
Complex & Intelligent Systems (2023) 9:4287–4300
https://doi.org/10.1007/s40747-022-00948-7

ORIG INAL ART ICLE

DM-DQN: Dueling Munchausen deep Q network for robot path
planning

Yuwan Gu1,2 · Zhitao Zhu1,2 · Jidong Lv1,2 · Lin Shi1,2 · Zhenjie Hou1,2 · Shoukun Xu1,2

Received: 1 April 2022 / Accepted: 3 December 2022 / Published online: 30 December 2022
© The Author(s) 2022

Abstract
In order to achieve collision-free path planning in complex environment, Munchausen deep Q-learning network (M-DQN)
is applied to mobile robot to learn the best decision. On the basis of Soft-DQN, M-DQN adds the scaled log-policy to the
immediate reward. The method allows agent to do more exploration. However, theM-DQN algorithm has the problem of slow
convergence. A new and improved M-DQN algorithm (DM-DQN) is proposed in the paper to address the problem. First, its
network structure was improved on the basis of M-DQN by decomposing the network structure into a value function and an
advantage function, thus decoupling action selection and action evaluation and speeding up its convergence, giving it better
generalization performance and enabling it to learn the best decision faster. Second, to address the problem of the robot’s
trajectory being too close to the edge of the obstacle, a method of using an artificial potential field to set a reward function is
proposed to drive the robot’s trajectory away from the vicinity of the obstacle. The result of simulation experiment shows that
the method learns more efficiently and converges faster than DQN, Dueling DQN and M-DQN in both static and dynamic
environments, and is able to plan collision-free paths away from obstacles.

Keywords Deep reinforcement learning · DM-DQN · Path planning · Dueling network

Introduction1

With thedevelopment trendof artificial intelligence, the robot2

industry is also developing towards the intelligent direction3

of self-learning and self-exploration [1]. The path planning of4

B Shoukun Xu
xsk@cczu.edu.cn

Yuwan Gu
guyuwan@cczu.edu.cn

Zhitao Zhu
zhuzhitao1999@163.com

Jidong Lv
ljd@cczu.edu.cn

Lin Shi
slcczu@cczu.edu.cn

Zhenjie Hou
houzj@cczu.edu.cn

1 School of Computer Science and Artificial Intelligence,
Changzhou University, Changzhou 213164, China

2 Digital Twin Technology Engineering Research Center for
Key Equipment of Petrochemical Process, Changzhou
University, Changzhou 213164, China

mobile robot is the core problem of robot motion, and its aim 5

is to find anoptimal or suboptimal pathwithout collision from 6

the starting point to the endingpoint.With the development of 7

science and technology, robots face more and more complex 8

environment, and in the unknown environment, we cannot 9

get the information of the whole environment. Therefore, 10

the traditional path planning algorithm cannotmeet the needs 11

of people, such as artificial potential field algorithm [2, 3], 12

ant colony algorithm [4], genetic algorithm [5], and particle 13

swarm algorithm [6]. 14

For the problem, deep reinforcement learning (DRL) is 15

proposed [7, 8]. DRL combines deep learning (DL) [9] with 16

reinforcement learning (RL) [10]. Deep learning focuses on 17

the extraction of features from the input unknown environ- 18

mental states by means of neural network to achieve a fit 19

between the environmental states and the action value func- 20

tion. Reinforcement learning then completes the decision 21

based on the output of the deep neural network and the explo- 22

ration strategy, thus enabling themapping of states to actions. 23

The combination of deep learning and reinforcement learning 24

solves the dimensional catastrophe problem posed by state- 25

to-action mapping [11] and better meet the needs of robot 26

movement in complex environment. 27

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-022-00948-7&domain=pdf
http://orcid.org/0000-0002-3148-9414
http://orcid.org/0000-0002-7119-1006

