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Abstract
Hybrid renewable energy system (HRES) is an effective tool to improve the utilization of renewable energy so as to enhance
the quality of energy supply. The optimization of HRES includes a simulation process during a long time span, which is
time-consuming. So far, introducing a surrogate model to replace the objective evaluation is an effective way to solve such
problems. However, existingmethods focused few on the diversity of solutions in the decision space. Based on this motivation,
we proposed a novel surrogated-assisted multi-objective evolutionary algorithm that focuses on solving multimodal and time-
expensive problems, termed SaMMEA. Specifically, we use a Gaussian process model to replace the calculation of the
objective values. In addition, a special environmental selection strategy is proposed to enhance the diversity of solutions in
the decision space and a model management method is proposed to better train the surrogate model. The proposed algorithm
is then compared to several state-of-the-art algorithms on HRES problems, which indicates that the proposed algorithm is
competitive.

Keywords Hybrid renewable energy system · Surrogated-assisted ·Multi-objective optimization · Evolutionary computation ·
Diversity-preserving mechanisms
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Introduction

With the gradual emergence of the disadvantages of fos-
sil energy, the proportion of renewable energy continues to
increase [1]. Due to the temporal and spatial uncertainty
of renewable energy power generation, the curtailment rate
remains high [2]. Hybrid renewable energy systems (HRESs)
can effectively improve the reliability of the power supply
system, reduce the cost of power generation, and increase
the utilization rate of renewable energy by combining dif-
ferent types of energy, conventional energy storage systems
(ESS) and power generation systems [3,4]. In recent years,
it has attracted the attention of many researchers. HRESs
can be presented as photovoltaic-battery hybrid systems,
photovoltaic-fan-battery hybrid systems, photovoltaic-wind-
diesel-storage hybrid systems, and other complex hybrid
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systems according to their components combinations [5]. A
typicalHRESmainly includes photovoltaic arrays,wind gen-
erators, battery energy storage devices, diesel generators, and
user loads.

Due to the need to determine the component capacity of
the HRES, we often need to simulate the operating state
of the system during the life cycle [5]. Generally speaking,
according to user requirements or the estimated life of each
component of the system, simulations can be carried out for
up to 20 years with a time slot of minutes [6]. For situations
where the accuracy requirements are not high, it is also nec-
essary to carry out a year-long simulation with a time slot of
hours [3]. Therefore, it takes a long time to perform a sin-
gle simulation. Since there are many nonlinear constraints
and the evaluation contains a simulation process, it is diffi-
cult to use traditional linear programming methods to solve
HRES [7]. Thus, many researchers tend to use evolutionary
multi-objective optimization algorithms (MOEAs) to solve
the problem.

Without loss of generality, the multi-objective optimiza-
tion problems (MOPs) [8,9] can be expressed in the following
form:
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Min F(x) = { f1(x), f2(x), · · · , fm(x)}
s.t. x = (x1, x2, . . . , xn) ∈ �

(1)

where � denotes the search space,m is the number of objec-
tives, and x is a decision vector that consists of n decision
variables xi . A solution xa is considered to Pareto dominate
another solution xb if and only if ∀i = 1, 2, ...,m, fi (xa) ≤
fi (xb) and ∃ j = 1, 2, ...,m, f j (xa) < f j (xb). Furthermore,
a Pareto optimal solution is a solution that is not Pareto
dominated by any other solution. The set of Pareto optimal
solutions is called the Pareto set (PS). The image of PS is
known as Pareto Front (PF) [10].

To address MOPs, many multi-objective evolutionary
algorithms (MOEAs) have been proposed, which have been
proven effective on benchmark problems. Generally speak-
ing, MOEAs can be divided into three types: (1) Pareto
dominance based method, e.g., NSGA-II [11] and SPEA2
[12]; (2) decomposition-based method, e.g., MOEA/D [13]
and NSGA-III [14]; (3) indicator-based method, e.g., IBEA
[15] and HypE [16]. For most MOEAs, searching for the
optimal solution set requires a lot of solution evaluations.
In many real-world MOPs, the evaluation of the objective
function is very time-expensive, e.g., in the aero-engine
design problem [17], a lot of time-consuming simulations
are required, which greatly limits the application of MOEAs
in such problems. So far, one of the commonly used methods
for solving time-expensive MOPs is to introduce surro-
gate models to replace the time-expensive multi-objective
calculations, which is usually called surrogate-assisted evo-
lutionary multi-objective optimization (SAEMO) [18,19].
Generally, SAEMO algorithms can be usually divided into
three categories [20]. Thefirst type is to directly use the surro-
gate model to replace the time-consuming objective function
calculation for environmental selection [21,22]. The second
type of SAEMO algorithm is to convert MOP into a sin-
gle objective optimization problem through the aggregation
function [23]. Then a surrogate model is introduced to fit
this single objective problem. The third type is to train the
classificationmodel according to the dominance relationship,
and the surrogate model is used as the classifier to assist the
MOEAs [24,25].

