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Abstract
Video super-resolution (VSR) aims to recover the high-resolution (HR) contents from the low-resolution (LR) observations
relying on compositing the spatial–temporal information in the LR frames. It is crucial to propagate and aggregate spatial–
temporal information. Recently, while transformers show impressive performance on high-level vision tasks, few attempts
have been made on image restoration, especially on VSR. In addition, previous transformers simultaneously process spatial–
temporal information, easily synthesizing confused textures and high computational cost limit its development. Towards
this end, we construct a novel bidirectional recurrent VSR architecture. Our model disentangles the task of learning spatial–
temporal information into two easier sub-tasks, each sub-task focuses on propagating and aggregating specific informationwith
a multi-scale transformer-based design, which alleviates the difficulty of learning. Additionally, an attention-guided motion
compensation module is applied to get rid of the influence of misalignment between frames. Experiments on three widely
used benchmark datasets show that, relying on superior feature correlation learning, the proposed network can outperform
previous state-of-the-art methods, especially for recovering the fine details.

Keywords Video super-resolution · Spatial-temporal transformer · Attention mechanism · Motion compensation

Introduction

Since the limited resolution of long-distance imaging and
imaging devices in specific scenes, generating high-resolut-
ion (HR) images from original low-resolution (LR) content
is under great demand. The aim of video super-resolution
(VSR) is to gather complementary information across LR
video frames for reconstructing the HR details. As a funda-
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mental task in computer vision, VSR is usually adopted to
enhance visual quality, which has great value in our daily
life, such as security and surveillance imaging system [1],
high-definition television [2], etc.

Video super-resolution (VSR) is challenging partly beca-
use recovering details from LR observations is highly ill-
posed as many inverse problems. Previous prior-based meth-
ods most focus on pixel-level motion and blur kernel esti-
mation, trying to solve a complex optimization problem [3].
With the recent development on deep learning, convolutional
neural networks (CNNs)-based VSR learn the complicated
up-sampling relations between LR and HR videos on huge
datasets. Compared to the traditional approaches, these sig-
nificantly improve performance.

From a methodology perspective, unlike single image
super-resolution (SISR) [4,5] that usually concentrated on
learning on spatial dimensions, VSR mainly concerns tem-
poral information. Although a straightforward strategy for
VSR is to run SISR frame by frame, SISR ignores the
temporal correlations, which leads to discontinuity in recon-
struction, resulting in the flickering artifact. Therefore, a key
issue to the success of VSR is how to aggregate informa-
tion from multiple highly related but misaligned frames [6].
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One prevalent solution is the space-based framework [7,8],
where each LR frame in the video is restored using the fusion
information within adjacent frames. In contrast to the space-
based framework, a time-based framework [9,10] attempts to
exploit long-temporal dependencies within time-series data
based upon recurrent mechanism. In general, compared to
space-based frameworks, time-based frameworks allow a
more compact model. Nevertheless, the problem of commu-
nicating long-term information under misaligned situations
remains formidable.

To address the information transfer issue, Fuoli et al.
[11] proposes a recurrent latent space propagation algorithm,
high dimensional latent states are adopted to learn tempo-
rally consistent appearance. Different from the strategy of
implicitly capturing and dealing with motion information,
Chan et al. [12] reconsiders the VSR pipeline, and divides it
into four essential components, i.e., propagation, alignment,
aggregation and up-sampling. Long-term correspondences
are exploited based upon bidirectional recurrent propagation
from the entire input LR frames for reconstruction. Although
it serves as a strong backbone, the misaligned and occluded
regions still limit the efficacy of information propagation and
aggregation.

Recently, inspired by the relation modeling capabilities
of transformer [13] in natural language processing, impres-
sive progresses have been made in image classification [14],
object detection [15] and low-level visions [16]. For exam-
ple, VSR-Transformer [17] tries to use attentionmechanisms
[18,19] for aligning different frames when dealing with VSR
tasks.However, the computational complexity of transformer
grows quadratically corresponding to the video frames. Thus,
utilizing transformers in videos in proper ways still exists
challenges.

To tackle these challenges, we propose a spatial–temporal
transformer framework forVSRwithmulti-scale transformer-
based grid propagation and attention-guided deformable
motion compensation. The proposed network has two core
designs to make it suitable for information propagation and
aggregation. The first key element is a stack of spatial–
temporal transformer blocks with a multi-scale design. We
disentangle the information propagation into two easier
sub-tasks with different transformer blocks. In the spatial
transformer block, the module exploits the locality informa-
tion by calculating the attention between all tokens from the
same frame. This design helps to focus on enhancing the
relevant features within the frame and model the station-
ary background texture in the same frame. In the temporal
transformer block, the extracted tokens are divided into mul-
tiple regions, and themodule calculates the attention between
tokens from different frames’ same region and helps to cap-
ture past and future information. This module is mainly
used to ameliorate information flow and model temporal
object movement for improving the robustness of the net-

work against occluded and fine regions. In this way, the two
designed transformer blocks attend different missions and
are intertwinedly stacked, leading to thorough locality spatial
information and temporal data consistency propagation and
enhancement. Meanwhile, our transformer operation han-
dles spatial and temporal information separately, making it
easier to learn expressive features and get better VSR perfor-
mance. In addition, a design ofmulti-scale transformer-based
network is able to extract the multi-scale features to tackle
various motions.