4288 Complex & Intelligent Systems (2023) 9:4287–4300

Mnih et al. [12] proposed deep Q-learning Network28

(DQN) in GoogleDeepMind, a method that combines deep29

neural network with Q-learning in reinforcement learning30

[13] and validates its superiority on Atari 2600. Wang et al.31

[14] divided the entire network structure into two parts,32

one for the state value function and one for the dominance33

function, by altering the structure of the neural network in34

DQN. The improvement can significantly improve the learn-35

ing effect and accelerate the convergence. Haarnoja et al. [15]36

introduced maximum entropy into reinforcement learning.37

The introduction of entropy regularization makes the strat-38

egy more random and so adds more exploration, which can39

speed up subsequent learning. Vieillard et al. [16] add scaled40

log-policy to the immediate reward, based on maximum41

entropy reinforcement learning, to maximize the entropy42

of the expected payoff and the resulting strategy, the algo-43

rithm (M-DQN) is also the first to outperform distributed44

reinforcement learning [17] without the use of distributed45

reinforcement learning.46

Some progress has been made in applying deep reinforce-47

ment learning to path planning for agent. Dong et al. [18]48

combined Double DQN and average DQN to train the net-49

work parameters to reduce the problem of overestimation50

[19] of robot action selection. Huang et al. [20] solved the51

problem that relative motion between a moving obstacle and52

a robot may lead to anomalous rewards by modifying the53

reward function and validating it on the DQN and Dueling54

DQN algorithms. Lou et al. [21] combined a deep reinforce-55

ment learning approach with DQN and prior knowledge to56

reduce training time and improve generalization. Yan et al.57

[22] used a long short-term memory (LSTM) network and58

combined it with Double DQN to enhance the unmanned59

ground vehicle’s ability to remember its environment. Yan60

et al. [23] used a combined prioritized experience replay61

(PER) and Double DQN algorithm to solve the UAV trajec-62

tory planning problemwith global situational information by63

combining an epsilon greedy strategy with heuristic search64

rules to select actions. Hu et al. [24] presented a novel65

method called covariancematrix adaptation-evolution strate-66

gies (CMA-ES) for learning complex and high-dimensional67

motor skills to improve the safety and adaptiveness of robots68

in performing complex movement tasks. Hu et al. [25] pro-69

posed a learning scheme with nonlinear model predictive70

control (NMPC) for the problem of mobile robot path track-71

ing.72

In summary, an improvedM-DQN algorithm (DM-DQN)73

is proposed in the paper, the method introduces maximum74

entropy and implicitly exploits the Kullback–Leibler diver-75

gence between successive strategies, thus outperforming76

distributed reinforcement learning algorithm. In addition,77

due to the introduction of the competing network structure,78

the convergence speed is significantly improved compared79

to that of M-DQN. By designing a reward function approach80

based on an artificial potential field, the robot’s path plan- 81

ning is kept away from the vicinity of the obstacle. Moving 82

obstacle in unknown environments can be a huge challenge 83

for mobile robot as they can negatively affect the range of the 84

sensors. Therefore, not only the path planning problem in the 85

static obstacle environment is studied, but also the path plan- 86

ning problem in the dynamic and static obstacle environment 87

is considered. Finally, the DM-DQN algorithm is applied to 88

mobile robot path planning and is compared with the DQN, 89

Dueling DQN and M-DQN algorithms. 90

A summary of the key contributions of the paper are as 91

follows: 92

• A virtual simulation environment has been constructed 93

using the Gazebo physical simulation platform, replacing 94

the traditional raster map. The physical simulation plat- 95

form is a simplified model of the real world that is closer 96

to the real environment than a raster map, reducing the gap 97

between the virtual and real environment and reflecting 98

whether the strategies learned by the agent will ultimately 99

be of value to the real robot problem. 100

• The network structure of theM-DQN is decomposed into a 101

value function and an advantage function, thus decoupling 102

action selection and action evaluation, so that the state 103

no longer depends entirely on the value of the action to 104

make a judgment, allowing for separate value prediction. 105

By removing the influence of state on decision making, 106

the nuances between actions are brought out more, allow- 107

ing for faster convergence and better generalization of the 108

model. 109

• The negative impact of obstacle is considered and an arti- 110

ficial potential field is used to set up a reward function 111

to balance obstacle avoidance and approach to the target, 112

allowing the robot to plan a path away from the vicinity of 113

the obstacle. 114

The structure of the paper as follows: “Theoretical back- 115

ground” introduces the mobile robot model; “Proposed 116

algorithm” introduces the proposed DM-DQN algorithm in 117

detail; “Materials and methods” describes the simulation 118

environment and performs an experimental comparison; and 119

“Experiments and results” concludes the paper. 120

Theoretical background 121

M-DQN 122

Reinforcement learning is the use ofMarkovdecisionprocess 123

(MDP) [26] to simplify modeling, and the Markov decision 124

process can be represented as a tupleM � {, , , r, γ}, where 125

denotes the state, denotes the action, denotes the state transfer 126

123

Complex & Intelligent Systems (2023) 9:4287–4300 4289

Fig. 1 The process of reinforcement learning

matrix, r denotes the reward function, and γ denotes the dis-127

count factor. The process of reinforcement learning is shown128

in Fig. 1; the whole process includes environment, agent,129

state, action and reward.130

In the classical Q-learning algorithm, the iterations of the131

q-function can be expressed by the following formula:132

q(st , at) ← q(st , at)

+η
(
rt + γmaxa′q∗

(
st+1, a

′) − q(st , at)
) (1)133

where st denotes the state at time t, at denotes the action at134

time t, η denotes the ratio coefficient, rt denotes the reward135

at time t, st+1 denotes the state at time t + 1, a
′
denotes136

the next action and γ denotes the discount factor. However,137

q∗ is unknown in practice, so the value function qt of the138

current strategy can only be used to replace the value function139

q∗ of the optimal strategy, the process often referred to as140

bootstrapping. In short, it is leading itself to be updated to141

qt+1 by the current value of itself, qt .142

In M-DQN, a guiding signal, “log-policy”, which is dif-143

ferent from qt , is proposed, that is, the probability value of144

the policy is taken as log. Since there is an argmax opera-145

tion in Q-learning, all optimal strategies are determined, so146

the probability is 1 for each optimal strategy and 0 for all147

other non-optimal strategies. After taking log for the strate-148

gies, the probability of the optimal strategy becomes zero,149

while the probability of the remaining non-optimal strategies150

becomes negative infinity. This is certainly a stronger signal151

for strategy choice, as it suppresses all non-optimal strate-152

gies. In addition, by adding this signal value to the immediate153

reward, the learning process of reinforcement learning can154

be simplified. Although the optimal action is 0, the rest of155

the actions are negative infinity, so the choice of the optimal156

action does not change. Then, in M-DQN, the immediate157

reward becomes: rt + αlnπ (at |st).158

However, the value of lnπ (at |st) is not computable in Q-159

learning, so the same maximum entropy strategy as in the160

Soft-AC algorithm is introduced in DQN, which becomes 161

Soft-DQN. In Soft-DQN, not only the return value of the 162

environment is maximized, but also the entropy of the strat- 163

egy, and the regression objective of Soft-DQN is expressed 164

as 165

q̂Soft−DQN(rt , st+1) � rt + γ
∑

a′ ∈A
πθ

(
a

′ |st+1
)