Since HRES is a time-consuming optimization problem,
it’s reasonable to utilize the SAEMO algorithm to solve
it. However, most of the proposed SAEMO algorithms are
designed especially for the continuous optimization prob-
lems [18]. The performance of these algorithms on discrete
optimization problems is doubted. In addition, the existing
SAEMO algorithms mainly focus on improving the perfor-
mance of convergence in the objective space and ignore
enhancing the diversity of solutions in the decision space
[26]. There arise many MOPs in that multiple Pareto opti-
mal solution sets correspond to the same point on the Pareto

Fig. 1 Illustration of a multimodal optimization with single objective
function

front, which are called multimodal multi-objective optimiza-
tion problems (MMOPs) [10,27].

As we can see from Fig. 1, point p1 and point p3 are far
away in the decision space, while they share the same objec-
tive vector y1. For HRES, two different configurations may
have the same objective values, like p1 and p2. It is necessary
to obtain all optimal solutions such that the decision-makers
(DMs) can better understand the problem. Moreover, it is
easier to transfer to another solution if some constraints arise
[28]. However, obtaining all Pareto solutions for MMOPs is
difficult for traditional MOEAs due to the following reasons:
(1) the use of the convergence-first strategy to select a new
generation will cause premature population; (2) the crowd-
ing distance in the objective space will force the algorithm to
remove solutions with similar objective values. As a result,
simply adopting traditional MOEAs or SAEMO algorithms
to solve HRES will face challenges in computation time and
the lack of solution diversity.

To better address HRES, in this study, we first propose
a mathematical model for an HRES, which considers the
annualized cost of the system, fuel emission and the power
shortage rate. Since the optimization process contains a long-
time-span simulation, it’s time-expensive. Thus, to accelerate
the searching process, we proposed a novel surrogate-
assisted multimodal multi-objective evolutionary algorithm,
termed SaMMEA. Specifically, the proposed algorithm first
uses the Gaussian process (GP) [29] to establish a surrogate
model for the original objective functions. During the evo-
lution, the surrogate model will be simultaneously updated.
To enhance the diversity of the proposed algorithm, a novel
environmental selection strategy is proposed and adopted.

The rest of this paper is structured as follow: Section
“Preliminary work” gives the preliminary work of this
paper, including the review of HRES and SAEMO; Sections
“HRES model” and “Surrogate-assisted MOEA” describe
the detail of the proposed HRES model and the proposed
surrogate-assisted algorithm, respectively, followed by Sec-
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tion “Experiment”, which analyses the performance of the
algorithm. Finally, a brief conclusion of this paper and future
work are given in Section “Conclusion”.

Preliminary work

Hybrid renewable energy system

In the planning stage, the HRES seeks to minimize the
installed capacity of components, finding a set of ideal config-
urations, including whether to install a component and how
much capacity. To this end, numerous research has devel-
oped and improved the HRES model [6,7]. Since the HRES
is often formulated as mixed-integer programming, it may be
resolved using standard techniques like branch-and-cut [4].
However, as microgrid components have been updated, the
HRES model has progressively displayed nonlinear proper-
ties that cannot be easily addressed by conventional linear
programming techniques [3]. It has been claimed that some
straightforward non-linear problems may be handled using
conventional linear programming techniques by transform-
ing the non-linear constraints and objective functions into
their linear forms. Such a transition, nevertheless, is con-
strained and loses the details of the initial issues [30].

TheHRESproblem, on the other hand, is a commonmulti-
objective optimization problem [31]. The complete life cycle
cost, power dependability, pollutant emission, and other fac-
tors need to be taken into account concurrently by DMs.
Therefore, many studies tend to choose MOEAs to solve
HRES. Mayer et al. [32] proposed a multi-objective design
framework for household-scale systems considering solar
photovoltaic, wind turbine, solar heat collector, heat pump,
heat storage, battery, and heat insulation thickness, which
is then solved by a multi-objective genetic algorithm. In
addition, Wang et al. [33] proposed a scenario-dominance-
based multi-objective evolutionary algorithm (denoted as
s-NSGA-II) to simultaneously optimize multi-scenario for
HRES design. In [34], a multi-objective particle swarm
optimization algorithm and the Monte Carlo Simulation
method are utilized to study the effect of the deterministic
and stochastic behavior of electric vehicles on the num-
ber of components. To overcome the heavy computational
budget, a surrogate model is introduced. Du et al. [35] pro-
posed a surrogate modeling and analysis methodology to
study dynamic hybrid energy systems. In addition, to replace
the heavy computational burden that limits the applicabil-
ity under massive scenarios, Jiang et al. [36] proposed a
surrogate model-assisted quantified evaluation method for
community integrated energy systems operation considering
the variation in energy quality.

To sum up, the HRES model has been well-studied. How-
ever, most of the studies focus on using MOEAs to find a

well-distributed PF, while the diversity of solutions in the
decision space is less considered. In addition, few studies try
to use the surrogated-assisted model to accelerate the search-
ing process of the algorithm. Therefore, it’s reasonable and
necessary to propose a surrogated-assisted multi-objective
evolutionary algorithm considering the solution diversity to
better address the HRES.