The second key element is that we explore how to aggre-
gate information from different spatial–temporal locations
with the help of feature alignment. Unlike most existing
vision recurrent propagation approaches [11] lack feature
alignment, the proposed framework consists of a bidi-
rectional propagation with deformable feature alignment.
Considering rich dependencies from both the forward and
backward frames, the design of bidirectional propagation
makes it easier to aggregate information from different loca-
tions. Furthermore, deformable alignment [20] helps to align
and exploit propagated information in the video sequence.
However, the occlusion and fast movement easily influence
the accuracy of alignment, and harmful features getting into
the propagation process will lead to inferior performance.
To address the above limitation, we propose an attention-
guided deformable motion compensation and add it to the
process of bidirectional propagation. In the proposedmodule,
deformable convolutional offsets are learnt for applying to
the unwrapped features, meanwhile, the elementwise corre-
lation between different features at each location is calculated
for indicating how informative it is and eliminating inaccu-
rate features after alignment.

By adopting such a pipeline, the proposed approach
achieves state-of-the-art performance on VSR with much
fewer parameters. In summary, the contributions of our work
are threefold:

– We propose a novel multi-scale spatial–temporal trans-
former framework for VSR to improve the ability of
locality spatial and temporal data information propaga-
tion. The task of spatial–temporal propagation is divided
into two easier sub-tasks to process spatial and temporal
information separately.

– We design a bidirectional propagation framework with
attention-guided deformable motion compensation. The
seamless combination of bidirectional propagation and
attention-guided feature alignment benefits VSR perfor-
mance a lot.

– We conduct experiments on threewidely used benchmark
datasets and show that the proposed method outperforms
previous state-of-the-art VSRmethods both qualitatively
and quantitatively, especially for recovering the fine
details.
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Related work

With the help of deep learning, SR which aims to recover
HR details from LR images has drawn significant attention.
Recently, several attempts under transformer mechanism are
proposed to solve SR. In this section, we detail the existing
VSR approaches from three aspects: space based, recurrent
time based and vision transformer based.

Video super-resolution: Existing VSR approaches can be
mainly divided into two frameworks—space based and recur-
rent time based. Earlier methods [21,22] in the space-based
framework predict the optical flow between input LR frames
and perform alignment for merging information of multiple
continuous frames. Later approaches resort to a more sophis-
ticated approach of implicit alignment. For instance, EDVR
[20] adoptsmulti-scale deformable convolutions for accurate
alignment at the feature level.VSR-DUF [23] builds dynamic
up-sampling filters to estimate motion implicitly. Wei et al.
[24] propose to add non-local operations and dense connec-
tions for further alleviating misalignment. Meanwhile, some
approaches adopt a recurrent time-based framework, taking
the past and future information as temporal supplementary
materials. FRVSR [25] sends each LR frame through the
network to obtain its super-resolved HR outputs. As frames
go through the network, the previous HR outputs are sent
back to help to reconstruct the following LR frames. Lai
et al. [9] propose to exploit the structures in previously esti-
mated HR frames for guiding the sparse reconstruction of the
next LR frame. RSDN [26] adopts a hidden state adaptation
module and a recurrent detail-structural block to improve the
robustness to error accumulation and appearance change.The
aforementioned works have introduced many sophisticated
and new components to address the alignment and aggre-
gation problem. Here, we reconsider some remaining issues
and find that bidirectional propagation with spatial–temporal
transformer and attention-guided deformable motion com-
pensation suffice to outperform many existing methods.

Vision transformers: Recently, transformer improves the
performance of natural language processing significantly.
Different from the CNNs, the structure of transformer-based
framework makes it good at capturing long-term data depen-
dencies. The success of transformer on natural language
processing inspires the research on computer vision. Image
classification [14], segmentation [27], object detection [15],
et al., adopt transformer to explore the global interactions
between different regions and learn to attend to important
regions.

Inspired by previous works, a standard transformer model
is also applied to a backbone model for restoration problem
[28], especially for SR. Wang et al. [29] propose a U-
shaped network with swin transformer [30] for SR. SwinIR
[31] tackles SR task using swin transformer and brings

residual operations into swin transformer. In this work, we
also compute window and shift window attentions similar
to swin transformer. However, building correlations within
and between frames under multi-scale design is explored
for enhancing stationary and motive textures. In addition,
VSR-Transformer [17] and TTVSR [16] try to exploit atten-
tion mechanisms for utilizing different frames. Different
from their designs of aggregating information, considering
the spatial–temporal information in the video is compli-
cated to learn simultaneously, we decouple the task of
spatial–temporal propagation into two easier sub-taskswith a
multi-scale design, and learn different components by decou-
pled transformers.

