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Abstract
The shortest path problem (SPP) is a classic problem and appears in a wide range of applications. Although a variety of
algorithms already exist, new advances are still being made, mainly tuned for particular scenarios to have better performances.
As a result, they become more and more technically complex and sophisticated. In this paper, we developed an intuitive and
nature-inspired algorithm to compute all possible shortest paths between two nodes in a graph: Resonance Algorithm (RA).
It can handle any undirected, directed, or mixed graphs, irrespective of loops, unweighted or positively weighted edges, and
can be implemented in a fully decentralized manner. Although the original motivation for RA is not the speed per se, in
certain scenarios (when sophisticated matrix operations can be employed, and when the map is very large and all possible
shortest paths are demanded), it out-competes Dijkstra’s algorithm, which suggests that in those scenarios, RA could also be
practically useful.

Keywords Dijkstra’s algorithm · Large-scale graph ·Nature-inspired algorithm ·Decentralized algorithm · Fermat’s principle

Introduction

The shortest path problem (SPP), i.e., to find a path between
two nodes in a graph such that the length (or weights) of
the path is minimized, is a classic problem in graph theory
and computer science [1], with a wide range of applica-
tions such as route planning [2–4], network routing [5–7] and
task planning [8,9]. There is a variety of algorithms to solve
SPP, including the classic Dijkstra’s algorithm [10] (which
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is commonly used and lays the basis for many other methods
[11–13]), Bellman–Ford algorithm [14], Chan’s fast algo-
rithm (in O(n3/ log n) time) [15], etc.

Although SPP has been studied extensively, new advances
are still being made to have better performances in spe-
cific scenarios, including rapid explorations [16,17], solving
multi-objective problems [18,19], handling dynamic net-
works [20–22] and stochastic situations [23,24].More specif-
ically, for example, Noto and Sato proposed a fast algorithm
to compute paths as close as possible to the optimal solution
(much faster than the algorithms that give optimal solu-
tions) to handle real-time problems [17]. Galán-García et al.
developed Probabilistic Extension of Dijkstra’s Algorithm
to calculate not only the shortest path but also the second-,
third- or fourth-shortest path, by taking the traffic flows into
account, which is extremely helpful in realistic car naviga-
tion [25].Moreover, by taking off the “Fibonacci heap” in the
originalDijkstra’s algorithm,Xuet al. substantially improved
the efficiency of Dijkstra’s algorithm for sparse networks, to
which the road traffic network belongs [26].

While finding one shortest path has a wide range of
applications (as in the above examples), finding all possible
shortest paths (without missing any one) is also a significant
question to ask in various scenarios [27], e.g., when search-
ing a path that should satisfy other conditions beyond having
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the minimal length such as in the power line routing prob-
lem [28]. For another example, in the biological sequence
alignment problem (which can be reduced to SPP), we need
to investigate alternative optimal solutions in order to check
the sensitivity of this problem [29]. Moreover, researchers
developed a computational approach to identify liver can-
cer related genes, where the essential step is to find all (not
just only one) shortest paths in the protein-protein interaction
network [30].

The most straightforward approach to find all shortest
paths is to simply use breadth-first search, which is ineffi-
cient though [31]. Alternatively, Dijkstra’s algorithm can be
extended to return all possible shortest paths [32]. We can
also “hack” the algorithm that solves the k shortest paths
problem [33] (i.e., to list k paths in ascending lengths where
k is a predefined positive integer parameter) so that k is not
predefined and the algorithm continues to iterate until the
newly returned path is strictly longer than the path returned
in the last iteration.

In this paper, we propose an intuitive and intriguing algo-
rithm that finds all possible shortest paths between two nodes
in a graph.We call this algorithmResonanceAlgorithm (RA).
First, we recommend the reader to check out the 50-s anima-
tion of RA at www.wuyichen.org/resonance-algorithm, for
a general idea. Generally speaking, RA can be summarized
in three points:

1. Starting from the origin, each node sends signals to all
of its neighbors when it receives one for the first time,
until the destination receives the signal, which we call
the forward process;

2. Likewise, we have the backward process but the direction
is from the destination to the origin;

3. All possible shortest paths are the intersections of the
forward process and the time-reversed backward process.

Note that the “signal” is just something imagined that travels
in the graph, which could be anything, e.g., an empty mes-
sage. It serves as a metaphor that may help the readers better
understand the logic of the algorithm. Intriguingly, RAmight
be considered as a metaphor of the combination of Fermat’s
principle [34] (i.e., the path taken by a ray is always the one
that takes the least time) and the probability amplitude inter-
pretation of the wave function in quantum mechanics [35]
(see discussions in Supplementary Notes online).

