.3) (0.7, 0.2) (0.5, 0.4)

MC (0.5, 0.4) (0.6, 0.3) (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1) (0.7, 0.2) (0.5, 0.4)

Q (0.5, 0.4) (0.6, 0.3) (0.7, 0.2) (0.6, 0.3) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1) (0.6, 0.3)

R (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.8, 0.1) (0.6, 0.3) (0.8, 0.1) (0.7, 0.2) (0.7, 0.2)

SN (0.7, 0.2) (0.8, 0.1) (0.8, 0.1) (0.5, 0.4) (0.6, 0.3) (0.7, 0.2) (0.5, 0.4) (0.5, 0.4)

SF (0.5, 0.4) (0.8, 0.1) (0.6, 0.3) (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.5, 0.4) (0.6, 0.3)

OC (0.7, 0.2) (0.7, 0.2) (0.6, 0.3) (0.5, 0.4) (0.5, 0.4) (0.7, 0.2) (0.6, 0.3) (0.7, 0.2)

ST (0.7, 0.2) (0.8, 0.1) (0.5, 0.4) (0.6, 0.3) (0.5, 0.4) (0.8, 0.1) (0.5, 0.4) (0.8, 0.1)

Table 18 The manufacturing data of the criteria for hydraulic lift

Process 1 Process 2 Process 3

R41 R42 R43 R44 R51 R52 R53 R54 R61 R62 R63 R64

T (h) 6.3 9.1 5.5 9.2 5.6 9.2 9.8 5.6 9.6 6.1 6.2 9.4

MC (¥ ) 216.5 218 202 204.5 202.5 204.5 216 202 203.5 203 203 205.5

Q 0.96 0.975 0.955 0.97 0.96 0.955 0.995 0.975 0.995 0.99 0.955 0.96

R 0.915 0.94 0.925 0.99 0.94 0.925 0.915 0.96 0.97 0.925 0.94 0.95

SN 0.75 0.94 0.96 0.7 0.65 0.65 0.78 0.67 0.69 0.7 0.66 0.98

SF 0.97 0.955 0.955 0.965 0.995 0.995 0.975 0.955 0.955 0.955 0.96 0.955

ST 0.85 0.81 0.96 0.9 0.9 0.9 0.96 0.85 0.82 0.81 0.95 0.97
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Table 19 The manufacturing data of the criteria for hydraulic lift

Process 7 Process 8 Process 9

R71 R72 R73 R74 R81 R82 R83 R84 R91 R92 R93 R94

T (h) 9.1 6.3 5.3 6.4 6.2 9.3 6.3 5.7 9.1 8 5.6 8.8

MC (¥ ) 205 217 215 217 207 204 213 214.5 215 204 216 212

Q 0.99 0.965 0.96 0.965 0.935 0.93 0.96 0.93 0.995 0.94 0.965 0.96

R 0.945 0.925 0.92 0.925 0.96 0.98 0.915 0.965 0.955 0.98 0.875 0.95

SN 0.75 0.65 0.8 0.7 0.65 0.74 0.7 0.7 0.7 0.65 0.7 0.55

SF 0.94 0.985 0.97 0.985 0.975 0.965 0.995 0.99 0.965 0.965 0.99 0.96

ST 0.95 0.95 0.82 0.95 0.95 0.81 0.83 0.9 0.6 0.95 0.8 0.84

Table 20 Normalization crisp
decision matrix in product
dimension for TOPSIS

Scheme RC’1 RC’2 RC’3 RC’4 RC’5 RC’6 RC’7 RC’8

T 0.50 0.49 0.68 0.67 0.25 0.25 0.43 0.43

MC 0.94 0.94 0.38 0.38 0.84 0.84 0.28 0.28

Q 0.75 0.75 0.73 0.73 0.74 0.74 0.72 0.72

R 0.40 0.40 0.56 0.56 0.01 0.01 0.16 0.16

SN 0.45 0.42 0.31 0.28 0.63 0.59 0.49 0.45

SF 0.77 0.77 0.75 0.75 0.76 0.76 0.74 0.74

OC 0.41 0.16 0.26 0.25 0.18 0.25 0.16 0.24

ST 0.4 0.48 0.32 0.56 0.4 0.48 0.24 0.4
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