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Abstract
Artificial neural network is revolutionizing business and everyday life, bringing us to the next level in artificial intelligence.
It has a unique ability to extract meaning from complex data to find patterns and detect trends that are too convoluted for the
human brain. This paper analyzes the artificial neural network impact on different computational organizations by using the
innovative structure of bipolar complex spherical fuzzy relation which is any subset of the Cartesian product of two bipolar
complex spherical fuzzy sets. This notion has a comprehensive structure that consists of membership grade, abstinence grade,
and non-membership grade. Furthermore, various kinds of bipolar complex spherical fuzzy relation with suitable examples
are given and some authentic results also have been proved. These newly defined structures are used to investigate the impact
of artificial neural network work on a variety of organizations. The innovative framework is also compared with the existing
structure in the field of fuzzy set theory to prove its superiority.
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Introduction

The ambiguity involved in any problem-solving condition
gives a result in form of some data inadequacy. It is also
found in the working of different organizations. To resolve
this problem and make the work more reliable and effective,
a new innovation in the history of mathematics was proposed
named the fuzzy set (FS) by Zadeh [1] in 1965. Each element
of an FS can be assigned a function whose range is in the unit
interval [0,1] which is called the membership grade (MG) of
an element. Klir and Folger [2] announced the concept of
relations in classical set theory. Classical relation only dis-
cusses yes and no situations. Mendel [3] conceived the idea
of fuzzy relation (FR) which is used to examine the relation-
ship between two or more FSs. FRs do not just answer yes
or no; they also determine the grade of a good relationship
between any two FSs. If the MG grade value is closer to
1, then they specify a good relationship, and the MG value
closer to 0 represents a poor-quality relationship. Torra [4]
developed the idea of FSs and introduced some basic opera-
tors. Laengle et al. [5] suggested a bibliometric assessment
of FSs by using the evolutionary algorithm. Remot et al. [6]
proposed the novel notion of the complex fuzzy set (CFS), in
which MG is determined by values from the complex plane.
Since the s of MG in a CFS are complex numbers, they are
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divided into two parts: amplitude and phase term. Further-
more, they also defined the complexFR (CFR).Chen et al. [7]
investigated a CFS-based neuro-fuzzy architecture. Shami
et al. [8] discussed the (2, 1)-Fuzzy sets: properties, weighted
aggregated operators and their applications to multi-criteria
decision-making methods. Ibrahim et al. [9] defined the (3,
2)-Fuzzy sets and their applications to topology and optimal
choices. Shami et al. [10] introduced the innovative general-
ization of fuzzy soft set. Shami et al. [11] explained the soft
relation (SR)-fuzzy sets and their applications to weighted
aggregated operators in decision making.

Atanassov [12] proposed the idea of the intuitionistic
fuzzy set (IFS). The IFS is a generalization form of FS
because FS discussed only theMGbut IFS discussed both the
MG and non-membership grade (non-MG). The sum of the
MG and non-MG contains the interval [0,1]. Vlachos and
Sergiadis [13] used the IFS in pattern recognition. Burillo
and Bustince [14] give the idea of intuitionistic FR (IFR).
Bustince [15] concocted the construction of IFR with prede-
termined properties. Alkouri et al. [16] proposed the concept
of a complex intuitionistic fuzzy set (CIFS). The CIFS shows
theMG and non-MG in the form of a complex number. Ngan
et al. [17] represented the CIFS with application to decision
making. Nasir et al. [18] used the complex intuitionistic FR
with the application of cyber security and cybercrime in the
oil and gas industries. Kumar et al. [19] defined the intuition-
istic fuzzy solid assignment difficulties. Kumar et al. [20]
discussed the method for solving type-1 and type-3 fuzzy
transportation harms. Kumar et al. [21] came up with a new
approach to resolve solid assignment difficulties under intu-
itionistic fuzzy environment.

Yager [22] created the new ideas of the Pythagorean fuzzy
set (PyFS) by changing the condition of IFSs. The PyFS
removed the limitation of IFS which extends the variety to
selectMGand non-MGby applying a new limit, i.e., the sum-
mation of the square of MG and non-MG must be a closed
unit interval, i.e., [0,1]. Ullah et al. [23] proposed the new
notion of the complex Pythagorean fuzzy set (CPyFS) with
application in pattern recognition. TheCPyFS gives the value
of MG and non-MG in the form of a complex number. Dick
et al. [24] gave the idea of CPyFS operations. Nasir et al. [25]
defined the idea of complex Pythagorean FR (CPyFR) with
the application of economic relationships. Yager et al. [26]
developed the idea of q-rung orthopair fuzzy set (qROFSs).
These set theories remove the constraints imposed by IFS and
PyFS theories, allowing to choose freely MG and non-MG.
In qROFSs, the sum of the nth power of MG and non-MG
must lie in [0,1], where n is a natural number. Jan et al.
[27] generalized qROFS with similarity measure applica-
tion. Garg et al. [28] introduced the complex q-rung orthopair
fuzzy set (CqROFS)with an aggregation operator. Nasir et al.
[29] proposed a novel concept of complex q-rung orthopair
FR (CqROFR) using the investigation of the financial track.

Cuong et al. [30] initiated the novel concept of picture fuzzy
set (PFS) which is the broader form of FS and IFS.

The PFS discussed the MG, AG, and non-MGs. The sum
of all of MG, AG, and non-MG lies in between the inter-
val [0,1]. Wang [31] defines the picture hesitant fuzzy set
with multiple criteria for decision making. Akram et al. [32]
proposed the complex picture fuzzy set (CPFS). The CPFS
is the more generalized form of CIFS. CPFS defines three
stages of an elementwith both amplitude term (AT) and phase
term (PT). Nasir et al. [33] introduced the complex picture
FR (CPFR) using the Cartesian product (CP) of two CPFS
with the application of network security.Mahmood et al. [34]
established the concept of spherical fuzzy set (SFS) with the
application of decision-making and medical diagnosis prob-
lems. The SFS increased the space of PFS and removed some
limitations for choosing the MG, AG, and non-MG. In SFS,
the sum of the square of MG, AG, and non-MG ranges in
the unit interval [0,1]. Guleria and Bajaj [35] used the con-
cept of SFS in the problem of decision making. Ali et al.
[36] discussed the complex spherical fuzzy set (CSFS). The
theory of CSFS is a mixture of two theories, i.e., CFS and
SFS. Nasir et al. [37] introduced the complex spherical FR
(CSFR) with the application of economic relationships and
international trade.

A new concept in fuzzy algebra was conducted by Zhang
et al. [38] who proposed the new concept of bipolar fuzzy
set (BFS) and bipolar FR (BFR). BFS is a more extensive
version of FS, with MG ranging from [0,1] to [− 1,1]. The
MG of BFS indicates the level of satisfaction with a qual-
ity equivalent to a fuzzy set and its associated property. The
elements fulfill the corresponding property when their MG
is (0,1], while some elements satisfy the equivalent counter
property when their MG is [− 1,0). In a BFS, positive MG
denotes what is guaranteed to be true, whereas negative MG
denotes what is certain to be false. Lee [39] presented the
bipolar valued fuzzy sets with some operations. Chen et al.
[40] generalized the extension of BFS. Dudziak et al. [41]
explained the equivalent bipolar FRs. Mahmood et al. [42]
proposed the novel structure of bipolar complex fuzzy set
(BCFS), by expanding the range of BFS to the domain of
complex numbers. In BCFS, both positive and negative MG
s are discussed in both amplitude term (AT) and phase term
(PT). Ezhilmaran and Sankar [43] presented the notion of a
bipolar intuitionistic fuzzy set (BIFS), which describes the
both possibility and the impossibility of MG and non-MG.
Mandal [44] introduced the bipolar Pythagorean fuzzy set
(BPyFS) with the application. The BPyFS is the generaliza-
tion form of BIFS because the BPyFS increased the space.
Sindhu et al. [45] developed the concept of a bipolar picture
fuzzy set (BPFS). The BPFS is the extended form of BFS
and BIFS. The BPFS also discussed the AG with possibility
and impossibility. Princy andMohana [46] proposed the nov-
elty concept of bipolar spherical fuzzy set (BSFS) with the
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application. The BSFS removed the limitations of BPFS and
select all stages of MG, AG, and non-MG with both effects
of positive and negative.