There are a variety of nature-inspired optimization algo-
rithms [36], some of which could be adopted to handle
SPP, such as the ant colony algorithm [37,38], the simulated
annealing algorithm [39], the fruit fly optimization algorithm
[40], the whale optimization algorithm [41] and the bald
eagle search algorithm [42]. RA that we proposed herewould
belong to those nature-inspired algorithms, but designed par-
ticularly for SPP. The motivation of RA is not to provide a

time-efficient algorithm per se (although we later find that it
is fast in particular scenarios), but to serve as an alternative
nature-inspired algorithm, providing a new look at the classic
question.

This paper is organized as follows. In the next section,
we go through a typical example to illustrate the general
scheme of RA. In the third section, we explain in details
about how to implement RA bymatrix, one of many possible
implementations. Next, in the fourth section, we compare
RA with Dijkstra’s algorithm mechanistically in details, and
then statistically in time efficiency. In the end, we discuss
the potential applications of RA and briefly discuss how to
implement RA in a decentralized manner.

Resonance algorithm (RA): general scheme

To illustrate RA, take the undirected and weighted graph
shown in Fig. 1a as an example (the weighting is represented
by the length of edges). Now, the following three subsections
elaborate RA step by step, also referring to the animation
mentioned above www.wuyichen.org/resonance-algorithm.
The example inFig. 1 is the simplest case, but refer to theSup-
plementary Notes online for the example with mixed edges
(namely with both undirected and direct edges) andweighted
edges, irrespective of loops, which represents the most gen-
eral case.

Forward process: from origin to destination

• To begin with (t = 0), the origin node A sends signals to
all of its neighbors simultaneously, namely nodes C and
S.

• At t = 1, nodes C and S receive the signal. Immediately,
C sends signals to its neighbors D and E; and S sends
signals to its neighbors R and Q. Note that they do not
need to send signals to the node where the signal came
from.

• At t = 2, D, E, R and Q receive the signal. Immediately,
D sends a signal to E; E sends signals to D and F; R sends
a signal to H; and Q sends signals to N and P.

• At t = 3, E, D, F, H, N and P receive the signal. Note
that, although D and E receive signals again, they do not
need to send signals because this is not the first time
they receive them (which means D and E will never send
signals again). Nodes F, H, N, and P send signals to their
neighbors, immediately.

• This process continues, until the destination node B
receives a signal. This is then the forward process,
denoted as X .
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Fig. 1 The exemplified graph to illustrate RA, also referring to the ani-
mation at www.wuyichen.org/resonance-algorithm. a The question is
to find all possible shortest paths from the origin node A to the desti-
nation node B. This graph is undirected and weighted, represented by
lengths of the edges (weights that are larger than 1 has been explicitly
written down, otherwise omitted), which can be interpreted as the time

needed to move from one end to the other, e.g., it takes 1 unit of time
(e.g., second) to move from A to C, 1 second from R to H, 2 s from M
to H and 3 s from F to M. Here, the weights are assumed to be integers
but they could be any positive values. b The highlighted yellow paths
are the two and the only two shortest paths from node A to B

Backward process: from destination to origin

In the backward process, the signal is sent from the destina-
tion node B to the origin node A, but all of the nodes obey the
exact rules as in the forward process.Wedenote the backward
process as Y . In fact, it does not matter if the forward or the
backward process is implemented first. If parallel computing
is allowed, we could simultaneously implement both.

Intersection of forward and backward processes

This is the last step of RA, after which all possible shortest
paths will reveal themselves:

• In this step, we simultaneously play the animation of the
forward processX and the backward processY . But note
that the key is to play X normally but play Y reversely,
namely in a time-reversed manner.

