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Abstract
It is imperative to comprehensively evaluate the function, cost, performance and other indices when purchasing a hypertension
follow-up (HFU) system for community hospitals. To select the best software product frommultiple alternatives, in this paper,
wedevelop a novel integrated groupdecision-making (GDM)method for the quality evaluation of the systemunder the interval-
valued q-rung orthopair fuzzy sets (IVq-ROFSs). The design of our evaluation indices is based on the characteristics of theHFU
system,which in turn represents the evaluation requirements of typical software applications and reflects the particularity of the
system.A similarity is extended tomeasure the IVq-ROFNs, and a new score function is devised for distinguishing IVq-ROFNs
to figure out the best IVq-ROFN. The weighted fairly aggregation (WFA) operator is then extended to the interval-valued
q-rung orthopair WFA weighted average operator (IVq-ROFWFAWA) for aggregating information. The attribute weights are
derived using the LINMAP model based on the similarity of IVq-ROFNs. We design a new expert weight deriving strategy,
which makes each alternative have its own expert weight, and use the ARAS method to select the best alternative based on
these weights. With these actions, a GDM algorithm that integrates the similarity, score function, IVq-ROFWFAWA operator,
attribute weights, expert weights and ARAS is proposed. The applicability of the proposed method is demonstrated through
a case study. Its effectiveness and feasibility are verified by comparing it to other state-of-the-art methods and operators.

Keywords Interval-valued q-rung orthopair · WFA operator · LINMAP-ARAS decision-making method

B Harish Garg
harishg58iitr@gmail.com

Benting Wan
wanbenting@jxufe.edu.cn

Zhaopeng Hu
2202120633@stu.jxufe.edu.cn

Youyu Cheng
ren_btw@163.com

Mengjie Han
mea@du.se

1 Shenzhen Research Institute, Jiangxi University of Finance
and Economics, Shenzhen 518000, China

2 School of Mathematics, Thapar Institute of Engineering and
Technology (Deemed University), Patiala, Punjab 147004,
India

3 Department of Mathematics, Graphic Era Deemed to Be
University, Dehradun, Uttarakhand 248002, India

4 Applied Science Research Center, Applied Science Private
University, Amman 11931, Jordan

Introduction

Hypertension is a chronic disease that requires long-term
medication for patients. Some hypertensive patients can
cause stroke and other comorbidities and can even lead to dis-
ability and death [65]. When about 1.28 billion people suffer
from hypertension worldwide, failure to manage this disease
effectively poses a heavy economic burden on both patients
and the whole society [32, 61, 66]. Research results show
that scientific intervention can control and reduce the risk of
hypertension, and disease the development of associated car-
diovascular and cerebrovascular in some cases prevent [32,
45, 47, 61, 65, 66]. However, a shortage of knowledgeable
medical staff and poor patient self-management awareness
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continues to impede the further improvement of hypertension
prevention levels [36]. To this end, researchers proposed the
hypertension community management system that can pro-
vide better services for patients [27, 37, 54, 58, 82]. This
system is safe, reliable and easy-to-use and it enables health
facilities to treat hypertension more efficiently. It is no sur-
prise that many community hospitals have purchased and
started to use this system, thus raising the question of quality
evaluation. Researchers are now calling for hypertension and
software experts to come together to evaluate hypertension
management systems [7, 8, 74]. For the software evaluation,
the Institute of Electrical and Electronics Engineers (IEEE)
has published different versions of the ISO/IEC standard
[28], even though it is challenging to evaluate the applica-
tion using these standards [4]. Researchers have proposed
other evaluationmethods and indices for different application
scenarios according to actual requirements [70, 77]. For hos-
pitals, the hypertension management system needs to meet
performance, security, and scalability requirements while
also meeting functional requirements [7, 8]. Its public-facing
nature means it also needs to be easy-to-use [53, 64]. After
the system is deployed and implemented, high-quality main-
tenance services are essential [26]. The evaluation indices
of the hypertension community management system can
be divided into product quality and post-services according
to user aspects. Product quality indices are cost, function,
performance, reliability, safety, scalability, integration, ease-
of-use, and maintainability [11, 60] and post-service indices
are supplier’s stability, follow-up services, and software
deployment time [1, 6]. The indices required for the eval-
uation of the HFU system studied in this paper are described
in “Evaluation indices of the HFU system”.

In the process of software evaluation decision-making,
the flexibility of the information that experts can express
is different depending on the fuzzy environment [46, 51,
56, 63]. As a software evaluation environment, researchers
have proposed Fuzzy Sets [26], Intuitionistic Fuzzy Sets
(IFSs) [60, 74], Type-2 Fuzzy Sets [7, 8], Pythagorean Fuzzy
Sets (PFSs) [11], Interval-valued Intuitionistic Fuzzy Sets
(IVIFSs) [7, 8], and Triangular Fuzzy Numbers (TFNs)
[1]. A q-rung orthopair fuzzy set (q-ROFS) introduced by
Yager [68] is also widely used in GDM [38]. The q-ROFSs
are further generalized and applied to the fusion of var-
ious operators and decision methods. For example, Liu
and Hussain proposed a new aggregation operator based
on q-ROFSs [23, 39]. With non-cooperative game method
introduced into q-ROFSs, Yang [71] theorized competi-
tive strategy GDM problems based on a hybrid dynamic
experts’ weight-determiningmodel. The q-ROFSswere used
to solve multi-attribute decision-making (MADM problems
[15, 40], and they also have been applied to the groupMADM
(MAGDM) problem. To express the information of experts
more freely, researchers developed IVq-ROFSs [31]. Yang

[72] studied the GDM with incomplete interval-valued q-
rung orthopair fuzzy (IVq-ROF) preference relations. New
exponential operation laws and operators of IVq-ROFSs
were developed by Garg [16, 17]. The IVq-ROFS FMEA
was applied to improve the risk evaluation process of the
tool changing manipulator [29]. Zhang [81] proposed an NA
Operator based IVq-ROFSs, and Khan [34] used the com-
binative distance-based method to evaluate and select the
strategy for a green supply chain under IVq-ROF environ-
ment. Moreover, the IVq-ROFSs were applied to sustainable
smart waste management system evaluation using the multi-
criteria decision-making (MCDM) model [57]. IVq-ROFSs
have been applied in GDM [14, 16, 17, 72], but have not
yet been applied to software management and assessment.
In order to make it easier for software experts to evaluate the
hypertension management system, IVq-ROFS is applied to
the evaluation process in this paper.

Aggregation operators are used for fusing information
provided by experts [3, 5, 13], such as weighted averag-
ing (WA) [67], neutral aggregating (NA) [18], and power
aggregating (PA) [69] operators. Some researchers have
also extended their applications by considering the fea-
tures of the IVq-ROFSs, for example, IVq-ROFWAMM and
IVq-ROFAMM [13, 63]. Saha et al. [55] developed the q-
rung orthopair fuzzy weighted fairly aggregation operator
(q-ROFWFA) which exhibits neutral characteristics in the
aggregating process. To minimize the impact of aggregat-
ing information from different software experts and enhance
the quality of the evaluation information coming from the
hypertension system, we extend the q-ROFWFA operator to
interval-valued q-rung orthopair fuzzyweighted fairly aggre-
gation operator (IVq-ROFWFAWA) in this paper.

Although aggregation operators can fuse information,
they cannot handle complex problems. Many decision-
making methods can be used, for example, the Linear
Programming Technique for Multidimensional Analysis of
Preference (LINMAP), Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS), multi-attributive bor-
der approximation area comparison (MABAC),MACBETH,
VlseKriterijumska Optimizacija I Kompromisno Resenje
(VIKOR), complex proportional assessment (COPRAS) and
Interactive and Multicriteria Decision Making (TODIM) [2,
24, 42, 48, 59]. Among them, LINMAP [59] is a typical
compromise model which can be used to derive weights
[80] and widely applied in practical decision-making prob-
lems [9, 12, 35, 80]. Yu [73] integrated the LINMAP with
prospect theory to find attribute weights. Mehrabadi and
Boyaghchi [44] used the LINMAP for decision-making in
geothermal multi-generational energy systems. Fetanat and
Tayebi [12] employed LINMAP to design household water
systems. However, according to the collected literature, there
is no research on the application of the LINMAPmodel under
IVq-ROFS environment. The Additive Ratio Assessment
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(ARAS), which was presented by Zavadskas and Turskis
[79], selects the best alternative by employing a utility degree
to reflect the difference between diverse alternatives and the
ideal one. ARAS eliminates the influence of unlike mea-
surement units. For this reason, it has received considerable
attention from researchers. Heidary et al. [22] used theARAS
to rank high-performance human resource practices. Gül [21]
employed ARAS to deal with problems related to the selec-
tion of covid-19 experiments. Jovčić et al. [30] used it tomake
decisions about goods distribution. This paper extends the
ARASmethod to IVq-ROFS and further devises a newGDM
method. However, the result of this integrated GDMmethod
is still IVq-ROFNs. To clarify the aggregated values, it has
been necessary to use, like many other researchers have done
[20, 38, 62, 67] the score function. These researchers have
put forward their own score functions for IVIFNs. Although
these score function are effective for solving MADM prob-
lems, there still are some deficiencies. To overcome their
weaknesses, this article investigates and applies a new score
function so that the different software suppliers can be distin-
guished from each other and allow the best software supplier
to be identified.

Community hospitals want an objective means for eval-
uating their software system and one that is cost-effective.
They also want the evaluation results so they can be mapped
directly onto the judgment matrix provided by the experts.
These desires transform the software evaluation decision
into a MAGDM problem with unknown expert weights and
attribute weights [52]. In order to derive the attribute weights
and expert weights, the LINMAP can be fused by similar-
ity [33]. While the LINMAP is a mature method for solving
attribute weights [59], it has not yet been used to determine
expert weights. Currently, Yue [75, 76] suggested an expert
weight based on similarity and projection. The two methods
cannot distinguish the influence of the external environment
because experts cannot always maintain their objectivity and
fairness. For this reason, we will study the weights of the
experts by examining the similarity of the distinct alterna-
tives, and we will derive the experts’ weight matrices that
will be used to gather information on the software suppliers
from the different experts.

The evaluation method proposed in this article takes the
software evaluation information provided by the experts and
then integrates the IVq-ROFWFAWA operator, the ARAS
method, a novel score function and the similarity under IVq-
ROFS to capture the optimal software supplier. This method
will improve decision-making efficiency and save evaluation
costs. System purchasers will not need to know the expert
weights or attribute weights. Our contributions, therefore,
are as follows.

1. A novel score function is defined to rank the IVq-ROFNs.

2. The IVq-ROFWFA and IVq-ROFWFAWA operators are
extended based on the q-ROFWFA operator.

3. Attribute weights are derived from LINMAP based on
the similarity of IVq-ROFNs.

4. Expert weights of different alternatives are proposed.
To reduce the decision results affected by experts’
judgments and the external environment, we suggest
that different alternatives should have different expert
weights.

5. A new integrated MAGDM method has been developed
based on the ARAS in this paper. This method combines
an IVq-ROFWFAWA operator, LINMAP and ARAS to
address decision-making problems.

6. The community HFUmanagement systemwas evaluated
by our MAGDM method. The results confirm that the
MAGDM method has strong adaptability and is com-
patible with existing algorithms. Comparative analysis
results confirm that the proposed MAGDM method is
effective.

The remainder of this paper is arranged as follows. The
next section introduces the preliminaries. “Proposed score
function and operators” extends the WFA operator to the
IVq-ROFNs. “Integrated group decision method” develops
an integrated MAGDM method based on ARAS. “Evalua-
tion and analysis of the HFU system” presents the evaluation
process and its analysis of the HFU management system.
“Conclusion” offers a conclusion and some suggestions for
the direction of future research.

Preliminaries

IVq-ROFS

Definition 1 [63] Let X be the domain of discourse. An IVq-
ROFS in X is indicated by

(1)A � {(x , uA (x) , vA (x)) |x ∈ X } ,

where the membership and non-membership functions
are the mapping range of values to meet uA(x) �[
u−
A(x), u+A(x)

] ⊆ [0, 1],vA(x) � [
v−
A (x), v+A(x)

] ⊆
[0, 1],0 ≤ (u+A(x))q + (v+A(x))q ≤ 1, (q ≥ 1). The hesita-
tion degree of A is shown in Eq. (2):

(2)

πA (x) � [
π−
A (x) , π+

A (x)
]

�
[

q
√
1 − (u+A (x) )q − (v+A (x) )q ,

q
√
1 − (u−

A (x) )q − (v−
A (x) )q

]
.
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Definition 2 [63]. Let a � ([
u−
a , u

+
a

]
,
[
v−
a , v+a

])
, a1 �([

u−
a1 , u

+
a1

]
,
[
v−
a1 , v+a1

])
and a2 � ([

u−
a2 , u

+
a2

]
,
[
v−
a2 , v+a2

])
be

the three IVq-ROFNs with q ≥ 1, and λ > 0. Some opera-
tions between a, a1 and a2 can be defined as follows:

(3)

1. a1 ⊕ a2 �
([

q
√
(u−

a1 )
q + (u−

a2 )
q − (u−

a1 )
q (u−

a2 )
q ,

q
√
(u+a1 )

q + (u+a2 )
q − (u+a1 )

q (u+a2 )
q
]
,

[
v−
a1v

−
a2 , v+a1v

+
a2

])

(4)

2. a1 ⊗ a2 �
([

u−
a1u

−
a2 , u

+
a1u

+
a2

]
,

[
q
√
(v−

a1 )
q + (v−

a2 )
q − (v−

a1 )
q (v−

a2 )
q ,

q
√
(v+a1 )

q + (v+a2 )
q − (v+a1 )

q (v+a2 )
q
])

(5)

3. aλ �
(
[
(u−

a )
λ, (u+a )

λ
]
,

[
q
√
1 − (1 − (v−

a )q )λ,

q
√
1 − (1 − (v+a )

q )λ
])

.

q-ROFWFA operator

The WFA operator can increase the density of the informa-
tion that experts can obtain by evaluating the neutrality and
fairness of the data during the decision-making process.