Surrogated-assistedmethod

In SAEMO, the uncertainty of model estimation will affect
the search direction of the algorithm, thereby affecting per-
formance. Thus, maintaining a model to accurately estimate
the solutions is important. So far, many methods have been
utilized successfully to construct SAEMO algorithms, e.g.,
polynomial regression, radial basis function [37], neural
networks [38] and GP model [29]. Compared with other
surrogate-assisted models, the GP model can provide not
only individual estimation but also the uncertainty of the
estimation [29]. Therefore, this paper chooses the GP model
as the original objective function evaluation model. Through
the help of the trained GPmodel, algorithms can explore dif-
ferent areas where the optimal solution set may exist, thereby
helping to improve the search ability.

GP is a machine learning method based on statistical the-
ory. Its properties are defined by the mean function μ(x) and
the covariance function k(xi , x j ), which can be expressed as
follow:

μ(x) = E[ f (x)] (2)

k(xi , x j ) = E[( f (xi ) − μ(xi )) · ( f (x j ) − μ(x j ))] (3)

where xi means a decision vector.
Suppose a training data set X = [x1, x2, ..., xn] with its

label Y = [x1, x2, ..., xn], then the GP model can be defined
as:

f̂ (x) = f (x) + ε (4)

where f̂ (x) is the predicted value of the GP regressionmodel
on x; ε is a randomvariable that obeys aGaussian distribution
with a mean value of 0 and a variance of δ2. Then, we have

f̂ (x) ∼ N (0, K + δ2 I ) (5)

where K is a symmetric positive definite covariance matrix,
and each element ki j represents the correlation between xi
and x j . Then

[
Y
Y∗

]
= N

(
0,

[
K (X,X) + σ 2 I K (X,X∗)

K (X∗,X) K (X∗,X∗)

])
(6)
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where K (X,X∗) represents the covariance matrix between
the test sample X∗ and the training sample X, K (X∗,X∗) is
the covariance matrix of the test sample itself.

Subsequently, themaximumlikelihoodestimationmethod
is used to find the optimal hyperparameters to finally deter-
mine the Gaussian process model. When the input X∗ is
given, it uses the input X in the training set and its observa-
tion target output valueX to predict the posterior distribution
of the prediction f̂ (X∗) with the largest probability, which
can be expressed:

f̂
(
X∗ | X∗,X,Y

) ∼ N
(
μ,

∑)
(7)

μ = K
(
X∗,X

) (
K (X,X) + σ 2 I

)−1
Y (8)

∑
= K

(
X∗,X∗) − K

(
X∗,X

) (
K (X,X) + σ 2 I

)−1

×K
(
X,X∗) (9)

HRESmodel

As the most widely used renewable energy, solar and wind
have become normal energy resources in HRES. In addition,
for a normalHRES, energy storage systems, diesel generators
and user loads are necessary. This part will mathematically
model the main components, e.g., the photovoltaic power
generation, wind turbine power generation, battery energy
storage system and diesel generator, to provide a basis for
the establishment of the HRES model.

Photovoltaic

Solar photovoltaic power generation technology is one of the
most idealways to use solar energy. It is safe and environmen-
tally friendly without complicated components. The output
power of the actual photovoltaic system is greatly affected
by weather and panel installation angle. In order to simplify
the model in this part, we only consider the light intensity
and ambient temperature [39]. The maximum output power
formed by Ns photovoltaic panels can be expressed as:

Ppv = Ns · VOC · ISC · Floss (10)

VOC = VSTC − KV · Tc (11)

ISC = (ISTC + KI · (TC − 25)) · Sp
1000

(12)

TC = TA + NCOT − 20

800
· Sp (13)

where KI and KV are the temperature coefficients, ISTC
and VSTC are the short circuit current and open circuit volt-
age under standard conditions respectively. Sp and Floss are

solar radiation and the packing factor provided by the man-
ufacturer.

Wind turbine

Another important component of HRES is the wind power
generation system. The power output of a wind turbine is
usually non-linear. When the wind speed is less than the cut-
in wind speed, the wind turbine is in a shutdown state; when
the wind speed is greater than the cut-in wind speed, the
output power is approximately equal to thewind speed; when
the wind speed is greater than the rated wind speed but less
than the cut-out wind speed, appropriate measures need to be
taken to limit the output power of the wind turbine to prevent
the wind power generation system from being overloaded
and damaged; when the wind speed exceeds the cut-out wind
speed, thewind turbinemust be shut down to ensure the safety
of the system [40].

According to the power output curve of the wind turbine,
the following wind power generation model can be estab-
lished:

Pwt (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, v < Vc
1
2CPρAwgv

3, Vc ≤ v < Vr

Pmax
wg , Vr ≤ v < V f

0, v ≥ V f

(14)

where v and Cp are wind speed and the performance
coefficient of thewind turbine, which is provided by theman-
ufacturer. ρ and Awg are the air density and the area swept by
the rotor, respectively. In addition, Vc, Vr and V f are cut-in,
rated and cut-out wind speed, respectively, which are set to 4
m/s, 14m/s and 20m/s respectively in this study according
to the producer.