• At each frame during playing, we mark the signals that
appear at the same position in both processes.

• In the end, the paths covered by all of these marked sig-
nals are the shortest paths (referring to the highlighted
yellow paths in the animation, also shown in Fig. 1b).

Resonance algorithm (RA): implemented by
matrix

In this section, we explain in details about how to imple-
ment RA by matrix, one of many possible implementations,

also referring to the MATLAB code at https://github.com/
yuernestliu/ResonanceAlgorithm.

Forward process: from origin to destination (matrix)

First, we initialize a zeromatrix (denoted asX and each entry
is denoted as Xi, j )where one row stands for one node and one
column stands for one time point. X records the time point
when a node sends signals, where “1” represents signals are
sent and “0” otherwise.

At t = 0, we set XA,0 = 1, meaning that the origin node
A sends signals to all of its neighbors. Its neighbors C and S
will receive this signal at t = 1 (as the weights of both edges
are 1). We then set XC,1 = XS,1 = 1, as shown in Fig. 2a
(“0” is always omitted to write).

Now, repeat the following two procedures until the desti-
nation node B receives signals: (i) set the time to t + 1, and
check the whole column of (t + 1) to see which entries are
1, meaning that they receive signals at (t + 1) and will send
signals to all of their neighbors immediately (denote each
neighbor as v); (ii) for each v, there is a specific time point
(denoted tv) it receives the signal, sowemark each Xv,tv = 1.
But note that (1) if Xv,τ = 1 for any τ < tv (meaning that
v would send signals before tv), do not mark it; and (2) if v

will receive signals at several time points after (t + 1), only
mark the earliest time point and change other entries to 0.
Specifically:

• At t = 1, we have XC,1 = XS,1 = 1 which means that
C and S receive signals at t = 1 (Fig. 2b) and they will
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Fig. 2 Thematrix implementation of RA (“0” is omitted in these matri-
ces). a–e Illustrate how to obtain the matrix X for the forward process.
f Shows the matrix Y for the backward process. g Illustrates the inter-
section operation where the red squares represent the entries where
Xi, j = 1, and the blue circles represent the entries where Yi, j = 1.
The entries with both a red square and a blue circle will be set to 1.

Then we obtain the matrix Z. h The matrix implementation of Dijk-
stra’s algorithm for the same graph (Fig. 1a). The entry records the
tentative distance from the origin to this node, and the ones marked in
gray indicate that they are visited. i To compare with RA, we rewrite
the matrix V in terms of time points t instead of operation steps k, into
the matrixW

send signals to their neighbors immediately. For node C,
its neighbors D and E will receive signals at t = 2, as the
weights of both edges are 1, so we mark XD,2 = XE,2 =
1 (although node A is also C’s neighbor, it has already
sent signals, so leave it). Similarly, for node S, we mark
its neighbors XQ,2 = XR,2 = 1.

• At t = 2, we see that D, E, R and Q receive the sig-
nals (Fig. 2c), and will send signals to their neighbors
immediately. Therefore, we mark their corresponding
neighbors at the time point they receive signals, namely
XF,3 = XH ,3 = XN ,3 = XP,3 = 1.

• At t = 3, F, H, N and P receive the signals (Fig. 2d).
Likewise, we mark their corresponding neighbors at the
corresponding time point XG,5 = XL,5 = XM,5 = 1

(notice the weighted edges, i.e., it takes 2 units of time
from F to H and G, from H to F and M, from P to L, and
it takes 3 units of time from F to M). Note that the signal
that F sent arrives at M at t = 6 while the signal that H
sent arrives at M at t = 5, but we will only mark the one
that arrives first, i.e., only set XM,5 = 1.

• At t = 4, no node receives signals, so we directly move
to the next time point.

• At t = 5, G, L and M receive signals for the first time
(Fig. 2e). Likewise, we mark their corresponding neigh-
bors XB,6 = XK ,6 = 1.