Methods

In this section, we first introduce the proposed VSR network
architecture in “Network architecture”, and then discuss the
proposed attention-guided deformable motion compensation
in “Attention-guided deformable motion compensation”.
Finally, we focus on our design of multi-scale spatial and
temporal transformer in “Multi-scale spatial and temporal
transformer”.

Network architecture

Let X = {xi−n, · · · , xi , · · · , xi+n} denotes an LR video
sequence with length N = 2n + 1, where xi means the i-
th frame of this input video sequence. We aim to learn a
mapping function that takes an LR videoX as input and out-
puts an HR video Y . Our proposed network is an end-to-end
fully trainable framework, which consists of three modules:
shallow feature extraction, bidirectional propagation and up-
sampling. The overall pipeline is shown in Fig. 1.

Shallow feature extraction: Given an LR input X ∈
R

N×H×W×C (H , W and C are the height, width and input
channel number of each LR input frame), we use residual
blocks Fs f (·) first to extract shallow feature g0 ∈ R

H×W×Cin

from each frame as

g0i = Fs f (xi ), (1)

where Cin denotes the feature channel number, g0i is the
extracted shallow features from xi by multiple residual
blocks. The residual blocks are used for early visual pro-
cessing, and provide a simple way to map the input image
space to a higher dimensional feature space.

Bidirectional propagation: After shallow feature extraction,
motivated by the effectiveness of bidirectional propaga-
tion, we adopt it for exploiting dependencies in the video
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Fig. 1 a The architecture of our whole network. The network con-
sists of two modifications to improve alignment and propagation. For
alignment, we design attention-guided deformable motion compensa-
tion to align features and exclude the harmful components that will
affect information aggregation. Multi-scale spatial and temporal trans-
former blocks are adopted to search dependencies between arbitrary
pixels across all the spatial–temporal positions. Here, we detail the pro-

cedure for backward propagation Fb, forward propagation Ff is defined
similarly. In addition, bidirectional (solid lines and dotted lines) con-
nections are adopted to improve the robustness of propagation. Within
each forward or backward propagation, multi-scale spatial and tempo-
ral transformers are proposed to refine features further. All the feature
maps have 64 channels. b The details of attention-guided deformable
motion compensation branch

sequence. Specifically, our bidirectional propagation mod-
ule mainly consists of a series of forward and backward
operations (Ff (·) and Fb(·)), the intermediate features are
propagated forward and backward in an alternating manner.
Through propagation, the information from different frames
can be adopted and aggregated for feature refinement. To
further improve the robustness of propagation, dense con-
nections are adopted to assist aggregate information from
different temporal positions, improving effectiveness and
robustness in fine and occluded regions. To compute the fea-
ture f j

i after backward propagation, the operation Fb(·) will
align and concatenate f j−1

i , f j
i−1 and f j

i−2, which will be
discussed later:

f j
i = Fb( f

j−1
i , f j

i−1, f j
i−2), (2)

where f j
i denotes the feature computed at the i-th timestep

in the j-th propagation branch.

Up-sampling: In the final step, the aggregated features from
the preceding layer are propagated back onto the pixel
domain through pixel-shuffling Fu [32], and we generate
the output HR image by concatenating the current LR input
frame xi in the channel dimension.

Attention-guided deformablemotion compensation

To alleviate the harmful impact of nonalignment on subse-
quent information aggregation, in each forward or backward
propagation, we first adopt a motion compensation module
for aligning features. The graphical illustration of backward
propagation is shown in Fig. 1a. Deformable convolution
[33,34] has demonstrated significant performance on fea-
ture alignment due to offset diversity; however, the training
process of offset is unstable, which often results in off-
set overflow, deteriorating subsequent performance. To take
advantage of the offset diversity while avoiding instabil-
ity, the input features are first concatenated and sent to an
encoder–decoder module for computing stable offset. To fur-
ther enhance the robustness of feature alignment, we propose
to focus on valuable information and avoid harmful features
feeding into the subsequent stages. The architecture of our
motion compensation branch is shown in Fig. 1b.

At the i-th timestep, given the target features f j−1
i com-

puted from previousmodule, the feature f j
i−1 computed from

the previous timestep, the deformable motion compensation
module first concatenates them, then feeds it into encoder–
decoder convolutions FΘ to predict offset Θ for the feature
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Fig. 2 a The architecture of multi-scale transformer-based network,
which extractsmulti-scale features to adapt different degrees ofmotions
and details. b Illustration of spatial transformer operation. c Illustration

of temporal transformer operation. According to different transformer
ways, divided spatial/temporal multi-head attention and feed-forward
module are contained in the transformer block

f j
i−1:

Θ = FΘ( f j−1
i , f j

i−1). (3)

With Θ and f j
i−1, the aligned feature f

j
i−1 can be computed

by the deformable convolution:

f
j
i−1 = Fdc( f

j
i−1,Θ). (4)