Energy storage system

In HRESs, batteries are generally used for ESS. When the
renewable energy generation is greater than the load demand,
the battery pack is used to store excess energy, and when
the weather conditions are so bad that the power generation
cannot meet the load, the battery pack discharges to supply
energy for the user load. Most battery models will consider
the state of charge (SOC), which should be kept within the
maximum and minimum range given by the manufacturer to
ensure safety [3]. The relationship between SOC changes,
renewable energy generation and load power demand can be
expressed as:

SOC(t + 1) = SOC(t) + (Pbat (t)/Vbus) · �t · ηbat

Cn

(15)
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SOCmin ≤ SOC(t) ≤ SOCmax (16)

where Pbat (t) is the battery input/output power (a positive
value indicates charging mode, and a negative value means
discharging mode), Vbus and ηbat are the DC bus voltage
and the bidirectional charging and discharging efficiency.Cn

(Ah) is the total rated capacity of the ESS.

Diesel generator

In an HRES, a diesel generator is generally used as a backup
energy source. It will only work when the renewable energy
generation is less than the load demand and the ESS cannot
meet the lack of power. Although the introduction of diesel
generators can further improve the reliability of the HRES,
it will also increase the cost of the system. At the same time,
the consumption of fossil fuels will increase the emission of
harmful pollutants and greenhouse gases. The fuel consump-
tion of a diesel generator depends on its own nature. In order
to simplify the calculation, the fuel consumption Fcons of a
diesel generator can be approximately assumed to be a linear
function of its power output:

Fcons = γ1 · Pdgr · �t + γ2 · Pdg · �t (17)

where Pdgr and Pdg are the rated power and actual power of
the diesel generator, γ1 and γ2 are the coefficients of the fuel
consumption curve.

Objectives and simulation process of HRES

The calculation of the objective values of HRES needs to
simulate the running process. In this study, the time series
simulation method is adopted in order to accurately calculate
the loss of power supply (LPSP), the annual cost of the
system (ACS) and fuel emission (Femission). Specifically, the
calculation of the above three objectives can be expressed as:

ACS =
∑
i∈E

(Ci
inv ∗ Ni + Ci

om ∗ Ni ) + Crep ∗ Nbat (18)

where Ci
inv and C

i
om are the annual cost and operation main-

tenance cost of equipment i , Crep is the replacing cost of a
battery system. E is the set of equipment, including photo-
voltaic, wind turbine, ESS and diesel generator.

LPSP =
∑T

t=0 Pavailable(t) < Pload(t)

T
(19)

where Pavailable(t) and Pload(t) are the available power and
the needing power at time t . In addition, to keep the stable

running of the system, we have LPSP < 10%.

Femission =
T∑
t=0

Fcons(t) ∗ ηemission (20)

where Fcons(t) and ηemission are the fuel consumption at time
t and the emission factor which depends on the quality of the
diesel generator and fuel. Its value is generally in the 2.4-2.8
kg/li t .

Overall, the mathematical model of the HRES problem in
this study can be expressed as follows:

Min F(x) ={ACS, LPSP, Femission}
s.t. LPSP < 10%

x = (Ns, Nw, Nb, Nd) ∈ �

(21)

where Ns , Nw, Nb and Nd are the number of photovoltaic
panels, wind turbines, energy storage systems and diesel gen-
erator respectively. Notably, other constraints are embedded
into the simulation process of the HRES. Therefore, for a
given solution x = (Ns, Nw, Nb, Nd), it’s an infeasible solu-
tion if and only if its LPSP > 10%.

Figure 2 shows the simulation flow chart used in theHRES
optimization process. Specifically, P(t), PL(t), Pneed(t) and
PDG(t) are the power of renewable energy, user load, the rest
required energy and diesel generator respectively in time slot
t . SOC(t) presents the state of charge of the ESS. The data,
including solar radiation, average wind speed and the rele-
vant performance indicator values of the system components,
is first given at the start of the simulation procedure. Then,
in each simulation time step, the optimizer will compute the
renewable energy power generation based on the input data
and the mathematical model. The power output of renew-
able energy is then compared with the entire amount of load
requirements at the current moment. If the renewable power
and the load demand are equal, the following step is skipped;
if the power supply is larger than the demand, the ESSwill be
charged; if the power generation is less than the demand, the
ESS will be first considered to supply the energy. Once the
ESS can not meet the requirement (SOC is low), the diesel
generator will be turned on. If the diesel generator fails to
meet the load requirements, the LPSP will be counted. The
above process will be repeated until t = T .

For the HRES in this study, the decision variables are the
number of systems components, e.g., wind turbine, photo-
voltaic panel, energy storage system and diesel generator.
As the power suppliers, wind turbines, photovoltaics, and
diesel generator can both provide energy to meet the require-
ment. In addition, if there is no renewable energy supply (no
solar energy and no wind), the diesel generator and the ESS
can both provide power. That is, they are functionally inter-
changeable. For example, we can assume that the energy
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Fig. 2 Simulation process of HRES

generation of 1 wind turbine is equal to 10 photovoltaic
panels. As a result, if there is no other preference, differ-
ent optimal solutions may have the same/similar objective
values, which is the multimodal nature of HRES.