• At t = 6, the destination node B receives the signal, so
the forward process stops. We then obtained the matrix
X for the forward process, as shown in Fig. 2e.
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Backward process: from destination to origin
(matrix)

In the backward process, the rules each node follows are
exactly the same as that in the forward process, except that
(1) the signal is sent from the destination B to the origin A,
and that (2) the time goes backwards, i.e., t starts from 6 (the
time point when node B receives the signal in the forward
process), to 5, 4, ..., till 0. It is automatically guaranteed that
at t = 0, the origin A will receive the signal. In the end, we
can obtain the matrix Y for the backward process, as shown
in Fig. 2f.

Intersection of forward and backward processes
(matrix)

The last step is to compute the intersection ofX andY: Create
a matrix Z and set each entry of Z to be equal to the logical
conjunction (AND) of the corresponding entries ofX andY.
That is, Zi, j = Xi, j AND Yi, j , i.e., 1 AND 1 = 1, while
0 otherwise. The matrix Z is all we need, that contains the
information of all possible shortest paths (Fig. 2g). From
Z, we simply trace back how the signal is propagated and
we can obtain all the shortest paths. Since the intersection
only contains the information of the shortest paths (if there
is only one shortest path, the intersection only contains the
information of this particular path; if there are two shortest
paths, the intersection only contains the information of these
two particular paths; and so forth) and thus has filtered out
all the redundant information, the process of tracing back
would be super fast. The paths can be visualized as shown in
Fig. 1b.

Comparison with Dijkstra’s algorithm

Dijkstra’s algorithm is the most classic and commonly used
algorithm for SPP [10,11,43]. One difference between Dijk-
stra’s algorithm and RA is that the latter returns all possible
shortest paths while the former (the classic version) returns
one shortest path (yet extensions can be made to return all
possible shortest paths [32]).

Therefore, in this section, we will first take the classic
version of Dijkstra’s algorithm, and compare it with RA for
similarities and differences in the searching process. And
then, we will extend the classic Dijkstra’s algorithm to return
all possible shortest paths, and compare the running time of
the classic and extended Dijkstra with RA.

Comparison with Dijkstra’s algorithm: searching
process

In general, RA and Dijkstra’s algorithm have a few points in
common: (1) If a node is currently in focus, the next step is
to check all of its neighbors: the former does it by sending
signals to all of its neighbors, while the latter does it by
updating the distance from the origin to the neighbor. (2)
They both ignore certain nodes in future searching processes:
RA ignores the nodes that have sent signals, while Dijkstra’s
algorithm ignores the nodes that have been visited. (3) RA
stops searching as long as the destination receives signals,
while Dijkstra’s algorithm stops when all nodes have been
visited (but note that ifweonly need the shortest path between
the origin and the destination, instead of between the origin
and all other nodes as in the classic Dijkstra, early exit can
also be applied to Dijkstra, to speed up).

To compare the two algorithms, we now apply Dijkstra’s
algorithm on the exemplified graph in Fig. 1a, and use the
similar matrix notation as in “Resonance algorithm(RA):
implemented bymatrix”. First, we initialize amatrixVwhere
one row stands for one node, and one column stands for one
iteration, denoted k (referring to the matrix shown in Fig. 2h,
which evolves as the algorithm proceeds, but we currently
only look at column k = 0). Each entry of the matrix records
the tentative distance from the origin to this node. For col-
umn k = 0 (initialization), we set the entry for the origin
A to 0, and other entries to infinity ∞. Mark all nodes as
unvisited, whereas visited nodes are marked in grey as we
shall see later.

• We are first at the initial operation step (column k = 0).
Select one unvisited node that ismarkedwith the smallest
tentative distance, node A in this case. Consider all of
its unvisited neighbors, nodes C and S in this case, and
calculate their tentative distances, both of which are 0 +
1 = 1 where 0 is the current tentative distance for A,
and 1 is the weight of the edge from A to C or S. Since
the new tentative distance (namely 1) is smaller than the
current value ∞, we update the corresponding entries of
the next operation step to 1, i.e., VC,1 = VS,1 = 1. Then,
at column k = 1, we mark node A visited (denoted by
grey color, andAwill not be visited again) and keep other
entries unchanged. Finally, matrix V’s column k = 1 is
updated.