Definition 3 [55] Given any two q-ROFNs a1 and a2,
a1⊗Fa2 and λFa1 represent, respectively, the multiplication
and scalar multiplication operation rules of the q-ROFWFA
operator of two q-ROFNs, as shown in Eqs. (6) and (7):

a1⊗Fa2

⎛

⎜⎜⎜
⎝

((
uqa1 u

q
a2

uqa1 u
q
a2 +v

q
a1 v

q
a2

)
× (1 − (1 − uqa1 − v

q
a1 )(1 − uqa2 − v

q
a2 ))

) 1
q

,

((
v
q
a1 v

q
a2

uqa1 u
q
a2 +v

q
a1 v

q
a2

)
× (1 − (1 − uqa1 − v

q
a1 )(1 − uqa2 − v

q
a2 ))

) 1
q

⎞

⎟⎟⎟
⎠
,

(6)

(7)

λFa1 �
⎛

⎝
((

uqλ
a1

uqλ
a1 + v

qλ
a1

)

× (1 − (1 − uqa1 − v
q
a1 )

λ)

) 1
q

,

((
v
qλ
a1

uqλ
a1 + v

qλ
a1

)

× (1 − (1 − uqa1 − v
q
a1 )

λ)

) 1
q
⎞

⎠ .

The q-ROFWFA operator can, by evaluating the data, sci-
entifically and comprehensively consider the preferences of
different experts and by so doing obtain rich and diversified
information. It is used for aggregating information during the
process of MAGDM. The q-ROFWFA operator is stated in
Definition 4.

Definition 4 [55] Let αi � (
uαi , vαi

)
, (i � 1, 2, . . . , n) be

a set of q-ROFNs. The q-ROFWFA operator is

q − ROFWFA(α1, α2, . . . , αn) �

⎛

⎜⎜
⎜
⎝

( ∏n
i�1

(
uqαi

)wi

∏n
i�1

(
uqαi

)wi +
∏n

i�1
(
v
q
αi

)wi × (
1 − ∏n

i�1

(
1 − uqαi − v

q
αi

)wi
))

1
q

,

( ∏n
i�1

(
v
q
αi

)wi

∏n
i�1

(
uqαi

)wi +
∏n

i�1
(
v
q
αi

)wi × (
1 − ∏n

i�1

(
1 − uqαi − v

q
αi

)wi
))

1
q

⎞

⎟⎟
⎟
⎠

. (8)

In Eq. (8), wi is the weight of αi (i � 12, 3, . . . , n), and
must satisfy wi ≥ 0,

∑n
i�1wi � 1.

Interval-valued q-rung orthopair fuzzy similarity

The similarity is used to measure the degree of similarity
between two fuzzy subsets. For any two fuzzy numbers in a
fuzzy set, similarity can be used to reflect the difference and
to distinguish their relationship. Inspired by the similarity
suggested in a previous study [52], this paper proposes the
similarity of IVq-ROFNs that is as shown in Definition 6.

Definition 6 Let a1 � ([
u−
a1 , u

+
a1

]
,
[
v−
a1 , v+a1

])
and a2 �([

u−
a2 , u

+
a2

]
,
[
v−
a2 , v+a2

])
be two IVq-ROFNs, if u−

a1 , u
+
a1 , v−

a1 ,
v+a1 , u

−
a2 , u

+
a2 , v−

a2 , v+a2 are all 0, the similarity will be 1.When
u−
a1 , u

+
a1 , v−

a1 , v+a1 , u
−
a2 , u

+
a2 , v−

a2 , v+a2 are not 0, the similarity
measure between a1 and a2 is introduced in Eq. (9):

S(a1, a2) �
((
u−
a1

)q ∧ (
u−
a2

)q) +
((

v−
a1

)q ∧ (
v−
a2

)q) +
((
u+a1

)q ∧ (
u+a2

)q) +
((

v+a1

)q ∧ (
v+a2

)q)

((
u−
a1

)q ∨ (
u−
a2

)q)
+
((

v−
a1

)q ∨ (
v−
a2

)q)
+
((
u+a1

)q ∨ (
u+a2

)q) +
((

v+a1

)q ∨ (
v+a2

)q) , (9)
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where the similarity is defined as: the sum of the minimum
values of u−

a1 and u−
a2 , u

+
a1 and u+a2 , v

−
a1 and v−

a2 , v
+
a1 and v+a2

divided by the sum of the maximum values between them.
The similarity satisfies the four properties:

(S1) 0 ≤ S(a1, a2) ≤ 1;
(S2) S(a1, a2) � 1 if and only if a1 � a2;
(S3) S(a1, a2) � S(a2, a1);
(S4) if

[
u−
1 , u

+
1

] ⊆ [
u−
2 , u

+
2

] ⊆ [
u−
3 , u

+
3

]
and

[
v−
1 , v+1

] ⊆[
v−
2 , v+2

] ⊆ [
v−
3 , v+3

]
, then S(a1, a3) ≤ S(a1, a2) and

S(a1, a3) ≤ S(a2, a3).

Equation (9) clearly shows that when the two IVq-ROFNs
are farther apart, the similarity is smaller. Otherwise, the sim-
ilarity is greater. When the two IVq-ROFNs are the same, the
similarity is 1.

Score function

When solving MADM and MAGDM problems under the
IVIFSs’ and IVq-ROFSs’ environments, target alternatives
often need to be sorted and selected. While the results of
the aggregating operators and decision-making methods are
IVIFNs or IVq-ROFNs, researchers often use score func-
tions to transform the results into crisp numbers. Although
the score function proposed by researchers can be used to
compare IVIFNs and IVq-ROFNs, there are also deficiencies
with these approaches. The following examples are given to
illustrate.

Definition 7 [67] Let a � (
[
u−, u+

]
,
[
v−, v+

]
) be an

IVIFNs, its score function SX is

SX (a) � u− + u+ − v− − v+

2
, (10)

where SX represents membership subtracting non-
membership and can express the attitude of decision-makers.
When u− + u+ � v− + v+, Xu [67] proposed the accuracy
function HX (α) � 1

2 (u
−
+ u+ + v− + v+), which has been

widely used inMADM andMAGDMproblems under IVIFS
environments. If q � 1, SX can be directly used to compare
the IVq-ROFNs. If q > 1, it also can be sometimes used to
compare the IVq-ROFNs.

Example 1 Given two IVIFNs, a1 �
([0.811, 0.865], [0.692, 0.789]) and a2 �
([0.676, 1.0], [0.655, 0.826]), we have SX (a1) � SX (a2) �
0.0975. That is to say that SX fails to compare a1 and a2.
In addition, HX (a1) � HX (a2) � 1.5785 indicates that HX

also fails to compare a1 and a2.

Based on Xu’s score function, Liu and Wang proposed
a new score function for IVq-ROFN which has been also
proved useful for some MADM and MAGDM problems, as
shown in Definition 8.

Definition 8 [38] Let a � (
[
u−, u+

]
,
[
v−, v+

]
) be an IVq-

ROFN, q ≥ 1, its score function SL is

SL(a) �
(
u−)q +

(
u+

)q − (
v−)q − (

v+
)q

2
(11)

In Eq. (11), SL represents membership subtracting non-
membership which can express the attitude of decision-
makers. When (u−)q + (u+)q � (v−)q + (v+)q , Liu and
Wang [38] suggest using the accuracy function HL(α) �
1
2 [(u

−)q + (u+)q + (v−)q + (v+)q ]. This approach has been
also used in MADM and MAGDM problems under IVq-
ROFS environments in recent years.

Example 2 Given two IVq-ROFNs a3 �
([0.134, 0.183], [0.172, 0.859]) and a4 �
([0.066, 0.217], [0.584, 0.653]), when q � 2, SL(a3) �
SL(a4) � −0.35801. It means that SL fails to compare a3
and a4. In addition, HL(a3) � HL(a4) � 0.409455, it
indicates that the HL(α) also fails to compare a3 and a4.

Definition 9 [62] Let a � ([
u−, u+], [v−, v+

])
be an

IVIFN, its score function SNWC is

SNWC(a) �
(
u− + u+

)(
u− + v−) − (

v− + v+
)(
u+ + v+

)

2
.

(12)

When u− + u+ � v− + v+, Wang and Chen
[62] proposed the accuracy function HNWC(α) �
1
2 (
(
1 − u− + u+

)(
1 − u− − v−)+(1−v−+v+)(1−v+−u+)),

another approach that has been used inMADMandMAGDM
problems under IVIFS environments.

Example 3 Given two IVIFNs a5 � ([0.0, 0.0], [0.0, 0.0])
and a6 � ([0.0, 0.1], [0.0, 0.0]), SNWC(a5) � SNWC(a6) �
0. The SNWC fails to compare a5 and a6. HNWC(a5) �
HNWC(a6) � 1 also indicates a failure of HNWC(α) in com-
paring a5 and a6.

Definition 10 [20] Let a � ([
u−, u+], [v−, v+

])
be an

IVIFN. Its score function SGM is

SGM(a) � v+ + v− − u+ − u−
2

+
u− + u+ + 2

(
u−u+ − v−v+

)

u− + u+ + v− + v+
.

(13)

Gong and Ma proposed the accuracy function HGM �
(
u+a + v+a

) − 0.5( (u
+−u−)2
u+ + (v+−v−)2

v+
). When u− � u+ �

v− � v+ � 0, SGM and HGM are unreasonable.

Example 4 Given two IVIFNs, a7 � ([0, 0.4], [0, 0.4])
and a8 � ([0.2, 0.2], [0.2, 0.2]), SGM(a7)� SGM(a8) � 0.5
means that the SGM fails to compare a7 and a8. The HGM also
fails to compare a7 and a8 since HGM(a7)� HGM(a8) � 0.4.
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Proposed score function and operators

In this section, we define a new score function to rank IVq-
ROFNs and some operators to aggregate the information.

New score function

From the examples of the score functions outlined in “Score
function”, the deficiencies of score functions are described.
In order to overcome these deficiencies, we developed a new
score function, as shown in Definition 11.

Definition 11 Let a � (
[
ua−, ua+

]
,
[
va

−, va
+
]
) be an IVq-

ROFN, the score function developed as follows:

Sc(a) � 1
4

⎛

⎜
⎝
ln
(
u−
a + u+a + v−

a + v+a + 1
)
+ 2 × ((

u−
a + u+a

) − (
v−
a + v+a

))

+(
(
u+a − u−

a

)
+ (v+a − v−

a )) +
(
(u+a − u−

a ) − (v+a − v−
a )

)

−Sign
(
u−
a + u+a + v−

a + v+a
) × ln3

⎞

⎟
⎠

(14)

In Eq. (14), the term (u−
a + u+a + v−

a + v+a ) expresses the
sum of membership and non-membership, which is a certain
amount of certainty. (u+a − u−

a ) represents the uncertainty
of membership, and (v+a − v−

a ) represents the uncertainty
of non-membership. Similarly, ((u−

a + u+a ) − (v−
a + v+a )) is

the difference between membership and non-membership,
and ((u−

a − u+a ) − (v+a−v−
a )) is the difference of uncertainty

between membership and non-membership. The Sign func-
tion is a signal function. When u−

a + u+a + v−
a + v+a � 0, the

result of Sign is 0 and otherwise 1. It is used to keep the result
of Sc belonging to [− 1, 1].

Theorem 1 Let a � ([
u−
a , u

+
a ], [v

−
a , v+a

])
be an IVq-ROFN,

the Sc has the following properties:

1. −1 ≤ Sc(a) ≤ 1;
2. Sc(amin) � −1 if amin � ([0,0], [1, 1]);
3. Sc(amax) � 1 if amax � ([1, 1], [0, 0]);
4. Sc(amid) � 0 if amid � ([0, 0], [0, 0]).

Proof Substituting amin � ([0, 0], [1, 1]), amax � ([1, 1],
[0, 0]) and amid � ([0, 0], [0, 0]) into Eq. (14), we know
that Sc(amin) � −1, Sc(amax) � 1 and Sc(amid) � 0. Conse-
quently, the properties (2), (3) and (4) hold.