Surrogate-assistedMOEA

Motivation and framework

For now, introducing a model to replace the direct calcula-
tion of objectives is proved effective and efficient to solve
time-expensive problems. However, most of the existing
algorithms focus on continuous optimization problems. In
addition, due to the lack of diversity-maintenance mech-
anisms, the diversity of solutions in the decision space is
relatively weak, which will lead to quick premature and loss
of optimal solutions. So far, many MMEAs have been pro-
posed to enhance the diversity and obtained as many optimal
solutions as possible [10,28,41,42]. However, all of them are
utilized to solve continuous optimization problems. For dis-
crete problems like HRES, the performance has not been
systematically studied. To address the above issues, we pro-
posed a novel surrogate-assisted multimodal multi-objective

evolutionary algorithm, termed SaMMEA. The framework
of SaMMEA can be seen in Algorithm 1.

Algorithm 1 General Framework of SaMMEA
Input: Maximum generations MaxGen, population size N
Output: Optimal solutions PS
1: Sn ← Sampling(n) /* Use Latin Hypercube method to sample n

solutions */
2: Arc ← CalObjs(Sn) /* Calculate the true objective values for Sn

*/
3: Pop ← I ni tiali zation(N )

4: while gen ≤ MaxGen do
5: M ← TrainModel(Arc) /* Use GP to train the model for each

objective */
6: MatingPool ← Tournament Selection(Pop)
7: O f f ← Variation(MatingPool)
8: Pop ← EnvironmentalSelection(Pop, O f f , N , M) /*

Using the multimodal-based method to select solutions */
9: Sn ← Select(Pop, n) /* Select n solutions from Pop to update

the model */
10: Arc ← Arc ∪ Sn
11: gen ← gen + 1
12: end while
13: PS ← NonDominatedSort(Pop)

From Algorithm 1 we can see that the main procedures
of SaMMEA are similar to most of the MOEAs. The main
difference between SaMMEA and the normal MOEAs is
that we introduce a surrogate-assisted model and adopt the
multimodal-based method to select solutions. Specifically,
we first adopt the Latin Hypercube method to sample n solu-
tions and obtain the decision vectorsXtrain, see line 1. Then,
we need to calculate the objective values of these sampling
solutions and get the objective vectors Ytrain. The above-
mentioned data is then used to train the GP model to help
the searching process. During the iterations, the GP model
M will be updated, see line 5. Then, the objective values of
the new offspring generated by variation will be calculated
by the trained model M to accelerate the searching process.
After that, a novel environmental selectionmethod is adopted
to enhance the diversity of solutions in the decision space
as well as the convergence quality of the whole population.
Finally, the non-dominated solutionswill be the final solution
set.

Model management

We introduce a surrogate-assisted model to partially replace
the direct function evaluation in SaMMEA. Specifically,
before the algorithm run, a set of solutions is first sampled
from thewhole decision space to roughly train the GPmodel.
However, for the whole decision space, the trained model is
inaccurate since the number of samples is small. Therefore,
it’s necessary to update the model simultaneously. Since the
evaluation of the objective function is time-expensive, it’s
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unreasonable to add all of the solutions to update the model.
Thus, we proposed a novel model management strategy to
select solutions. Specifically, the selecting process can be
seen in Algorithm 2.

Algorithm 2 Select
Input: Population Pop, number of selected solutions n
Output: Selected solutions Sn
1: Sol ← NDSort(Pop) /* Find the non-dominated solutions */
2: if Num(Sol) > n then
3: while Num(Sn) < n do
4: CrowdDis ← CalCrowdDis(Sol) /* Calculating the

crowding distance */
5: picksol ← min(CrowdDis) /* Finding the solution with

minimum crowding distance */
6: Sn ← Sn ∪ picksol
7: Sol ← Sol \ picksol
8: end while
9: else
10: Sn ← Sol
11: end if

As we can see from Algorithm 2, we first find the non-
dominated solutions from the current population. Then, if
the number of non-dominated solutions is larger than the
given number n, a second-selection method is performed to
select solutions with the largest crowding distance. It’s worth
mentioning that, to keep the population diversity and approx-
imate the true objective function, we proposed to choose
solutions with minimum crowding distance in the decision
space, which is calculated by the following equation.

CrowdDisi = N − 1∑N
j=1 1/

∥∥x j − xi
∥∥ (22)

where
∥∥x j − xi

∥∥ indicates calculating theEuclidean distance
of solutions xi and x j . Note that xi and x j have been previ-
ously normalized.

The updating process of the model can also be seen from
Fig. 3. As we can see, from left to the right, the three sub-
figures present the trained model (red dashed line) and the
true objective function (black solid line) in the early, mid-
dle, and final stages, respectively. As the evolution goes, the
trained model approximates the true objective function more
accurately. As we can see from line 1 in Algorithm 2, only
the non-dominated solutions will be chosen to update the GP
model. In addition, the special crowding distance is utilized
to select solutions with good diversity. As a result, the areas
with better convergence quality aremore likely to be sampled
to ensure the exploration and exploitation for final optimal
solutions.

Solution generation

Since the HRES in this study is a discrete problem, we used a
posterior-fixmethod to initialize the population. Specifically,
solutions are uniformly generated according to the lower and
upper bounds of each decision variable, which are rounded
afterwards. In addition, the crossover andmutation operation
is important for improving the searching efficiency. Based
on the discrete encoding, a posterior-fix method is adopted.
Specifically, the simulated binary crossover (SBX) and poly-
nomial mutation (PM) operators are employed to generate
offspring. After that, all decision variables are rounded to
integer numbers.