• Now, we are at column k = 1. Select one unvisited node
with the smallest tentative distance. Either C or S works,
and we can choose C first. Consider all of C’s unvisited
neighbors (namely D and E), and calculate their tentative
distances, both being 1 + 1 = 2. Since 2 is smaller than
the current value ∞, update the entries VD,2 = VE,2 =
2 (and other entries unchanged). Finally, mark node C
visited.
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• Then, we are at column k = 2. Select one unvisited
node with the smallest tentative distance, S in this case.
Calculate the tentative distances of all of S’s unvisited
neighbors (namely Q and R), both being 1+1 = 2 < ∞.
Then update VQ,3 = VR,3 = 2, and mark S visited.

• This process continues, until all node are marked visited.
As we see in Fig. 2h, it finishes at k = 16 in this case.

In order to compare V with the matrix obtained from RA,
we rewrite V in terms of time points t instead of operation
steps k, into the matrix W (Fig. 2i), that is, for each node, if
the rightmost entry is m in V, we write m in W at the mth
column and the corresponding row.

We can see that W’s non-empty entries and X’s value-1
entries have exactly the same positions (W has an extra 7th
column due to the fact that all nodes have to be visited in
Dijkstra’s algorithm). That means, the forward process of
RA (as X is the resulted matrix) and Dijkstra’s algorithm are
similar, essentially. Two algorithmswould thus have a similar
algorithmic complexity. One minor difference between the
two algorithms is that RA will stop right after the destination
receives the signal,whileDijkstra’s algorithmwill go through
every nodes in the map (although early exit can be applied
if we only need one shortest path between the origin and the
destination).

The major difference comes after we obtain this above-
mentioned matrix. Dijkstra’s algorithm finds the shortest
path by following the parent nodes up to the origin as every
searched node has beenmarkedwith a parent node, while RA
computes the intersection of the forward and the backward
process.

It may sound redundant to run a backward process
(although there is no effect on the time complexity as it only
doubles the computing time), but exactly because of this,
RA does not require to either record and update each node’s
tentative distance or memorize the paths visited (which may
reduce the computing time). Yet, it is exactly this symmet-
rical operation of the forward and time-reversed backward
process that makes RA intriguing and intuitive. And it is a
natural consequence that after the operation of the intersec-
tion, all shortest paths are revealed.

Comparison with Dijkstra’s algorithm: running time

In order to have a quantitative comparison, we will sys-
tematically investigate their running times here. Note that
the classic Dijkstra’s algorithm only gives one shortest path
between two nodes. Therefore, we extend it so that it gives all
possible shortest paths between two nodes [32] (see Supple-
mentaryNotes online for how to extendDijkstra’s algorithm),
and then we compare the classic and the extended Dijkstra’s
algorithm with RA. For all of these algorithms, we wrote
the codes in MATLAB with sufficient optimization, e.g.,

we allow early exit for Dijkstra (see the codes on https://
github.com/yuernestliu/ResonanceAlgorithm). Now we run
the codes on different random graphs with the number of
nodes varying (seeSupplementaryNotes online for how these
random graphs are generated).

First, we have confirmed that RA and the extended Dijk-
stra’s algorithm always give identical answers, and that the
shortest paths given by the classic Dijkstra’s algorithm are
always included in the shortest paths given by RA. That is,
we confirm that RA always give correct answers.

Then, we show the running time statistics. We first run
the code on Octave (an open-sourced software compatible
with MATLAB). We can see from Fig. 3a that RA is slower
than Dijkstra (both the classic and the extended), which is
reasonable because (1) as we have discussed above, essen-
tially RA and Dijkstra have similar complexity, as long as we
optimize Dijkstra so that it can have early exit (without early
exit, Dijkstra runs much slower than RA when the graph is
large), and (2) RA requires a backward process.

Butwhat is surprising is thatwhenwe run the samecodeon
MATLAB, we can see from the results, as shown in Fig. 3b,
that RA out-competes Dijkstra (both the classic and the
extended)when the graph is relatively large (around 50 nodes
in this case) and its running time grows much slower than
Dijkstra. This might be due to the sophisticated optimization
ofmatrix operations inMATLAB, asRA involvesmuchmore
matrix operations than Dijkstra, which can be seen in “Res-
onance algorithm(RA): implemented by matrix”. Therefore,
although the original motivation for RA is only to give a new
and intuitive algorithm that is inspired by natural processes,
instead of the speed per se, it could be practically useful in
some scenarios, e.g., when sophisticated matrix operations
can be employed, and when the map is very large and all
possible shortest paths are demanded.