The partial derivatives of u−
a , u

+
a , v

−
a and v+a are

∂Sc
∂u−

a
� 1

4 ×
(

1
u−
a +u+a+v−

a +v+a+1

)
> 0,

∂Sc
∂u+a

� 1
4 ×

(
1

u−
a +u+a+v−

a +v+a+1
+ 4

)
> 0,

∂Sc
∂v−

a
� 1

4 ×
(

1
u−
a +u+a+v−

a +v+a+1
− 2

)
< 0,

∂Sc
∂v+a

� 1
4 ×

(
1

u−
a +u+a+v−

a +v+a+1
− 2

)
< 0.

It can be seen that u−
a , u

+
a , v−

a and v+a are monotonic.
Specifically, u−

a and u+a are monotonically increasing and v−
a

and v+a are monotonically decreasing. For any IVq-ROFN a,
Sc(amin) ≤ Sc(a) ≤ Sc(amax) and−1 ≤ Sc(a) ≤ 1, Property
(1) holds.

According to Theorem 1, for any two IVq-ROFNs, mem-
bership is monotonically increasing and non-membership is
monotonically decreasing. Thus, IVq-ROFNs can be com-
pared using Definition 12.

Definition 12 Given the two IVq-ROFNs a1 � (
[
u−
a1 , u

+
a1

]
,[

v−
a1 , v+a1

]
) and a2 � (

[
u−
a2 , u

+
a2

]
,
[
v−
a2 , v+a2

]
), their compari-

son laws are

1. If Sc(a1) > Sc(a2), then a1 > a2;
2. If Sc(a1) < Sc(a2), then a1 < a2;
3. If Sc(a1) � Sc(a2), then a1 � a2.

Example 5 Sc is used to calculate the four groups of data in
Examples 1–4. The results are shown in Table 1.

As can be seen from Table 1, the proposed score function
overcomes the deficiency and can better distinguish IVq-
ROFNs. However, SX cannot compare a1 and a2, a7 and
a8, SL cannot compare a3 and a4, a7 and a8, SNWC cannot
compare a5 and a6, and SGM cannot compare a5 and a6, a7
and a8. In order to illustrate its advantages and show better
adaptability to various environments, we designed four cases
to test the Sc function.

Example 6. We design four cases to test Sc. Let a1 and a2
be two IVq-ROFNs and a1 be a fixed point. a2 changes from
([1,1], [0,0]) to ([0,0], [1,1]) by a 0.05 step (move point,
MP). The scores of a1 and a2 are presented by RP and MP in
Fig. 1: (1) Case 1. The interval length of a1 and a2 is 0, and
a1 � ([0.5, 0.5], [0.5, 0.5]). (2) Case 2. The interval length
of a1 and a2 is 0, and a1 is randomly generated. (3) Case 3.
The interval length of a1 and a2 is the same but not equal to
0. (4) Case 4. The interval length of a1 is larger than that of
a2 and neither of them equals 0.

As shown in Fig. 1, random IVq-ROFNs are generated
to simulate the four cases. The scores of a1 and a2 have
just one coincidence point where a1 � a2. Therefore, the
proposed score function can be used to distinguish different
IVq-ROFNs.
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Fig. 1 Score function value analysis

Evaluation indices of the HFU system

The high cost of adopting ISO/IEC standards in the applica-
tion of software quality assessment [28] means they cannot
be used to meet the needs of small and medium-sized enter-
prises. Even large organizations like healthcare agencies are
often not able to afford to adopt such standards, especially
if they are only required by an individual unit. HFU sys-
tems have been developed primarily to help hospitalsmanage
hypertension among diagnosed outpatients. The manage-
ment systems that many hospitals currently use struggle
to control and manage the manifestations of this condition
within a mobile and scattered population. Hypertension soft-
ware systems, however, can improve the detection of blood
pressure changes and can help to control them. More impor-
tantly, they can do this for a scattered and mobile outpatient
population. To justify the expense associated with purchas-
ing such a system, community hospitals need to resolve two
contradictions. First, patients have limited ability to prevent
their symptoms. They often cannot effectively manage their
blood pressure or timely get hospital treatment. Second, pri-
mary healthcare facilities do not have the resources to track
and monitor all their outpatients and have no way to escalate
the treatment of those patients in need. Any remote man-
agement system, therefore, needs to (1) allow outpatients to
access follow-up medical services from any location at any
time and (2) enable medical staff to provide hypertension

management services to outpatients in any location at any
time.

AnyHFU system should, first, be able to meet the require-
ments of function, performance, safety, and reliability. It
should be an acceptable cost and easy-to-use, both for outpa-
tients and medical staff. Second, for the intercommunication
of other software, the purchased system needs to meet
the needs of community hospitals in terms of scalability
[70], integration [43], reliability [6, 78] and compatibility
[19], and reduces the hospital’s future cost expenditures.
Third, a management system should meet a number of post-
purchase criteria: the stability of the supplier [6, 49], the
supplier’s follow-up service [6], and the likely extent of daily
maintenance [4, 50]. Inspired by the existing literature on
hypertension management systems [4, 6, 10, 11, 28, 70, 77],
an evaluation of the effectiveness of a community HFU sys-
tem evaluation should encompass 13 indices: (1) Cost (C1),
(2) Performance (C2), (3) Reliability (C3), (4) Security (C4),
(5) Function (C5), (6) Easy-to-use (C6), (7) Extensibility
(C7), (8) Compatibility (C8), (9) Deployment time (C9), (10)
Integration (C10), (11) Supplier stability (C11), (12) Follow-
up service (C12), and (13) Maintainability (C13). A detailed
explanation of each index is shown in Table 2.

Table 2 outlines the full range of indices required for any
viable and usablemanagement system. Some of these indices
reflect the possible cost to a hospital and others reflect the
potential benefit that the adoption of a management system
might involve.
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IVq-ROFWFA operations

Inspired by operations of q-ROFWFA [55], the multiplica-
tion and scalar multiplication of IVq-ROFNs are developed.
Definition 13 proposes the properties of the IVq-ROFWFA
operation.

Definition 13 Let a1 � ([
u−
a1 , u

+
a1 ], [v

−
a1 , v+a1

])
and a2 �([

u−
a2 , u

+
a2 ], [v

−
a2 , v+a2

])
be two IVq-ROFNs, and q ≥ 1,

λF > 0. The multiplication and scalar multiplication of IVq-
ROFN are defined as follows:

a1⊗Fa2 �

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

⎡

⎢⎢⎢⎢
⎢
⎣

(( (
u−
a1

)q(
u−
a2

)q

(
u−
a1

)q (
u−
a2

)q
+
(
v−
a1

)q (
v−
a2

)q

)

× (1 − (1 − (
u−
a1

)q − (
v−
a1

)q )(1 − (
u−
a2

)q − (
v−
a2

)q ))

) 1
q

,

(( (
u+a1

)q(
u+a2

)q

(
u+a1

)q(
u+a2

)q
+
(
v+a1

)q(
v+a2

)q

)

× (1 − (1 − (
u+a1

)q − (
v+a1

)q )(1 − (
u+a2

)q − (
v+a2

)q ))

) 1
q

⎤

⎥⎥⎥⎥
⎥
⎦
,

⎡

⎢
⎢⎢⎢⎢
⎣

(( (
v−
a1

)q(
v−
a2

)q

(
u−
a1

)q (
u−
a2

)q
+
(
v−
a1

)q (
v−
a2

)q

)

× (1 − (1 − (
u−
a1

)q − (
v−
a1

)q )(1 − (
u−
a2

)q − (
v−
a2

)q ))

) 1
q

,

(( (
v+a1

)q(
v+a2

)q

(
u+a1

)q(
u+a2

)q
+
(
v+a1

)q(
v+a2

)q

)

× (1 − (1 − (
u+a1

)q − (
v+a1

)q )(1 − (
u+a2

)q − (
v+a2

)q ))

) 1
q

⎤

⎥
⎥⎥⎥⎥
⎦

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

(15)

λFa1 �

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎝

⎡

⎢
⎣

⎛

⎝

⎛

⎝

(
u−
a1

)qλ

(
u−
a1

)qλ
+
(
v−
a1

)qλ

⎞

⎠ × (1 − (1 −
(
u−
a1

)q −
(
v−
a1

)q
)λ)

⎞

⎠

1
q

,

⎛

⎝

⎛

⎝

(
u+a1

)qλ

(
u+a1

)qλ
+
(
v+a1

)qλ

⎞

⎠ × (1 − (1 − (
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)q − (
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)q )λ)

⎞

⎠

1
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⎤

⎥
⎦,

⎡

⎢
⎣

⎛

⎝

⎛

⎝

(
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a1

)qλ
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a1

)qλ
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⎞

⎠ × (1 − (1 −
(
u−
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)q −
(
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a1

)q
)λ)

⎞

⎠

1
q

,

⎛

⎝

⎛

⎝

(
v+a1

)qλ

(
u+a1

)qλ
+
(
v+a1

)qλ

⎞

⎠ × (1 − (1 − (
u+a1

)q − (
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⎞

⎠
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q
⎤

⎥
⎦

⎞
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⎟
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⎟⎟
⎠

.

(16)

According to Eqs. (15) and (16), the result obtained by
a1⊗Fa2 and λFa1 is still an IVq-ROFN.

Proposition 1 Let a1 � ([
u−
a1 , u

+
a1

]
,
[
v−
a1 , v+a1

])
and a2 �([

u−
a2 , u

+
a2

]
,
[
v−
a2 , v+a2

])
be two IVq-ROFNs. If ua1 � va1and

ua2 � va2 , then

1. ua1⊗Fa2 � va1⊗Fa2 ,
2. uλFa1 � vλFa1 .

The above proposition shows that when the membership
and non-membership are initially equal, operations a1⊗Fa2
and λFa1 reflect a neutral or fair situation for experts.We are,
therefore, calling the a1⊗Fa2 and λFa1 neutral operations.
Equations (15) and (16) make it easy to deduce that the mul-
tiplication and scalar multiplication of IVq-ROFWFA satisfy
the commutative law.

The IVq-ROFWFAWA operator

In this subsection, the definition of the IVq-ROFWFAWA
operator is introduced. In addition, its properties are
described.

Definition 14 Let ai � ([
u−
ai , u

+
ai

]
,
[
v−
ai , v+ai

])
(i � 1, 2,

. . . , n) be a group of IVq-ROFNs and ω � (ω1, ω2, . . . ,
ωn)T be a weight vector with

∑n
i�1 wi � 1, wi ≥ 0,

(i � 1, 2, . . . , n). The definition of the IVq-ROFWFAWA
operator is
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Table 2 Indices for the evaluation of the HFU systems

Reference Code System index System index definition

ISO/IEC 25001 [28], Büyüközkan and Göçer [6] C1 Cost The software cost is reasonable and does not exceed
the hospital’s budget

Yuen and Lau [77], Bertoa et al. [4], Dayanandan
and Kalimuthu [10]

C2 Performance The system supports simultaneous access by multiple
users in the community. Ordinary hardware servers
can meet the requirements of community hospitals

Büyüközkan and Göçer [6], Zarzour and Rekab
[78]

C3 Reliability There will be no bugs. Even if there are bugs, they will
not hinder the use of other functions

Deb and Roy [11], Al-Zahrani [1] C4 Security Security will be present across systems, data and
networks

Yan et al. [70], Mahmudova and Jabrailova [41],
Büyüközkan and Göçer [6], Bertoa et al. [4]

C5 Function Functionality will include intelligent blood pressure
measurement equipment, data sharing, monitoring,
remote implementation of voice and video
interaction, abnormal value reminders, periodic daily
reminders, service promotion, system maintenance,
and user management. The system will support PC
and App access

Bertoa et al. [4], Büyüközkan and Göçer [6] C6 Easy-to-use Both desktop and app versions of the system are
easy-to-use for both outpatients and medical staff

Yan et al. [70] C7 Extensibility There will be support for future device access and data
extraction from other systems

Bertoa et al. [4], Büyüközkan and Göçer [6], Geng
et al. [19]

C8 Compatibility Is it compatible with existing operating systems,
databases, and other systems?

Büyüközkan and Göçer [6] C9 Deployment time After the purchase, how long from deployment to
implementation?