Generally, the procedure of feature alignment is com-
pleted. More specially, in our module, attention is adopted to
further guide and fix aligned features. We concatenate f j−1

i

and aligned feature f
j
i−1, and feed it into two 3×3 convolu-

tion layers. The result after convolutions will be performed
sigmoid activation for generating 64-channel attention map
A. The computational process can be formulated as:

A = Sigmoid(FA( f j−1
i , f

j
i−1)), (5)

where FA represents the attention operation with two 3 ×
3 convolution layers. In this way, A has the same size as

f
j
i−1. The values inA are in the range [0, 1]. The computed

attention map A is used to attend the features f
j
i−1 via:

f̂ j
i−1 = A ⊗ f

j
i−1, (6)

where ⊗ denotes the elementwise multiplication and f̂ j
i−1 is

the final aligned features with attention guidance.
Based on the further attention operation, generated atten-

tion maps evaluate the importance of different image regions
for the target frame. Dependent information is highlighted,
and regions with misalignment and harmful features are
excluded, improving robustness and effectiveness in motion
and fine regions.

Multi-scale spatial and temporal transformer

To further exploit the locality and spatial–temporal data
information from different frames, we design spatial and
temporal blocks with a multi-scale design shown in Fig.
2a, which utilizes multi-scale features to handle various
degrees of motions and details. To be specific, the multi-
scale transformer-based network consists of an encoder and
a decoder operation with symmetrical architecture. When
encoding in each stage, the transformer block first models
the input features, then the features are spatial downsam-
pled two times by the down-sampling operator. The down-
sampling operator reshapes the input features with shape

R
N×H×W×Cin to the shape R

N× H
2 ×W

2 ×4Cin and then lin-

early projects it to R
N× H

2 ×W
2 ×Cin . In each stage of decoder,

the up-sampling operator first increases the number of fea-
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ture channels by linear projection, then reshapes it to spatial
upsampled features. The features outputted by the previous
decoder stage are then fused with the features from the corre-
sponding encoder stage through skip-connection for further
transformer-based feature refinement.

In addition, for better searching and propagating features
from different spatial positions and temporal dimensions,
we design spatial and temporal transformer blocks used in
multi-scale transformer-based network. Spatial transformer
is mainly used to calculate dependencies between extracted
tokens from the same frame, and temporal transformer is
engaged in calculating the dependencies between tokens
from different frames’ same location. In this way, the two
designed transformer blocks attend different missions and
are intertwinedly stacked, leading to thorough locality spa-
tial information and temporal data consistency propagation
and enhancing. Meanwhile, our transformer operation han-
dles spatial and temporal information separately, making it
easier to learn expressive features and get better VSR perfor-
mance.

Given the feature fi (the superscript j is omitted for nota-
tional simplicity) generated by the previous layer, it is first
partitioned into m2 zones along both the height and width
dimension, similar to [35]. f k,si denotes each split zone,
where k, s = 1, . . . ,m. Then, according to different ways of
transformer, we group these tokens together. In spatial trans-
former block, the tokens are grouped along spatial dimension,

denoted as Pi =
{
f 1,1i , f 1,2i , . . . , f m,m

i

}
. In this way, spa-

tial transformer block takes each token set Pi as input, and
performsmulti-head attention across all tokens in it. For each
feature f k,si , a linear projection with transformation matrices
Wq ,Wk andWv is performed on it to generate the Query, Key
and Value:

Q = f k,si W Q
q , K = f k,si W K

q , V = f k,si WV
q , (7)

where WQ
q , WK

q , WV
q represent the projection matrices for

the q-th head, respectively. Then the multi-head attention is
performed. The computational process of the q-th head self-
attention in the split zone can be defined as:

Pi =
{
f 1,1i , f 1,2i , . . . , f k,si

}
, k, s = 1, . . . ,m, (8)

Y k,s
i = Attention( f k,si W Q

q , f k,si W K
q , f k,si WV

q ), (9)

P̄i =
{
Y 1,1
i ,Y 1,2

i , . . . ,Ym,m
i

}
, (10)

P̄i is the output of the q-th head. Then the outputs for all head
are concatenated and then linearly projected to get final result.
The attention calculation is formulated based on previous
work [30], it is performed as:

Attention (Q, K , V ) = SoftMax

(
QKT

√
d

)
V . (11)

This helps the model search for similar features in the
spatially neighboring pixels and propagate these textures
to target regions for compensating incomplete information.
Shift window operation in swin transformer [30] is also
utilized to enhance the long-range dependency modeling
capacities of the transformer.

Another way is to gather these tokens together along tem-
poral dimension Pk,s = f k,si−n, . . . , f k,si+n , k, s = 1, . . . ,m.
All tokens are unused to generate Query, Key andValue, only
the tokens from the reference feature are used to generate
Query, and other tokens are used to generate Keys and Val-
ues. Then, temporal transformer block performs multi-head
attention across all tokens in each input Pk,s . By doing so,
long-term dependencies and continuous related movement
can be detected and help the motion region for fine recovery.
More details of two different transformers are illustrated in
Fig. 2b, c.