166

(qθ (st+1, a
′) − τ lnπθ (a

′|st+1)) (2) 167

where s denotes the state, a denotes the action, r denotes the 168

reward value, and γ denotes the discount factor. πθ satisfies 169

πθ � sm(qθ /τ), τ is the temperature parameter, which is 170

used to control the weight of entropy, a
′
denotes the action at 171

moment t + 1, andA is the action available. Since the policy 172

chosen for Soft-DQN is softmax, which is different from the 173

deterministic policy of argmax in Q-learning, the policy of 174

Soft-DQN is random and it is possible to calculate the “log- 175

policy”guiding signal inM-DQN.Therefore,M-DQNmakes 176

some simple modifications to Soft-DQN, which replaces rt 177

in Eq. (2) with rt + ατ lnπθ(at |st), i.e., 178

q̂M−DQN(rt , st+1) � rt + ατ lnπθ (at |st) 179

+ γ
∑
a′∈A

πθ

(
a′|st+1

)
(qθ

(
st+1, a

′)
180

− τ lnπθ

(
a′|st+1

)
) (3) 181

where πθ � sm(qθ /τ), retrieved by setting α � 0. M-DQN 182

not onlymaximizes the environmental rewardwhile selecting 183

a strategy each time, but alsominimizes theKullback–Leibler 184

divergence [27] of the old and new strategies,which is consis- 185

tent with the ideas of TRPO [28] andMPO [29]. Minimizing 186

the Kullback–Leibler divergence of the old and new policies 187

can lead to an improvement in M-DQN performance, mainly 188

due to the following two aspects: 189

• As with TRPO, using the distribution of the old strategy to 190

estimate the distribution of the new strategy only when the 191

Kullback–Leibler divergence of the old and new strategies 192

are close does not lead to excessive errors between the 193

old and new strategies. The “log-policy” guiding signal 194

used by M-DQN dynamically limits the error caused by 195

the large difference between the old and new policies, pre- 196

cisely because it implicitly exploits the Kullback–Leibler 197

divergence. 198

• The problem of overestimation in DQN is described in 199

Double DQN [30], and the impact of the overestimation 200

problem on the performance of the algorithm is demon- 201

strated, and solving the overestimation problem can lead 202

to performance improvements. By the limitation of the 203

Kullback–Leibler divergence in M-DQN, large Q values 204

123

4290 Complex & Intelligent Systems (2023) 9:4287–4300

Fig. 2 The structure of M-DQN network

will be suppressed, thus reducing the negative effects of205

overestimation of Q values.206

The M-DQN builds two neural networks, like the DQN,207

and they have exactly the same network structure, but the Q208

network is updated every iteration,while the targetQnetwork209

is only updated every fixedC iterations. The target Q network210

is used instead of the Q network in the calculation of the211

target value to reduce the correlation between the target and212

current values. The structure of the Q network and target Q213

network of the M-DQN is shown in Fig. 2. This network has214

four layers: input states; output action values; and two hidden215

layers of 64 and 128, respectively.216

DM-DQN217

In the structure of M-DQN network, each time theQ value is218

updated, only the value corresponding to one of the actions is219

updated, while the values corresponding to the other actions220

remain unchanged, which leads to its inefficient updating.221

The competitive network structure used inDM-DQNupdates222

the values of all other actions when the Q value is updated223

once. This more frequent updating of values allows for better224

estimation of state values and the better the competitive net-225

work structure performs when the number of action values226

is higher.227

The structure ofM-DQNnetwork is divided into twoparts,228

as shown in Fig. 3. The first part is only related to the state229

S and is called the value function, denoted as V (s, ω, α);230

the other part is related to the state S and the action A and231

is called the advantage function, denoted as A(s, a, ω, β).232

Thus, the output of the network can be expressed as233

Q(s, a, ω, α, β) � V (s, ω, α) + A(s, a, ω, β) (4)234

Fig. 3 DM-DQN network structure

where ω is the common parameter of V and A, s denotes the 235

state, a denotes the action, and α and β are the parameters of 236

V and A, respectively. The V value can be thought of as the 237

average of the Q values in that state. The A value is limited 238

to an average of 0, and the sum of the V and A values is the 239

original Q value. 240

In M-DQN, when we need to update the Q value of an 241

action, we update the Q network directly so that the Q value 242

of the action is raised. The Q network of the M-DQN can be 243

understood as fitting a curve to the Q value of the Q-table. 244

A cross-section can be taken that represents the Q value of 245

each action in the current state. For example, as shown in 246

Fig. 4a, when the M-DQN is updating the value of action 2 247

in the state, it will only update the action. In the DM-DQN, 248

the network gives priority to updating the V value because of 249

the restriction that the sum of the A values must be zero. The 250

V value is the average of the Q values and the adjustment 251

of the average is equivalent to updating all the Q values in 252

that state at once. Therefore, when the network is updated, 253

it not only updates the Q value of a particular action, but 254