Yan et al. [70], Mehlawat et al. [43], Bertoa et al.
[4]

C10 Integration Integration with other systems in community hospitals

Büyüközkan and Göçer [6], Pan and Chai [49] C11 Supplier stability The longevity of software vendors in the market

Büyüközkan and Göçer [6] C12 Follow-up service Follow-up service: response time, service attitude,
service quality

Bertoa et al. [4], Büyüközkan and Göçer [6],
Peercy [50], Bertoa et al. [4]

C13 Maintainability Ease of maintenance, data and log backup, data
monitoring, and abnormal reminder

IVq - ROFWFAWA(α1, α2, . . . , αn) � n⊗F
i�1

wiαi . (17)

Theorem 3 Let ai � ([
u−
ai , u

+
ai

]
,
[
v−
ai , v+ai

])
(i � 1, 2,

. . . , n)be a group of IVq-ROFNs. The result of

IVq-ROFWFAWA(α1, α2, . . . , αn)is still an IVq-ROFN,
which is shown in Eq. (18):

IVq-ROFWFAWA(α1, α2, . . . , αn) �
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αi

)q)wi ×
(
1 − ∏n

i�1
(
1 − (

u−
αi

)q − (
v−
αi

)q)wi
)
⎞

⎠

1
q

,

⎛

⎝
∏n

i�1

((
u+αi

)q)wi

∏n
i�1

((
u+αi

)q)wi
+
∏n

i�1

((
v+αi

)q)wi ×
(
1 − ∏n

i�1
(
1 − (

u+αi
)q − (

v+αi

)q)wi
)
⎞

⎠

1
q

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

,

⎡

⎢
⎢⎢
⎢
⎢
⎢⎢
⎣

⎛

⎝
∏n

i�1

((
v−
αi

)q)wi

∏n
i�1

((
u−

αi

)q)wi
+
∏n

i�1

((
v−
αi

)q)wi ×
(
1 − ∏n

i�1
(
1 − (

u−
αi

)q − (
v−
αi

)q)wi
)
⎞

⎠

1
q

,

⎛

⎝
∏n

i�1

((
v+αi

)q)wi

∏n
i�1

((
u+αi

)q)wi
+
∏n

i�1

((
v+αi

)q)wi ×
(
1 − ∏n

i�1
(
1 − (

u+αi
)q − (

v+αi

)q)wi
)
⎞

⎠

1
q

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎦

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

. (18)
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Using Eqs. (15) and (16), Theorem 3 can be easily
deduced and the proof omitted. The IVq-ROFWFAWA oper-
ator satisfies idempotency, boundedness, monotonicity and
commutativity which are described by Theorems 4, 5, 6 and
7. Using Eqs. (15), (16) and (18), the proof processes can be
easily deduced and, therefore, omitted.

Theorem 4 (Idempotency) Let α0 �([
u−

α0
, u+α0

]
,
[
v−
α0
, v+α0

])
be an IVq-ROFN and αi �([

u−
αi
, u+αi

]
,
[
v−
αi
, v+αi

])
(i � 1, 2, . . . , n) be a group of

IVq-ROFNs. When αi � α0, Eq. (19) holds:

IVq-ROFWFAWA(a1, a2, . . . , an) � a0. (19)

Theorem 5 (Boundedness) Let A � {a1, a2, . . . , an} be
a group of IVq-ROFNs. If amax � maxni�1{ai } and amin �
minni�1{ai }, it is easy to obtain:

amin ≤ IVq-ROFWFAWA(a1, a2, . . . , an) ≤ amax. (20)

Theorem 6 (Monotonicity) Let αi � ([
u−

αi
, u+αi

]
,

[
v−
αi
, v+αi

])
and αi

′ �
([

u−
αi

′ , u+
αi

′
]
,
[
v−
αi

′ , v+
αi

′
])

(i � 1, 2,

. . . , n)be two groups of IVq-ROFNs. For any i : αi ≤ αi
′
,

Eq. (21) holds:

(21)

IVq-ROFWFAWA (a1, a2, . . . , an)

< IVq-ROFWFAWA
(
a1

′, a2′, . . . , an
′) .

Theorem 7 (Commutativity) Let αi �([
u−

αi
, u+αi

]
,
[
v−
αi
, v+αi

])
be a group of IVq-ROFNs and

αi
′ �

([
u−

αi
′ , u+αi ′

]
,
[
v−
αi

′ , v+
αi

′
])

is then the permutation of

αi , Eq. (22) holds:

(22)

IVq-ROFWFAWA (a1, a2, . . . , an)

� I V q − ROFWFAW A
(
a1

′, a2′, . . . , an
′) .

The purpose of the IVq-ROFWFAWA operator is used to
aggregate the information of multiple experts and is used to
aggregate the alternative information of multiple attributes.

Integrated group decisionmethod

To make the decision-making process more scientific and
reduce the influence of human subjectivity on the results,
an integrated group decision-making method is presented.
“Group decision environment description” describes the
GDM environment. The attribute weights are derived in
“Deriving attribute weights”. “Deriving expert weights”
describes a strategy for determining the expert weights.
“MAGDM method based on ARAS” clarifies the MAGDM
method based on the ARAS.

Group decision environment description

To make selecting the best HFU system more reliable for
the hospital, experts who have rich experiences and knowl-
edge are invited to evaluate the supplier’s products and have
amaking-decision. In order to reduce the influence of subjec-
tive factors and improve the efficiency of MAGDM, expert
or attribute weights are unknown in advance. For this rea-
son, the MAGDM environment should satisfy (1) there are k
experts andm alternatives, (2) each alternative has the same n
attributes, (3) the expert and attributeweights are incomplete,
and (4) the elements of the decision matrix are IVq-ROFNs.
The mathematical description of the MAGDM environment
is as follows.

Suppose there are k experts, and the expert set is
D � {

D(1), D(2), . . . , D(k)
}
. The expert weights are

unknown and satisfy λ(t) ≥ 0,
∑k

t�1λ
(t) � 1. The m

alternatives are X � {x1, x2, . . . , xm}, each of which
contains the same n attributes: C � {C1, C2, . . . , Cn}. The
attribute weights are unknown and satisfy

∑n
j�1w j � 1,

w j ≥ 0. The decision matrix is A′(t) � (a′(t)
i j )m×n ,

(i � 1, 2, . . . , m; j � 1, 2, . . . , n; t � 1, 2, . . . , k).

a′(t)
i j �

(
[u−

a′(t)
i j

, u+
a′(t)
i j

], [v−
a′(t)
i j

, v+
a′(t)
i j

]

)
is an IVq-

ROFN. There exists an integer q(q ≥ 1) satisfying(
u+
a′(t)
i j

)q

+

(
v+
a′(t)
i j

)q

≤ 1. a′(t)
i j that represents the judgment

value of the t-th expert on the j-th attribute in alternative
i-th. A′(t) is defined in Eq. (23):

A′(t) �

⎛

⎜⎜
⎜⎜⎜
⎝

([
u−
a′(t)
11

, u+
a′(t)
11

]
,

[
v−
a′(t)
11

, v+
a′(t)
11

])
· · ·

([
u−
a′(t)
1n

, u+
a′(t)
1n

]
,

[
v−
a′(t)
1n

, v+
a′(t)
1n

])

...
. . .

...([
u−
a′(t)
m1

, u+
a′(t)
m1

]
,

[
v−
a′(t)
m1

, v+
a′(t)
m1

])
· · ·

([
u−
a′(t)
mn
, u+

a′(t)
mn

]
,

[
v−
a′(t)
mn
, v+

a′(t)
mn

])

⎞

⎟⎟
⎟⎟⎟
⎠

. (23)

Before decision-making, experts are allowed to carry out
a pre-judgment on the priority of the alternatives. If experts
give preference (g, l) for any pair (xg , xl ) of alternatives,
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whichmeans that the expert prefers the alternative xg . The set
of all preference pairs, P � {(g, l)}, 1 ≤ g ≤ m, 1 ≤ l ≤ m,
g �� l, is given by experts in advance.

The indices of different performances need to be standard-
ized. The �1 presents a set of benefit indices, and the �2

presents a set of cost indices. Equations (24) and (25) nor-
malize the decision matrix A′(t) to the standard matrix A(t),
where Eq. (25) is the complement operation of IVq-ROFN:

a(t)i j �
{
a′(t)
i j , a′(t)

i j ∈ �1

(a′(t)
i j )c, a′(t)

i j ∈ �2
i � 1, 2, · · · , m, j � 1, 2, · · · , n

(24)

(a′(t)
i j )c �

(
[v−

a′(t)
i j

, v+
a′(t)
i j
], [u−

a′(t)
i j

, u+
a′(t)
i j
]

)
(25)

Deriving attribute weights

The LINMAP model has advantages in obtaining attribute
weight. First, theLINMAP is simple, clear, and easy to imple-
ment. Second, LINMAP does not need attribute weights
which can be solved by the linear programming model, and
LINMAP can reflect the preferences and experience of the
experts. Third, the linear programming model reflects the
overall characteristics of the results. Therefore, we select
LINMAP to derive attribute weights.

The classical LINMAP is based on pairwise comparisons
of alternatives that are given by the DMs [59, 80]. The linear
programming model is constructed to get attribute weights
by minimizing the deviation of the total inconsistency index
and the total consistency index.TheLINMAPmodel includes

primarily the following steps: (1) the alternative preference
pairs are given by experts in advance, (2) the linear program-
ming model is constructed according to the minimization
of deviation of the total inconsistency index and the total
consistency index, and (3) the attribute weights are obtained
by solving linear programming model. Inspired by Zhang
[80], we designed a method to derive attribute weights using
the LINMAP model based on the similarity of IVq-ROFNs.
First, the similarity between the alternatives and the posi-
tive ideal point is calculated, and the weighted similarity of
alternatives is constructed according to the preference pair of
alternatives given by experts in advance. Second, the linear
programming model is constructed by minimizing the devi-
ation of the inconsistent and consistent weighted similarity
according to the preference pair of alternatives. The attribute
weights of different experts are obtained by solving the linear
programming model. Finally, the attribute weight matrix of
all decisionmatrices is obtained. The LINMAPmodel solves
the attribute weights as in the following steps.

1. Determining the preference set of alternatives P �
{(g, l)}.

2. Calculating the positive ideal point.
Get the positive ideal point a∗

j
(t) of j-th column in the

matrix A(t) as shown Eq. (26):

(26)

a∗(t)
j �

([
max
1≤i≤m

(
u−
a(t)i j

)
, max
1≤i≤m

(
u+
a(t)i j

)]
,

[
min

1≤i≤m

(
v−
a(t)i j

)
, min
1≤i≤m

(
v+
a(t)i j

)])

3. Calculate the similarity of the alternatives to the ideal
point.
Use Eq. (9) to calculate the similarity Sg(a

(t)
g j , a

∗
j
(t)),

Sl (a
(t)
l j , a

∗
j
(t)), for j � 1, 2, . . . , n:

Sg(a
(t)
g j , a

∗
j
(t)) �

((
u−
a(t)g j

)q

∧
(
u−
a∗
j
(t)

)q)
+

((
v−
a(t)g j

)q

∧
(

v−
a∗
j
(t)

)q)
+

((
u+
a(t)g j

)q

∧
(
u+
a∗
j
(t)

)q)
+

((
v+
a(t)g j

)q

∧
(

v+
a∗
j
(t)

)q)

((
u−
a(t)g j

)q

∨
(
u−
a∗
j
(t)

)q)
+

((
v−
a(t)g j

)q

∨
(

v−
a∗
j
(t)

)q)
+

((
u+
a(t)g j

)q

∨
(
u+
a∗
j
(t)

)q)
+

((
v+
a(t)g j

)q

∨
(

v+
a∗
j
(t)

)q) (27)

Sl
(
a(t)
l j , a

∗
j
(t)
)

�

((
u−
a(t)
l j

)q

∧
(
u−
a∗
j
(t)

)q)
+

((
v−
a(t)
l j

)q

∧
(

v−
a∗
j
(t)

)q)
+

((
u+
a(t)
l j

)q

∧
(
u+
a∗
j
(t)

)q)
+

((
v+
a(t)
l j

)q

∧
(

v+
a∗
j
(t)

)q)

((
u−
a(t)
l j

)q

∨
(
u−
a∗
j
(t)

)q)
+

((
v−
a(t)
l j

)q

∨
(

v−
a∗
j
(t)

)q)
+

((
u+
a(t)
l j

)q

∨
(
u+
a∗
j
(t)

)q)
+

((
v+
a(t)
l j

)q

∨
(

v+
a∗
j
(t)

)q) . (28)

4. Calculate the weighted similarity of alternatives.
Suppose the attribute weights arew(t) � (w(t)

1 , w
(t)
2 , . . . ,

w
(t)
n ). According to the preference pair set P � {(g, l)},
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Fig. 2 MAGDM flow based on the ARAS method

the weighted average Eq(t)g and Eq(t)l of w
(t)
j are calcu-

lated, which are as shown in Eqs. (29) and (30):

Eq(t)g �
n∑

j�1

w
(t)
j × Sg(a

(t)
g j , a

∗(t)
j ), j � 1, 2, . . . , n

(29)

Eq(t)l �
n∑

j�1

w
(t)
j × Sl (a

(t)
l j , a

∗(t)
j ), j � 1, 2, . . . , n

(30)

5. Construct a linear programming model.
For a pair of preference (g, l) in the set P , if Eq(t)g ≤
Eq(t)l , it means that the alternative xg is closer to the
ideal point than xl , and the weighted similarity is consis-
tent with the preference of the expert. On the contrary,
if Eq(t)g > Eq(t)l , it means that the weighted similarity
is inconsistent with the preference of the experts. The
actual alternative goal is to require the weighted similar-
ity to be consistent with the preference of the experts.