In this paper, a novel innovative framework of the bipolar
complex spherical fuzzy set (BCSFS) and theCPof twoBCS-
FSs is established. Furthermore, discussed the different types
of relations such as reflexive, symmetric, transitive, equiva-
lence relation, equivalence class, partial order, and strict order
with appropriate examples. Some reliable results have also
been proved. The novel structure of BCSFR is superior to all
pre-existing structures such as CFS, CIFS, CPyFS, CqROFS,
CPFS, CSFS, BFS, BCFS, BIFS, BPyFS, BqROFS, BPFS,
and BSFS. The benefit of this newly planned framework is it
explains all the s, i.e., MG, AG, and non-MG with possibil-
ity and impossibility. It includes all pre-defined components.
The BCSFR discussed all the stages in complex form, i.e.,
they also discussed the periodicity. This article also includes
an application of an artificial neural network (ANN),which is
a critical component of a digital system and can be used effec-
tively inmany organizations.ANN is the fastest in processing
information. Different organizations have improved perfor-
mance and development due to ANN. This new BCSFR
structure will be employed in various types of fields in the
future, including computer science, physics, sports science,
and economics.

The sequential framework of the paper is given as fol-
lows: “Preliminaries” discourses the pre-defined structures.
“Main result” presents the newly defined BCSFR structures
with suitable examples. “Application” defines a relationship
between ANN types and their organizations using BCS-
FRs. “Comparative analysis” compares the BCSFR with
pre-existing structures. The last section explains the conclu-
sion of the article.

Preliminaries

This section discusses some basic ideas of fuzzy algebra.

Definition 1 [1]: Let S be a universal set. Then, FS on S,
denoted by Q, is expressed as

Q = {(u, ϑ(u) : u ∈ S)}. (1)

Since ϑ(u) is a mapping of MG, defined as ϑ(u) : S →
[0, 1].
Definition 2 [6]: Let S be a universal set. Then, a CFS on S,
denoted by Q, is expressed as

Q =
{(

u, σϑ(u)e2πρϑ (u)i
)

: u ∈ S
}
. (2)

Since σϑ , ρϑ are AT and PT of MG, respectively, defined
as σϑ : S → [0, 1] and ρϑ : S → [0, 1].

Definition 3 [16]: Let S be a universal set. Then, a CIFS on
S, denoted by Q, is expressed as

Q =
{(

u, σϑ(u)e2πρϑ (u)i , σm(u)e2πρm (u)i
)

: u ∈ S
}
. (3)

Since σϑ , σm and ρϑ , ρm are AT and PT of MG and non-
MG, respectively, and defined as σϑ , σm : S → [0, 1] and
ρϑ , ρm : S → [0, 1].

Definition 4 [18]: Let Q =
{(

u,

(
σϑ(u)e2πρϑ (u)i

)
,(

σm(u)e2πρm (u)i
)
)

: u ∈ S

}

and E =
{(

b,

(
σϑ(b)e2πρϑ (b)i

)
,(

σm(b)e2πρm (b)i
)
)

: b ∈ S

}
be two CIFS on S.

Then, their Cartesian product (CP) is defined as

Q × E =
{
(u, b),

(
σϑ(u, b)e2πρϑ (u, b)i ),

(
σm(u, b)e2πρm (u, b)i

)
: u ∈ Q, b ∈ E

}
, (4)

where σϑ(u, b) = min{σϑ(u), σϑ(b)} and ρϑ(u, b) =
min{ρϑ(u), ρϑ(b)}, σm(u, b) = max{σm(u), σm(b)} and
ρm(u, b) = max{ρm(u), ρm(b)}.

The complex intuitionistic FR (CIFR) denoted by R is a
subset of the CP between two CIFSs.

Definition 5 [22]: Let S be a universal set. Then, a PyFS on
S, denoted by Q, is expressed as

Q = {(u, ϑ(u), m(u) : u ∈ S)}. (5)

Since ϑ(u) and m(u) is a mapping of MG and non-MG,
respectively, defined asϑ(u), m(u) : S → [0, 1]. On condi-
tion that 0 ≤ (ϑ(u))2 + (m(u))2 ≤ 1.

Definition 6 [32]: Let S be a universal set. Then, a CPFS on
S, denoted by Q, is expressed as

Q =
{(

u, σϑ(u)e2πρϑ (u)i , σλ(u)e2πρλ(u)i ,
σm(u)e2πρm(u)i

)
: u ∈ S

}
. (6)

Since σϑ , σλ, σm and ρϑ , ρλ, ρm are AT and PT of MG,
AG and non-MG respectively and defined as σϑ , σm , σλ :
S → [0, 1] and ρϑ , ρm , ρλ : S → [0, 1].
Definition 7 [36]: Let S be a universal set. Then, a CSFS on
S, denoted by Q, is expressed as

Q =
{(

u, σϑ(u)e2πρϑ (u)i , σλ(u)e2πρλ(u)i ,
σm(u)e2πρm (u)i

)
: u ∈ S

}
.

(7)

Since σϑ , σλ, σm and ρϑ , ρλ, ρm are AT and PT of MG,
AG and non-MG, respectively, and defined as σϑ , σm , σλ :
S → [0, 1] and ρϑ , ρm , ρλ : S → [0, 1].
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Definition 8 [38]: Let S be a universal set. Then, a BFS on
S, denoted by Q, is expressed as

Q = {(
u, ϑ+(u), ϑ−(u)

) : u ∈ S
}
. (8)

Since ϑ+(u), ϑ−(u) is a mapping of positive and negative
MG and defined as ϑ+(u) : S → [0, 1] and ϑ−(u): S →
[−1, 0].
Definition 9 [42]: Let S be a universal set. Then, a BCFS on
S, denoted by Q, is expressed as

Q =
{(

u,
(
σ+

ϑ (u) + iρ+
ϑ (u)

)
,(

σ−
ϑ (u) + iρ−

ϑ (u)
)

)
: u ∈ S

}
. (9)

Since σ+ and ρ+ are known as mappings of AT and PT of
positiveMG, respectively.σ− andρ− are knownasmappings
of AT and PT of negative MG, respectively. These terms
are defined as σ+ : S → [0, 1] and ρ+ : S → [0, 1],
σ− : S → [−1, 0] and ρ− : S → [−1, 0].
Definition 10 [43]: Let S be a universal set. Then, a BIFS
on S, denoted by Q, is expressed as

Q = {(
u,

(
ϑ+(u), ϑ−(u

)
),

(
m+(u), m−(u

)) : u ∈ S
}
.

(10)

Since ϑ+(u), m+(u) is a mapping of positive MG and
non-MG, respectively. ϑ−(u), m−(u) is a mapping of nega-
tive MG and non-MG, respectively. These terms are defined
as ϑ+(u) : S → [0, 1] and ϑ−(u):S → [−1, 0], m+(u) :
S → [0, 1] and m−(u):S → [−1, 0]. On condition that
0 ≤ ϑ+(u) + m+(u) ≤ 1 and −1 ≤ ϑ−(u) + m−(u) ≤ 0.

Definition 11 [44]: Let S be a universal set. Then, a BPyFS
on S, denoted by Q, is expressed as

Q = {(
u,

(
ϑ+(u), ϑ−(u

)
),

(
m+(u), m−(u

)) : u ∈ S
}
.

(11)

Since ϑ+(u), m+(u) is a mapping of positive MG and
non-MG, respectively. ϑ−(u), m−(u) is a mapping of nega-
tive MG and non-MG, respectively. These terms are defined
as ϑ+(u) : S → [0, 1] and ϑ−(u):S → [−1, 0], m+(u) :
S → [0, 1] and m−(u):S → [−1, 0]. On condition that
0 ≤ (

ϑ+(u)
)2 + (

m+(u)
)2 ≤ 1 and −1 ≤ (

ϑ−(u)
)2 +(

m−(u)
)2 ≤ 0.

Definition 12 [45]: Let S be a universal set. Then, a BPFS
on S, denoted by Q, is expressed as

Q =
{(

u,
(
ϑ+(u), ϑ−(u

)
),

(
λ+(u), λ−(u

)
,(

m+(u), m−(u
)

)
: u ∈ S

}
.

(12)

Since ϑ+(u), λ+(u), m+(u) is a mapping of positive
MG, AG and non-MG, respectively. ϑ−(u), λ−(u), m−(u)

is a mapping of negative MG, AG and non-MG, respec-
tively. These terms are defined as ϑ+(u) : S → [0, 1]
andϑ−(u):S → [−1, 0], , λ+(u) : S → [0, 1] andλ−(u) :
S → [−1, 0],m+(u) : S → [0, 1] andm−(u):S → [−1, 0].
On condition that 0 ≤ ϑ+(u) + λ+(u) + m+(u) ≤ 1 and
−1 ≤ ϑ−(u) + λ−(u) + m−(u) ≤ 0.