In both spatial and temporal transformer blocks, after
spatial/temporal divided attention module, a feed-forward
module follows it. The overall operation of the transformer
block is formulated as:

P̂i = Fffn(Fln(Fmsa(Fsd(Fln(Pi )))

+Pi )) + Fmsa(Fsd(Fln(Pi ))) + Pi , (12)

P̂k,s = Fffn(Fln(Fmsa(Ftd(Fln(P
k,s)))

+Pk,s)) + Fmsa(Ftd(Fln(P
k,s))) + Pk,s, (13)

where the former equation denotes the spatial transformer
block and the latter is the operation of temporal transformer
block. Fffn is the feed-forward module, Fln is the layer
normalization [36] and Fmsa is the multi-head attention mod-
ule. Fsd and Ftd are the spatial and temporal operations,
respectively. Note that input varies with different gathering
ways generates different searching zones, which helps detect
related features and continuous movements to achieve coher-
ent completion.

Experiments

In this section, we first introduce the experimental settings:
training datasets, testing datasets, training details, and evalu-
ationmetrics in “Experimental settings”. Then, ablation stud-
ies on different settings of the proposed method are shown
in “Ablation studies”. Finally, we evaluate the performance
of our approach and compare it with the state-of-the-art SR
algorithms in “Comparison with the state-of-the-art meth-
ods”. In all our experiments, we focus on ×4 VSR factor.
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Table 1 Quantitative comparisons of different components

(A) (B) (C) (D) Ours

Attention-guided deformable motion compensation
√ √ √ √

Bidirectional propagation
√ √ √

Multi-scale operation
√ √

Spatial–temporal transformer
√

PSNR/SSIM 31.18/0.869 31.67/0.881 31.82/0.884 32.09/0.886 32.27/0.887

All scores are the average across the SPMCS [21] testing set. Each component brings significant improvements in different evaluation metrics,
indicating their effectiveness

Experimental settings

Training datasets: In the experiment, a public video dataset
[37] is adopted as our training set, which contains 64612 7-
frame sequenceswith fixed 448×256 resolution and has been
widely used in many VSR methods [12,20]. Specially, we
downscale theHR frames bybicubic interpolation to generate
LR frames and apply several data augmentation techniques
to the paired training data for enlarging the training set, such
as rotation, flipping and random cropping.

Testing datasets: We test the designed model on three test-
ing sets: Vid4 [38], SPMCS [21] and Vimeo-90k [37]. Vid4
is widely used in literature for comparison, but it includes
only four video sequences with limited motions and lit-
tle inter-frame variations, and has limited ability to assess
the relative merits of competing approaches. Although the
SPMCS dataset has more variations, it still lacks challenging
videos with fast motions. Therefore, we also use a larger
Vimeo-90k dataset with rich scenes and motion types as
a testing set for evaluating different methods. When com-
paring, we stratify the sequences of Vimeo-90k into slow,
mediumand fast queues based on the estimatedmotion veloc-
ities as in [39], and evaluate these queues separately. This
makes it easier to reflect the advantages of the proposed
approaches.

Training details: We train our model with Adam optimizer
[40] by setting β1 = 0.9 and β2 = 0.999. The learning rate
of the main network and the attention-guided deformable
motion compensation module are initially set to 10−4 and
10−5, respectively. The total number of iterations is 600K,
and theweights of themotion compensationmodule are fixed
during the first 10 K iterations. We set the batch size as 8
and use Charbonnier penalty function [41] as the final loss
since it better improves the performance over the conven-
tional �2-loss [42]. We perform the forward and backward
propagations two times.We repeat a spatial transformer block
followed by a temporal transformer block two times in each
forward or backward propagation. The number of residual
blocks for each propagation branch is set to 5. The channel
size is set to 64 and the patch size of input LR frames is

64× 64. We implement our models with the PyTorch frame-
work and train them using two NVIDIA 3090 GPUs.

Evaluation metrics: We use PSNR and SSIM as evaluation
metrics to compare with other SR networks quantitatively. In
the comparison, the estimated first and last two frames are not
used for evaluation, and 8 pixels near image boundaries are
ignored. All measurements use only the luminance channel
(Y ).

Ablation studies

To analyze the contributions of the various components (i.e.,
attention-guided deformable motion compensation, bidirec-
tional propagation, multi-scale operation, spatial and tempo-
ral transformer), we start with a baseline and gradually insert
different components. Table 1 shows that each component
brings considerable improvement, ranging from 0.18 to 1.09
dB in PSNR.

Attention-guided deformable motion compensation

We further provide some visual comparisons of intermediate
results to verify the contributions of the proposed attention-
guided deformable motion compensation module. As shown
in Fig. 3, we compare the computed deformable convolu-
tional offsets of different images. The deformable motion
compensation module produces offsets that highly reflect
the motions between frames. The refined motion estimation
allows deformable convolution to receive information from
multiple positions, providing more flexibility.