For this reason, the goal can be transformed into a linear
programming problem as shown in Eq. (31):

min
∑

(g, l)∈P

θ
(t)
gl

S.T.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eq(t)l − Eq(t)g + θ
(t)
gl ≥ 0

∑

(g, l)∈P

(
Eq(t)l − Eq(t)g

)
� B(t)

n∑

j�1
w

(t)
j � 1

w
(t)
j ≥ 0

θ
(t)
gl ≥ 0

(31)

In Eq. (31), θ (t)gl represents the deviation between alterna-

tives and the weighted similarity of (g, l) and θ
(t)
gl ≥ 0.

The θ
(t)
gl of different alternative pairs does not affect each

other. The sum of θ (t)gl is B(t) corresponding to all pairs of
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Table 3 Decision matrix A(1)

C1 C2 C3

x1 ([0.29, 0.38], [0.12, 0.63]) ([0.41, 0.74], [0.11, 0.57]) ([0.36, 0.47], [0.56, 0.79])

x2 ([0.16, 0.31], [0.01, 0.51]) ([0.41, 0.64], [0.46, 0.73]) ([0.11, 0.72], [0.12, 0.46])

x3 ([0.12, 0.23], [0.03, 0.41]) ([0.30, 0.33], [0.23, 0.59]) ([0.14, 0.52], [0.27, 0.53])

x4 ([0.25, 0.54], [0.51, 0.62]) ([0.05, 0.49], [0.26, 0.73]) ([0.72, 0.90], [0.22, 0.42])

Table 4 Decision matrix A(2)

C1 C2 C3

x1 ([0.12, 0.23], [0.03, 0.41]) ([0.3, 0.33], [0.23, 0.59]) ([0.14, 0.52], [0.27, 0.53])

x2 ([0.25, 0.54], [0.51, 0.62]) ([0.05, 0.49], [0.26, 0.73]) ([0.72, 0.90], [0.22, 0.42])

x3 ([0.29, 0.38], [0.12, 0.63]) ([0.41, 0.74], [0.11, 0.57]) ([0.36, 0.47], [0.56, 0.79])

x4 ([0.16, 0.31], [0.01, 0.51]) ([0.41, 0.64], [0.46, 0.73]) ([0.11, 0.72], [0.12, 0.46])

the alternatives in the order set P of the preferred alter-
native.

6. Solve the attribute weights of the decision matrix.
From Eq. (31), the attribute weight w(t) of the decision
matrix of the t-th expert can be obtained as

w(t) �
(
w

(t)
1 , w

(t)
2 , . . . , w(t)

n

)
. (32)

7. Get the attribute weight matrix of all decision matrices.
According toEq. (32), the attributeweights of all decision
matrices are expressed as a matrix with k rows and n
columns in Eq. (33):

W �

⎡

⎢⎢⎢⎢⎢
⎢
⎣

w(1)

w(2)

...

w(k)

⎤

⎥⎥⎥⎥⎥
⎥
⎦

�

⎡

⎢⎢⎢⎢⎢
⎢
⎣

w
(1)
1 w

(1)
2 · · · w

(1)
n

w
(2)
1 w

(2)
2 · · · w

(2)
n

...
...

. . .
...

w
(k)
1 w

(k)
2 · · · w

(k)
n

⎤

⎥⎥⎥⎥⎥
⎥
⎦

. (33)

Using the LINMAP model, the attribute weight w(t) of a
single expert decision matrix A(t) can be calculated sep-
arately. Elements at corresponding positions in different
matrices can be aggregated by expert weights, which bet-
ter reflect the way that the sum is calculated.

Deriving expert weights

The decision matrices A(1) and A(2) produced by the two
experts are shown in Tables 3 and 4. It can be seen from
Tables 3 and 4 that alternatives x1 and x2 given by the experts
D(1) and D(2) have obvious differences. The weights of D(1)

and D(2) have been set at 0.5 as suggested by Yue [75, 76]
which cannot be distinguished. It is obviously inconsistent
with the difference of the alternative judgment value given by

Table 5 Expert weights results of the proposed method

D1 D2

w
(t)
1 0.5299 0.4701

w
(t)
2 0.4562 0.5438

w
(t)
3 0.4294 0.5706

w
(t)
4 0.5757 0.4243

experts D(1) and D(2), so it cannot reflect the objective actual
situation. In real life, experts’ judgments on different system
options will be affected by the external environment, such
as their psychological state, alternative expression, and sur-
rounding environment. Thus, the experts are given different
weights.

Inspired by [75], the LINMAP model is used to derive
expert weights that each alternative has itself expert weights.
First, the IVq-ROFWFAWA operator is adopted to aggregate
expert decision matrices according to different alternatives,
and the fusion matrix is obtained. Second, the similar-
ity, which is calculated each element of the fusion matrix
between ideal point, is used to derive expert weights for each
alternative. In this way, the expert weight matrix of different
alternatives is obtained. For k experts and m alternatives, an
m× k expert weight matrix can be obtained by the following
steps.

1. Aggregate different expert decision matrices according
to different alternatives.
According to the attribute weights of the decision matrix,
the IVq-ROFWFAWA operator is used to aggregate the
rows of each decision matrix as shown Eq. (34). For t-th

expert, the aggregation result of D
(t)

has m IVq-ROFNs
which can be obtained as Eq. (35). For all experts, the
aggregation result is a fusion matrix D with k rows and
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Table 6 Linguistic terms
corresponding to IVq-ROFNs Linguistic terms IVq-ROFNs

μL μU vL vU

Certainly low important (CLI) 0.05 0.05 0.90 0.95

Very low important (VLI) 0.10 0.20 0.80 0.90

Low important (LI) 0.20 0.35 0.65 0.80

Below average important (BAI) 0.35 0.45 0.55 0.65

Average important (AI) 0.45 0.55 0.45 0.55

Above average important (AAI) 0.55 0.65 0.35 0.45

High important (HI) 0.65 0.80 0.20 0.35

Very high important (VHI) 0.80 0.90 0.10 0.20

Certainly high important (CHI) 0.90 0.95 0.05 0.05

Exactly equal (EE) 0.1965 0.1965 0.1965 0.1965

Table 7 D(1) evaluation value

L(1) Index x1 x2 x3 x4 x5

C1 VHI HI BAI BAI AI

C2 VHI HI LI LI AAI

C3 VHI BAI LI LI VHI

C4 VHI VHI BAI BAI AAI

C5 VHI AI AI AI AI

C6 VHI AI BAI BAI VHI

C7 LI VLI HI HI VHI

C8 VLI VLI VHI VHI AI

C9 LI BAI HI HI BAI

C10 VLI LI HI HI VHI

C11 VHI HI AI BAI AAI

C12 VHI VHI VHI BAI VHI

C13 VLI LI AI AAI VHI

m columns defined as Eq. (36):

(34)

d(t)i � IVq - ROFWFAWA
(
a(t)i j , a

(t)
i j , . . . , a(t)i j

)

� n⊗F
j�1

w
(t)
j a(t)i j ,

D
(t) �

[
d(t)
1 , d(t)

2 , . . . , d(t)
m

]
, (35)

D �

⎛

⎜⎜⎜⎜
⎝

D
(1)

D
(2)

...

D
(k)

⎞

⎟⎟⎟⎟
⎠

�

⎛

⎜⎜⎜⎜
⎝

d(1)
1 d(1)

2 · · · d(1)
m

d(2)
1 d(2)

2 · · · d(2)
m

...
...

. . .
...

d(k)
1 d(k)

2 · · · d(k)
m

⎞

⎟⎟⎟⎟
⎠

. (36)

2. Obtain the ideal point of the fusion matrix D.
The positive ideal point d+∗

j and the negative ideal point

d−∗
j of j-th column in the matrix D are calculated in Eqs.

(37) and (38):

(37)

d+∗
j �

([
max
1≤t≤k

(
u−
d(t)j

)
, max
1≤t≤k

(
u+
d(t)j

)]
,

[
min
1≤t≤k

(
v−
d(t)j

)
, min
1≤t≤k

(
v+
d(t)j

)])
,

(38)

d−∗
j �

([
min
1≤t≤k

(
u−
d(t)j

)
, min
1≤t≤k

(
u+
d(t)j

)]
,

[
max
1≤t≤k

(
v−
d(t)j

)
, max
1≤t≤k

(
v+
d(t)j

)])
.

3. Calculate the similarity of each element of D to the ideal
point.
In matrix D, the positive ideal similarity s(+t)j and the

negative ideal similarity s(−t)
j between each element d(t)

j
and d∗

j are calculated in Eqs. (39) and (40). The similarity
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Table 8 D(2) evaluation value

L(2) Index x1 x2 x3 x4 x5

C1 VHI HI BAI BAI AI

C2 VHI AAI VLI VLI AI

C3 HI AI LI LI HI

C4 VHI VHI AI AI HI

C5 VHI HI HI HI HI

C6 VHI AAI AI AI VHI

C7 VLI VLI AI AI VHI

C8 CL I LI VHI VHI AI

C9 AI AI CH I CH I AI

C10 VLI LI AI AI VHI

C11 VHI AAI AAI BAI HI

C12 VHI VHI HI BAI VHI

C13 BAI AI HI VHI VHI

Table 9 D(3) evaluation value

L(3) Index x1 x2 x3 x4 x5

C1 VHI HI BAI BAI AI

C2 VHI HI LI LI AAI

C3 VHI AI LI LI VHI

C4 VHI VHI AI AI HI

C5 VHI AAI AAI AAI AAI

C6 HI AAI AI AI HI

C7 VLI LI AAI AAI VHI

C8 LI LI VHI HI AI

C9 AI AI VHI VHI AI

C10 VLI VLI AAI AAI VHI

C11 HI AAI BAI BAI AI

C12 VHI VHI HI BAI VHI

C13 LI AI HI HI VHI

Table 10 D(4) evaluation value

L(4) Index x1 x2 x3 x4 x5

C1 VHI HI BAI BAI AI

C2 VHI AAI VLI VLI AI

C3 VHI AAI LI LI VHI

C4 VHI VHI AI AI HI

C5 VHI AI AI AI AI

C6 VHI HI AI AI VHI

C7 LI VLI HI HI VHI

C8 CL I VLI VHI VHI AAI

C9 BAI AI VHI VHI AI

C10 VLI LI HI HI VHI

C11 VHI HI AI BAI AI

C12 VHI VHI HI BAI VHI

C13 BAI AI AI AAI HI
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matrices SIM+ and SIM− of all ideal points are given in
Eqs. (41) and (42):

s j
(+t) � S

(
d(t)
j , d+∗

j

)
�

((
u−
d(t)
j

)q

∧
(
u−
d+∗
j

)q)
+

((
v−
d(t)
j

)q

∧
(

v−
d+∗
j

)q)
+

((
u+
d(t)
j

)q

∧
(
u+d+∗

j

)q)
+

((
v+
d(t)
j

)q

∧
(

v+d+∗
j

)q)

((
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d(t)
j

)q

∨
(
u−
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j

)q)
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j

)q

∨
(
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j

)q)
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((
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j

)q

∨
(
u+d+∗

j

)q)
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((
v+
d(t)
j

)q

∨
(

v+d+∗
j

)q) ,

(39)

s j
(−t) � S

(
d(t)
j , d−∗

j

)
�
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j

)q

∧
(
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j

)q)
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j

)q

∧
(
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(40)

SIM+ �

⎡

⎢
⎢⎢⎢⎢⎢
⎣

SIM(+1)

SIM(+2)

...

SIM(+k)

⎤

⎥
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⎦

�

⎡

⎢
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⎣

s(+1)
1 s(+1)

2 · · · s(+1)
m

s(+2)
1 s(+2)

2 · · · s(+2)
m

...
...

. . .
...

s(+k)
1 s(+k)

2 · · · s(+k)
m

⎤

⎥
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⎦

,

(41)

SIM− �

⎡

⎢⎢⎢⎢
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⎣

SIM(−1)

SIM(−2)
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.

(42)

4. Get expert weight matrix.
For the i-th alternative of the t-th expert, the expertweight
of λ(t)

i is calculated in Eq. (43). The expert weight matrix
can be determined by Eq. (44):

λ
(t)
i �

s
(−t)
i

s
(−t)
i +s

(+t)
i

∑k
t�1

s
(−t)
i

s
(−t)
i +s

(+t)
i

, (43)
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...
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. (44)

According to the decision matrices A(1) and A(2) given
by the experts D(1) and D(2), the expert weights which

are presented by a matrix are derived by our proposed
method, the results are shown in Table 5.

It can be seen from Table 5 that expert weights are dif-
ferent, compared with Yue [75, 76], the proposed method is
more adaptable. Our method, thus, reflects the real situation
of the experts more objectively.

MAGDMmethod based on ARAS

In this subsection, the proposed MAGDM method includes
two information aggregating processes. First, the proposed
IVq-ROFWFAFWA operator is used to aggregate the deci-
sionmatrix of each expert that obtains the aggregationmatrix
R. Second, the ARAS method is used to select the optimal
alternative from matrix R. Figure 2 shows the process for
developing the MAGDM method. In addition, its steps of
implementation are following.