Definition 13 [46]: Let S be a universal set. Then, a BSFS
on S, denoted by Q, is expressed as

Q =
{(

u,
(
ϑ+(u), ϑ−(u

)
),

(
λ+(u), λ−(u

)
,(

m+(u), m−(u
)

)
: u ∈ S

}
.

(13)

Since ϑ+(u), λ+(u), m+(u) is a mapping of positive
MG, AG and non-MG, respectively. ϑ−(u), λ−(u), m−(u)

is a mapping of negative MG, AG and non-MG, respec-
tively. These terms are defined as ϑ+(u) : S → [0, 1]
and ϑ−(u):S → [−1, 0], , λ+(u) : S → [0, 1] and
λ−(u) : S → [−1, 0],m+(u) : S → [0, 1] andm−(u):S →
[−1, 0].Oncondition that 0 ≤ ϑ2+

(u)+λ2
+
(u)+m2+

(u) ≤
1 and −1 ≤ ϑ2−

(u) + λ2
−
(u) + m2−

(u) ≤ 0.

Main result

In this section, we discuss the BCSFS and the new idea of
BCSFR using the CP of two BCSFSs.

Definition 14 Let S be a universal set. Then, a BCSFS Q on
S is defined as

Q =
{
u,

(
σ+

ϑ (u) + iρ+
ϑ (u),

σ−
ϑ (u) + iρ−

ϑ (u)

)
,

(
σ+

λ (u) + iρ+
λ (u),

σ−
λ (u) + iρ−

λ (u)

)
,

(
σ+
m (u) + iρ+

m (u),
σ−
m (u) + iρ−

m (u)

)
: u ∈ Q

}
, (14)

with a condition 0 ≤ σ+
ϑ

2 + σ+
λ

2 + σ+
m

2 ≤ 1, 0 ≤ ρ+
ϑ

2 +
ρ+

λ

2 + ρ+
m
2 ≤ 1, −1 ≤ σ−

ϑ

2 + σ−
λ

2 + σ−
m

2 ≤ 0 and −1 ≤
ρ−

ϑ

2 + ρ−
λ

2 + ρ−
m
2 ≤ 0, where σ+

ϑ , ρ+
ϑ , σ+

λ , ρ+
λ , σ+

m , ρ+
m :

S → [0, 1] are ATs and PTs of MG, AG and non-MG of
positive mappings, respectively. In addition, σ−

ϑ , ρ−
ϑ , σ−

λ ,
ρ−

λ , σ−
m , ρ−

m : S → [−1, 0] are ATs and PTs of MG, AG
and non-MG of negative mappings, respectively.

Example1 The S =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
s1,

(
0.63 + 0.51i ,

−0.31 − 0.41i

)
,

(
0.43 + 0.61i ,

−0.36 − 0.24i

)
,

(
0.34 + 0.31i ,

−0.49 − 0.29i

))
,

(
s2 ,

(
0.63 + 0.74i ,

−0.42 − 0.54i

)
,

(
0.53 + 0.32i ,

−0.36 − 0.14i

)
,

(
0.39 + 0.59i ,

−0.23 − 0.43i

))

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

is a BCSFS.

Definition 15 Take two BCSFSs:
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B =

⎧⎪⎨
⎪⎩
b,

⎛
⎜⎝

σ+
ϑ (b) + iρ+

ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

⎞
⎟⎠,

⎛
⎜⎝

σ+
λ (b) + iρ+

λ (b),

σ−
λ (b) + iρ−

λ (b)

⎞
⎟⎠,

⎛
⎜⎝

σ+
m (b) + iρ+

m (b),

σ−
m (b) + iρ−

m (b)

⎞
⎟⎠ : b ∈ Q

⎫⎪⎬
⎪⎭
,

and

C =

⎧⎪⎨
⎪⎩
c,

⎛
⎜⎝

σ+
ϑ (c) + iρ+

ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

⎞
⎟⎠,

⎛
⎜⎝

σ+
λ (c) + iρ+

λ (c),

σ−
λ (c) + iρ−

λ (c)

⎞
⎟⎠,

⎛
⎜⎝

σ+
m (c) + iρ+

m (c),

σ−
m (c) + iρ−

m (c)

⎞
⎟⎠ : c ∈ Q

⎫⎪⎬
⎪⎭

.

Then, their cartesian product is defined as follows:

B × C =

⎧⎪⎨
⎪⎩

( b, c)

⎛
⎜⎝

σ+
ϑ (b, c) + iρ+

ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

⎞
⎟⎠,

⎛
⎜⎝

σ+
λ (b, c) + iρ+

λ (b),

σ−
λ (b, c) + iρ−

λ (b)

⎞
⎟⎠,

⎛
⎜⎝

σ+
m (b, c) + iρ+

m (b, c),

σ−
m (b, c) + iρ−

m (b, c)

⎞
⎟⎠ : b ∈ Q

⎫⎪⎬
⎪⎭
,

where σ+
ϑ (b, c) = min

{
σ+

ϑ (b), σ+
ϑ (c)

}
, ρ+

ϑ (b, c) =
min

{
ρ+

ϑ (b), ρ+
ϑ (c)

}
, σ−

ϑ (b, c) = max
{
σ−

ϑ (b), σ−
ϑ (c)

}
,

ρ−
ϑ (b, c) = max

{
ρ−

ϑ (b), ρ−
ϑ (c)

}
, σ+

λ (b, c) =
min

{
σ+

λ (b), σ+
λ (c)

}
, ρ+

λ (b, c) = min
{
ρ+

λ (b), ρ+
λ (c)

}
,

σ−
λ (b, c) = max

{
σ−

λ (b), σ−
λ (c)

}
, ρ−

λ (b, c) =
max

{
ρ−

λ (b), ρ−
λ (c)

}
, σ+

m (b, c) = max
{
σ+
m (b), σ+

m (c)
}
,

ρ+
m (b, c) = max

{
ρ+
m (b, c), ρ+

m (b, c))
}
, σ−

m (b, c) =
min

{
σ−
m (b), σ−

m (c)
}
, ρ−

m (b, c) = min
{
ρ−
m (b), ρ−

m (c))
}
.

Example 2 Let a BCSFS T on F be expressed as

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝t1,

⎛
⎜⎝

0.69 + 0.34i ,

−0.21 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.45 + 0.59i ,

−0.33 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝t2,

⎛
⎜⎝

0.55 + 0.43i ,

−0.13 − 0.25i

⎞
⎟⎠,

⎛
⎜⎝

0.48 + 0.49i ,

−0.30 − 0.38i

⎞
⎟⎠,

⎛
⎜⎝

0.29 + 0.30i ,

−0.12 − 0.19i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝t3,

⎛
⎜⎝

0.49 + 0.43i ,

−0.29 − 0.34i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.33i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.25i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝t4,

⎛
⎜⎝
0.88 + 0.79i ,

−0.23 − 0i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.25 + 0.43i ,

−0.12 − 0.12i

⎞
⎟⎠

⎞
⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Then, the CP is

T × T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝(t1, t1),

⎛
⎜⎝

0.69 + 0.34i ,

−0.21 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.45 + 0.59i ,

−0.33 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t1, t2),

⎛
⎜⎝

0.55 + 0.34i ,

−0.13 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.45 + 0.49i ,

−0.30 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t1, t3),

⎛
⎜⎝

0.49 + 0.34i ,

−0.21 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.43i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t1, t4),

⎛
⎜⎝

0.69 + 0.34i ,

−0.21 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t2, t1),

⎛
⎜⎝

0.55 + 0.34i ,

−0.13 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.45 + 0.49i ,

−0.30 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t2, t2),

⎛
⎜⎝

0.55 + 0.43i ,

−0.13 − 0.25i

⎞
⎟⎠,

⎛
⎜⎝

0.48 + 0.49i ,

−0.30 − 0.38i

⎞
⎟⎠,

⎛
⎜⎝

0.29 + 0.30i ,

−0.12 − 0.19i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t2, t3),

⎛
⎜⎝

0.49 + 0.43i ,

−0.13 − 0.25i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.33i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.30i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t2, t4),

⎛
⎜⎝

0.55 + 0.43i ,

−0.13 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.29 + 0.43i ,

−0.12 − 0.19i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t3, t1),

⎛
⎜⎝

0.49 + 0.34i ,

−0.21 − 0.02i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.43i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t3, t2),