Environmental selection for discrete optimization
problems

There are a variety of solutions with the same objective
values. As a result, different solutions with equal objective
values may be discarded if we simply use the convergence-
first technique and crowding distance in the objective space
to choose solutions from the joint population. Traditional
MOEAs, on the other hand, perform poorly while solving
MMOPs. The reasons may be summarized as follows: (1)
the lack of a diversity-maintenance mechanism would lead
to early convergence; (2) multiple solutions with the same
objective values are difficult to coexist at the same time.

To solve this problem, we start by removing duplicate
solutions (line 1 in Algorithm 3). By doing so, we can ensure
that the future generation inherits the finest solutions dis-
covered so far while still preserving variety. After deleting
duplicate solutions, we use the non-dominated Pareto sort-
ing approach to sort the population (see lines 2 − −4). If
the number of solutions in the joint population exceeds the
population size N , a second-selection approach is used to pre-
serve both the population size and the population distribution.
The second-selection approach is broken into three parts: (1)
compute the crowding distance of all solutions using Eq.
(22); (2) eliminate the solution with the maximum crowding
distance; and (3) repeat steps (1) and (2) until the population
size reaches N .

Algorithm 3 Environmental selection
Input: Joint population Joint Pop, population size N
Output: Updated population Pop
1: Joint Pop ← DelEqualSolutions(Joint Pop)
2: Front No ← NDSort(Joint Pop)
3: I ndex ← Sort(Front No,′ ascend ′)
4: Joint Pop ← Joint Pop(I ndex)
5: if Num(Joint Pop) > N then
6: Pop ← SecondSelection(Joint Pop)
7: else
8: Pop ← Joint Pop
9: end if

123



4082 Complex & Intelligent Systems (2023) 9:4075–4087

Fig. 3 The updating process of
the GP model during evolution

Table 1 Parameter setting for
HRES problem

Parameter VOC ISTC VSTC NCOT C pv
inv C pv

om

Value 21V 7.22A 17V 43oC 3000$ 30$

Parameter CWT
inv CWT

om Pmax
wg Cdg

inv Cdg
om Pmax

dg

Value 3013$ 50$ 10,000W 1514$ 0.17$ 2000W

Parameter Vbus ηbat Cn Cbat
inv Cbat

om Crep

Value 12V 80% 100Wh 126$ 1.26$ 126$

To summarize, we first delete duplicate solutions to retain
the variety of solutions in the decision space, as illustrated
in Algorithm 3, line 1. The population is then sorted using
the non-dominated sorting approach, lines 2–4, to increase
the algorithm’s convergence capabilities. Finally, the second-
selection approach is used to preserve the population size and
solution distribution.

Experiment

Experimental setting

Compared algorithms

To verify the effectiveness of SaMMEA in solving HRES,
NSGA-II/SDR [43], K-RVEA [44], MOEA/D-EGO [22],
MMOEA/DC [42] and MMEA-WI [10] are chosen as com-
petitor algorithms. Specifically, MMOEA/DC and MMEA-
WI are the latest representative MMEAs. NSGA-II/SDR
is selected as the representative normal MOEA, while K-
RVEA and MOEA/D-EGO are chosen as the recent work
that focuses on expensive optimization problems.

For all algorithms, we set the population size N = 100.
For fairness, the maximum number of function evaluations
NE is set to 5000. However, since several SAEMOs are
selected as the competitor algorithms, it’s hard to set the
number of true function evaluations and themodel prediction.
Thus, we uniformly set the number of true function evalua-
tions and themodel prediction to 1000 and 4000 respectively.
Note that the specific parameters in each algorithm are set
according to the original papers.

Fig. 4 The wind speed, solar radiation, temperature and user load data
of Case 1 used in this study

Notably, since some algorithms are not designed for
problems with constraints, we uniformly adopt the penalty
function to deal with infeasible solutions. Specifically, if one
solution is unfeasible, then the objective values will plus a
large number. All experiments are implemented on a PC con-
figured with an Intel i9-9900X@ 3.50 GHz and 64 G RAM.

Parameter setting for HRES

To comprehensively study the performance of the proposed
SaMMEA on solving HRES, three test instances are utilized
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as the benchmark problems. To be specific, the parameter
setting of HRES can be seen in Table 1, which is provided
by equipment manufacturers and set according to the local
market. In addition, the wind speed, temperature, solar radi-
ation, and user load of Case 1 are presented in Fig. 4. It’s
worth mentioning that, the time span of the whole data is a
year. For better presentation, we only show the first 7 days
data.

Performance metric

A number of metrics have been proposed to examine the per-
formance of MOEAs, for example, HyperVolume, GD, and
IGD indicators [45]. Most of them measure the performance
of solutions in the objective space. However, since we focus
on solution diversity in the decision space, we choose IGD
and IGDX as the performance metrics, which are widely
used indicators. For a solution set,X, the IGD and IGDX are
calculated as follows:

IGD(X) = 1

|X∗|
∑
y∈X∗

min
x∈X{ED(F(x), F(y))}, (23)

IGDX(X) = 1

|X∗|
∑
y∈X∗

min
x∈X{ED(x, y)}. (24)

where ED(x, y) is the Euclidean distance between x and y.
X andX∗ denote the obtained solution set and a set of a finite
number of Pareto optimal solutions uniformly sampled from
the true PS, respectively.