1. Determine the appropriate q value.
According to the decision matrix provided by the
experts, the traversal method is used to compute the
smallest positive integer q which makes all elements

satisfy

(
u+
a(t)
i j

)q

+

(
v+
a(t)
i j

)q

≤ 1, q ≥ 1.

2. Standardize.
In the application scenario, if both cost-type and benefit-
type attributes are included, cost-type attributes will be
uniformly transformed into benefit-type attributes. The
standardizing process is given by Eqs. (24) and (25).

3. Determine the preference pairs set P � {(g, l)}.
The pre-evaluation, which the experts have carried out
in advance, determines the alternative preference pairs
set P.

4. Derive expert weight matrix λ.
First, the LINMAP model is used to solve the attribute
weight vector w(t) of each decision matrix and to
obtain the attribute weight matrix W . The solving
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steps are shown in Eqs. (26)–(33). The W and the
IVq-ROFWFAWA operator are used to aggregate the
different alternatives and obtain the aggregation vec-

tor D
(t)

of each expert. D
(t)

is fused to a matrix D.
The solving processes are given in Eqs. (34)–(36). The
similarity is then used to compute the weights of the dif-
ferent alternatives. For each alternative, the weights of
each expert are obtained. After combination, an expert
weight matrix λ is obtained. The solving processes are
conducted in Eqs. (37)–(44).

5. Get the aggregation matrix R.
According to the expert weight matrix λ solved in step
(4), the IVq-ROFWFAWA operator is used to aggregate
elements at the same position of A(t) (t � 1, 2, …, k).
The aggregation matrix R � (

ri j
)
m×n is obtained by

Eq. (45) for i � 1, 2, . . . , m; j � 1, 2, . . . , n:

(45)

ri j � IVq-ROFWFAWA
(
a(1)i j , a

(2)
i j , . . . , a(k)i j

)

� k⊗F
t�1

λ
(t)
j a

(t)
i j .

6. Calculate the similarity of thematrixR to the ideal point.
The positive ideal point r∗

j of each column of the matrix
R can be found by Eq. (46). The similarity SRg(rg j , r∗

j )
and SRl (rl j , r∗

j ) are then calculated by Eqs. (47) and
Eq. (48):

r∗
j �
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7. Calculate the weighted similarity of the matrix R.
Let attribute weights of R be w � (w1, w2, . . . ,
wn). The weighted average values Eqrg and Eqrl of
SRg(rg j , r∗

j ) and SRl (rl j , r∗
j ) are calculated by Eqs.

(49) and (50).

Eqrg �
n∑

j�1

w j × SRg(rg j , r
∗
j ), j � 1, 2, . . . , n

(49)

Eqrl �
n∑

j�1

w j × SRl (rl j , r
∗
j ), j � 1, 2, . . . , n (50)

8. Construct a linear programming model.
For a pair of alternatives (g, l) in the set of preference
pair P , if Eqrg ≤ Eqrl , it means that the alterna-
tive xg is closer to the ideal point than xl , and the
weighted similarity is consistent with the expert’s pref-
erence. On the contrary, if Eqrg > Eqrl , the weighted
similarity will be inconsistent with the expert prefer-
ence. The goal of the actual alternative should be that
the weighted similarity and the preference of the expert
are usually consistent. According to the idea of the LIN-
MAPmodel, this goal can be transformed into the linear
programming model:

min
∑

(g, l)∈P

θrgl ,

S.T.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eqrl − Eqrg + θrgl ≥ 0∑

(g, l)∈P

(
Eqrl − Eqrg

) � B

n∑

j�1
w j � 1

w j ≥ 0
θrgl ≥ 0

.

(51)

9. Get the attribute weights of R.

The linear programming model of Eq. (51) will be
solved. The attribute weight w of R can be obtained:

w � (w1, w2, . . . , wn). (52)
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The ARASmethod is used to select the best alternative.
The main idea of the ARAS method is to select the best
alternative based on multiple attributes and determine
the final ranking of the alternatives by determining the
utility of each one. The following steps use the ARAS
idea to obtain the optimal alternative.

10. Obtain the optimal alternative R.
Using the score function in Eq. (14), the element with
the largest matrix R score for each column can be iden-
tified. The element with the largest score in the j-th
column can be solved by Eq. (53), where S(ri j ) repre-
sents the score of the element ri j . The elements with the
highest scores in all columns then form a new alterna-
tive x0. This is then added to the 0th row of R, so that a
new decision matrix R � (r i j )m×n can be obtained by
Eq. (54) for i � 0, 1, 2, . . . , m; j � 1, 2, . . . , n:

r0 j �
([

u−
ri j , u

+
ri j

]
,
[
v−
ri j , v+ri j

])
�max

i

{
S
(
ri j

)}
,

(53)
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⎞

⎟⎟⎟
⎠

. (54)

11. Aggregate the elements in R.
The IVq-ROFWFAWA operator is used to aggregate
the elements r i j of each row of R by Eq. (55), and the
aggregation value bri can be obtained:

(55)

bri � IVq-ROFWFAWA (r i1, r i2, . . . , r in)

� n⊗F
j�1

w j r i j .

12. Calculate alternative score.
With the bri of each alternative solved in step (11), each
alternative score sr i is calculated by Eq. (56):

sr i � 1

4

⎛

⎜⎜
⎜⎜
⎝
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)
+
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(u+bri − u−

bri
) − (v+bri − v−
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−Sign
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u−
bri

+ u+bri + v−
bri

+ v+bri

)
× ln3

⎞
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. (56)

13. Calculate the utility value of the alternative.
Because the 0-th alternative is best, the utility of the
alternative is equal to the score of the alternative divided

by the score of the 0-th alternative:

ei � sr i
sr0

, i � 1, . . . , m. (57)

14. Rank alternatives and select the optimal alternative.
According to the utility ei for each alternative obtained
in step (13), the greater the effect is, the better the
alternative is. The alternative with the largest utility,
therefore, is the optimal alternative.

Evaluation and analysis of the HFU system

The process for evaluating an HFU system is described in
“Evaluating an HFU system”. A sensitivity analysis of the
evaluation methods is conducted in “Sensitivity analysis of
evaluation parameters”, and a comparison and more general
analysis are carried out in “Comparative analysis”.

Evaluating an HFU system

Expert evaluation

After a public bidding procedure, the optimal HFU system
will be selected from the five HFU systems. Each HFU
system was subjected to expert review, and was prelimi-
narily evaluated by the hospital. The preference pairs set is
obtained: P � {(5,4), (5,1), (3,2), (1,2)}. Five experts were
then invited to evaluate each system. In order to facilitate
expert evaluation, a linguistic-graded evaluation scale was
adopted. Inspired by Ilbahar et al. [25], the linguistic-graded
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Table 11 D(5) evaluation value

L(5) Index x1 x2 x3 x4 x5

C1 VHI HI BAI BAI AI

C2 VHI HI AI AI AAI

C3 VHI HI AI AI AAI

C4 VHI VHI AAI AAI HI

C5 VHI HI HI HI HI

C6 VHI HI AAI AAI VHI

C7 VLI VLI VHI VHI AAI

C8 VLI LI VHI VHI HI

C9 AAI AAI VHI VHI AAI

C10 VLI VLI AAI AAI HI

C11 VHI HI AAI BAI HI

C12 VHI VHI HI BAI VHI

C13 LI LI HI AAI HI

Table 12 Evaluation value A(1)

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65], [0.35, 0.45])

C3 ([0.80, 0.90],
[0.10, 0.20])

([0.35, 0.45],
[0.55, 0.65])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90], [0.10, 0.20])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.35, 0.45],
[0.55, 0.65])

([0.35, 0.45],
[0.55, 0.65])

([0.55, 0.65], [0.35, 0.45])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55], [0.45, 0.55])

C6 ([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.35, 0.45],
[0.55, 0.65])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C7 ([0.20, 0.35],
[0.65, 0.80])

([0.10, 0.20],
[0.80, 0.90])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90], [0.10, 0.20])

C8 ([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55], [0.45, 0.55])

C9 ([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65], [0.35, 0.45])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90], [0.10, 0.20])

C11 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.35, 0.45],
[0.55, 0.65])

([0.55, 0.65], [0.35, 0.45])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.45, 0.55],
[0.45, 0.55])

([0.55, 0.65],
[0.35, 0.45])

([0.80, 0.90], [0.10, 0.20])
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scale included ten grades, with each of the linguistic terms
corresponding to the ten IVq-ROFNs listed in Table 6. Five
experts evaluated the five HFU systems according to their
expertise and the indices given in Table 1. The evaluation
matrices L(1), L(2), L(3), L(4), L(5) are listed in Tables 7, 8,
9, 10, and 11.

Alternatives selection

As can be seen from Tables 7, 8, 9, 10, and 11, it is difficult to
determine the best HFU system based on the decision matrix
provided by the five experts. For some attributes, there seems
to be little difference among the respective experts. How-
ever, determining expert weights and attribute weights are
not straightforward. That is why, as described in “Integrated
Group Decision method”, the proposed MAGDM method
should be used to select the best alternative. The HFU sys-
tem evaluation process includes the following 15 steps.

1. Transform L(t) into A′(t).
The evaluation matrices L(1), L(2), L(3), L(4), L(5) are
transformed into IVq-ROFN decision matrices A′(1),
A′(2), A′(3), A′(4), A′(5) using Table 1.

2. Determine the q value.
It is found that when q is greater than or equal to 2, all
elements of A′(1), A′(2), A′(3), A′(4), A′(5) satisfy the
definition of IVq-ROFS. q is set to 3 in this case.

3. Standardize A′(t).
The cost-type attributes (C1, C9) are then converted
into benefit-type attributes by Eqs. (24) and (25). A′(1),
A′(2), A′(3), A′(4), A′(5) are transformed into A(1), A(2),
A(3), A(4), A(5) as shown in Tables 12, 13, 14, 15, and
16.

4. Determine the preference pairs set P .
The preference pairs’ set P �
{(5, 4), (5, 1), (3, 2), (1, 2)} was determined in
advance.

5. Derive expert weight matrix λ.
According to the decision matrix A(t), the attribute
weight w(t) is solved using the LINMAP model. The
steps of the solution are given in Eqs. (26)–(33). The
IVq-ROFWFAWA operator is used to aggregate row
elements of the matrices in Tables 12, 13, 14, 15, and
16. The matrix D is obtained using Eqs. (34)–(36).
The expert weight matrix can be obtained using Eqs.

(37)–(44). The result of the expert weight matrix λ

(keeping four decimal places) is as follows:

λ �

⎛

⎜
⎜
⎜⎜
⎜
⎝

λ(1)

λ(2)

λ(3)

λ(4)

λ(5)

⎞

⎟
⎟
⎟⎟
⎟
⎠

�

⎛

⎜⎜
⎜
⎜
⎜
⎝

0.1714 0.2360 0.2012 0.2069 0.1828
0.2231 0.1798 0.2303 0.2153 0.1942
0.2192 0.1946 0.2086 0.2197 0.1953
0.2039 0.2119 0.2164 0.2017 0.1973
0.1824 0.1777 0.1435 0.1564 0.2304

⎞

⎟⎟
⎟
⎟
⎟
⎠

.

6. Aggregating expert decision matrix.
Using Eq. (45) to aggregate five experts’ matrices of
A(t)(t� 1, 2, 3, 4, 5), the collectivematrix R � (ri j )5×13
is calculated as shown in Table 17.

7. Calculate each point’s similarity of R to the ideal point.
After obtaining the ideal points of each attribute of the
matrix R by Eq. (46), as shown as follows:

r∗
1 � ([0.55, 0.65], [0.35, 0.45]),

r∗
2 � ([0.80, 0.90], [0.10, 0.20]),

r∗
3 � ([0.78, 0.88], [0.12, 0.23]),

r∗
4 � ([0.80, 0.90], [0.10, 0.20]),

r∗
5 � ([0.80, 0.90], [0.10, 0.20]),

r∗
6 � ([0.78, 0.89], [0.12, 0.22]),

r∗
7 � ([0.77, 0.87], [0.14, 0.25]),

r∗
8 � ([0.80, 0.90], [0.10, 0.20]),

r∗
9 � ([0.52, 0.62], [0.42, 0.53]),

r∗
10 � ([0.78, 0.88], [0.12, 0.23]),

r∗
11 � ([0.78, 0.88], [0.12, 0.23]),

r∗
12 � ([0.80, 0.90], [0.10, 0.20]),

r∗
13 � ([0.75, 0.87], [0.14, 0.26]).

We calculate the similarity for each point of R by Eqs.
(47) and (48), which are shown in Table 18.