⎛
⎜⎝

0.49 + 0.43i ,

−0.13 − 0.25i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.33i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.30i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t3, t3),

⎛
⎜⎝

0.49 + 0.43i ,

−0.29 − 0.34i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.46i ,

−0.04 − 0.33i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.25i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t3, t4),

⎛
⎜⎝

0.49 + 0.43i ,

−0.23 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.36i ,

−0.04 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.43i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t4, t1),

⎛
⎜⎝

0.69 + 0.34i ,

−0.21 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.17i

⎞
⎟⎠,

⎛
⎜⎝

0.38 + 0.43i ,

−0.23 − 0.29i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t4, t2),

⎛
⎜⎝

0.55 + 0.43i ,

−0.13 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.29 + 0.43i ,

−0.12 − 0.19i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t4, t3),

⎛
⎜⎝

0.49 + 0.43i ,

−0.23 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.30 + 0.36i ,

−0.04 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.51 + 0.43i ,

−0.24 − 0.34i

⎞
⎟⎠

⎞
⎟⎠,

⎛
⎜⎝(t4, t4),

⎛
⎜⎝

0.88 + 0.79i ,

−0.23 − 0.00i

⎞
⎟⎠,

⎛
⎜⎝

0.35 + 0.36i ,

−0.30 − 0.29i

⎞
⎟⎠,

⎛
⎜⎝

0.25 + 0.43i ,

−0.12 − 0.12i

⎞
⎟⎠

⎞
⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (15)
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Definition 16 A BCSFR denoted by R is a subset of the CP
of two or more BCSFSs.

Example 3 Take a subset of the CP of the BCSFS from
Eq. (15). The BCSFR R is

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(t1, t1),

(
0.69 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.45 + 0.59i ,
−0.33 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t2, t3),

(
0.49 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.30i ,
−0.24 − 0.34i

))
,

(
(t3, t1),

(
0.49 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.17i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t3, t3),

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))
,

(
(t4, t4),

(
0.88 + 0.79i ,
−0.23 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.29i

)
,

(
0.25 + 0.43i ,
−0.12 − 0.12i

))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (16)

Definition17 ABCSFRR is aBCS reflexiveFRonaBCSFS
Q if it is

∀
(
b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

))
∈ Q

⇒
(

(b, b),

(
σ+

ϑ (b, b) + iρ+
ϑ (b, b),

σ−
ϑ (b, b) + iρ−

ϑ (b, b)

)
,

(
σ+

λ (b, b) + iρ+
λ (b, b),

σ−
λ (b, b) + iρ−

λ (b, b)

)
,

(
σ+
m (b, b) + iρ+

m (b, b),
σ−
m (b, b) + iρ−

m (b, b)

))
∈ R.

Definition 18 ABCSFR R is a BCS inverse FR on a BCSFS
Q if it is

∀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Q.

If

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

⇒
(

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R−1.
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Definition 19 A BCSFR R is a BCS irreflexive FR on a
BCSFS Q if it is

∀
(
b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

))
∈ Q

⇒
(

(b, b),

(
σ+

ϑ (b, b) + iρ+
ϑ (b, b),

σ−
ϑ (b, b) + iρ−

ϑ (b, b)

)
,

(
σ+

λ (b, b) + iρ+
λ (b, b),

σ−
λ (b, b) + iρ−

λ (b, b)

)
,

(
σ+
m (b, b) + iρ+

m (b, b),
σ−
m (b, b) + iρ−

m (b, b)

))
/∈ R.

Definition 20 A BCSFR R is a BCS symmetric FR on a
BCSFS Q if it is

∀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Q

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

) )
∈

R ⇒
(

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

) )
∈ R

Definition 21 A BCSFR R is a BCS antisymmetric FR on a
BCSFS Q if it is

∀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Q

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

) )
∈ R

and

(
(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

) )
∈ R

⇒

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Definition 22 A BCSFR R is a BCS transitive FR on a
BCSFS Q if it is

∀

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d,

(
σ+

ϑ (d) + iρ+
ϑ (d),

σ−
ϑ (d) + iρ−

ϑ (d)

)
,

(
σ+

λ (d) + iρ+
λ (d),

σ−
λ (d) + iρ−

λ (d)

)
,

(
σ+
m (d) + iρ+

m (d),
σ−
m (d) + iρ−

m (d)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Q.

Then,

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

and

(
(c, d),

(
σ+

ϑ (c, d) + iρ+
ϑ (c, d),

σ−
ϑ (c, d) + iρ−

ϑ (c, d)

)
,

(
σ+

λ (c, d) + iρ+
λ (c, d),

σ−
λ (c, d) + iρ−

λ (c, d)

)
,

(
σ+
m (c, d) + iρ+

m (c, d),
σ−
m (c, d) + iρ−

m (c, d)

))
∈ R

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R.

Definition 23 A BCSFR R is a BCS equivalence FR on a
BCSFS Q if

• BCS reflexive FR
• BCS symmetric FR
• BCS transitive FR
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Example 4 Take the following relation from Example 2:

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(t1, t1),

(
0.69 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.45 + 0.59i ,
−0.33 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t2, t2),

(
0.55 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.48 + 0.49i ,
−0.30 − 0.38i

)
,

(
0.29 + 0.30i ,
−0.12 − 0.19i

))
,

(
(t3, t3),

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))
,

(
(t3, t4),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t4, t3),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t4, t4),

(
0.88 + 0.79i ,
−0.23 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.29i

)
,

(
0.25 + 0.43i ,
−0.12 − 0.12i

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (17)

is an BCS equivalence FR.

Definition 24 A BCSFR R is a BCS pre-order FR on a
BCSFS Q if it is

• BCS reflexive FR
• BCS transitive FR

Definition 25 A BCSFR R is a BCS partial order FR on a
BCSFS Q if

• BCS reflexive FR
• BCS antisymmetric FR
• BCS transitive FR

Example 5 Take a following relation from Example 2:

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(t1, t1),

(
0.69 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.45 + 0.59i ,
−0.33 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t1, t2),

(
0.55 + 0.34i ,
−0.13 − 0.02i

)
,

(
0.45 + 0.49i ,
−0.30 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t2, t2),

(
0.55 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.48 + 0.49i ,
−0.30 − 0.38i

)
,

(
0.29 + 0.30i ,
−0.12 − 0.19i

))
,

(
(t3, t3),

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))
,

(
(t3, t4),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t4, t4),

(
0.88 + 0.79i ,
−0.23 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.29i

)
,

(
0.25 + 0.43i ,
−0.12 − 0.12i

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (18)

is an BCS partial order FR.

123



Complex & Intelligent Systems (2023) 9:4591–4614 4601

Definition 26 A BCSFR R is a BCS strict-order FR on a
BCSFS Q if it is

• BCS irreflexive FR
• BCS transitive FR

Example 6 Take a relation from Eq. (15):

R =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(t1, t2),

(
0.55 + 0.34i ,
−0.13 − 0.02i

)
,

(
0.45 + 0.49i ,
−0.30 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t1, t3),

(
0.49 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.17i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t1, t4),

(
0.69 + 0.34i ,
−0.21 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t2, t3),

(
0.49 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.30i ,
−0.24 − 0.34i

))
,

(
(t3, t4),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)

is an BCS strict-order FR.

Definition 27 A BCSFR R is a BCS complete FR on a
BCSFS Q if it is

∀
(
b,

(
σ+

ϑ (b) + iρ+
ϑ (b),

σ−
ϑ (b) + iρ−

ϑ (b)

)
,

(
σ+

λ (b) + iρ+
λ (b),

σ−
λ (b) + iρ−

λ (b)

)
,

(
σ+
m (b) + iρ+

m (b),
σ−
m (b) + iρ−

m (b)

))
,

(
c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (a) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

))
∈ Q

⇒
(

(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R.

Or

(
(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R.
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Definition 28 A BCSFR R is a BCS linear order FR on a
BCSFS Q if

• BCS reflexive FR
• BCS antisymmetric FR
• BCS transitive FR
• BCS complete FR

Definition 32 Let R1 and R2 be the BCSFR on a BCSFS.
Then, the BCS composite FR R1 ◦ R2 is expressed as

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R1

and

(
(c, d),

(
σ+

ϑ (c, d) + iρ+
ϑ (c, d),

σ−
ϑ (c, d) + iρ−

ϑ (c, d)

)
,

(
σ+

λ (c, d) + iρ+
λ (c, d),

σ−
λ (c, d) + iρ−

λ (c, d)

)
,

(
σ+
m (c, d) + iρ+

m (c, d),
σ−
m (c, d) + iρ−

m (c, d)

))
∈ R2

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R1 ◦ R2.