adjusts the Q values of all actions in that state, all at once. 255

In Fig. 4b, when action 2 in the state is updated, the V value 256

is first updated, and because the average value is updated, 257

the rest of the actions in the state follow. As a result, it is 258

possible to have more values updated less often, resulting in 259

faster convergence and the ability to learn the best decisions 260

faster. 261

The DM-DQN is applied to robot path planning, and the 262

value function is to learn the situation where the robot does 263

not detect an obstacle, while the advantage function is to 264

123

Complex & Intelligent Systems (2023) 9:4287–4300 4291

Fig. 4 Q value update based on two algorithms

understand that the robot detects an obstacle. To solve the265

identifiability problem, the advantage function is centralized:266

Q(s, a, ω, α, β) � V (s, ω, α) + (A(s, a, ω, β)267

− 1

A

∑

a′ ∈A

A
(
s, a

′
, ω, β

)
(5)268

where A is the optional action,ω is the common parameter of269

V and A, s denotes the state, a denotes the action, a
′
denotes270

the next action, and α and β are the parameters of V and A,271

respectively.272

Proposed algorithm273

The process of autonomous path planning274

The design of the path planning process for a mobile robot275

under the DM-DQN algorithm is shown in Fig. 5. First, path276

planning model for the mobile robot based on DM-DQN277

is established to describe the mobile robot path planning278

problem as a Markov decision processes. Second, the robot279

acquires environmental information from sensors, calcu-280

lates the direction and distance of obstacles and targets, and281

designs a reward function based on the artificial potential282

field. The mobile robot selects the appropriate action value283

from the reply buffer and the reward function based on the284

artificial potential field. Action value and state are first passed285

through the fully connected layer, followed by a value func-286

tion and an advantage function to outputQvalues tominimize287

the loss function, respectively, and finally fed back to the288

neural network to update the network’s values. If it is the289

end state, the environment is reset and restarted, otherwise290

it continues to learn in the environment; if it is the arrival291

state, it continues to determine if the algorithm converges, if292

it converges, the program ends, otherwise it continues to gen-293

erate target endpoints and interact with the environment until294

it ends. Finally, the mobile robot interacts with the environ- 295

ment to obtain training data, and the sampled data are trained 296

so that the mobile robot completes collision-free path plan- 297

ning. 298

The design of reward function based on artificial 299

potential field method 300

Themethod of artificial potential field 301

The artificial potential field method is a virtual force method 302

that treats the motion of a robot in its environment as a 303

motion under a virtual artificial force field [31]. As shown 304

in Fig. 6, the target point will exert a gravitational force on 305

the robot, while the obstacle will exert a repulsive force on 306

the robot. The resultant force of these two forces is the con- 307

trolling force for the robot’s motion, and with the controlling 308

force, a collision-free path to the target point can be planned. 309

The gravitational force on the robot becomes greater as it 310

approaches the target point, and the repulsive force increases 311

as it approaches the obstacle. 312

In the artificial potential field, the potential function U is 313

used to create the artificial potential field, where the gravita- 314

tional potential function is expressed as follows: 315

Uatt(q) � 1
2ζd

2
(
q, qgoal

)
(6) 316

In Eq. (6), ζ denotes the gravitational potential field con- 317

stant and d(q, qgoal) denotes the distance between the current 318

point q and the target point qgoal. 319

The expression for the repulsive potential function is as 320

follows: 321

Urep(q) �
⎧
⎨
⎩

1
2η

(
1

D(q)
− 1

Q∗
)2
, D(q) < Q∗

0, D(q) ≥ Q∗ (7) 322

123

4292 Complex & Intelligent Systems (2023) 9:4287–4300

Fig. 5 The process of autonomous path planning

Fig. 6 Artificial potential field

In Eq. (7), η denotes the repulsive field constant, D(q)323

denotes the distance from the current point q to the nearest324

obstacle, and Q∗ denotes the threshold at which the obstacle325

generates a repulsive force, which is less than this threshold326

before a repulsive force is generated.327

The expression for the combined potential force on a328

mobile robot in an artificial potential field is as follows:329

Uq � Uatt(q) +Urep(q) (8)330

The potential function Uq of the mobile robot at point 331

q represents the magnitude of the energy at that point, and 332

the force vector at that point is represented by the gradient 333

∇U (q), which is defined as 334

∇U (q) � DU (q)T �
[

∂U
∂q1

(q), . . . , ∂U
∂qm

(q)
]T

(9) 335

The gravitational function at point q can be obtained by 336

finding the negative derivative of Eq. (6) and its expression 337

is expressed as 338

Fatt(q) � −∇Uatt(q) � −ζd
(
q, qgoal

)
(10) 339

The repulsive function at point q can be obtained by find- 340

ing the negative derivative of Eq. (7) and its expression is 341

expressed as 342

Frep(q) �
{

η
[

1
D(q)

− 1
Q∗

]
1

D2(q)