8. Calculate the weighted similarity of R.
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Table 13 Evaluation value A(2)

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.45, 0.55], [0.45, 0.55])

C3 ([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.65, 0.80], [0.20, 0.35])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80], [0.20, 0.35])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80], [0.20, 0.35])

C6 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.80, 0.90], [0.10, 0.20])

C7 ([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.80, 0.90], [0.10, 0.20])

C8 ([0.05, 0.05],
[0.90, 0.95])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55], [0.45, 0.55])

C9 ([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.05, 0.05],
[0.90, 0.95])

([0.05, 0.05],
[0.90, 0.95])

([0.45, 0.55], [0.45, 0.55])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.80, 0.90], [0.10, 0.20])

C11 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.35, 0.45],
[0.55, 0.65])

([0.65, 0.80], [0.20, 0.35])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90], [0.10, 0.20])

Let the attribute weight of R bew � (w1, w2, . . . , wn),
the weighted average Eqrg and Eqrl are shown in Eqs.
(49) and (50), and the results are

Eqr1 � 0.085w1 + w2 + w3 + w4 + w5 + 0.992w6 + 0.017w7 + 0.005w8 + w9 + 0.01w10 + w11 + w12 + 0.046w13,

Eqr2 � 0.151w1 + 0.512w2 + 0.278w3 + w4 + 0.371w5 + 0.44w6 + 0.014w7 + 0.015w8 + 0.793w9 + 0.02w10

+ 0.554w11 + w12 + 0.112w13,

Eqr3 � w1 + 0.02w2 + 0.044w3 + 0.176w4 + 0.381w5 + 0.188w6 + 0.611w7 + w8 + 0.139w9 + 0.455w10

+ 0.224w11 + 0.71w12 + 0.517w13,

Eqr4 � w1 + 0.021w2 + 0.045w3 + 0.178w4 + 0.382w5 + 0.189w6 + 0.622w7 + 0.933w8 + 0.14w9 + 0.455w10

+ 0.092w11 + 0.085w12 + 0.669w13,

Eqr5 � 0.56w1 + 0.268w2 + 0.88w3 + 0.569w4 + 0.403w5 + w6 + w7 + 0.311w8 + 0.746w9 + w10

+ 0.429w11 + w12 + w13.

9. Construct a linear programming model.
According to Eq. (51) and the results of step (8), the
linear programming model is constructed as Eq. (58):

123



Complex & Intelligent Systems (2023) 9:4521–4554 4543

Table 14 Evaluation value A(3)

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65], [0.35, 0.45])

C3 ([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90], [0.10, 0.20])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80], [0.20, 0.35])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65], [0.35, 0.45])

C6 ([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80], [0.20, 0.35])

C7 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.80, 0.90], [0.10, 0.20])

C8 ([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55], [0.45, 0.55])

C9 ([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.45, 0.55], [0.45, 0.55])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.80, 0.90], [0.10, 0.20])

C11 ([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.35, 0.45],
[0.55, 0.65])

([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55], [0.45, 0.55])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.20, 0.35],
[0.65, 0.80])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90], [0.10, 0.20])

minθ � θ54 + θ51 + θ32 + θ12

S.T.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.44w1 − 0.247w2 − 0.835w3 − 0.391w4 − 0.021w5 − 0.811w6 − 0.378w7 + 0.622w8

−0.606w9 − 0.545w10 − 0.337w11 − 0.915w12 − 0.331w13 ≥ −θ54

−0.475w1 + 0.732w2 + 0.12w3 + 0.431w4 + 0.597w5 − 0.008w6 − 0.983w7 − 0.306w8

+0.254w9 − 0.99w10 + 0.571w11 + 0w12 − 0.954w13 ≥ −θ51

−0.849w1 + 0.492w2 + 0.235w3 + 0.824w4 − 0.01w5 + 0.252w6 − 0.597w7 − 0.985w8

+0.653w9 − 0.436w10 + 0.329w11 + 0.2912 − 0.405w13 ≥ −θ32

0.066w1 − 0.488w2 − 0.722w3 + 0w4 − 0.629w5 − 0.552w6 − 0.003w7 + 0.01w8 − 0.207w9

+0.01w10 − 0.446w11 + 0w12 + 0.067w13 ≥ −θ12

w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12 + w13 � 1
w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13 ≥ 0
θ54, θ51, θ32, θ12 ≥ 0

. (58)
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Table 15 Evaluation value A(4)

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.45, 0.55], [0.45, 0.55])

C3 ([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90], [0.10, 0.20])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.65, 0.80], [0.20, 0.35])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55], [0.45, 0.55])

C6 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.80, 0.90], [0.10, 0.20])

C7 ([0.20, 0.35],
[0.65, 0.80])

([0.10, 0.20],
[0.80, 0.90])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90], [0.10, 0.20])

C8 ([0.05, 0.05],
[0.90, 0.95])

([0.10, 0.20],
[0.80, 0.90])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65], [0.35, 0.45])

C9 ([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55],
[0.45, 0.55])

([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.45, 0.55], [0.45, 0.55])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.80, 0.90], [0.10, 0.20])

C11 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55], [0.45, 0.55])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.35, 0.45],
[0.55, 0.65])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.55, 0.65],
[0.35, 0.45])

([0.65, 0.80], [0.20, 0.35])

10. Derive the attribute weights of R.
By solvingEq. (58), the attributeweightw ofR is shown
as follows:

w �
(
0.0876, 0.0411, 0.0964, 0.0008, 0.0721, 0.0937, 0.1259,
0.0862, 0.0429, 0.1205, 0.0557, 0.0689, 0.1082

)

.

11. Obtain the optimal alternative R.
The element with the highest score in each column of
the decision matrix R can be found using Eq. (53). All
elements with the highest score are

r01 � ([0.55, 0.65], [0.35, 0.45]), r02 � ([0.80, 0.90], [0.10, 0.20]), r03 � ([0.78, 0.88], [0.12, 0.23]),
r04 � ([0.80, 0.90], [0.10, 0.20]), r05 � ([0.80, 0.90], [0.10, 0.20]), r06 � ([0.78, 0.89], [0.12, 0.22]),
r07 � ([0.77, 0.87], [0.14, 0.25]), r08 � ([0.80, 0.90], [0.10, 0.20]), r09 � ([0.52, 0.62], [0.42, 0.53]),
r010 � ([0.78, 0.88], [0.12, 0.23]), r011 � ([0.78, 0.88], [0.12, 0.23]), r012 � ([0.80, 0.90], [0.10, 0.20]),
r013 � ([0.75, 0.87], [0.14, 0.26]).

By adding these elements to row 0 of the matrix R, we
can get an optimal matrix R � (r i j )6×13 as shown in
Table 19.

12. Aggregate the attribute of R.
Equation (55) is used to aggregate the elements r i j of
each row of R. The results of each alternative of bri are
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Table 16 Evaluation value A(5)

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.55, 0.65], [0.35, 0.45])

C3 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.45, 0.55],
[0.45, 0.55])

([0.45, 0.55],
[0.45, 0.55])

([0.55, 0.65], [0.35, 0.45])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.65, 0.80], [0.20, 0.35])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80],
[0.20, 0.35])

([0.65, 0.80], [0.20, 0.35])

C6 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.80, 0.90], [0.10, 0.20])

C7 ([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.55, 0.65], [0.35, 0.45])

C8 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80], [0.20, 0.35])

C9 ([0.35, 0.45],
[0.55, 0.65])

([0.35, 0.45],
[0.55, 0.65])

([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.35, 0.45], [0.55, 0.65])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.10, 0.20],
[0.80, 0.90])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.65, 0.80], [0.20, 0.35])

C11 ([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.35, 0.45],
[0.55, 0.65])

([0.65, 0.80], [0.20, 0.35])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.65, 0.80],
[0.20, 0.35])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.20, 0.35],
[0.65, 0.80])

([0.20, 0.35],
[0.65, 0.80])

([0.65, 0.80],
[0.20, 0.35])

([0.55, 0.65],
[0.35, 0.45])

([0.65, 0.80], [0.20, 0.35])

br0 � ([0.76, 0.87], [0.14, 0.26]) br1 � ([0.58, 0.66], [0.65, 0.74]) br2 � ([0.43, 0.56], [0.62, 0.73])
br3 � ([0.61, 0.71], [0.42, 0.54]) br4 � ([0.58, 0.68], [0.46, 0.57]) br5 � ([0.71, 0.82], [0.21, 0.34])

.

13. Obtain the score of alternatives.
The score sr i of bri is calculated by Eq. (56). They are

sr0 � 0.6758, sr1 � 0.0194, sr2 � −0.0872,

sr3 � 0.2494 sr4 � 0.1857, sr5 � 0.5520.

14. Calculate the utility degrees of the alternatives.
The utility degrees of the alternatives are calculated by
Eq. (57):

e1 � 0.0288, e2 � −0.1290,

e3 � 0.3690, e4 � 0.2748, e5 � 0.8168.

15. Rank alternatives and select the best alternative.

The utility degree ranking of the alternatives is e5 > e3 >

e4 > e1 > e2. Thus, the ranking of alternatives is x5 > x3 >

x4 > x1 > x2, and the x5 represents the best alternative, it
means that the 5th software product is an ideal HFU system
for purchasing. In addition, the result is consistent with the
preference pairs preset by experts. It can be concluded that
the proposed MAGDM is effective and objective.

Sensitivity analysis of evaluation parameters

In order to further verify the influence of the value of q, we
varied q without changing the expert decision matrix. The
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Table 17 Aggregate matrix R

Index x1 x2 x3 x4 x5

C1 ([0.10, 0.20],
[0.80, 0.90])

([0.20, 0.35],
[0.65, 0.80])

([0.55, 0.65],
[0.35, 0.45])

([0.55, 0.65],
[0.35, 0.45])

([0.45, 0.55], [0.45, 0.55])

C2 ([0.80, 0.90],
[0.10, 0.20])

([0.62, 0.75],
[0.25, 0.39])

([0.18, 0.31],
[0.72, 0.84])

([0.18, 0.31],
[0.72, 0.84])

([0.52, 0.62], [0.39, 0.49])

C3 ([0.78, 0.88],
[0.12, 0.23])

([0.52, 0.62],
[0.42, 0.54])

([0.23, 0.38],
[0.64, 0.78])

([0.23, 0.39],
[0.63, 0.78])

([0.74, 0.85], [0.16, 0.28])

C4 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.45, 0.55],
[0.46, 0.56])

([0.45, 0.55],
[0.46, 0.56])

([0.64, 0.78], [0.22, 0.37])

C5 ([0.80, 0.90],
[0.10, 0.20])

([0.57, 0.69],
[0.34, 0.47])

([0.57, 0.69],
[0.34, 0.47])

([0.57, 0.69],
[0.34, 0.47])

([0.58, 0.70], [0.32, 0.46])

C6 ([0.78, 0.88],
[0.12, 0.23])

([0.59, 0.71],
[0.31, 0.45])

([0.45, 0.55],
[0.46, 0.56])

([0.45, 0.55],
[0.46, 0.56])

([0.78, 0.89], [0.12, 0.22])

C7 ([0.13, 0.25],
[0.76, 0.87])

([0.12, 0.22],
[0.78, 0.89])

([0.64, 0.76],
[0.27, 0.4])

([0.65, 0.77],
[0.26, 0.40])

([0.77, 0.87], [0.14, 0.25])

C8 ([0.09, 0.13],
[0.84, 0.92])

([0.15, 0.28],
[0.73, 0.86])

([0.80, 0.90],
[0.10, 0.20])

([0.78, 0.88],
[0.12, 0.23])

([0.54, 0.65], [0.38, 0.50])

C9 ([0.52, 0.62],
[0.42, 0.53])

([0.47, 0.56],
[0.45, 0.55])

([0.10, 0.17],
[0.81, 0.91])

([0.10, 0.17],
[0.81, 0.90])

([0.45, 0.55], [0.46, 0.56])

C10 ([0.10, 0.20],
[0.80, 0.90])

([0.16, 0.29],
[0.72, 0.85])

([0.59, 0.71],
[0.31, 0.44])

([0.59, 0.71],
[0.31, 0.44])

([0.78, 0.88], [0.12, 0.23])

C11 ([0.78, 0.88],
[0.12, 0.23])

([0.62, 0.76],
[0.25, 0.39])

([0.48, 0.58],
[0.44, 0.54])

([0.35, 0.45],
[0.55, 0.65])

([0.58, 0.70], [0.32, 0.46])

C12 ([0.80, 0.90],
[0.10, 0.20])

([0.80, 0.90],
[0.10, 0.20])

([0.69, 0.83],
[0.18, 0.32])

([0.35, 0.45],
[0.55, 0.65])

([0.80, 0.90], [0.10, 0.20])

C13 ([0.24, 0.37],
[0.66, 0.78])

([0.35, 0.49],
[0.57, 0.68])

([0.60, 0.73],
[0.30, 0.45])

([0.66, 0.77],
[0.25, 0.38])

([0.75, 0.87], [0.14, 0.26])

Table 18 The similarity of
aggregate matrix R Index x1 x2 x3 x4 x5

C1 0.085 0.151 1.000 1.000 0.560

C2 1.000 0.512 0.020 0.021 0.268

C3 1.000 0.278 0.044 0.045 0.880

C4 1.000 1.000 0.176 0.178 0.569

C5 1.000 0.371 0.381 0.382 0.403

C6 0.992 0.440 0.188 0.189 1.000

C7 0.017 0.014 0.611 0.622 1.000

C8 0.005 0.015 1.000 0.933 0.311

C9 1.000 0.793 0.139 0.140 0.746

C10 0.010 0.020 0.455 0.455 1.000

C11 1.000 0.554 0.224 0.092 0.429

C12 1.000 1.000 0.710 0.085 1.000

C13 0.046 0.112 0.517 0.669 1.000
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Fig. 3 The attribute weight influence of q value

Fig. 4 The influence of q value changes on decision-making methods

analysis is taken from the perspective of alternative attribute
weights and utility degrees. When q value changes from 3
to 10, the changes of alternative attribute weights and utility
degrees are shown in Figs. 3 and 4.