Definition 29 Let BCSF equivalence class of b mod R is
defined as

R[b] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
c,

(
σ+

ϑ (c) + iρ+
ϑ (c),

σ−
ϑ (c) + iρ−

ϑ (c)

)
,

(
σ+

λ (c) + iρ+
λ (c),

σ−
λ (c) + iρ−

λ (c)

)
,

(
σ+
m (c) + iρ+

m (c),
σ−
m (c) + iρ−

m (c)

))
:

(
(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Example 7 Take a BCS-equivalence class from Example 2:

R =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(t1, t1),

(
0.69 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.45 + 0.59i ,
−0.33 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))
,

(
(t2, t2),

(
0.55 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.48 + 0.49i ,
−0.30 − 0.38i

)
,

(
0.29 + 0.30i ,
−0.12 − 0.19i

))
,

(
(t3, t3),

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))
,

(
(t3, t4),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t4, t3),

(
0.49 + 0.43i ,
−0.23 − 0.00i

)
,

(
0.30 + 0.36i ,
−0.04 − 0.29i

)
,

(
0.51 + 0.43i ,
−0.24 − 0.34i

))
,

(
(t4, t4),

(
0.88 + 0.79i ,
−0.23 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.29i

)
,

(
0.25 + 0.43i ,
−0.12 − 0.12i

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

123



Complex & Intelligent Systems (2023) 9:4591–4614 4603

Then, modulo class of each element specified as

R[t1] =
{(

t1,

(
0.69 + 0.34i ,
−0.21 − 0.02i

)
,

(
0.45 + 0.59i ,
−0.33 − 0.17i

)
,

(
0.38 + 0.43i ,
−0.23 − 0.29i

))}

R[t2] =
{(

t2,

(
0.55 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.48 + 0.49i ,
−0.30 − 0.38i

)
,

(
0.29 + 0.30i ,
−0.12 − 0.19i

))
,

}

R[t3] =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t2,

(
0.55 + 0.43i ,
−0.13 − 0.25i

)
,

(
0.48 + 0.49i ,
−0.30 − 0.38i

)
,

(
0.29 + 0.30i ,
−0.12 − 0.19i

))
,

(
t3,

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

R[t4] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t3,

(
0.49 + 0.43i ,
−0.29 − 0.34i

)
,

(
0.30 + 0.46i ,
−0.04 − 0.33i

)
,

(
0.51 + 0.25i ,
−0.24 − 0.34i

))

(
t4,

(
0.88 + 0.79i ,
−0.23 − 0.00i

)
,

(
0.35 + 0.36i ,
−0.30 − 0.29i

)
,

(
0.25 + 0.43i ,
−0.12 − 0.12i

))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Theorem 1 Let F be a BCSFR on X, and Rbe a BCSFR on
F. Then, R is a BCS symmetric FR on F iff R = R−1.

Proof Assume that R is a BCS symmetric FR on F,

⇒
(

(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

⇐⇒
(

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R.

In addition,

(
(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R−1

⇒ R = R−1.
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Now, suppose that R = R−1, then

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

⇐⇒
(

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R−1

⇐⇒
(

(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R

⇒ Ris a BCS symmetric FR on F .

Theorem 2 Let F be a BCSFS on X and Rbe a BCSFR on
X. Then, Ris a BCSF transitive FR on F iff R ◦ R ⊆ R.

Proof Assume that R is a BCS transitive FR on a BCSFS F.
Let

(
(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R ◦ R

For any

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

and

(
(c, d),

(
σ+

ϑ (c, d) + iρ+
ϑ (c, d),

σ−
ϑ (c, d) + iρ−

ϑ (c, d)

)
,

(
σ+

λ (c, d) + iρ+
λ (c, d),

σ−
λ (c, d) + iρ−

λ (c, d)

)
,

(
σ+
m (c, d) + iρ+

m (c, d),
σ−
m (c, d) + iρ−

m (c, d)

))
∈ R

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R

⇒ R ◦ R ⊆ R.

123



Complex & Intelligent Systems (2023) 9:4591–4614 4605

Conversely, suppose that R ◦ R ⊆ R then by BCS com-
posite FR,

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

and

(
(c, d),

(
σ+

ϑ (c, d) + iρ+
ϑ (c, d),

σ−
ϑ (c, d) + iρ−

ϑ (c, d)

)
,

(
σ+

λ (c, d) + iρ+
λ (c, d),

σ−
λ (c, d) + iρ−

λ (c, d)

)
,

(
σ+
m (c, d) + iρ+

m (c, d),
σ−
m (c, d) + iρ−

m (c, d)

))
∈ R

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R ◦ R.

Since R ◦ R ⊆ R

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

λ (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R.

Thus, R is a BCS transitive FR.

Theorem 3 Let Qbe a BCSFS on Xand Rbe a BCS equiv-
alence relation on Q.

Then, R ◦ R = R.

Proof Assume R is a BCS equivalence FR on Q, for

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R.

Then, by the definition of symmetric

(
(c, b),

(
σ+

ϑ (c, b) + iρ+
ϑ (c, b),

σ−
ϑ (c, b) + iρ−

ϑ (c, b)

)
,

(
σ+

λ (c, b) + iρ+
λ (c, b),

σ−
λ (c, b) + iρ−

λ (c, b)

)
,

(
σ+
m (c, b) + iρ+

m (c, b),
σ−
m (c, b) + iρ−

m (c, b)

))
∈ R.

Now, by the definition of transitivity,

(
(b, b),

(
σ+

ϑ (b, b) + iρ+
ϑ (b, b),

σ−
ϑ (b, b) + iρ−

ϑ (b, b)

)
,

(
σ+

λ (b, b) + iρ+
λ (b, b),

σ−
λ (b, b) + iρ−

λ (b, b)

)
,

(
σ+
m (b, b) + iρ+

m (b, b),
σ−
m (b, b) + iρ−

m (b, b)

))
∈ R.
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But, according to the definition of BCS composite FR,

(
(b, b),

(
σ+

ϑ (b, b) + iρ+
ϑ (b, b),

σ−
ϑ (b, b) + iρ−

ϑ (b, b)

)
,

×
(

σ+
λ (b, b) + iρ+

λ (b, b),
σ−

λ (b, b) + iρ−
λ (b, b)

)
,

(
σ+
m (b, b) + iρ+

m (b, b),
σ−
m (b, b) + iρ−

m (b, b)

))

∈ R ◦ R. ⇒ R ⊆ R ◦ R. (20)

Conversely, suppose that

(
(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

×
(

σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R ◦ R.

Then, ∃ c ∈ X �

(
(b, c),

(
σ+

ϑ (b, c) + iρ+
ϑ (b, c),

σ−
ϑ (b, c) + iρ−

ϑ (b, c)

)
,

(
σ+

λ (b, c) + iρ+
λ (b, c),

σ−
λ (b, c) + iρ−

λ (b, c)

)
,

(
σ+
m (b, c) + iρ+

m (b, c),
σ−
m (b, c) + iρ−

m (b, c)

))
∈ R

and

(
(c, d),

(
σ+

ϑ (c, d) + iρ+
ϑ (c, d),

σ−
ϑ (c, d) + iρ−

ϑ (c, d)

)
,

(
σ+

λ (c, d) + iρ+
λ (c, d),

σ−
λ (c, d) + iρ−

λ (c, d)

)
,

(
σ+
m (c, d) + iρ+

m (c, d),
σ−
m (c, d) + iρ−

m (c, d)

))
∈ R

⇒
(

(b, d),

(
σ+

ϑ (b, d) + iρ+
ϑ (b, d),

σ−
ϑ (b, d) + iρ−

ϑ (b, d)

)
,

(
σ+

λ (b, d) + iρ+
λ (b, d),

σ−
λ (b, d) + iρ−

λ (b, d)

)
,

(
σ+
m (b, d) + iρ+

m (b, d),
σ−
m (b, d) + iρ−

m (b, d)

))
∈ R,

because Ris a BCS equivalence FR and thus BCS transitive
relation, i.e.,

R ◦ R ⊆ R (21)

Equations (20) and (21) imply that R ◦ R = R.

Application

This section introduces an application based on the unique
structure of BCSFR. There is a wide range of the application
of the neural network into the different sectors [47–51].