∂D(q)
∂x , D(q) < Q∗

0, D(q) ≥ Q∗ (11) 343

The combined forces on a mobile robot in an artificial 344

potential field can be expressed as 345

Fq � Fatt(q) + Frep(q) (12) 346

123

Complex & Intelligent Systems (2023) 9:4287–4300 4293

The design of reward function347

When the mobile robot moves towards the target point,348

according to the idea of artificial potential field, the reward349

function is decomposed into two parts: the first part is the350

position reward function, including the target reward func-351

tion and the obstacle avoidance reward function, the target352

reward function is to guide the robot to reach the target point353

quickly, the obstacle avoidance reward function is tomake the354

robot keep a certain distance from the obstacles. The second355

part is the direction reward function. The current orientation356

of the robot plays a key role in reasonable navigation, and357

given that the direction of the combined forces on the robot358

in the artificial potential field can fit well with the direction359

of the robot’s movement, the direction reward function is360

designed to guide the robot towards the target point.361

In the position reward function, the target reward func-362

tion is first constructed using the gravitational potential field363

function:364

rewardatt � 1
2ζd

2
goal (13)365

where ζ denotes the constant of gravitational reward function366

and dgoal denotes the distance between the current position367

and the target point.368

The obstacle avoidance reward function is partially con-369

structed using a repulsive potential field function with a370

negative reward that decreases as the robot’s distance from371

the obstacle decreases:372

rewardrep �
⎧
⎨
⎩

1
2η

(
1

dobs
− 1

dmax

)2
, dobs < dmax

0, dobs ≥ dmax

(14)373

where η denotes the constant of repulsive reward function,374

dobs denotes the distance between the current position and the375

obstacle and dmax denotes the maximum influence distance376

of the obstacle.377

In the direction reward function, Eq. (12) represents378

the combined force on the robot, which coincides with379

the expected direction. The angular difference between the380

expected and actual directions of the robot is expressed as381

ϕ � arccos
Fq ·Fa|Fq ||Fa | (15)382

where Fq denotes the expected direction, Fa denotes the383

actual direction andϕ denotes the angle between the expected384

direction and the actual direction. The direction reward func-385

tion can, therefore, be expressed as386

rewardyaw � ϕ%(2π)
π

(16)387

Combining Eqs. (13), (14) and (16), the total reward func- 388

tion can be expressed as 389

reward � rewardatt + rewardrep + rewardyaw 390

� 1

2
ζd2goal −

1

2
η

(
1

dobs
− 1

dmax

)2

+
ϕ%(2π)

π
(17) 391

Therefore, the reward function for the mobile robot is 392

expressed as a whole as 393

R � 1

2
ζd2goal

⎧⎪⎪⎨
⎪⎪⎩

1000 dgoal < rgoal

− 1
2 ζ

(
1

dobs
− 1

dmax

)2
+ ϕ%(2π)

π
dgoal > rgoal&&dobs > robs

−500 dobs < robs
(18)