Notably, a small IGD value means that the solution set X
has both reasonable convergence and diversity in the objec-
tive space, which indicates that the algorithm is an effective
MOEA. Similar to IGD, the IGDX calculates the conver-
gence and spread of X in the decision space. A small IGDX
valuemeans the solution setX is a good approximation to the
true Pareto solution set X∗ in the decision space, which indi-
cates the algorithm is an effectiveMMEA. In [46], the authors
mentioned that a solution set with a satisfactory IGDX usu-
ally has an acceptable IGD, while a reasonable IGD does not
naturally produce a reasonable IGDX.

Since theHRES problem in this study is a real-world engi-
neering problem, the true Pareto optimal solutions X∗ can
not be analytically obtained. Therefore, an exhaustive way is
utilized. To be specific, solutions in the entire decision space
are enumerated and evaluated individually, which is really
time-consuming. After that, a quick non-dominated sorting
method is applied to find the true Pareto front.

Comparison with other algorithms

For all algorithms, we run the experiments 31 times inde-
pendently. The average IGD, IGDX and runtime results of

these algorithms are listed in Table 2. As we can see, in
terms of IGDX, SaMMEA obtained the best results for all
three cases, while MMEA-WI performs a bit worse. In terms
of IGD, SaMMEA got the best result on Case 1, MMEA-
WI performed great on Case 2 and NSGA-II/SDR received
the best performance on Case 3. MMOEA/DC andMMEA-
WI are two representative MMEAs, they show worse but
approximate results compared to SaMMEA. To be specific,
SaMMEA is proposed to solve discrete MMOPs, where a
special environmental selection method is proposed to keep
the diversity of solutions in the discrete decision space.
Therefore, it is more suitable for discrete optimization prob-
lems than other multimodal techniques in MMOEA/DC and
MMEA-WI.

As for NSGA-II/SDR, its performance in obtaining well-
distributed solutions in the objective space is great. However,
the diversity in the decision space is relativelyweak. Notably,
MOEA/D-EGO shows poorer performance than K-RVEA
and NSGA-II/SDR since we adopt the penalty function
to deal with the constraints, which will produce wrong
information to lead the algorithm based on decomposition.
On the other hand, as we can see from Table 2 in terms
of runtime, SaMMEA, K-RVEA and MOEA/D-EGO are
time-saving compared to algorithms without the surrogated-
assisted strategy. Specifically, these three algorithms are
proposed for expensive optimization problems. Instead of
directly evaluating solutions by the true objective function,
the surrogate-assisted model is introduced to decrease the
runtime, which is efficient in dealing with time-expensive
problems.

To further analyze the performance of SaMMEA, the
solutions closest to the average IGD results obtained by all
algorithms on Case 1 are selected to present the Pareto
front, which is shown in Fig. 5. As we can see, the distri-
butions of solutions obtained by SaMMEA, MMEA-WI and
MMOEA/DC are more evenly distributed than other algo-
rithms. In addition,we canfind that, in the final obtained solu-
tions by SaMMEA andMMEA-WI, there are many different
solutions that have similar objective values. For example,
for solutions x1 = [17, 11, 22, 0] and x2 = [2, 18, 30, 1],
the objective vectors of them are y1 = [0, 8.69, 11829.72, ]
and y2 = [0.23, 9.45, 11493.05] respectively. DMs need to
knowall solutions for better decision-making.However, such
solutions will not be maintained in other normal MOEAs.

To sum up, the introduction of a surrogate-assisted model
in MOEAs can greatly decrease the runtime of algorithms
when solving time-expensive optimization problems. How-
ever, such replacement will also bring performance degra-
dation somehow. Therefore, it’s important to figure out a
suitable model which can accurately fit the objective func-
tions with small samples. Embedding a multimodal strategy
into SAEMO to enhance the diversity quality of solutions in
the decision space can help to obtain more equivalent opti-
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Table 2 The average IGD, IGDX and runtime for all algorithms over 31 independent runs, where the best results are highlighted with bold font,
where the second line for each indicator means the variance

Problem instances Indicators NSGA-II /SDR K-RVEA MOEA/D -EGO MMOEA/ DC MMEA-WI SaMMEA