In addition to motion compensation, in our module, atten-
tion is adopted to further guide and fix aligned features.
Figure 3d and h are the generated features before and after
attention module, respectively. When receiving the adja-
cent propagated features, the aligned features still contain
some misaligned edges and textures, which are still harmful
to information aggregation. In contrast, by further high-
lighting related information and excluding harmful features
through attention, the feature shows sharper and preserves
more details. Figure 4 shows the generated attention maps of
neighboring images, the misaligned regions can be excluded
efficiently (i.e., the edges of moving car, pedestrian and the
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Fig. 3 Analysis of attention-guided deformable motion compensation. a–c The sequences adjacent to the reference image. e–g The computed
deformable convolutional offsets of continuous images. d Generated feature before attention module. h Generated feature after attention module

Fig. 4 Comparisons of generated attention map. a Reference image. b, c Neighboring image and corresponding attention map

Fig. 5 Comparisons of multi-scale spatial and temporal components.
a The results outputted from the proposed network without temporal
transformer components. b The results outputted from the proposed
network without spatial transformer components. c The results out-
putted from the proposed network with all transformer components.

Results based on only spatial transformer component perform better
on reconstructing stationary texture and the results based on only tem-
poral transformer component perform better on recovering the region
with motion and occluded object. The emsembling results show better
robustness and quality

scene change) and useful features are highlighted. This fur-
ther verifies the effectiveness of our attention module.

Multi-scale spatial and temporal transformer

To understand the contributions of the proposed multi-scale
spatial and temporal transformer components, we design an
ablative comparison by removing the intermediate temporal
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Fig. 6 ×4 VSR using multiple
frames. a Bicubic. b SwinIR
[31]. c The reconstructed result
using copied frames. d The
reconstructed result using
consecutive frames. e Ground
truth. The comparison
demonstrates the recovered
textures truly come from the
original input LR frames

and spatial transformer branches separately. In Fig. 5a, the
recovered video from the network with only a multi-scale
spatial transformer component performs better stationary
texture by searching and detecting similar details fromneigh-
boring regions in the same frame. The network with only a
multi-scale temporal transformer component performs bet-
ter on the regions with occlusion. The proposed network
combined with all spatial and temporal transformer branches
shows better performance and effectiveness.

Detail fusion vs. synthesis

We also analyze whether the recovered details truly come
from the input sequences or exist in external data. Here, we
replace the inputs with the copied frames and design a more
illustrative experiment. As shown in Fig. 6d, when using
sequence frames as inputs, it shows that the details are recov-
ered nicely. However, if we use copied frames to evaluate the
same model, the result is almost the same as that recovered
using just one frame with SwinIR [31] as one of SISR meth-
ods (see Fig. 6b, c). All of these comparisons demonstrate
that the recovered information shown in Fig. 6d truly gener-
ate from different input frames, and they are not synthesized
from external examples. Because if it is generated by synthe-
sis, the recovered details will also appear when we use the
copied frames. All of these show that the proposed model
can exploit internal details and merge them to recover more
textures.

Comparison with the state-of-the-art methods

We conduct comprehensive experiments by comparing with
the current state-of-the-art SISRandVSRalgorithms:SwinIR
[31], DBPN [43], DRDVSR [21], FRVSR [25], VSR-DUF
[23], RBPN [39], EDVR [20], VSR-Trans. [17], OVSR [44],
RSTT [45], TTVSR [16] and BasicVSR++ [46]. Notice
that, under our training dataset, only VSR-DUF, RBPN,

EDVR,OVSR,RSTTandTTVSRmethods provide their pre-
trained model. In order to make a fair comparison with other
approaches, we have retrained other methods, e.g., SwinIR,
DBPN, DRDVSR, FRVSR and BasicVSR++ based on their
provided codes, using the same training datasets, with same
down-sampling scheme.

We first conduct experiments on parameter numbers, test-
ing time costs and Flops by comparing ours with different
models. The results about parameter numbers are shown in
Fig. 7a. EDVR and VSR-Trans. expect to use more lay-
ers to learn the mappings between input frames and the
final HR image. Our model conducts a recurrent framework
for learning dependencies, and our method achieves better
performance. The comparisons of running time and PSNR
values are shown in Fig. 7b. VSR-DUF has a significantly
larger running timebecause it needs to performmany3Dcon-
volution operations and large matrix multiplication. It takes
about 680 ms for our method to generate one 528 × 926
frame under ×4 SR, while VSR-DUF costs about 2270 ms.
At the same time, our approach can achieve the best quanti-
tative performance. Compared with BasicVSR++, although
we cost more time due to the introduction of the transformer
mechanism, which replaces convolution operation of higher
parameter with a large scale of matrix multiplication [31],
our approach achieves higher performance while keeping a
comparable number of parameters. As shown in Fig. 7c, the
Flops are computed with the input of LR frames. It should be
emphasized that our approach is lighter. Such superior perfor-
mancemainly benefits from the use of decoupled transformer
design, which significantly reduces the parameters and com-
putational costs.