394

where rgoal denotes the radius of the target area centered on 395

the target point and robs denotes the radius of the collision 396

area centered on the obstacle. 397

In order to verify the effectiveness of the reward func- 398

tion setting based on the artificial potential field, only the 399

distance information between the mobile robot and the tar- 400

get point will be considered as the reward function setting 401

for comparison, and its reward function setting is shown as 402

follows: 403

reward �
(
dgoal
k

)2

(19) 404

The process of path planning algorithm based 405

on DM-DQN 406

The algorithm proposed in the paper first estimates the Q 407

value through an online Dueling Q network with weight θ , 408

and weight θ is replicated in a target network with weight θ̂ 409

at each passing C steps. Second, by interacting with the envi- 410

ronment using a ε-greedy strategy, the robot obtains reward 411

and the next state according to the reward function based 412

on artificial potential field. Finally, the transitions (st , at , 413

r t , st+1) are stored in a fixed size FIFO replay buffer and 414

with each F steps, DM-DQN randomly draws a batch of Dt 415

from the replay buffer D and minimizes the following losses 416

according to the regression objective of Eq. (8). The complete 417

algorithm process is shown in Algorithm 1. 418

123

4294 Complex & Intelligent Systems (2023) 9:4287–4300

419

Materials andmethods420

Experimental platform421

The experimental platform is Windows 10.1 + tensor-422

flow1.13.1 + cuda10.0 and the hardware is Intel i7-423

8550U@1.6 GHz processor. The simulation platform was424

Gazebo simulation platform. The DQN algorithm, Dueling425

DQNalgorithm,M-DQNalgorithmandDM-DQNalgorithm426

were trained for 320 rounds, respectively, and the effec-427

tiveness of the algorithm’s obstacle avoidance strategy, the428

relationship between the success rate of obstacle avoidance,429

the effectiveness of obstacle avoidance and the number of430

training rounds were analyzed.431

Experimental environment setup432

Gazebo is a physical simulation platformmodel that supports433

a variety of robotics, sensors and environmental simulations.434

The Gazebo simulator is used to create a virtual simulation435

Table 1 Training parameters and values

Parameters Values

Learning rate 0.01

Discount factor 0.9

Pre-training steps 800

Mini-batch size 128

Replay memory size 20,000

Network update frequency 30

environment and the robot is modeled by Gazebo to imple- 436

ment the corresponding path planning tasks. In addition, it 437

uses python to implement the path planning algorithm and 438

calls the built-in Gazebo simulator to control the robot’s 439

movements and obtain robot sensory information. In all 440

experiments, the robot model parameters are kept consistent 441

and do not require any a priori knowledge of the environment. 442

The parameters shown in Table 1 were used throughout the 443

experiment. 444

Experimental environments used in the experiments 445

Robot operating system 446

This paper uses the ROS (robot operating system) software 447

platform, which is a robot software development platform 448

that includes system software to manage computer hardware 449

and software resources and provide services. ROS uses a 450

cross-platform modular communication mechanism, which 451

is a distributed framework (Nodes) and largely reduces the 452

code reuse rate. ROS is also highly compatible and open, 453

providing a number of functional packages, debugging tools 454

and visualization tools. 455

The ROS node graph for the experiments is shown in 456

Fig. 7. Gazebo will publish information on a range of topics 457

such as odometry and LIDAR. In addition, the DQN algo- 458

rithm communicates with these topics, the feedback from the 459

environment can be obtained, and the strategy can be learned 460

to output the actions to be performed and passed to the gazebo 461

environment. This allows the algorithm to interact with the 462

simulation environment. 463

123

Complex & Intelligent Systems (2023) 9:4287–4300 4295

Fig. 7 The ROS node graph

Gazebo simulation environment464

Gazebo is a 3D physics simulation environment based on the465

ROS platform, open source and powerful, providing many466

types of robot, sensor and environmentmodels, andproviding467

a variety of high-performance physics engines such as ODE,468

Bullet, Sim body, DART and others to achieve dynamics469

simulation. Gazebo has the following main advantages:470

• Editing environment: Gazebo provides the basic physical471

model, making it easier to add robot and sensor models.472

• Sensor simulation: Supports data simulation of sensors473

such as LiDAR, 2D/3D/depth cameras and can add noise474

to the data.475

• 3D visualization of scenes: Effects such as light, texture476

and shadow can be set to increase the realistic display of477

the scene.478

Experiments and results479

Static environment480

To verify the planning performance of DRL in different sce-481

narios, we first validate the reliability of the algorithm on a482

static environment. At the beginning, we randomly gener-483

ated seven target points to test the effect of DQN, M-DQN,484

Dueling DQN and DM-DQN in the environment. The envi-485

ronment model is shown in Fig. 8, where the black object is486

mobile robot and the brown objects are static obstacles.487

In static environment, the DQN algorithm, the Dueling488

DQN algorithm, the M-DQN algorithm and the DM-DQN489

algorithm are used for the path planning task and their con-490

vergence rates are compared. Each model was trained 320491

times. Figure 9 records the cumulative reward for each round492

and the average reward for the agent,where each dot indicates493

a round and the black curve indicates the average reward. As494

shown in Fig. 9, the intelligences lacked experience of how495

to reach the goal in the early stages and spent most of the496

first 100 rounds exploring the environment, so the intelli-497

gences received low rewards. However, by comparing these498

Fig. 8 The map of static environment

four algorithms, as shown in Fig. 10, we find that the remain- 499

ing three algorithms all rise faster thanDQNafter 100 rounds, 500

which is because the network structure adopted by Dueling 501

DQN can update multiple Q values at once; while M-DQN 502

is due to the introduction of maximum entropy, the addition 503

of maximum entropy makes the strategy more random, so 504

it will add more exploration, thus can speed up subsequent 505

learning; DM-DQN adopts a competitive network structure 506

compared toM-DQN, decoupling action selection and action 507

evaluation makes it have a faster learning rate, so it can make 508

fuller use of the experience of exploring the environment in 509

the early stage, and thus obtain a greater reward. As can be 510

seen in Fig. 10, the reward obtained by DQN converges to 511

2000, the reward of Dueling DQN and M-DQN converges 512

to 4000, while the reward value of DM-DQN converges to 513

7000. Therefore, the DM-DQN proposed in this paper is able 514

to obtain a larger reward value compared to the remaining 515

three algorithms, which means that more target points can be 516

reached. 517

Seven points were designated for navigation in the test 518

environment, and the robot was expected to explore this 519

123

4296 Complex & Intelligent Systems (2023) 9:4287–4300

Fig. 9 The robot’s reward for each epision based on four algorithms

Fig. 10 Comparison of the four algorithms

unknown environment by autonomously moving from posi-520

tion 1 to positions 2 to 7 and back to position 1 in a521

collision-free sequence, as shown in Fig. 11. Table 2 shows522

the average number of moves made by the four algorithms to523

reach a target point in 320 rounds; the number of successful524

moves to the target point; and the success rate of reaching the525

target point. The table shows that theDM-DQNalgorithmhas526

a lower average number of moves compared to the rest of the527

algorithms and an 18.3% improvement in success rate com-528

pared to the DQN algorithm; a 3.3% improvement compared529

to the Dueling DQN algorithm; and a 17.2% improvement 530

compared to theM-DQN. In Table 2, the convergence rates of 531

the algorithms are also compared and it can be seen that DQN 532

took 294 min to obtain a reward of 8000, Dueling DQN took 533

148min,M-DQN took 127min andDM-DQN took 112min. 534

DM-DQN converged faster than the other algorithms and 535

took less time to reach the target point. 536

Figure 11 shows the effect of two different reward func- 537

tions for path planning, where the reward function in (a) only 538

considers the distance between the robot and the target point; 539

(b) is the reward function proposed in this paper. From the 540

figure, we can see that the paths in (b) are smoother and the 541

planned paths are farther away from obstacles, which greatly 542

reduces the probability of collision for the robot in a real 543

environment. 544

Dynamic and static environment 545

In the dynamic and static environment,we still randomlygen- 546

erated seven target points to test the effect of DQN,M-DQN, 547

Dueling DQN and DM-DQN in the environment. Compared 548

to the static environment with two moving obstacles, the 549

123

Complex & Intelligent Systems (2023) 9:4287–4300 4297

Fig. 11 Generated paths in a static environment

Table 2 The result of algorithm
comparison Model Average moving step Number of success Success rate Convergence time