Case 1 IGD 1.41E+02 2.02E+02 1.51E+03 1.67E+02 1.46E+02 1.38E+02

3.88E+00 4.65E+00 5.22E+01 3.65E+00 4.68E+00 3.54E+00

IGDX 3.02E+00 3.51E+00 9.71E+00 2.52E+00 2.19E+00 2.13E+00

2.50E-01 9.30E-01 4.50E-01 1.20E-01 9.80E-02 4.20E-02

Runtime 1.06E+05 1.03E+04 1.53E+04 1.15E+05 1.46E+05 9.86E+03

Case 2 IGD 1.45E+02 2.15E+02 1.49E+03 1.67E+02 1.39E+02 1.40E+02

3.52E+00 4.83E+00 5.10E+01 3.61E+00 4.85E+00 3.87E+00

IGDX 2.89E+00 3.38E+00 1.02E+01 2.59E+00 2.26E+00 2.06E+00

2.27E-01 1.01E+00 4.77E-01 1.25E-01 9.14E-02 4.27E-02

Runtime 9.75E+04 9.34E+03 1.43E+04 1.21E+05 1.35E+05 9.32E+03

Case 3 IGD 1.36E+02 1.87E+02 1.41E+03 1.70E+02 1.45E+02 1.47E+02

3.53E+00 4.71E+00 5.53E+01 3.48E+00 4.29E+00 3.57E+00

IGDX 3.04E+00 3.49E+00 9.34E+00 2.60E+00 2.37E+00 2.34E+00

2.64E-01 8.39E-01 4.53E-01 1.25E-01 1.06E-01 3.85E-02

Runtime 1.15E+05 9.96E+03 1.43E+04 1.21E+05 1.36E+05 9.75E+03

Fig. 5 The true PF and the obtained solutions by all compared algorithms
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Fig. 6 The true PF, obtained PF and knee points for HRES obtained by
SaMMEA on Case 1

mal solutions, which is important for DMs. For HRES, the
proposed SaMMEA is competitive in terms of convergence
and diversity quality compared to K-RVEA and MOEA/D-
EGO, and shows better computational complexity compared
to other algorithms without the surrogated-assisted model.

Result obtained by SaMMEA

As we mentioned in Section “Comparison with other algo-
rithms”, SaMMEA shows competitive performance in solv-
ing HRES. In this section, we will further analyze the result
obtained by SaMMEA. Since the final solution set of MOPs
contains more than one solution, it’s important for DMs to

choose a certain solution to implement, which belongs to
multi-criterion decision-making (MCDM). Generally speak-
ing, knee point [47,48] can be seen as the preferred solution
if there is no other DMs’ preference. Specifically, for a two-
objective optimization problem, a knee point in the PF refers
to the solution with the maximum marginal rates of return,
that is, the point at which a small improvement in one objec-
tive will lead to severe degradation of at least one other
objective. In this study, we use a posterior method to locate
the global knee point, namely, the distance-based method.
Due to the paper length limits, the detailed approach is not
described. For more detailed information about the knee
point, please refer to [48]. After the algorithm run onCase 1,
we select the global knee to present, which can be seen from
Fig. 6.

Aswe can see fromFig. 6, the knee locates in the “pit” area
of the whole PF. In this area, a small change in one objective
will cause a huge move in other objectives. The objective
vector of the knee point is [862.38kg, 1.13%, 14909.13$]. In
addition, the numbers of wind turbines, photovoltaic, ESSs
and diesel generators are 30, 9, 26 and 2 respectively. Intu-
itively, the knee point solution is a good trade-off between all
objectives. According to [48], the value of the performance
indicator HyperVolume for knee point is better than other
solutions in the PF. In other words, the knee point is closer
to the origin of coordinates than other solutions.

The power output of photovoltaic, wind turbine, diesel
generators and the running status of the energy storage
system can be seen in Fig. 7. Notably, we choose four repre-
sentative days in four different seasons to show the running
status of the system. As we can see from Fig. 7, the user

Fig. 7 Power output of equipment in HRES on four days in different seasons
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load in summer is low while in winter the load is high. As a
result, the diesel generator will not work during the summer
day. For days in spring and summer, the diesel generator will
work sometimes. In addition, when the output of renewable
energy is high, the ESSwill choose to charge while discharg-
ing when the energy supply is insufficient. To sum up, the
effectiveness of the proposed HRES mathematical model is
verified. In addition, the proposed SaMMEA can well solve
HRES.

Conclusion

Hybrid renewable energy system (HRES) is a powerful tool
to utilize unstable renewable energy. However, the optimiza-
tion of theHRES configuration needs a long-time simulation,
which is generally time-consuming. As a result, using a tra-
ditional MOEA to find the optimal solutions is hindered.
In addition, since the multi-modality nature of HRES, it’s
important tofind asmanyoptimal equivalent solutions as pos-
sible to provide more information for DMs. In this paper, we
proposed to use the surrogated-assisted MOEA to accelerate
the searching process. Specifically,we used theGPmethod to
fit objective functions before the optimization. Then, during
the evolution, these GP models will be updated and main-
tained. As a result, the run time can be greatly decreased.
In addition, a multimodal-based environmental selection is
utilized to enhance the diversity of solutions in the decision
space, which also helps to obtain different solutions.

It’s common in real-world engineering problems that a
single evaluation of an objective function is time-expensive.
So far, introducing the surrogate model to replace the orig-
inal objective function is one of the most effective ways.
However, most of the proposed surrogated-assisted MOEAs
focus on continuous optimization problems. In addition, the
number of samplings can greatly affect the performance
of the algorithm. Thus, for discrete problems or discrete-
continuous-mixed problems, such methods perform poorly.
Another problem is that, for some problems, the calculation
time for different objective functions is different. Directly
applying the surrogated-assistedMOEAs to this kind of prob-
lem will cause computation resource waste. This is also one
of our future research directions.
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