Artificial neural network (ANN)

ANN is an organically stimulated network of artificial neu-
trons constructed to accomplish definite tasks. It is based
on an assembly of connected units called artificial neurons,
which loosely model the neurons in a biological brain (See
Fig. 1). It also used in machine learning that work in alike
fashion to the human nervous system. ANN uses the process-
ing of the brain as a basis to develop procedures that can be
used to model complex problems and prediction problems.

There is a control unit which monitors all other activities of
computing. They have hidden layers and data enter through
input nodes and exit through output nodes. Figure 1 shows
the work procedures of ANN.

There are several kinds of ANN and is used in business for
different purposes. In terms of utility, it has become compet-
itive with traditional regression and statistical models. Many
organizations are investing in the ANN to solve problem in
variety of industries. Figure 2 briefly explains the algorithm
of preceding application.

Some types of ANN are discussed below, each value
of ANN defines the three levels i.e., MG describes the
effectiveness, AG means no effect and non-MG means
ineffectiveness. The positive and negative values show the
possibility and impossibility of all stages.

i. Feedforward neural network (FNN): FNN is used
relations between independent variables, which assist as
inputs to the network, and dependent variables that are
chosen as crops of the network. The data pass through
the input nodes and exit on the output nodes. These are
found in computer vision and speech recognition where
categorizing the target classes is intricate:

(
n1,

(
0.39 + 0.45i ,
−0.31 − 0.12i

)
,

(
0.65 + 0.49i ,
−0.39 − 0.29i

)
,

(
0.33 + 0.32i ,
−0.43 − 0.15i

))
.

Hidden Layers Input Layer 
Output Layer 

Fig. 1 Procedures of ANN
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Types of ANN

Organizations which are using ANN

Assign grades to each factor

CP

Read the information

Fig. 2 Algorithm of application

The value n1 corresponds to the value of FNN and
describes possibility and impossibility of each level.

ii. Recurrent neural network (RNN):TheRNNworks on
the principle of saving the output of a layer and feeding
this back to the input to help in foreseeing the outcome
of the layer. In the computation process, each neuron
will act as a memory cell. The RNN can originate in
text to speech conversion model.

(
n2,

(
0.29 + 0.22i ,
−0.33 − 0.39i

)
,

(
0.44 + 0.38i ,
−0.29 − 0.27i

)
,

(
0.58 + 0.44i ,
−0.39 − 0.09i

))
.

The second value n2 explains the numerical value of
RNN given by experts on the basis of performance and
working.

iii. Modular neural network (MNN): TheMNN has been
used to break a large computational process into smaller
components by declining the complication. Several
independent neural networks are trained concurrently
for a specific sub task and their results are united at the
end to perform a single task:

Types of 
ANN 

Feedforward 
neural 

network 
(FNN)

Modular 
neural 

network 
(MNN)

Convolutional 
neural network 

(CNN)

Recurrent 
neural 

network 
(RNN)

Fig. 3 Summary of ANN types

(
n3,

(
0.54 + 0.37i ,
−0.33 − 0.00i

)
,

(
0.44 + 0.44i ,
−0.22 − 0.40i

)
,

(
0.28 + 0.01i ,
−0.49 − 0.34i

))
.

The above value explains theMG,AG and non-MGwith
effect of advantage and disadvantage corresponding to
MNN.

iv. Convolutional neural network (CNN): CNN has been
used in signal and image processing which takes over
open CV in the field of computer vision. CNN helps the
network to recall the images in parts and can calculate
the processes. CNN is used to reduce the images into a
formwhich is easier to process,without losing structures
which are critical for getting a good calculation. It is
widely used for image recognition:

(
n4,

(
0.88 + 0.34i ,
−0.22 − 0.02i

)
,

(
0.29 + 0.59i ,
−0.41 − 0.17i

)
,

(
0.10 + 0.43i ,
−0.57 − 0.29i

))
.

Now, summary of all types of ANN is shown in Fig. 3.
Let the set corresponding to value of each ANN be

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n1,

(
0.39 + 0.45i ,
−0.31 − 0.12i

)
,

(
0.65 + 0.49i ,
−0.39 − 0.29i

)
,

(
0.33 + 0.32i ,
−0.43 − 0.15i

))
,

(
n2,

(
0.29 + 0.22i ,
−0.33 − 0.39i

)
,

(
0.44 + 0.38i ,
−0.29 − 0.27i

)
,

(
0.58 + 0.44i ,
−0.39 − 0.09i

))
,

(
n3,

(
0.54 + 0.37i ,
−0.33 − 0.00i

)
,

(
0.44 + 0.44i ,
−0.22 − 0.40i

)
,

(
0.28 + 0.01i ,
−0.49 − 0.34i

))
,

(
n4,

(
0.88 + 0.34i ,
−0.22 − 0.02i

)
,

(
0.29 + 0.59i ,
−0.41 − 0.17i

)
,

(
0.10 + 0.43i ,
−0.57 − 0.29i

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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Table 1 Summary of organizations

Organizations Abbreviations

Security λ1

eCommerce λ2

Finance λ3

Education λ4

Organizations that are heavily based on ANN

ANN has the ability to learn and model non-linear relations,
that is actually significant in real life. There are many perfor-
mance developments in various organizations due to ANN.
Table 1 shows some organizations that are taken into consid-
eration.

i. Security (λ1): ANN is often the perfect candidate
and processes that rely on security. It is widely used
for protection from computer viruses, fraud etc. ANN
is designed to protect your network for unauthorized
access and the latest cyber threats. λ

(
λ1,

(
0.31 + 0.42i ,
−0.11 − 0.26i

)
,

(
0.59 + 0.40i ,
−0.29 − 0.10i

)
,

(
0.46 + 0.29i ,
−0.30 − 0.50i

))
.

ii. eCommerce (λ2): This technology is used in this orga-
nizations for various purposes. ANN in eCommerce is
personalizing the purchaser experience. CNN used to
resize the images of the items, and analyzes the charac-
teristics of certain items and shows similar ones:

(
λ2,

(
0.67 + 0.31i ,
−0.24 − 0.12i

)
,

(
0.49 + 0.20i ,
−0.19 − 0.44i

)
,

(
0.37 + 0.57i ,
−0.48 − 0.73i

))
.

iii. Finance (λ3): ANN helps banks to find solutions for
business issues analyzing risk and probable profits.
ANN is used for fraud detection, management and fore-
casting in finance industry.

(
λ3,

(
0.80 + 0.43i ,
−0.19 − 0.05i

)
,

(
0.45 + 0.09i ,
−0.59 − 0.27i

)
,

(
0.23 + 0.50i ,
−0.41 − 0.69i

))
.

iv. Education (λ4): ANN is a relatively new methodolog-
ical approach in the areas of learning and education.
ANNdiscusses recommendations for implementing and
several considerations for the analysis of academic per-
formance in higher education:

(
λ4,

(
0.74 + 0.81i ,
−0.14 − 0.26i

)
,

(
0.33 + 0.49i ,
−0.60 − 0.32i

)
,

(
0.21 + 0.20i ,
−0.36 − 0.55i

))
.

Assign MG, AG and non-MG to each organization and
their corresponding set is as follows:

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ1,

(
0.31 + 0.42i ,
−0.11 − 0.26i

)
,

(
0.59 + 0.40i ,
−0.29 − 0.10i

)
,

(
0.46 + 0.29i ,
−0.30 − 0.50i

))
,

(
λ2,

(
0.67 + 0.31i ,
−0.24 − 0.12i

)
,

(
0.49 + 0.20i ,
−0.19 − 0.44i

)
,

(
0.37 + 0.57i ,
−0.48 − 0.73i

))
,

(
λ3,

(
0.80 + 0.43i ,
−0.19 − 0.05i

)
,

(
0.45 + 0.09i ,
−0.59 − 0.27i

)
,

(
0.23 + 0.50i ,
−0.41 − 0.69i

))
,

(
λ4,

(
0.74 + 0.81i ,
−0.14 − 0.26i

)
,

(
0.33 + 0.49i ,
−0.60 − 0.32i

)
,

(
0.21 + 0.20i ,
−0.36 − 0.55i

))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, CP of G and H represented in Table 2 shows the
BCSFRs between ANN and different organizations to get the
more verified results.