DQN 27.08 148 49.3 294

Dueling DQN 24.14 193 64.3 148

M-DQN 22.02 164 50.4 127

DM-DQN 20.81 203 67.6 112

Fig. 12 Dynamic and static environment map

dynamic obstaclesmove in a randomized direction. The envi- 550

ronment model is shown in Fig. 12, where the black object 551

is the moving robot, the brown objects are the static obsta- 552

cles and the white cylinders are the moving obstacles, which 553

move in a randomized direction. 554

The DQN algorithm, the Dueling DQN algorithm, the M- 555

DQN algorithm and the DM-DQN algorithm were also used 556

for the path planning task in a dynamic and static environment 557

and their convergence rates were compared. The cumulative 558

rewards for each round and the average rewards for the agent 559

are recorded in Fig. 13, and Fig. 14 compares the four algo- 560

rithms. Unlike the static environment, the reward values of 561

the DQN, Dueling DQN, and M-DQN algorithms did not 562

rise significantly after 100 rounds. The upward trend occurs 563

at round 150, which is caused by the inclusion of dynamic 564

obstacles, while the DM-DQN proposed in the paper still 565

starts to converge at around round 120, indicating its good 566

generalization ability compared to the other algorithms. 567

Table 3 also compares the average number of moves to 568

reach a target point, the number of successful arrivals and 569

the success rate of reaching the target point for 320 rounds, 570

as the performance of all four algorithms decreases with the 571

inclusion of dynamic obstacles. The table shows that DM- 572

DQN still has the lowest average number of moves, with 573

123

4298 Complex & Intelligent Systems (2023) 9:4287–4300

Fig. 13 The robot’s reward for each epision base on four algorithms

a 27.3% improvement in success rate compared to DQN, a574

12.6% improvement compared to Dueling DQN, and a 9.3%575

improvement compared to M-DQN. In Table 3, which also576

compares the convergence speed of each algorithm, it can be577

seen that DQN took 261min to obtain the 8000 reward, Duel-578

ingDQN took 186min,M-DQN took 150min andDM-DQN579

took 131min.DM-DQNconverged faster than the other algo-580

rithms in the dynamic and static environment and took less581

time to reach the target point. The time taken to reach the582

target point was shorter.583

Figure 15 shows the path planning effect of two different584

reward functions in dynamic and static environments, where585

the reward function in (a) only considers the distance between586

the robot and the target point; (b) the same reward function587

is proposed in the paper. The addition of dynamic obstacles588

places higher demands on path planning.A comparison of the589

two figures shows that the reward function setting proposed590

Fig. 14 Comparison of the four algorithms

in the paper can effectively solve the problem of dynamic 591

obstacles, because the reward function in the paper takes into 592

account the distance from the obstacles, which enables the 593

Table 3 The result of algorithm
comparison Model Average moving step Number of success Success rate Convergence time