Second, we perform experiments on different testing
datasets with other super-resolution approaches. As can be
seen in Table 2, the quantitative comparisons on Vid4 [38]
indicate that our approach can obtain the best quantitative
results of PSNR/SSIM when comparing with the previous
state-of-the-art VSR and SISR models. In addition, based on
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Fig. 7 Parameters, speed, Flops and performance comparison. a Parameter numbers and performances of various methods. b Testing time costs.
(generating one 528 × 926 frame when the upscaling factor is 4) and performances. c Flops and performances of various methods

Table 2 PSNR/SSIM of SR
methods on Vid4 [38] with
upscale 4

Method Calendar City Foliage Walk Average

Flow magnitude 1.14 1.63 1.48 1.44 1.42

SwinIR [31] 21.68/0.710 25.82/0.696 24.64/0.682 28.62/0.855 25.19/0.735

DBPN [43] 21.59/0.703 25.41/0.684 24.07/0.662 28.01/0.839 24.77/0.722

DRDVSR [21] 22.26/0.751 27.07/0.758 25.59/0.724 29.01/0.878 25.98/0.777

FRVSR [25] 23.78/0.788 27.32/0.796 25.78/0.748 29.67/0.898 26.63/0.807

VSR-DUF [23] 23.88/0.793 27.76/0.805 26.23/0.754 30.60/0.908 27.11/0.815

RBPN [39] 23.99/0.807 27.64/0.802 26.27/0.757 30.65/0.911 27.16/0.819

EDVR [20] 24.10/0.815 27.96/0.810 26.33/0.762 31.02/0.913 27.35/0.825

VSR-Trans. [17] 24.04/0.812 27.94/0.810 26.33/0.763 31.10/0.916 27.36/0.825

OVSR [44] 24.12/0.815 28.04/0.814 26.45/0.764 31.04/0.915 27.41/0.827

RSTT [45] 23.81/0.781 27.38/0.790 25.82/0.742 29.70/0.891 26.67/0.801

TTVSR [16] 24.10/0.815 27.98/0.814 26.45/0.764 31.07/0.915 27.40/0.827

BasicVSR++ [46] 24.17/0.816 28.08/0.815 26.40/0.764 31.20/0.917 27.46/0.828

Ours 24.25/0.818 28.06/0.815 26.51/0.766 31.25/0.917 27.52/0.829

Bold indicates the best and Italic indicates the second best performance

Table 3 PSNR/SSIM of SR methods on SPMCS-11 [21] with upscale 4

Method car05 hdclub hitachi hk004 HKVTG jvc NYVTG PRVTG RMVTG veni3 veni5 Average

Flow magnitude 6.21 0.70 3.01 0.49 0.11 1.24 0.10 0.12 0.18 0.36 0.36 1.17

SwinIR [31] 29.88 20.51 23.55 31.68 28.69 28.11 30.25 26.52 25.99 35.07 31.17 28.31/0.827

DBPN [43] 29.58 20.22 23.47 31.59 28.67 27.89 30.13 26.36 25.77 34.54 30.89 28.10/0.820

DRDVSR [21] 30.13 20.98 23.78 32.13 28.80 28.60 31.05 26.86 26.14 35.18 31.55 28.65/0.834

FRVSR [25] 30.62 21.51 24.76 32.12 28.95 28.98 31.63 27.24 27.00 33.60 30.96 28.85/0.851

VSR-DUF [23] 31.07 21.77 25.83 32.99 29.21 29.62 32.57 27.31 27.63 35.24 31.95 29.56/0.867

RBPN [39] 31.92 21.88 26.40 33.31 29.43 30.26 33.25 27.60 27.69 36.53 32.82 30.10/0.874

EDVR [20] 32.22 22.16 26.86 33.42 29.47 30.44 33.70 27.70 27.72 37.07 32.96 30.28/0.876

VSR-Trans. [17] 32.35 22.29 26.98 33.57 29.54 30.59 33.62 27.84 27.81 37.12 33.05 30.43/0.876

OVSR [44] 32.41 22.35 27.07 33.61 29.68 30.69 33.70 27.91 27.94 37.13 33.10 30.50/0.875

RSTT [45] 30.54 21.17 24.11 32.37 29.01 29.05 31.59 27.36 27.28 34.59 31.44 28.95/0.856

TTVSR [16] 32.44 22.39 27.01 33.54 29.78 30.72 33.62 27.99 28.01 37.14 33.16 30.52/0.879

BasicVSR++ [46] 32.51 22.50 27.19 33.74 29.82 30.89 33.68 28.16 28.05 37.18 33.24 30.63/0.877

Ours 32.57 22.44 27.49 33.79 29.79 31.05 34.22 28.06 28.07 37.32 33.58 30.76/0.881

Bold indicates the best and Italic indicates the second best performance. Our approach achieves the best quantitative performance
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Fig. 8 Visual comparisons for
×4 SR on the testing data from
SPMCS [21]. Local areas full of
details and textures are zoom in.
The proposed network produces
high-quality super-resolved
images, especially edges and
textures

the statistics of flow magnitude, we find that diverse motion
types are not contained in Vid4 dataset. And [39] also men-
tions that because of JPEG compression, the ground truth in
Vid4 contains artifacts and aliasing, this apparently leads in
some cases penalizing sharper SR predictions. All of these
may lead to an insignificant improvement when compar-

ing with the state-of-the-art methods. Thus, we also conduct
more comparisons on various testing sets.