Every ordered pair CP G × H expresses
the impact of one element on the other. Since,(

(n4, λ3),

(
0.80 + 0.34i ,
−0.19 − 0.02i

)
,

(
0.29 + 0.09i ,
−0.41 − 0.17i

)
,

(
0.23 + 0.50i ,
−0.57 − 0.69i

))

explains that finance organization is more developed using
the convolutional neural network, i.e., effectiveness shows
higher possibility of 0.80 with duration 0.34, and − 0.19
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Table 2 Cartesian product
Ordered pair MG AG Non-MG

(n1, λ1)
(

0.31 + 0.42i ,

−0.11 − 0.12i

) (
0.59 + 0.40i ,

−0.29 − 0.10i

) (
0.46 + 0.32i ,

−0.43 − 0.50i

)

(n1, λ2)
(

0.39 + 0.31i ,

−0.24 − 0.12i

) (
0.49 + 0.20i ,

−0.19 − 0.29i

) (
0.37 + 0.57i ,

−0.48 − 0.73i

)

(n1, λ3)
(

0.39 + 0.43i ,

−0.31 − 0.05i

) (
0.45 + 0.09i ,

−0.39 − 0.29i

) (
0.33 + 0.50i ,

−0.43 − 0.69i

)

(n1, λ4)
(

0.39 + 0.45i ,

−0.14 − 0.12i

) (
0.33 + 0.49i ,

−0.39 − 0.29i

) (
0.33 + 0.32i ,

−0.43 − 0.55i

)

(n2, λ1)
(

0.29 + 0.22i ,

−0.11 − 0.26i

) (
0.44 + 0.38i ,

−0.29 − 0.10i

) (
0.58 + 0.44i ,

−0.39 − 0.50i

)

(n2, λ2)
(

0.29 + 0.22i ,

−0.24 − 0.12i

) (
0.44 + 0.20i ,

−0.19 − 0.27i

) (
0.58 + 0.57i ,

−0.48 − 0.73i

)

(n2, λ3)
(

0.29 + 0.22i ,

−0.19 − 0.05i

) (
0.44 + 0.09i ,

−0.29 − 0.27i

) (
0.58 + 0.50i ,

−0.41 − 0.69i

)

(n2, λ4)
(

0.29 + 0.22i ,

−0.14 − 0.26i

) (
0.33 + 0.38i ,

−0.29 − 0.27i

) (
0.58 + 0.44i ,

−0.39 − 0.55i

)

(n3, λ1)
(

0.31 + 0.37i ,

−0.11 − 0.00i

) (
0.40 + 0.40i ,

−0.22 − 0.10i

) (
0.46 + 0.29i ,

−0.49 − 0.50i

)

(n3, λ2)
(

0.54 + 0.31i ,

−0.24 − 0.00i

) (
0.40 + 0.20i ,

−0.19 − 0.40i

) (
0.37 + 0.57i ,

−0.49 − 0.73i

)

(n3, λ3)
(

0.54 + 0.37i ,

−0.19 − 0.00i

) (
0.40 + 0.09i ,

−0.22 − 0.27i

) (
0.28 + 0.50i ,

−0.49 − 0.69i

)

(n3, λ4)
(

0.54 + 0.37i ,

−0.14 − 0.00i

) (
0.33 + 0.44i ,

−0.22 − 0.32i

) (
0.28 + 0.20i ,

−0.49 − 0.55i

)

(n4, λ1)
(

0.31 + 0.34i ,

−0.11 − 0.02i

) (
0.29 + 0.40i ,

−0.29 − 0.10i

) (
0.46 + 0.43i ,

−0.57 − 0.50i

)

(n4, λ2)
(

0.67 + 0.31i ,

−0.22 − 0.02i

) (
0.29 + 0.20i ,

−0.19 − 0.17i

) (
0.37 + 0.57i ,

−0.57 − 0.73i

)

(n4, λ3)
(

0.80 + 0.34i ,

−0.19 − 0.02i

) (
0.29 + 0.09i ,

−0.41 − 0.17i

) (
0.23 + 0.50i ,

−0.57 − 0.69i

)

(n4, λ4)
(

0.74 + 0.34i ,

−0.14 − 0.02i

) (
0.29 + 0.49i ,

−0.41 − 0.17i

) (
0.21 + 0.43i ,

−0.57 − 0.55i

)
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Ordered pair

Effectivness

Possibility

Impossibility

Neutral
Possibility

Impossibility
Ineffectivness

Possibility

Impossibility

Fig. 4 Information of ordered pair

explains the lower impossibility of effectiveness with −
0.02 duration. The 0.29 shows the possibility of AG with
lower time period 0.09, and − 0.41 explain the impossibility
of AG with time phase − 0.17. In the same way possibility
of higher ineffectiveness 0.23 and higher time duration
0.50, and − 0.14 explain the lower impossibility with −
0.57 duration. This means that finance organizations deals
more work effectively using CNN. Finance industry due
to ANN finds solutions for every organization problem.
Hence, organizations are more improved using the ANN.
All ordered pair information are explained in Fig. 4.

Comparative analysis

In this section, the newly structure of BCSFR is compared
with the pre-defined structures such as FR, BFR, BCFR,
BIFR, BCIFR, BPyFR, BCPyFR, BqROFR, BCqROFR,
BPFR, BCPFR, and BSFR.

FR, BFR, BCFR with BCSFR

FRandBFR tells only theMGwith only one dimension. They
are not capable of solving the multidimensional problem.
The FR describes only the positive MG and do not deal the
negative factor of MG. The BCFR discusses only MG with
the both effect of positive and negative. The BCFR describes
the PT. But BCSFR discusses the all levels of stages with
both effects. Here, take two sets G and H from application
with BCFRs:

G =
{(

n1,

(
0.39 + 0.45i ,
−0.31 − 0.12i

))
,

(
n2,

(
0.29 + 0.22i ,
−0.33 − 0.39i

))
,

(
n3,

(
0.54 + 0.37i ,
−0.33 − 0.00i

))}
.

In addition,

Table 3 Cartesian product

Ordered pair MG

(n1, λ1)
(

0.31 + 0.42i ,

−0.11 − 0.12i

)

(n1, λ2)
(

0.39 + 0.31i ,

−0.24 − 0.12i

)

(n1, λ3)
(

0.39 + 0.43i ,

−0.31 − 0.05i

)

(n2, λ1)
(

0.29 + 0.22i ,

−0.11 − 0.26i

)

(n2, λ2)
(

0.29 + 0.22i ,

−0.24 − 0.12i

)

(n2, λ3)
(

0.29 + 0.22i ,

−0.19 − 0.05i

)

(n3, λ1)
(

0.31 + 0.37i ,

−0.11 − 0.00i

)

(n3, λ2)
(

0.54 + 0.31i ,

−0.24 − 0.00i

)

(n3, λ3)
(

0.54 + 0.37i ,

−0.19 − 0.00i

)

H =
{(

λ1,

(
0.31 + 0.42i ,
−0.11 − 0.26i

))
,

(
λ2,

(
0.67 + 0.31i ,
−0.24 − 0.12i

))
,

(
λ3,

(
0.80 + 0.43i ,
−0.19 − 0.05i

))}
.

Then, their CP is shown in Table 3.
BCFR shows only the MG with both positive and neg-

ative possibility. Ordered pair explains the effectiveness of
the first factor on the second. Hence, these structures give the
incomplete information, and BCSFR provides the complete
information.

IFR, BIFR, CIBFR, BCPyFR, and BCqROFRwith BCSFR

IFR, BIFR, CIBFR, BCPyFR and BCqROFR describe the
MG and non-MG. These structures do no discuss the AG of
one factor on the other. The IFR defines the effectiveness and
ineffectiveness of only the possibility conditions. The BIFR
discusses the both conditions of possibility and impossibility
but is not capable to solve the multivariable difficulties. The
BCPyFR and BCqROFR increased the space of BCIFR. But
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these structures do not discuss about the AG. The BCSFR is
improved formof all these structures because it also describes
theAG.Here, take two setsG and H from“Application”with
BCIFRs:

G =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
n1,

(
0.39 + 0.45i ,
−0.31 − 0.12i

)(
0.33 + 0.32i ,
−0.43 − 0.15i

))
,

(
n2,

(
0.29 + 0.22i ,
−0.33 − 0.39i

)
,

(
0.58 + 0.44i ,
−0.39 − 0.09i

))

(
n3,

(
0.54 + 0.37i ,
−0.33 − 0.00i

)
,

(
0.28 + 0.01i ,
−0.49 − 0.34i

))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

In addition,

H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
λ1,

(
0.31 + 0.42i ,
−0.11 − 0.26i

)
,

(
0.46 + 0.29i ,
−0.30 − 0.50i

))
,

(
λ2,

(
0.67 + 0.31i ,
−0.24 − 0.12i

)
,

(
0.37 + 0.57i ,
−0.48 − 0.73i

))

(
λ3,

(
0.80 + 0.43i ,
−0.19 − 0.05i

)
,

(
0.23 + 0.50i ,
−0.41 − 0.69i

))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Then, their CP is explained in Table 4.
BCIFR expresses the effectiveness and ineffectiveness of

each ordered pair. They have lack of AG, so they give the
uncompleted information. But BCSFR also shows the AG of
each ordered pair.