DQN 30.22 79 26.3 261

Dueling DQN 27.01 123 41.0 186

M-DQN 27.64 133 44.3 150

DM-DQN 26.43 161 53.6 131

123

Complex & Intelligent Systems (2023) 9:4287–4300 4299

Fig. 15 Generated paths in dynamic and static environments

path planned by the robot to effectively avoid the influence594

of dynamic obstacles.595

Conclusions596

A continuous dynamic and static simulation environment597

is established for the path planning problem of mobile598

robot in complex environment. First, its network structure599

is improved on the basis of M-DQN, and its convergence600

speed is accelerated by decomposing the network structure601

into value and advantage functions, thus decoupling action602

selection and action evaluation. Second, a reward function603

based on an artificial potential field is designed to balance604

the distance of the robot from the target point and the obsta-605

cle, so that the planned path is away from the obstacle. The606

simulation result show that the DM-DQN proposed in the607

paper has a faster convergence speed compared to M-DQN,608

Dueling DQN and DQN, and is able to learn the best deci-609

sion faster. The reward function is designed for smoother610

paths to be planned, while effectively avoiding the planned611

paths from being too close to obstacles. The future study will612

be made in the following areas. Reinforcement learning has613

a disadvantage compared to traditional algorithms in path614

planning over long distances, so a combination of traditional615

algorithms with reinforcement learning algorithms is con-616

sidered to enable a breakthrough in path planning over long617

distances.618

Acknowledgements This research is supported by National Natural 619

Science Foundation of China (61906021) and Digital Twin Technol- 620

ogy Engineering Research Center for Key Equipment of Petrochemical 621

Process (DTEC202101). 622

Open Access This article is licensed under a Creative Commons 623

Attribution 4.0 International License, which permits use, sharing, adap- 624

tation, distribution and reproduction in any medium or format, as 625

long as you give appropriate credit to the original author(s) and the 626

source, provide a link to the Creative Commons licence, and indi- 627

cate if changes were made. The images or other third party material 628

in this article are included in the article’s Creative Commons licence, 629

unless indicated otherwise in a credit line to the material. If material 630

is not included in the article’s Creative Commons licence and your 631

intended use is not permitted by statutory regulation or exceeds the 632

permitted use, youwill need to obtain permission directly from the copy- 633

right holder. To view a copy of this licence, visit http://creativecomm 634

ons.org/licenses/by/4.0/. 635

References 636

1. Koubaa A, Bennaceur H, Chaari I et al (2018) Introduction to 637

mobile robot path planning.Robot Path PlanCooperation 772:3–12 638

2. Koren Y, Borenstein J (1991) Potential field methods and their 639

inherent limitations for mobile robot navigation. IEEE Int Conf 640

Robot Automation 2:1398–1404 641

3. Fu XL, Huang JZ, Jing ZL (2022) Complex switching dynamics 642

and chatter alarm for aerial agents with artificial potential field 643

method. Appl Math Model 107:637–649 644

4. Reshamwala A, Vinchurkar DP (2013) robot path planning using 645

an ant colony optimization approach: a survey. Int J Adv Res Artif 646

Intell 2(3):65–71 647

5. Castillo O, Leonardo T, Patricia M (2007) Multiple objective 648

genetic algorithms for path-planning optimization in autonomous 649

mobile robots. Soft Comput 11:269–279 650

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

4300 Complex & Intelligent Systems (2023) 9:4287–4300

6. ClercM, Kennedy J (2002) The particle swarm explosion, stability,651

and convergence in amultidimensional complex space. IEEETrans652

Evolution Comput 6(1):58–73653

7. Boute RN, Gijsbrechts J, van Jaarsveld W et al (2022) Deep rein-654

forcement learning for inventory control: a roadmap. Eur J Oper655

Res 298(2):401–412656

8. Rupprecht T, Yanzhi W (2022) A survey for deep reinforcement657

learning in markovian cyber-physical systems: Common problems658

and solutions. Neural Netw Off J Int Neural Netw Soc 153:13–36659

9. HalbouniA,GunawanTS,HabaebiMHet al (2022)Machine learn-660

ing and deep learning approaches for cybersecurity: a review. IEEE661

Access 10:19572–19585662

10. BrunkeL,GreeffM,HallAWet al (2022)SafeLearning in robotics:663

from learning-based control to safe reinforcement learning. Annu664

Rev Control Robot Autonom Syst 5:411–444665

11. Liu JW,Gao F, LuoXL (2019) Survey of deep reinforcement learn-666

ing based on value function and policy gradient. Chin J Comput667

42(6):1406–1438668

12. Mnih V et al (2015) Human-level control through deep reinforce-669

ment learning. Nature 518(7540):529–533670

13. Watkins CJCH, Dayan P (1992) Q-learning. Mach Learn671

8:279–292672

14. Wang Z, Schaul T et al (2016) Dueling network architectures for673

deep reinforcement learning. In: Proceedings of the 33rd interna-674

tional conference on international conference onmachine learning.675

IEEE676

15. Haarnoja T, Zhou A, Abbeel P, et al (2018) Soft actor-critic:677

off-policy maximum entropy deep reinforcement learning with678

a stochastic actor. In: 35th International conference on machine679

learning680

16. Vieillard N, Pietquin O, Geist M (2020) Munchausen reinforce-681

ment learning. In: 34th advances in neural information processing682

systems683

17. LiuSH,ZhengC,HuangYMet al (2022)Distributed reinforcement684

learning for privacy-preserving dynamic edge caching. IEEE J Sel685

Areas Commun 40(3):749–760686

18. Dong Y, Yang C et al (2021) Robot path planning based on687

improved DQN. J Comput Des Eng 42:552–558688

19. Wu HL, Zhang JW, Wang Z et al (2022) Sub-AVG: overestima-689

tion reduction for cooperative multi-agent reinforcement learning.690

Neurocomputing 474:94–106691

20. Huang RN, Qin CX, Li JL, Lan XJ (2021) Path planning of mobile692

robot in unknown dynamic continuous environment using reward-693

modified deep Q-network. Optim Control Appl Methods. https://694

doi.org/10.1002/oca.2781695

21. Lou P, XuK et al (2021) Path planning in an unknown environment 696

based on deep reinforcement learningwith prior knowledge. J Intell 697

Fuzzy Syst 41(6):5773–5789 698

22. Yan N, Huang SB, Kong C (2021) Reinforcement learning-based 699

autonomous navigation and obstacle avoidance for USVS under 700

partially observable conditions. Math Problems Eng 2021:1–13 701

23. Yan C, Xiang XJ, Wang C (2020) Towards real-time path plan- 702

ning through deep reinforcement learning for a UAV in dynamic 703

environments. J Intell Rob Syst 98(2):297–309 704

24. Hu YB, Wu XY, Geng P et al (2018) Evolution strategies learning 705

with variable impedance control for grasping under uncertainty. 706

IEEE Trans Ind Electron 66(10):7788–7799 707

25. HuYB, SuH, Fu JL et al (2020)Nonlinearmodel predictive control 708

formobilemedical robot using neural optimization. IEEETrans Ind 709

Electron 68(12):12636–12645 710

26. Chades I, Pascal LV, Nicol S et al (2021) A primer on par- 711

tially observable Markov decision processes. Methods Ecol Evol 712

12(11):2058–2072 713

27. Sankaran PG, Sunoj SM, Nair NU (2016) Kullback–Leibler diver- 714

gence: a quantile approach. Stat Prob Lett 111:72–79 715

28. Schulman J, Levine S, Abbeel P, Jordan M, Moritz P (2015) Trust 716

region policy optimization. In: 32nd International conference on 717

machine learning 718

29. Abdolmaleki A, Springenberg JT, Tassa Y, Munos R, Heess N, 719

Riedmiller M (2018) Maximum a posteriori policy optimisation. 720

In: 8th International conference on learning representations 721

30. Hasselt HV, Guez A, Silver D (2016) Deep reinforcement learning 722

with double Q-learning. In: The association for the advancement 723

of artificial intelligence 724

31. Khatib O (1986) Real-time obstacle avoidance for manipulators 725

and mobile robots. Int J Robot Res 5(1):90–98 726

Publisher’s Note Springer Nature remains neutral with regard to juris- 727

dictional claims in published maps and institutional affiliations. 728

123

https://doi.org/10.1002/oca.2781

	DM-DQN: Dueling Munchausen deep Q network for robot path planning
	Abstract
	Introduction
	Theoretical background
	M-DQN
	DM-DQN

	Proposed algorithm
	The process of autonomous path planning
	The design of reward function based on artificial potential field method
	The method of artificial potential field
	The design of reward function

	The process of path planning algorithm based on DM-DQN

	Materials and methods
	Experimental platform
	Experimental environment setup
	Experimental environments used in the experiments
	Robot operating system
	Gazebo simulation environment

	Experiments and results
	Static environment
	Dynamic and static environment

	Conclusions
	Acknowledgements
	References