Discussion

In this paper,we developed an intuitive algorithm,Resonance
Algorithm (RA), to compute all of the possible shortest paths
between two nodes in a graph, which is inspired by Fermat’s
principle (i.e., the path taken by a ray is always the one that
takes the least time) and the probability amplitude interpre-
tation of the wave function in quantum mechanics, as the
wave function always experiences every possible path (see
Supplementary Notes online for a discussion).

The basic idea ofRA is that if each node sends signals to all
of its neighbors immediately after it receives one, then when
the destination receives the signal for the first time, the signal
must have traveled through the shortest path to reach the des-
tination. The information about the shortest paths has already
been stored in this process, yet the problem is how to extract
it (the well-known Dijkstra’s algorithm does it by updating
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Fig. 3 Running time statistics
of the classic, the extended
Dijkstra’s algorithm and RA.
The curve is the mean running
time while the error bar
represents the standard error. For
a fixed number of nodes (x-axis
value), we used 50 randomly
generated graphs, all of which
are sparse (and connected)
graphs, i.e., the number of edges
is much smaller than the number
of nodes squared, of which the
graph in Fig. 1a is a typical
example. a The code was run on
Octave on a personal computer
with the Intel(R) Core(TM)
i7-7700 CPU of 3.60 GHz, with
16 GB RAM. b The same code
was run on MATLAB on the
same computer

the tentative distance from the origin to the neighbor, and
taking notes of the path it travels). On the other hand, if the
signal is sent from the destination to the origin, there must
be signals traveling through the shortest path, too. Therefore,
the intersection of the forward process and the time-reversed
backward process may reveal the shortest paths. This is the
most basic motivation.

Practically speaking, RA can handle any undirected,
directed, or mixed graphs, with or without loops, with
unweighted or positively weighted edges. In addition, RA
does not require the information of the whole graph to be
stored in one central agent, and it can thus be implemented
in a fully decentralized manner, because each node acts as
an independent agent, obeys identical rules, and its behavior
depends only on the local information, i.e., which node it
is linked to and when it receives signals. That is, the nodes
collectively determine the shortest paths. This would be very

useful in scenarios where the central agent does not exist or
cannot keep track of the whole graph, or where nodes are
constantly joining and leaving the graph.

Here, we provide a recipe for the decentralized version.
First, each node only records who it is linked to, namely all
of its neighbors (so there is no need for the whole graph to
be hold by a central agent). Second, unlike in the normal
version where the “signal” could be an empty message, for
this decentralized version, the “signal” must contain certain
information: That is, when a signal is about to be sent, the
information about when it is sent and which neighbor it is
sent to should be added into the signal itself. Then, when
the signal finally arrives at the destination (denoted as sig-
nal A), the propagation history of this signal would be fully
recorded in itself (it is straightforward to see that each signal
only records the propagation history of itself and thus differs
from each other). This also applies to the backward process,
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that is, when the signal arrives at the origin (from the desti-
nation), its propagation history would also be fully recorded
in itself (denoted as signal B). Then, signal B should be sent
back to the destination node for computing (or maybe other
computing units).When both signals A andB are obtained by
the destination node (the computing unit in this example), the
matrix X and Y (see Fig. 2) can then be reconstructed, from
which the shortest paths can be readily worked out (refer-
ring to “Resonance algorithm(RA): implemented by matrix”
where we described how to do it in details).

The final remark is that the original motivation for RA is
just to give an intuitive and nature-inspired algorithm, provid-
ing a new look at SPP, but in certain scenarios it out-competes
the classic and the extended version of Dijkstra’s algorithm
in time efficiency. It suggests that RA could also be prac-
tically useful when sophisticated matrix operations can be
employed, and when the map is very large and all possible
shortest paths are demanded.

Supplementary Information The online version contains supplement-
ary material available at https://doi.org/10.1007/s40747-022-00942-z.
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