Figure 3 shows that with the increase of q, the changing
trend of the attributeweights remains in the same direction. If
attributeweights increasewith the increase of q, the changing
trend of the attribute weights also increases.

Figure 4 shows that when q changes from 3 to 10, each
alternative fluctuates within a certain range and that the rank-
ing of each alternative is basically unchanged.

Comparative analysis

Comparative analysis of decision-makingmethods

To analyze the influence of different decision-making meth-
ods, the ARAS method is compared to MACBETH [2],
MABAC [48] and TOPSIS [24]. The results are shown in
Table 20.

It can be seen from Fig. 5 that the optimal alternative is
x5 obtained by the ARAS, MACBETH, MABAC and TOP-
SIS methods under the environment of IVq-ROFS. It can be
proved that they can obtain the same optimal alternative. At
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Fig. 5 Comparative analysis of decision-making methods

Fig. 6 Comparison chart of different aggregation matrix operators

the same time, it can be seen from Fig. 5 that the alternative
ranking results obtained byARAS,MACBETH and TOPSIS
are completely consistent: x5 > x3 > x4 > x1 > x2, which
proves that the ARAS is effective and feasible. The ranking
result of MABAC is x5 > x1 > x3 > x4 > x2, implying
that x1 is superior to alternative x3 and alternative x4. How-
ever, since the alternatives x3 and x4 are preferable to x1 for

ARAS, MACBETH and TOPSIS, ARAS is more stable than
MABAC. At the same time, it can be seen from Fig. 5 that
the deviation of alternatives score obtained by ARAS is eas-
ier to distinguish than MACBETH, MABAC and TOPSIS,
allowing decision-makers to easily obtain the ranking results.
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Table 20 Comparative analysis of decision-making methods

MACBETH MABAC TOPOSIS ARAS (our) Ranking

q � 3 s f 1 � 0.8755
s f 2 � 0.8019
s f 3 � 0.962 0
s f 4 � 0.9495
s f 5 � 0.9827

S1 � 0.5425
S2 � 0.1902
S3 � 0.5006
S4 � 0.4146
S5 � 0.6840

C1 � 0.4509
C2 � 0.3784
C3 � 0.5964
C4 � 0.5077
C5 � 0.8150

U1 � 0.1980
U2 � −0.0476
U3 � 0.5136
U4 � 0.3880
U5 � 0.8082

MACBETH x5 > x3 > x4 > x1 > x2

MABAC x5 > x1 > x3 > x4 > x2

TOPSIS x5 > x3 > x4 > x1 > x2

ARAS x5 > x3 > x4 > x1 > x2

q � 4 s f 1 � 0.8089
s f 2 � 0.7151
s f 3 � 0.9306
s f 4 � 0.9087
s f 5 � 0.9624

S1 � 0.5408
S2 � 0.2239
S3 � 0.5102
S4 � 0.4273
S5 � 0.6708

C1 � 0.4556
C2 � 0.3932
C3 � 0.6099
C4 � 0.5126
C5 � 0.8246

U1 � 0.2239
U2 � −0.0323
U3 � 0.53 54
U4 � 0.4052
U5 � 0.8218

MACBETH x5 > x3 > x4 > x1 > x2

MABAC x5 > x1 > x3 > x4 > x2

TOPSIS x5 > x3 > x4 > x1 > x2

ARAS x5 > x3 > x4 > x1 > x2

q � 5 s f 1 � 0.7426
s f 2 � 0.6359
s f 3 � 0.8809
s f 4 � 0.8457
s f 5 � 0.9232

S1 � 0.5114
S2 � 0.2264
S3 � 0.4889
S4 � 0.4100
S5 � 0.6290

C1 � 0.4594
C2 � 0.4037
C3 � 0.6189
C4 � 0.5164
C5 � 0.8250

U1 � 0.2362
U2 � −0.0267
U3 � 0.5453
U4 � 0.4127
U5 � 0.8318

MACBETH x5 > x3 > x4 > x1 > x2

MABAC x5 > x1 > x3 > x4 > x2

TOPSIS x5 > x3 > x4 > x1 > x2

ARAS x5 > x3 > x4 > x1 > x2

q � 6 s f 1 � 0.6658
s f 2 � 0.5498
s f 3 � 0.8252
s f 4 � 0.7823
s f 5 � 0.8738

S1 � 0.4749
S2 � 0.2119
S3 � 0.4543
S4 � 0.3796
S5 � 0.5785

C1 � 0.4614
C2 � 0.4095
C3 � 0.6237
C4 � 0.5184
C5 � 0.8204

U1 � 0.2408
U2 � −0.0263
U3 � 0.5486
U4 � 0.4148
U5 � 0.8428

MACBETH x5 > x3 > x4 > x1 > x2

MABAC x5 > x1 > x3 > x4 > x2

TOPSIS x5 > x3 > x4 > x1 > x2

ARAS x5 > x3 > x4 > x1 > x2

q � 7 s f 1 � 0.5914
s f 2 � 0.4706
s f 3 � 0.7646
s f 4 � 0.7173
s f 5 � 0.8136

S1 � 0.4382
S2 � 0.1890
S3 � 0.4152
S4 � 0.3446
S5 � 0.5259

C1 � 0.4622
C2 � 0.4127
C3 � 0.6266
C4 � 0.5192
C5 � 0.8131

U1 � 0.2408
U2 � −0.0289
U3 � 0.5487
U4 � 0.4138
U5 � 0.8544

MACBETH x5 > x3 > x4 > x1 > x2

MABAC x5 > x1 > x3 > x4 > x2

TOPSIS x5 > x3 > x4 > x1 > x2

ARAS x5 > x3 > x4 > x1 > x2

Comparative analysis of aggregate operators

To analyze the influence of different aggregating operators,
the IVq-ROFWFAWA (WFAWA) operator is compared with
theWA [67], NA [18] and PA [69] aggregate operators in the
decision-making process under an IVq-ROFS environment.
The comparison results are presented in Table 21 and Fig. 6.

As can be seen from Fig. 6, for IVq-ROFWFAWA, WA,
NA and PA aggregate operators, the results of the ranking
of each alternative are generally consistent across all four
operators. At the same time, the IVq-ROFWFAWA operator
is still the most concise and efficient and outperforms the
other operators when choosing the best alternative.

Based on the implementation and comparative analysis
of the case in this paper, the optimal HFU system can be
selected from the five HFU systems by our developed GDM
method. In addition, our research work has advantages. (1)
Compared with q-ROFSs, the proposed GDM method can
expand the freedom of DMs under IVq-ROFS. (2) The new
score function can better distinguish IVq-ROFNs which fur-
ther improves the processing ability of the proposed GDM
method. (3) Our developed GDM method does not need

attribute weights and expert weights, which can save evaluat-
ing time and reduce decision-making costs. (4) The proposed
method for deriving expert weights makes each alternative
have its own expert weights, which can more objectively
reflect the expert’s real situation, and which makes the pro-
posed GDM method more suitable for evaluating a small
number of alternatives in a dynamic environment. (5) The
neutral IVq-ROFWFAWA operator can improve the infor-
mation carry capacity of the developed GDMmethod, which
can more accurately preserve the attitude characteristics of
DMs. Therefore, our proposed GDM method can be more
conveniently, objectively, and cost-effectively used for eval-
uating a small number of alternatives.

Conclusion

To evaluate the differences among HFU management sys-
tems, this paper develops a MAGDMmethod that integrates
an IVq-ROFWFAWAoperator, the LINMAPmethod and the
ARAS method under IVq-ROFNs. We designed our indices
according to the features of medical software that are mea-
sured in quality reviews and evaluations. Then, we propose a
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Table 21 Comparative analysis of aggregate operators

WA NA PA WFAWA (our) Ranking

q � 3 U1 � 0.2415
U2 � 0.0307
U3 � 0.5370
U4 � 0.4424
U5 � 0.7494

U1 � 0.2039
U2 � −0.0420
U3 � 0.4659
U4 � 0.3630
U5 � 0.7647

U1 � 0.2476
U2 � 0.0007
U3 � 0.5064
U4 � 0.4175
U5 � 0.8035

U1 � 0.1980
U2 � −0.0476
U3 � 0.5136
U4 � 0.3880
U5 � 0.8082

WA x5 > x3 > x4 > x1 > x2

NA x5 > x3 > x4 > x1 > x2

PA x5 > x3 > x4 > x1 > x2

WFAWA x5 > x3 > x4 > x1 > x2

q � 4 U1 � 0.2611
U2 � 0.0513
U3 � 0.5636
U4 � 0.4763
U5 � 0.7534

U1 � 0.2229
U2 � −0.0277
U3 � 0.4858
U4 � 0.3850
U5 � 0.7618

U1 � 0.2779
U2 � 0.0200
U3 � 0.5307
U4 � 0.4491
U5 � 0.8017

U1 � 0.2239
U2 � −0.0323
U3 � 0.5354
U4 � 0.4052
U5 � 0.8218

WA x5 > x3 > x4 > x1 > x2

NA x5 > x3 > x4 > x1 > x2

WA x5 > x3 > x4 > x1 > x2

WFAWA x5 > x3 > x4 > x1 > x2

q � 5 U1 � 0.2694
U2 � 0.0668
U3 � 0.5820
U4 � 0.4988
U5 � 0.7624

U1 � 0.2339
U2 � −0.0171
U3 � 0.5004
U4 � 0.4020
U5 � 0.7593

U1 � 0.2964
U2 � 0.0343
U3 � 0.5481
U4 � 0.4733
U5 � 0.8013

U1 � 0.2362
U2 � −0.0267
U3 � 0.5453
U4 � 0.4127
U5 � 0.8318

WA x5 > x3 > x4 > x1 > x2

NA x5 > x3 > x4 > x1 > x2

PA x5 > x3 > x4 > x1 > x2

WFAWA x5 > x3 > x4 > x1 > x2

q � 6 U1 � 0.2722
U2 � 0.0780
U3 � 0.5948
U4 � 0.5129
U5 � 0.7754

U1 � 0.2405
U2 � −0.0088
U3 � 0.5119
U4 � 0.4153
U5 � 0.7573

U1 � 0.3083
U2 � 0.0452
U3 � 0.5608
U4 � 0.4921
U5 � 0.8022

U1 � 0.2408
U2 � −0.0263
U3 � 0.5486
U4 � 0.4148
U5 � 0.8428

WA x5 > x3 > x4 > x1 > x2

NA x5 > x3 > x4 > x1 > x2

PA x5 > x3 > x4 > x1 > x2

WFAWA x5 > x3 > x4 > x1 > x2

q � 7 U1 � 0.2743
U2 � 0.0864
U3 � 0.6032
U4 � 0.5203
U5 � 0.7890

U1 � 0.2461
U2 � −0.0012
U3 � 0.5204
U4 � 0.4249
U5 � 0.7562

U1 � 0.3158
U2 � 0.0536
U3 � 0.5710
U4 � 0.5071
U5 � 0.8038

U1 � 0.2408
U2 � −0.0289
U3 � 0.5487
U4 � 0.4138
U5 � 0.8544

WA x5 > x3 > x4 > x1 > x2

NA x5 > x3 > x4 > x1 > x2

PA x5 > x3 > x4 > x1 > x2

WFAWA x5 > x3 > x4 > x1 > x2

novel score function that overcomes the deficiencyof existing
score functions for measuring IVq-ROFNs, and extendWFA
operator to IVq-ROFWFAWAoperator under IVq-ROFSs for
aggregating information neutrally. Afterward, the attribute
weights are solved through a linear programming model
constructed by LINMAP, and expert weights of different
alternatives are obtained based on the similarity of IVq-
ROFNs. Finally, the integrated GDMmethod is developed to
evaluate the quality of the HFU system under IVq-ROFSs.
The results of the evaluation are consistent with the results
provided by the experts in advance. The sensitivity analysis
and comparative analysis further verify the effectiveness and
feasibility of the proposed MAGDM method.

Nevertheless, our developed method is only applicable
to the case of a small number of experts and a small num-
ber of alternatives, with the rapid growth of complexity and
uncertainty of the system, it is necessary to combine big
data and artificial intelligence to deal with complex prob-
lems in the decision-making process. For future research, we
will concentrate on the study of big data decision problems.
On the other hand, experts often give preference informa-
tion between alternatives and provide a judgment matrix
according to their own experience and knowledge. Therefore,
decision-making methods based on preference relations will
also be our research focus.
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