Table 3 shows more quantitative comparisons of dif-
ferent approaches on SPMCS-11 [21] dataset. VSR-Trans.
and TTVSR introduce transformer mechanisms in slid-
ing window, which obtains significant improvement over
most approaches. However, effective utilization of spatial–
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Table 4 Quantitative comparison on Vimeo-90k [37] testing set with
upscale 4

Method Slow Medium Fast

Flow magnitude 0.6 2.5 8.3

SwinIR [31] 33.12/0.903 35.55/0.926 37.79/0.942

DBPN [43] 32.98/0.901 35.39/0.925 37.46/0.944

DRDVSR [21] 33.24/0.906 35.78/0.931 37.89/0.944

FRVSR [25] 33.20/0.907 36.24/0.940 38.06/0.947

VSR-DUF [23] 33.86/0.911 36.72/0.946 38.37/0.950

RBPN [39] 34.18/0.920 37.28/0.947 40.03/0.960

EDVR [20] 34.45/0.925 37.75/0.951 40.69/0.963

VSR-Trans. [17] 34.52/0.926 37.79/0.951 40.78/0.962

OVSR [44] 34.50/0.925 37.81/0.951 40.81/0.963

RSTT [45] 33.67/0.910 36.19/0.941 37.53/0.944

TTVSR [16] 34.62/0.926 37.83/0.952 40.84/0.963

BasicVSR++ [46] 34.58/0.926 37.88/0.951 40.85/0.962

Ours 34.76/0.927 38.09/0.953 41.05/0.964

Bold and Italic indicates the best and the second best performance,
respectively. Clip “Slow” includes 1616 sequences. Clip “Medium”
includes 4983 sequences. Clip “Fast” includes 1225 sequences

temporal dependencies is ignored. BasicVSR++ explores
hidden states tomodel the information of sequence.Nonethe-
less, the capability of long-range learning is limited by its
vanishing gradient issue. Different from them, our method
utilizes the spatial and temporal transformer strategy to
improve the ability of locality spatial and temporal data
information bidirectional propagation. Thus, we outperform
existing state-of-the-arts. The qualitative results are consis-
tent with the quantitative evaluations and are shown in Fig. 8.
The proposed attention-guided motion compensation helps
the network get rid of unwrapped features and attend infor-
mative propagation on different frames. All of these improve
feature expressiveness and the effectiveness of reconstruc-
tion in fine and occluded regions. Such obvious comparisons
demonstrate the strong capability and efficiency of ourmodel
in VSR.

In addition, we further compare the proposed model with
others on Vimeo-90k [37], the quantitative results are shown
in Table 4. Our method still shows an improvement of 0.18
dB, 0.21 dB and 0.20 dB over the second best method on
slow, medium, and fast clips, respectively. Such compar-

Fig. 9 Visual comparisons for
×4 SR on the testing data from
Vimeo-90k [37]. The proposed
model is able to recover the
correct structures and fine
details
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isons demonstrate our model can deal with different cases
with various motions and further show the effectiveness of
the proposed network. Some visual comparisons are shown
in Fig. 9, we can find that VSRmethods outperform the SISR
method overall, because only limited information can be used
in SISR. But some error structures and details still appear in
the outputs of most VSR methods. In contrast, our approach
employs an attention module to help eliminate harmful fea-
tures in motion compensation, and the proposed multi-scale
spatial–temporal transformer framework is able to aggre-
gate locality spatial and temporal data information, all of
these improve robustness and effectiveness in fine details
and dynamic regions.

Conclusion

In this paper, we study VSR by leveraging spatial–temporal
dependencies in LR frames. In particular, we propose a novel
end-to-end bidirectional recurrent architecture, which is one
of the works to introduce transformer architectures in VSR
tasks. Specifically, we formulate video frames into aligned
features, and calculate attention along features to prevent
harmful information. To implement spatial–temporal fusion
in an effective way, we decouple it into two easier sub-tasks
and enable transformers to model local and long-range infor-
mation in videos. Experimental results on various videoswith
different motion types, scenes and input sizes indicate that
our approach can achieve acceptable performance when pro-
cessing various VSR tasks.

Although our approach achieves comparable performance
when comparing with current methods in most cases, it still
performs a littleworse for the dense textures. Thismay be due
to the reason that our training set does not include enough
examples of such dense textures and the motion handling
requires to be further improved. Another limitation is our
computing time cost, butwewill further accelerate ourmodel
by trying more strategies, for example, network compression
and feature distillation. Moreover, we will further work on
exploring how to extract useful features, improve training
algorithms and reduce computational redundancy in VSR.
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