PFR, BPFR, BCPFR, and BSFR with BCSFR

These structures discuss the all levels of s, i.e., MG, AG
and non-MG. The PFR defines only the positive values of
all levels of stages and do not discuss the negative effects.
The BPFR, BCPFR and BSFR describe all levels of stages
with both effects of positive and negative. BPFR and BSFR
are not capable to solve the complex problem. It means that
BCSFR is superior to all pre-defined structures because these
discuses all levels of stages with both positive and negative
effects. Here, take two setsG and H from “Application”with
BSFRs:

G =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n1,

(
0.39,
−0.31

)
,

(
0.65,
−0.39

)
,

(
0.33,
−0.43

))
,

(
n2,

(
0.29,
−0.33

)
,

(
0.44,
−0.29

)
,

(
0.58,
−0.39

))
,

(
n3,

(
0.54,
−0.33

)
,

(
0.44,
−0.22

)
,

(
0.28,
−0.49

))
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

H =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
λ1,

(
0.31,
−0.11

)
,

(
0.59,
−0.29

)
,

(
0.46,
−0.30

))
,

(
λ2,

(
0.67,
−0.24

)
,

(
0.49,
−0.19

)
,

(
0.37,
−0.48

))
,

(
λ3,

(
0.80,
−0.19

)
,

(
0.45,
−0.59

)
,

(
0.23,
−0.41

))
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, CP of G and H represented in Table 5 shows the
BSFRs between ANN and different organizations to get the
more verified results.

BSFR expresses the effectiveness of no effect and ineffec-
tiveness of each ordered pair. They have lack of time frame,
so they give the uncompleted information. But BCSFR also
shows the time duration of each ordered pair. Table 6 gives
the comparative analysis of BCSFR with pre-existing frame-
works.

The advantages of the proposed method

The following are the advantages of the proposed method:
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Table 4 Cartesian product of G and H in terms of membership and
non-membership

Ordered pair MG Non-membership

(n1, λ1)
(

0.31 + 0.42i ,

−0.11 − 0.12i

) (
0.46 + 0.32i ,

−0.43 − 0.50i

)

(n1, λ2)
(

0.39 + 0.31i ,

−0.24 − 0.12i

) (
0.37 + 0.57i ,

−0.48 − 0.73i

)

(n1, λ3)
(

0.39 + 0.43i ,

−0.31 − 0.05i

) (
0.33 + 0.50i ,

−0.43 − 0.69i

)

(n2, λ1)
(

0.29 + 0.22i ,

−0.11 − 0.26i

) (
0.58 + 0.44i ,

−0.39 − 0.50i

)

(n2, λ2)
(

0.29 + 0.22i ,

−0.24 − 0.12i

) (
0.58 + 0.57i ,

−0.48 − 0.73i

)

(n2, λ3)
(

0.29 + 0.22i ,

−0.19 − 0.05i

) (
0.58 + 0.50i ,

−0.41 − 0.69i

)

(n3, λ1)
(

0.31 + 0.37i ,

−0.11 − 0.00i

) (
0.46 + 0.29i ,

−0.49 − 0.50i

)

(n3, λ2)
(

0.54 + 0.31i ,

−0.24 − 0.00i

) (
0.37 + 0.57i ,

−0.49 − 0.73i

)

(n3, λ3)
(

0.54 + 0.37i ,

−0.19 − 0.00i

) (
0.28 + 0.50i ,

−0.49 − 0.69i

)

• The ability of BCSFSs is to describe two-dimensional
facts that involve the distribution of membership, non-
membership, and abstinence degrees which is their most
important characteristic. Because of this characteristic,
BCSFSs are more dominating in expressing the needed
information and resolving limitations in other theories,
including BCPFS and BSFS.

• For tackling extremely broad decision-making problems,
our suggested methodology is more accessible and flexi-
ble.

• The membership, abstinence, and non-membership
degrees in our proposed BCSF model allow it to repre-
sent two-dimensional encrypted informationwith a variety
of skills. The suggested theory now works as a powerful
tool to overcome the limitations of the current models of
incomplete information.

• By reducing their phase terms to zero, our proposed strat-
egy demonstrates the same accuracy when applied to
one-dimensional data, including bipolar spherical fuzzy
data and bipolar picture fuzzy data, demonstrating the ver-
satility and decision-making abilities of our approach. As

Table 5 Cartesian product ofG andH in terms ofMG,AG and non-MG

Ordered pair MG AG Non-MG

(n1, λ1)
(

0.31,

−0.11

) (
0.59,

−0.29

) (
0.46,

−0.43

)

(n1, λ2)
(

0.39,

−0.24

) (
0.49,

−0.19

) (
0.37,

−0.48

)

(n1, λ3)
(

0.39,

−0.31

) (
0.45,

−0.39

) (
0.33,

−0.43

)

(n2, λ1)
(

0.29,

−0.11

) (
0.44,

−0.29

) (
0.58,

−0.39

)

(n2, λ2)
(

0.29,

−0.24

) (
0.44,

−0.19

) (
0.58,

−0.48

)

(n2, λ3)
(

0.29,

−0.19

) (
0.44,

−0.29

) (
0.58,

−0.41

)

(n3, λ1)
(

0.31,

−0.11

) (
0.40,

−0.22

) (
0.46,

−0.49

)

(n3, λ2)
(

0.54,

−0.24

) (
0.40,

−0.19

) (
0.37,

−0.49

)

(n3, λ3)
(

0.54,

−0.19

) (
0.40,

−0.22

) (
0.28,

−0.49

)

a result, our suggested methodology is a versatile and effi-
cient strategy that can precisely manage both traditional
and two-dimensional ambiguous information.

Conclusion

This paper planned the innovative notion of BCSFS and
the CP between two BCSFSs. Further, BCSFR and various
kinds are also discussed, such as BCS reflexive FR, BCS
irreflexive FR, BCS symmetric FR, BCS transitive FR, BCS
antisymmetric FR, BCS equivalence FR, BCS partial order
FR and many more. In addition, some authentic theorems
are also defined. Further, these newly presented concepts of
BCSFR are applied in an application of ANN. The proposed
structure and unique modeling study is used to analyze the
effective working of ANN and its types in organizations.
The innovative concept of BCSFR is a generalization of all
the pre-existing frameworks, because this structure covers
all levels, i.e., MG, AG and non-MG with complex num-
ber. They describe the possibilities or impossibilities of all
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Table 6 Comparison of BCSFR with pre-defined frameworks

Structure MG AG Non-MG Multi-dimension Space

Possibility Impossibility Possibility Impossibility Possibility Impossibility

CFR Yes No No no No No Yes n = 1

CIFR Yes No No no Yes No Yes n = 1

CPyFR Yes No No no Yes No Yes n = 2

CqROFR Yes No No No Yes No Yes n = n

CPFR Yes No Yes No Yes No Yes n = 1

CSFR Yes No Yes No Yes No Yes n = 2

BCFR Yes YES No No No No Yes n = 1

BCIFR Yes Yes No No Yes Yes Yes n = 1

BCPyFR Yes Yes No No Yes Yes Yes n = 2

BCqROFR Yes Yes No No Yes Yes Yes n = n

BCPFR Yes Yes Yes Yes Yes Yes Yes n = 1

BCSFR Yes Yes Yes Yes Yes Yes Yes n = 2

levels. Despite dealing with ambiguous information effec-
tively, the proposed technique fails when the sum of the
squares of the amplitude or phase terms of membership, neu-
tral membership, and non-membership degrees is larger than
1. Hence, our objective is to expand the suggested technique
under the complex bipolar type-2 fuzzy set, complex bipolar
mandolboart fuzzy set, and CBTSFSs. Further, BCSFR will
be employed in a variety of fields in the future, including
physics, economics and various field of science and tech-
nology. In the future, we will extend the presented approach
to the different extension of neural network as convolution
neural network, clustering approaches, etc. and present some
more generalized approaches [49–51].
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